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REVIEW Open Access

The production of alpha/beta and gamma/
delta double negative (DN) T-cells and their
role in the maintenance of pregnancy
John C. Chapman*, Fae M. Chapman† and Sandra D. Michael†

Abstract

The ability of the thymus gland to convert bone marrow-derived progenitor cells into single positive (SP)
T-cells is well known. In this review we present evidence that the thymus, in addition to producing SP
T-cells, also has a pathway for the production of double negative (DN) T-cells. The existence of this pathway was
noted during our examination of relevant literature to determine the cause of sex steroid-induced thymocyte loss.
In conducting this search our objective was to answer the question of whether thymocyte loss is the end product
of a typical interaction between the reproductive and immune systems, or evidence that the two systems are
incompatible. We can now report that “thymocyte loss” is a normal process that occurs during the production of
DN T-cells. The DN T-cell pathway is unique in that it is mediated by thymic mast cells, and becomes functional
following puberty. Sex steroids initiate the development of the pathway by binding to an estrogen receptor alpha
located in the outer membrane of the mast cells, causing their activation. This results in their uptake of extracellular
calcium, and the production and subsequent release of histamine and serotonin. Lymphatic vessels, located in the
subcapsular region of the thymus, respond to the two vasodilators by undergoing a substantial and preferential
uptake of gamma/delta and alpha/beta DN T- cells. These T- cells exit the thymus via efferent lymphatic vessels and
enter the lymphatic system.
The DN pathway is responsible for the production of three subsets of gamma/delta DN T-cells and one subset of alpha/
beta DN T-cells. In postpubertal animals approximately 35 % of total thymocytes exit the thymus as DN T-cells, regardless
of sex. In pregnant females, their levels undergo a dramatic increase. Gamma/delta DN T-cells produce cytokines that are
essential for the maintenance of pregnancy.

Keywords: Mast cells, Sex steroids, DN pathway, DN T-cells

Background
Steroids play a commanding role in all aspects of
reproduction [1]. They do this through the mediation of
steroid receptors, a process that is purported to involve
components of the immune system [2, 3]. However, re-
search conducted during the development of oral con-
traceptives suggests that a ligand-receptor interaction
between the two systems may not be possible. This be-
came apparent when it was found that injecting female
rats with estrogen and testosterone caused the thymus

to suffer a severe loss of thymocytes and to undergo
thymic involution [4]. Although this finding was
regarded as atypical and due to exposing the thymus to
excessive levels of the two steroids [4], a more recent re-
port found that physiological levels of estrogen also
cause thymocyte loss and thymic involution [5]. Taken
in toto, these studies have led to the theory that sex ste-
roids initiate, and then perpetuate the aging process of
the immune system [6]. This would suggest that the two
systems are ill-suited for each other. We disagree with
this premise and will present evidence to show that
thymocyte loss, instead of being due to incompatibility,
results from a sex steroid-induced release of γδ and αβ
double-negative [DN] T- cells into the lymphatic system.
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In brief, the discharge of these T-cells occurs when sex
steroids bind to the estrogen receptor alpha [7] of
thymic mast cells. Mast cell activation, coincident with a
rapid influx of extracellular calcium, results in the re-
lease of vasodilators such as histamine and serotonin [8].
Nearby lymphatic vessels become enlarged and undergo
a preferential and significant uptake of the aforemen-
tioned DN T- cells. The T-cells then exit the thymus via
efferent lymphatic vessels and enter the lymphatic sys-
tem. These DN T-cells play a key role in the mainten-
ance of pregnancy.

Review
After exposure to hydrocortisone and dexamethasone,
thymocytes become apoptotic and undergo cell death
[9, 10]. Whether or not sex steroids cause thymocyte
loss by apoptosis was examined in a number of stud-
ies in which animals were subjected to estrogen ad-
ministration. Unfortunately, the results were notable
for their lack of consensus. Estrogen treatment in
some studies resulted in an increase in the rate of
thymocyte apoptosis [11–13], whereas in other re-
ports, estrogen treatment produced little or no evi-
dence of apoptotic death [14, 15]. In a further study
of the phenonomen, Zoller et al. [5] found that preg-
nant mice undergo extensive thymocyte loss and
thymic involution without thymocyte apoptosis ever
taking place. In pregnant mice, the levels of estrogen
range between 7 ng/ml to 13 ng/ml [16]. Studies that
reported a high incidence of thymocyte apoptosis
injected the animals with levels of estrogen far in ex-
cess of these values [11–13]. Thus, without evidence
to show that physiological levels of estrogen cause
apoptosis, this process can be ruled out as the reason
for thymic involution and thymocyte loss.
Some investigators have proposed that thymocyte loss

takes place because estrogen blocks T-cell production at
the precursor level. This premise came from a study in
which estrogen treatment resulted in an increase in the
levels of the earliest CD44+ progenitors and a depletion
of all defined thymocyte subsets of CD4+ and CD8+ T-
cells [17]. Other researchers have proposed that thymic
involution is due to an estrogen-induced reduction in
early thymic progenitors [15]. These studies suggest the
possibility that thymocyte loss is the result of an alter-
ation in T-cell production.
Martin et al. [18, 19], using light and electron micros-

copy, observed an estrogen-induced loss of thymocytes
in the subcapsular and deep cortex of the rat thymus. In
the medullary region, they found evidence of an increase
in the vascular permeability of blood vessels located near
the corticomedullary junction. Lymphocytes were often
seen migrating through the enlarged walls of these blood
vessels. They concluded that “the release of lymphocytes

from the thymus seems to be the main factor inducing
thymic involution.” Others have observed that the
lymphatic vessels in involuted thymuses are packed with
lymphocytes (T-cells) [20, 21].
Although not identified as such, these lymphatic ves-

sels would have to be efferent lymphatic vessels, since
the thymus lacks the afferent variety [22, 23], an import-
ant distinction.
Oner and Ozan [24] reported that prolonged treat-

ment of female rats with either testosterone or estrogen
(daily for 3 weeks) caused extensive thymic involution.
This involution was accompanied by a loss of thymo-
cytes in the subcapsular region as well as in the deep
cortex. Blood vessels in the thymic medulla were also en-
larged, as was noted in the report by Martin et al. [18, 19].
The most significant finding by Oner and Ozan, however,
was the identification of mast cells in connective tissue of
the thymic capsule and in the stroma of the thymic me-
dulla. In untreated control rats, mast cells were sparsely
distributed, whereas in steroid-treated animals, they were
increased in number and often found in clumps. The fact
that mast cells secrete vasodilators leaves little doubt as to
the cause of the increase in vascular permeability; which
may be the reason why involuted thymuses were packed
with lymphocytes [20, 21]. As to the identity of these lym-
phocytes, studies of estrogen-injected [25, 26] and thymic-
implanted nude mice [27] revealed that “thymocyte loss”
was the result of the discharge of two subsets of DN T-
cells [25, 26]. One subset had a typical αβ T-cell receptor
(TCR), and the other had a unique γδ TCR.

T-cell production
The thymus gland consists of two distinct lobes, each
composed of a central medulla and an outer cortex. Two
layers of connective tissue, separated by a sinus, encap-
sulate both lobes. In most species, the capsule gives rise
to trabeculae that penetrate the cortex and terminate at
the corticomedullary junction, thereby providing a struc-
tural link to the medulla. A basement membrane sup-
ports a specialized flattened epithelium lining the
subcapsule and trabeculae. Arteries travel within the
capsule and then either enter the cortex as arterioles or
continue within the trabeculae until they reach the corti-
comedullary junction, where they pass into the medulla.
Arterioles become progressively smaller and continue
throughout the thymus as capillaries, undergoing even-
tual transformation into venous capillaries and subse-
quent enlargement to form postcapillary venules (PCVs).
These venules ultimately lead to major blood vessels that
travel back to the trabeculae, where they leave in close
proximity to the incoming arteries [21, 22, 24, 28–30].
The distribution of blood and lymphatic vessels (LVs)

is not uniform. For example, the cortex lacks PCVs,
whereas the medulla contains a large number [21, 22].
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In addition, the cortex contains a small contingent of
branched LVs, located mainly in the subcapsular region
[31]. These vessels extend into the capsule and extralob-
ular region and connect to efferent lymphatic vessels
(ELVs) [21, 22, 31]. In the medulla, LVs are more plenti-
ful and are localized in the region of the corticomedul-
lary junction. These connect with ELVs in the
trabeculae. Mast cells are absent from the cortex, but
are found nearby in the connective tissue of the capsule
[24]. In the medulla, mast cells are located in proximity
to both LVs and PCVs [24, 32, 33]. Notably, in the invo-
luted thymus the number of mast cells is significantly in-
creased [24, 34, 35].
T-cell progenitors produced in the bone marrow reach

the thymus via the arterial branch of the circulatory sys-
tem. Upon entering the gland, they travel through arteri-
oles as well as arterial and venous capillaries until they
arrive at the PCVs. The progenitors then pass into the
thymic stroma, using a process referred to as extravasa-
tion, or diapedesis. Diapedesis takes place in vessels that
have walls of endothelium and lack a muscular layer
[36], such as PCVs and LVs. Endothelial cells are unique
in that lymphocytes are able to insinuate themselves be-
tween cellular junctions, then pass either into, or out of,
the thymic stroma [37–39]. Lymphocyte movement is
aided by estrogen-activated mast cells through their pro-
duction of histamine and serotonin, which in turn,
causes a widening of the cellular junctions of the endo-
thelial cells [36]. Diapedesis in PCVs is unidirectional
and limited to lymphocyte movement from the lumen
into the thymus [40, 41]. For passage out of the thymus,
the T-cells utilize LVs [42–46], since these are capable of
reverse diapedesis [47, 48].
Figures 1 and 2 are graphic representations of thymo-

cyte development in pre- and postpubertal mice. Shown
in each figure are four spatially defined developmental
stages in the cortex that Lind and colleagues [49] have
mapped using the progenitor markers, CD117 and
CD25. Differential expression of these two markers re-
flects developmental changes in the thymocytes as they
move outward from the corticomedullary junction into
the cortex. In this process, thymocyte movement is aided
in large part by an interaction between chemokines pro-
duced by cortical epithelial cells in specific areas of the
cortex, and thymocyte chemokine receptors [50]. Stage 1
(CD117+CD25—) begins at the corticomedullary junction
and is characterized by thymocytes with multilineage po-
tential. These cells, in addition to giving rise to T lym-
phocytes, can also evolve into B lymphocytes, as well as
dendritic and NK cells. Cells that reach stage 2 (CD117
+CD25+) no longer have the ability to become B lympho-
cytes and NK cells, but can give rise to αβ T-cells, γδ T-
cells, and dendritic cells. Intracellular CD3ε protein is
detected at this stage [51]. In addition, a significant

amount of thymocyte proliferation occurs at stage 2.
Cells that reach stage 3 (CD117—CD25+) are committed
to T-cell lineage. Intracellular CD3ε protein synthesis
continues unabated. TCR β protein is first detected at
this stage. Cells that express productive rearrangements
of TCR β with an α chain are selected to proliferate and
proceed to stage 4, a process termed as β selection. At
stage 4 (CD117—CD25—), thymocytes have reached the
subcapsular region of the cortex with their TCR in place
and γ and δ binding components added to the CD3
complex. Most have traversed the αβ TCR developmental
pathway and are characterized as αβ CD4—CD8— double-
negative (DN) T-cells. Thymocytes that have developed a
γδ TCR are referred to as γδ DN T-cells. Their numbers
comprise 5-10 % of total DN T-cells [27, 52].

DN T-cell pathway
Gamma/delta T-cells are not found in the thymus be-
yond stage 4 of development [51]. This suggests: 1) an
absence of thymic tissue specifically dedicated to the
continuation of their chemokine-facilitated travel; and 2)
a strong probability that they leave the thymus directly
after they are produced. Lymphatic vessels located
nearby in the subcapsular cortex are very likely their
means of exit. In mice, the DN pathway is operational
shortly shortly after birth, with DN T-cells being found
in the liver and spleen of 4-day-old animals [52, 53].
Notably, the levels of αβ DN T-cells exceed that of γδ
DN T-cells by a factor of 4:1. Shown in Fig. 1 are the
proposed exit pathways of γδ DN T-cells and αβ DN T-
cells in prepubertal mice. As is indicated, most T-cells
leave the thymus via ELVs located in the medulla (solid
black arrows). However, in postpubertal mice (Fig. 2) a
large number of γδ DN T-cells and αβ DN T-cells exit
the thymus via ELVs located in the subcapsular cortex
(solid red arrows) as the result of a sex steroid-induced
activation of thymic mast cells.
Estrogen activation of mast cells takes place via a

membrane-associated (non-genomic) estrogen receptor-
α (ER-α) [7]. This activation results in an influx of extra-
cellular calcium and the synthesis and release of gran-
ules of histamine and serotonin [8]. Mast cell activation
can be achieved with concentrations of estrogen between
10−11 M and 10−9 M (2.7 pg/ml to 270 pg/ml) [54]. Tes-
tosterone activation requires levels that are 10 times that
of estrogen [55]. Activation by the weak androgen, dehy-
droepiandrosterone (DHEA), necessitates levels that are
1000 times that of estrogen [56, 57]. Dihydrotestosterone
(DHT) is also a mast cell activator [58]. Progesterone is
an inhibitor of estrogen activation [59].
In postpubertal animals, endogenous sex steroids at-

tain levels that are fully capable of activating thymic
mast cells. For example, circulating levels of testosterone
in male mice and rats average 18.7 ng/ml and 5.8 ng/ml,
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Fig. 1 (See legend on next page.)
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respectively [60]. In nonpregnant female mice and rats,
the levels of estrogen are 66 pg/ml and 30.6 pg/ml, re-
spectively [61, 62], and in pregnant mice, estrogen levels
range from 7 ng/ml to 13 ng/ml [16]. Strong evidence
that the ER-α plays a role in estrogen-induced thymic in-
volution is indicated by studies of estrogen receptor
knockout mice (ERKO). In these animals, the ER-α is
nonfunctional; consequently, the thymus undergoes only
minimal estrogen-induced involution [63, 64].

Classic T-cell pathway
In contrast to the fate of γδ DN T-cells, αβ DN T cells
retain the option of continuing their development in the
thymus. This choice is exercised when CD4 and CD8
markers are expressed, and αβ DN T-cells become CD4+

CD8+ double-positive (DP) T-cells. In utilizing this op-
tion, DP T-cells apparently lose the ability to access the
DN pathway. This is either because they are restricted
from doing so or have left the area of the subcapsular
LVs. Abo’s group reports a total absence of DP T-cells in
the pool of SP T-cells and DN T-cells found in the liver
of estrogen-injected mice [25]. In the next developmen-
tal stage, DP T-cells undergo positive selection, a pro-
cedure concurrent with the production of two subsets of
single-positive (SP) MHC restricted T-cells. These sub-
sets are CD4+ (class II MHC-restricted) and CD8+ (class
I-MHC restricted) T-cells, and as such, they continue on
into the medulla. Here they undergo negative deletion, a
process in which their αβ TCRs are exposed to ectopic
self-antigens. Production of these antigens is under the
direction of the autoimmune regulator (Aire) promotor
[65]. Fully mature CD4+ Helper, CD4

+ CD25+ Foxp3+Regu-
latory, and CD8+ Cytotoxic T-cells exit the thymus via LVs
located in the medulla (Fig. 1, solid black arrows; Fig. 2,
dashed red arrows).

Interaction between DN and SP pathways
It should be noted that the permeability of all LVs
and PCVs is increased through the combined action
of sex steroids and mast cells. This results in an in-
creased entry of T-cell progenitors and an enhance-
ment in the exit rate of DN T-cells. To gain an
appreciation of the levels of thymocytes that exit the
thymus via the DN pathway, one only has to meas-
ure the total number of thymocytes prior to, and
after castration. Fortunately, this has been done by a
number of researchers. For example, Pesic et al. [66]

reported that thymocyte levels in castrate and intact
60-day-old Albino-Oxford male rats were 1050 × 106

and 650 × 106, respectively. This would suggest that
mast cell activation has facilitated the exit of 38 %
of total thymocytes. Notably, these thymocytes were
reported to originate from the cortex. In a study of
intact and castrated 60-day-old female Sprague–
Dawley rats [57], the results indicated that estrogen
caused 44 % of total thymocytes to exit via the DN
pathway. Findings from a third study of male and fe-
male adult Wistar-albino rats [24] revealed that tes-
tosterone and estrogen affected a reduction of 31 %
and 30 % of total thymocytes, respectively. These
studies demonstrate the effect of sex steroids in al-
tering the dynamics of T-cell production. In the cas-
trate animal, the thymus produces mainly SP T-cells.
Their production time takes 3–5 days in the cortex
and 12–16 days in the medulla [67], for a total of
~21 days. In the intact animal, a significant number
of DN T-cells exit the thymus via the DN pathway. Their
total production time is 3–5 days. In these animals, the re-
ports of a reduction in thymocyte levels of ~ 35 % [24, 57,
66] strongly indicates that progenitor replacement does
not keep pace with DN T-cell production.
Pesic et al. [66] also measured thymocyte levels in the

cortex and medulla of intact and castrate male rats.
With this information we were able to examine the
effect of the discharge of DN T-cells in altering the
levels of SP T-cells. For example, in the castrate ani-
mal (Fig. 3) a comparison between thymocyte levels
in the cortex and medulla indicates that 2 % of total
thymocytes leave via the DN pathway, and 11 % reach
the medulla to become SP T-cells. Without castration
(Fig. 4), a similar comparison suggests that 38 % of
total thymocytes exit via the DN pathway and only
7 % reach the medulla. Thus, the production of DN
T-cells is the result of a proverbial “fork in the road”
of T-cell development. Thymocytes can either leave
the thymus as DN T-cells, or they can remain in the
classic T-cell pathway and exit as SP T-cells. Their
pathway of development is determined by sex ste-
roids. For example, during pregnancy when estrogen
levels are at their highest, large numbers of T-cells
utilize the DN pathway. As a consequence, the
production of SP T-cells is at its nadir [15]. We esti-
mate that during pregnancy only 2 % of total thymo-
cytes reach the medulla.

(See figure on previous page.)
Fig. 1 Proposed pathways for the production of T-cells in prepubertal mice. Progenitor cells enter the thymus via postcapillary venules (PCVs)
located in the medulla and as T-cells leave by way of efferent lymphatic vessels (ELVs) located in the subcapsular cortex and in the medulla. In
prepubertal mice, the majority of thymocytes traverse the classic developmental pathway and as SP T-cells enter the lymphatic system (LS) (solid
black arrows) via ELVs located in the medulla. Lesser numbers of thymocytes enter the LS (dashed black arrows) as DN T-cells through ELVs located
in the subscapular region
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Fig. 2 (See legend on next page.)
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DN T-cells
DN T-cells do not undergo positive selection (Figs. 1
and 2). Consequently, they lack MHC restriction. This
factor, in combination with their unique TCR, produces
binding characteristics for γδ DN T-cells that differ sub-
stantially from that of MHC restricted αβ T-cells. Where
the latter bind to fragments (epitopes) of foreign antigen
held within the cleft of a class I or class II MHC mol-
ecule [68], γδ DN T-cells do not. Instead, their binding
to foreign antigen is based on the conformational shape
of the intact antigen, similar to that of antibodies, and
independent of MHC involvement [69].
There are three major subsets of γδ DN T-cells,

one of which is cytolytic. In humans this subset has
been characterized via its TCR as a Vγ9Vδ2 T-cell
[69, 70]. When activated, they secrete interleukin-2
(IL-2), interferon-γ (IFN-γ), and tumor necrosis
factor-β (TNF-β) [71]. These cytokines promote in-
flammation, cytotoxicity, and delayed-type hypersensi-
tivity (DTH) [72]. Vγ9Vδ2 T-cells are unconventional
in that non-proteins such as isoprenoids and alkyla-
mines cause their activation [69]. Their venue of im-
munological activity is in the peripheral bloodstream
[70, 71]. Here they have an important role in both
tumor cell surveillance and anti-infective immunity
[73]. The second subset of γδ DN T-cells has all the
characteristics of the Vγ9Vδ2 T-cells, except they are
not cytolytic. The reason they are not is because they
have an intermediate and incompletely expressed
TCR/CD3 binding complex [74–76]. Henceforth they
will be referred to as γδ DN (int TCR/CD3) T-cells.
Rather than being in the bloodstream, these T-cells
reside in the intraepithelial lymphocyte compartments
of specific tissues such as skin, intestine, respiratory
tract and uterus [69, 74]. The third subset of γδ DN
T-cells are regulatory. In mice they are characterized
as Vγ6Vδ1 regulatory T-cells [77]. Activation of these
γδ DN regulatory T-cells results in the production of IL-10
and transforming growth factor-β (TGF-β) [76, 78]. These
cytokines control the action of cytotoxic T cells, NK cells,
macrophages, dendritic cells and B cells [79]. The γδ DN
regulatory T-cells are also restricted to the intraepithelial
lymphocyte compartments of specific tissues [79]. In the
uterus they play a significant role in the maintenance of
pregnancy.
Alpha/beta DN T-cells are cytolytic [80] and produce

IL-4, IFN-γ, and TNF-β, but not IL-2 [81]. These T-cells

have a significant role in the control of intracellular bac-
terial infection [82].

Immunomodulation, DN T-cells, and the maintenance of
pregnancy
The maintenance of pregnancy depends, to a large ex-
tent, on the avoidance of maternal rejection. This is
dealt with through the construction of an immunological
barrier using cells that lack the ability to express classical
HLA-A and HLA-B products [83]. This produces a pro-
tective cocoon (trophoblast) in which MHC class I and
MHC class II molecules are either missing or non-
functional [84]; as a consequence, the processing and
presentation of antigens by MHC molecules cannot take
place. SP T-cells are thus eliminated as a rejection factor,
leaving only γδ DN T-cells to respond to the tropho-
blast. Instead of rejection, however, these T-cells are es-
sential for the maintenance of pregnancy. The
complexity of their overall role and the need for coord-
ination requires extensive communication between γδ
DN T-cells and the decidua and trophoblast. The
trophoblast, for example, initiates contact with a variety
of immune cells through its production and release of
chemokines. These are small proteins that act as ligands
to immune cell receptors. The binding of these unique
ligands to specific receptors results in the production of
adhesion molecules by respondent cells, thereby giving
them the means to adhere to the endothelium of blood
vessels. With this ability they are able to follow a chemo-
kine concentration gradient to its source [85]. Cytokines
produced by γδ DN T-cells, in contrast, encompass a
broader application than chemokines in that they influence
the growth and receptivity of specific cell populations.
The trophoblast attracts immune cells to the fetal-

maternal interface through its production of the che-
mokines CXCL12 and CXCL16. For example, CXCL12
recruits NK cells that have CXCR3 and CXCR4 re-
ceptors [86, 87], and CXCL16 recruits αβ T-cells, γδ
DN T-cells, and monocytes through its interaction
with CXCR6 receptors [88]. Analyses of the decidua
during early to mid-pregnancy has identified the
presence of the following cells: 1) γδ DN regulatory
T-cells; 2) γδ DN (int TCR/CD3) T-cells; 3) CD8+

cytotoxic T-cells; 4) CD4+ CD25+ Foxp3+ regulatory
T-cells; 5) NK cells; 6) dendritic cells; 7) macro-
phages; and 8) neutrophils [75, 89, 90]. These cells
have all reached the decidua via the cardiovascular

(See figure on previous page.)
Fig. 2 Proposed pathways for the production of T-cells in postpubertal mice. Progenitor cells enter the thymus via postcapillary venules (PCVs)
located in the medulla and as T-cells leave by way of efferent lymphatic vessels (ELVs) located in the subcapsular cortex and in the medulla. In
postpubertal mice, mast cell activation (red dots) results in large numbers of thymocytes exiting the classic pathway as DN T-cells and entering
the LS (solid red arrows) via ELVs located in the subcapsular region. Lesser numbers of thymocytes remain in the classic pathway and enter the LS
(dashed red arrows) as SP T-cells via ELVs located in the medulla
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Fig. 3 Production of DN T-cells and SP T-cells by castrate adult animals. Shown are the percentages of DN T-cells and SP T-cells produced by
castrate adult animals. The numerical values were determined from the data of Pesic et al. [66]
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Fig. 4 Production of DN T-cells and SP T-cells by intact adult animals. Shown are the percentages of DN T-cells and SP T-cells produced by intact
adult animals. The numerical values were determined from the data of Pesic et al. [66]
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system, with two exceptions. The exceptions are γδ
DN regulatory T-cells and γδ DN (int TCR/CD3) T-
cells. These two subsets are part of a group that ob-
tains access to their target tissues via the lymphatic
system [69, 74, 75, 78, 91].
In nonpregnant women, mice, rats, and rabbits, the

lymphatic system does not extend beyond the myome-
trium [92–94]. Therefore, during early pregnancy, γδ
DN regulatory T-cells and γδ DN (int TCR/CD3) T-cells
are unable to respond to CXCL16 until lymphangiogen-
esis (lymphatic vessel growth) has linked the endomet-
rium to the lymphatic system. As a consequence, these
T-cells are the last to reach the fetal-maternal interface.
Their late arrival indicates the likelihood that lymphan-
giogenesis does not require their input, at least at this
point. Their participation in the process comes later and
is essential for the maintenance of pregnancy.
Gamma/delta DN cytolytic T-cells are found in the

uterus during the early stages of pregnancy [95]. Their
presence in this location is very likely due to CXCL16.
However, the main function of these T-cells is to detect
and destroy bacteria, and they are highly cytolytic. Thus,
it is unusual for these cells to be in close proximity to
the trophoblast without causing its destruction [96]. To
protect the trophoblast could be the reason why a large
number of CD4+ CD25+ Foxp3+ regulatory T-cells reside
in the decidua [89]. These regulatory T-cells are fully
capable of eliminating γδ DN cytolytic T-cells [97, 98]. It
is noteworthy that Foxp3+ regulatory T-cells are among
the first immune cells to enter the uterus, indicating that
they are in place prior to the entry of the γδ DN
cytolytic T-cells [99]. Levels of Foxp3+ regulatory T-
cells undergo a significant increase during pregnancy
[5, 89, 100, 101], with the decidua being the major
recipient of their enhanced production [89]. It should
be noted that this form of protection for the tropho-
blast has an upper limit since excess numbers of per-
ipheral γδ DN cytolytic T-cells can cause abortion
[96, 102, 103]. It was not reported in these studies if
the increase in γδ DN cytolytic T-cells was due to
acute bacterial infection [104, 105]. Putative evidence
of the involvement of Foxp3+ regulatory T-cells in
preventing abortion is indicated by reports that
women with decreased levels of these T-cells suffer
from recurrent miscarriages [106–108].
NK cells play a significant role in the creation of blood

and lymphatic vessels. Their major responsibility is to
produce a large number of cytokines. These include vas-
cular endothelial growth factor (VEGF), fibroblast
growth factor (FGF), TNF-β, IFN-γ, and the angiopoie-
tins, to name a few [109]. Blood-borne NK cells are
cytolytic and fully capable of destroying the trophoblast
[110]. However, unlike the γδ DN cytolytic T-cells, they
are not eliminated. Instead, they are converted into

noncytolytic NK cells. This transformation is under the
control of TGF-β, and involves converting cytolytic
CD56dim CD16+ peripheral NK cells (CD16+ pNK cells)
into noncytolytic CD56bright CD16— uterine NK cells
(CD16— uNK cells) [111–113]. The initial source of
TGF-β for pNK cell conversion is provided by the male,
and TGF-β reaches the decidual area via the ejaculate
[114–116]. TGF-β is also produced by decidual stromal
cells [112]. However, the overall supply of TGF-β is not
inexhaustible. The TGF-β derived from the ejaculate is
limited for obvious reasons, and the ability of stromal
cells to produce the cytokine is seriously compromised.
This is because TGF-β is involved in two simultaneous
and conflicting operations. In addition to converting
pNK cells into uNK cells, TGF-β is also involved in im-
plantation. Its role in this process is to initiate the apop-
totic destruction of decidual stromal cells.
Shooner et al. [117] noted that stromal cells of the

pregnant rat uterus undergo a TGF-β-induced increase
in apoptosis between day 5 and day 14 of pregnancy.
During this period, the loss in stromal cells is correlated
with decreased production of the two isoforms, TGF-β1
and TGF-β2. After day 14, only limited quantities of
TGF-β are produced by stromal cell survivors. Without
replenishment, the decrease in TGF-β could have a ser-
ious impact on the transformation of pNK cells to uNK
cells. Red-Horse [94] noted that lymphatic vessels in the
endometrial area of pregnant mice begin their develop-
ment between embryonic day 9.0 and day 9.5. This
would indicate that these lymphatic vessels have ~ 5 days
to complete their development before TGF-β is seriously
depleted. This timeframe is critical since γδ DN regula-
tory T-cells, a major source of TGF-β, can only reach
the fetal-maternal interface via the newly-formed lymph-
atic vessels.
TGF-β is regarded as a pleiotropic cytokine. This

characteristic is obvious during the maintenance of
pregnancy. Here, the cytokine has a significant impact
on lymphangiogenesis by controlling levels of pNK
cells [112]. However, while TGF-α is performing this
function it is undergoing self-destruction by initiating
the apoptosis of decidual stromal cells [117]. Both
processes are essential for the maintenance of preg-
nancy. The prospect of the cytokine being depleted
during implantation is troublesome. One could
visualize scenarios in which the levels of stromal cells
were lower than normal, or where TGF-β-induced
stromal cell apoptosis occurred at a faster rate. In
these instances, implantation would be successful,
whereas a scarcity of TGF-β could alter the formation
of lymphatic vessels. If this occurred, it would prevent
γδ DN regulatory T-cells from reaching the fetal-
maternal interface. The loss of a major source of
TGF-β could impede the conversion of pNK cells to
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uNK cells. Notably, a number of studies have re-
ported that excess levels of pNK in pregnant women
are highly correlated with recurrent spontaneous
abortion [118–125].

Conclusions
In this review we have presented evidence indicating
that sex steroids initiate a pathway for the production of
DN T-cells. This is done through the mediation of
thymic mast cells. In females, the DN pathway is con-
trolled by estrogen. During pregnancy, estrogen levels
increase [126], causing the production of DN T-cells to
take priority over the production of SP T-cells. This
guarantees that the trophoblast will have a plentiful and
ever increasing supply of γδ DN regulatory T-cells and
γδ DN (int TCR/CD3) T-cells. In addition to their in-
creased production, these two T-cell subsets are specific-
ally guided to the trophoblast by CXCL16; and, after
travelling through efferent lymphatic vessels and newly-
formed endometrial lymphatic vessels, they perform
their role in the maintenance of pregnancy. This role in-
volves the production of cytokines; a process that re-
quires T-cell activation. Since γδ DN T-cells and the
trophoblast both lack MHC restriction, this activation
occurs by binding to an intact antigen. Heyborne et al.
have proposed that heat shock protein-60 (HSP-60) has
all the attributes to be that antigen [127].
Activation of γδ DN (int TCR/CD3) T-cells results in

the production of TNF-α and IFN-γ. These cytokines
are responsible for maintaining the integrity of the blood
and lymphatic vessels [128–130]. As important as this is
to maintaining pregnancy, activation of γδ DN regula-
tory T-cells, and their production of IL-10 and TGF-β, is
of far greater consequence. IL-10 by itself promotes
trophoblast invasion, and suppresses trophoblast apop-
tosis [78]; whereas TGF-β is involved in lymphangiogen-
esis and implantation [112, 117]. However, when IL-10
and TGF-β act in combination, the two cytokines per-
form a synergistic suppression of the cytolytic activities
of γδ DN cytolytic T-cells and pNK cells [131]. This
would strongly suggest that the two cytokines are sup-
planting, or adding to, the role of the CD4+ CD25+

Foxp3+ regulatory T-cells in protecting the trophoblast.
The importance of γδ DN regulatory T-cells in the
maintenance of pregnancy has been demonstrated by
Arck et al. [96]. This group found that the rate of abor-
tion in pregnant mice underwent a significant increase
when the animals were given monoclonal antibodies
against γδ DN regulatory T-cells. Notably, these mice
were injected with the antibodies after 8.5 days of gesta-
tion, coincident with the time when γδ DN regulatory
T-cells first reach the decidua, and 3.5 days after im-
plantation. One could speculate that construction of
endometrial lymphatic vessels was the reason that γδ

DN regulatory T-cells did not reach the decidua prior to
8.5 days of gestation.
The production of DN T-cells in anti-infective im-

munity can take place without sex steroid involvment.
For example, in response to the direct invasion of
bacteria and tumor cells [132–134], mast cell activa-
tion occurs when the Fc component of either IgG or
IgE antibodies bind to FcγR and FcεR receptors. The
two receptors are also located on the membrane of
mast cells, and the immunoglobulins are the product
of an antigen-induced activation of B cells and their
subsequent differentiation into antibody-secreting
plasma cells. With this brief description of the
antibody-induced initiation of the DN T-cell pathway
we conclude this review. We should point out that
this is only one of the ways that γδ DN T-cells act as
early sensors of stress and infection. Admittedly,
much of this review has been about the role of γδ
DN T-cells in reproduction. However, in doing this
we have presented a careful overview of current re-
search on sex steroid-induced “thymocyte loss.” We
look forward to future research to advance our under-
standing of the role of γδ DN T-cells in reproduction
as well as in immunology.
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