Resource Scarcity and Monumental Architecture: Cost Signaling on Rapa Nui (Easter Island), Chile

Dylan Davis
Binghamton University--SUNY, dsd40@psu.edu

Carl P. Lipo
Binghamton University--SUNY, clipo@binghamton.edu

Follow this and additional works at: https://orb.binghamton.edu/research_days_posters

Part of the Archaeological Anthropology Commons

Recommended Citation
https://orb.binghamton.edu/research_days_posters/6
ABSTRACT

Costly signaling theory (CST) explains a variety of elaborate behavioral displays as a consequence of competition over resources when the risk of direct conflict is high. Within an archaeological context, monumental architecture is potentially explained as a facet of costly signaling between individuals and groups. On Rapa Nui, CST offers an explanation for the construction of labor-intensive monuments including massive statues (moai) and ceremonial platforms (ahu). Using hypotheses derived from CST and spatial data about the distribution of archaeological features, the degree to which CST accounts for the investment in prehistoric monumental architecture on Rapa Nui is evaluated.

MATERIALS & METHODS

- Hydrology data collected by Coqueyt (1991), Dudgeon and Tromp (2014) and Herrera and Custodio (2008) were digitized in ArcGIS 10.3
- Hydrology data was mapped with archaeological features to conduct spatial tests
- Spatial statistical analyses (Ripley’s K Function, Getis Ord Gi)
- Landscape Analysis
- Landsat 8 SWIR imagery analyzed for soil moisture content using ENVI 4.7

RESULTS

- Majority of moai are clustered within the immediate vicinity of freshwater sources (1 or 2 km).
- The greatest density of moai occur in locations with high soil moisture, close proximity to freshwater sources, and/or in locations with lithic mulching and manavai. Areas lacking these resources also lack an abundance of moai.
- Spatial analyses reveal statistically significant results (observed G = 0.0008, z = 4.11, p < 0.01), indicating that the distribution of moai are non-random.
- Significantly, the presence of poe poe were unrelated to freshwater sources (observed G = 0.0004, z = 0.48, p > 0.5), indicating smaller scale constructions cannot be explained as costly signals, while monumental constructions can be explained by CST.

EMPIRICAL EXPECTATIONS

- Uneven distribution of ahu with the majority of monuments clustered within the immediate vicinity (<2 km) of freshwater sources.
- Density of ahu should be greatest in locations with high soil moisture, close proximity to freshwater, and/or locations that are abundant with lithic mulching and manavai.
- Spatial statistics should reveal statistically significant results suggesting that the distribution of ahu are non-random, with the highest densities close to freshwater sources and lower densities further from freshwater sources.
- Non-monumental archaeological features (i.e. poe poe) will have distinctively different spatial clustering patterns compared to ahu.

CONCLUSIONS

- The results of this study indicate that the distribution of ahu can be attributed to environmental resource availability (i.e. water, manavai).
- The application of costly signaling theory is validated for use on Rapa Nui for the purpose of explaining monument distribution.
- Future work should expand analyses to moai, which were intentionally left out of this study due to an immense amount of variability that must be taken into account. Additionally, tests should include water sources identified by Zeferjahn (2016) who conducted one of the most comprehensive surveys of freshwater features on the island to date.

SELECTED REFERENCES