
Binghamton University Binghamton University 

The Open Repository @ Binghamton (The ORB) The Open Repository @ Binghamton (The ORB) 

Pharmacy Faculty Scholarship School of Pharmacy and Pharmaceutical 
Sciences 

9-7-2023 

Clustering microbiome data using mixtures of logistic normal Clustering microbiome data using mixtures of logistic normal 

multinomial models multinomial models 

Yuan Fang 
Binghamton University–SUNY 

Sanjeena Subedi 

Follow this and additional works at: https://orb.binghamton.edu/pharmacy_fac 

 Part of the Pharmacy and Pharmaceutical Sciences Commons 

Recommended Citation Recommended Citation 
Fang, Yuan and Subedi, Sanjeena, "Clustering microbiome data using mixtures of logistic normal 
multinomial models" (2023). Pharmacy Faculty Scholarship. 9. 
https://orb.binghamton.edu/pharmacy_fac/9 

This Article is brought to you for free and open access by the School of Pharmacy and Pharmaceutical Sciences at 
The Open Repository @ Binghamton (The ORB). It has been accepted for inclusion in Pharmacy Faculty Scholarship 
by an authorized administrator of The Open Repository @ Binghamton (The ORB). For more information, please 
contact ORB@binghamton.edu. 

https://orb.binghamton.edu/
https://orb.binghamton.edu/pharmacy_fac
https://orb.binghamton.edu/pharmacy
https://orb.binghamton.edu/pharmacy
https://orb.binghamton.edu/pharmacy_fac?utm_source=orb.binghamton.edu%2Fpharmacy_fac%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/731?utm_source=orb.binghamton.edu%2Fpharmacy_fac%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://orb.binghamton.edu/pharmacy_fac/9?utm_source=orb.binghamton.edu%2Fpharmacy_fac%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ORB@binghamton.edu


1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14758  | https://doi.org/10.1038/s41598-023-41318-8

www.nature.com/scientificreports

Clustering microbiome data 
using mixtures of logistic normal 
multinomial models
Yuan Fang 1 & Sanjeena Subedi 2*

Discrete data such as counts of microbiome taxa resulting from next-generation sequencing are 
routinely encountered in bioinformatics. Taxa count data in microbiome studies are typically high-
dimensional, over-dispersed, and can only reveal relative abundance therefore being treated as 
compositional. Analyzing compositional data presents many challenges because they are restricted to 
a simplex. In a logistic normal multinomial model, the relative abundance is mapped from a simplex 
to a latent variable that exists on the real Euclidean space using the additive log-ratio transformation. 
While a logistic normal multinomial approach brings flexibility for modeling the data, it comes with a 
heavy computational cost as the parameter estimation typically relies on Bayesian techniques. In this 
paper, we develop a novel mixture of logistic normal multinomial models for clustering microbiome 
data. Additionally, we utilize an efficient framework for parameter estimation using variational 
Gaussian approximations (VGA). Adopting a variational Gaussian approximation for the posterior 
of the latent variable reduces the computational overhead substantially. The proposed method is 
illustrated on simulated and real datasets.

The human microbiome comprises complex communities of microorganisms including but not limited to 
bacteria, fungi, and viruses, that inhabit in and on a human  body1,2. It is estimated that there are approximately 
1014 microbial cells associated with the human body, which is around 10 times the number of human  cells3,4. The 
human microbiome plays a significant role in human health and disease status. There is evidence indicating that 
microbial dysbiosis may lead to diseases such as cardiovascular  diseases5,  diabetes6, inflammatory bowel  disease7, 
 obesity8, and many others. Next-generation sequencing techniques, such as the 16S ribosomal RNA (rRNA) 
amplicon sequencing or shotgun metagenomics sequencing, provide an effective way for quantification and 
comparison of the bacterial composition, including types and abundance of different bacteria within biological 
 samples9–12. In 16S rRNA sequencing, the 16S rRNA, which is ubiquitous in all bacterial organisms but also has 
distinct variable regions that can be used to discriminate between different bacteria is first PCR-amplified and 
then  sequenced10. Shotgun sequencing on the other hand is an untargeted sequencing of all microbial genomes 
in a  sample13. In either case, short reads are preprocessed through steps of quality control and filtering steps. The 
processed raw sequence reads are then clustered into operational taxonomic units (OTUs) at a certain similarity 
 level14 where each OTU is characterized by a representative DNA sequence that could be assigned to a taxonomic 
lineage by comparing to a known  database2. Resulting read counts at different taxonomic levels for n samples 
over K + 1 taxa are stored as a n× (K + 1) matrix W , with the entry W[i, k] representing the counts recorded 
for the kth taxon in the ith sample.

Statistical analysis of microbiome data is complicated. The microbiome count data can only reveal relative 
abundance, i.e., the abundance for each taxa is constrained by the total sum of the microbes in that particular 
sample and the total sum of microbes could vary among the samples depending on the sequencing depth. 
Different individuals could share various communities of microorganisms, with only a few major ones in 
common, and even for one person, the microbial composition could be totally different in different body sites. The 
heterogeneity of the microbiome samples also leads to over-dispersion. See Hamady and  Knight15 for a detailed 
review of challenges related to analyzing microbiome data. Standard multivariate analysis usually fails to capture 
these properties of the microbiome data. Different models have been proposed for the microbiome counts in the 
literature that captures one or more of the above intrinsic characteristics such as the negative binomial  model16, 
zero-inflated negative binomial  model17, zero-inflated Poisson  model18,19, Dirichlet-multinomial  model20–22, and 
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the logistic normal multinomial  model23. While modelling such count data, a negative binomial (NB) model can 
allow for the variance to be larger than the mean using a dispersion parameter, thus handling over-dispersion 
better than a simple Poison model. The zero-inflated negative binomial (ZINB) and zero-inflated Poisson (ZIP) 
have been proposed to account for the excessive number of  zeros18. Xu et al.24 provides a comparison among the 
zero-inflated models. However, the NB and ZINB models ignore the compositional nature of these microbial 
counts. Chen and  Li21, Holmes et al.20, Wadsworth et al.25, and Subedi et al.22 utilized the Dirichlet-multinomial 
model for microbial counts that takes into account the compositional nature of these data. Alternately, Xia et al.23 
employed the logistic normal multinomial model, mapping the relative abundance from a simplex to a latent 
variable that exists on the real Euclidian space using the additive log-ratio transformation. Cao et al.26 exploited 
a Poisson-multinomial model and performed a multi-sample estimation of microbial composition in positive 
simplex space from a high-dimensional sparse count table. Caporaso et al.27 quantified variations of microbial 
composition across time by projecting the dynamics using low-dimensional embedding. Äijö et al.12 proposed a 
temporal probabilistic model for the microbiome composition using a hierarchical multinomial model. Silverman 
et al.28 also developed a dynamic linear model based on the logistic normal multinomial model to study the 
artificial human guts microbiome.

Clustering microbiome samples into groups that share similar microbial compositional patterns is of great 
 interest20. Clustering algorithms are usually categorized into hierarchical clustering and distance-based clustering. 
Hierarchical clustering has been applied for clustering microbiome data, yet it requires the choice of a cut-off 
threshold, according to which samples can be divided into  groups20. On the other hand, k−means clustering, 
a distance-based method, might not be appropriate for microbiome compositions because it is typically used 
for continuous data and obtains spherical clusters. Hence, model-based clustering approaches that utilize a 
finite mixture model have been widely used in the last decade to cluster microbiome  data20,22. A finite mixture 
model assumes that the population consists of a finite mixture of subpopulations (or clusters), each represented 
by a known  distribution29–32. Due to the flexibility in choosing component distributions to model different 
types of data, several mixture models based on discrete distributions have been developed to study count data, 
especially, for gene expression data. Rau et al.33 proposed a clustering approach for RNA-seq data using mixtures 
of univariate Poisson distributions; Papastamoulis et al.34 proposed a mixture of Poisson regression models; Si 
et al.35 studied model-based clustering for RNA-seq data using a mixture of negative binomial (NB) distributions; 
Silva et al.36 proposed a multivariate Poisson-log normal mixture model for clustering gene expression data. 
However, due to the compositional nature of microbiome data, none of the above discrete mixture models can 
be employed directly for clustering microbiome data. Holmes et al.20 adopted the Dirichlet-multinomial (DM) 
model, where the underlying compositions are modeled as a Dirichlet prior to a multinomial distribution that 
describes the taxa counts, and proposed a mixture of DM models to cluster samples.

In this paper, we develop a model-based clustering approach using the logistic normal multinomial model 
proposed by Xia et al23 to cluster microbiome data. In the logistic normal multinomial model, the observed 
counts are modeled using a multinomial distribution, and the relative abundance is regarded as a random 
vector on a simplex, which is further mapped to a latent variable that exists on the real Euclidean space through 
an additive log-ratio transformation. While this approach captures the additional variability compared to a 
multinomial model, it does not possess a closed form expression of the log-likelihood functions and of the 
posterior distributions of the latent variables. Therefore, the expected complete-data log-likelihoods needed in 
the E-step of a traditional EM algorithm are usually intractable. In such a scenario, one commonly used approach 
is a variant of the EM algorithm that relies on Bayesian techniques using Markov chain Monte Carlo (MCMC); 
however, this would typically bring in high computational cost. Here, we develop a variant of the EM algorithm, 
here on referred to as a variational EM algorithm for parameter estimation that utilizes variational Gaussian 
approximations (VGA). In Variational Gaussian approximations (VGA)37, a complex posterior distribution is 
approximated using computationally convenient Gaussian densities by minimizing the Kullback-Leibler (KL) 
divergence between the true and the approximating  densities38,39. Adopting a variational Gaussian approximation 
delivers accurate approximations of the complex posterior while reducing computational overhead substantially. 
Hence, this approach has become extremely popular in many different fields of machine  learning37,38,40–43.

The contribution of the paper is two folds - first, we develop a computationally efficient framework for 
parameter estimation for a logistic normal multinomial model through the use of variational Gaussian 
approximations and second, we utilize this framework to develop a model-based clustering framework for 
clustering microbiome data. Through simulations and applications to microbiome data, the utilities of the 
proposed approach are illustrated. The paper is structured as follows: First two subsections in the Methods section 
describe the logistic normal multinomial model for microbiome count data and detail the variational Gaussian 
approximations. The third and fourth subsections in the Methods section provide a mixture model framework 
based on the model described above together with a variational EM algorithm for parameter estimation. In the 
Results section, clustering results are illustrated by applying the proposed algorithm to both simulated and real 
data. Finally, a discussion on the advantages and limitations along with some future directions are provided in 
the Discussion section.

Methods
The logistic normal multinomial model for microbiome compositional data. Suppose we have 
K + 1 bacterial taxa for a sample denoted as a random vector W = (W1, . . . ,WK+1)

⊤ . Here, the taxa could 
represent any level of the bacterial phylogeny such as OTU, species, genus, phylum, etc. Due to the fact that taxa 
count from 16S sequencing can only reveal relative abundance, let’s suppose there is a vector � = (�, . . . ,�K+1) 
such that 

∑K+1
k=1 �k = 1 , which represents the underlying composition of the bacterial taxa. Then, the microbial 

taxa count W can be modeled as a multinomial random variable with the following conditional density function:
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Several models have been proposed in the literature that capture the relative abundance nature of microbiome 
data and analyze the compositional  data20,23. Here we use the model by Xia et al.23 that utilizes an additive log-
ratio (ALR) transformation φ(�) proposed by  Aitchison44 such that:

This transformation φ maps the vector � from a K-dimensional simplex to the K-dimensional real space RK . 
The prior distribution for Y is assumed to be a multivariate normal distribution with parameters µ and � with 
the density function

As this additive log-ratio transformation is a one-to-one map, the inverse operator of φ exists and is given by

Hence, the joint density of W and Y up to a constant is as follows:

A variational Gaussian lower bound. For the microbiome data, only the count vector W is observed 
while the latent variable Y is unobserved. The marginal density of W can be written as

Note that this marginal distribution of W involves multiple integrals and cannot be further simplified. Here, in 
the presence of missing data, an expectation-maximization (EM)  algorithm45 or some variant of it is typically 
utilized for parameter estimation. An EM algorithm comprises two steps: an E-step in which the expected value 
of the complete data (i.e. observed and missing data) log-likelihood is computed given the observed data and 
current parameter estimate and an M-step in which the complete data log-likelihood is maximized. These steps 
are repeated until convergence to obtain the maximum likelihood estimate of the parameters. To compute the 
expected value of the complete data log-likelihood, E(Y | w) and E(YYT | w) needs to be computed for which 
we need p(y|w) . Mathematically,

However, the denominator involves multiple integrals and cannot be further simplified. One could employ a 
Markov chain Monte Carlo (MCMC) approach to explore the posterior state space; however, these methods 
are typically computationally expensive, especially for high-dimensional problems. Here, we propose the use 
of variational Gaussian approximation (VGA)37 for parameter estimation. A VGA aims to find an optimal and 
tractable approximation that has a Gaussian parametric form to approximate the true complex posterior by 
minimizing the Kullback-Leibler divergence between the true and the approximating densities. It has been 
successfully used in many practical applications to overcome this  challenge38–42,46. In order to utilize VGA, we 
define a new latent variable η by transforming Y such that

is a (K + 1)× K  matrix which takes the form as an identity matrix attached by a row of K zeros. Given that 
Y ∼ N(µ,�) , the new latent variable η ∼ N(µ̃, �̃) where

p(w|�) ∝

K+1
∏

k=1

(�k)
wk .

(1)Y = φ(�) =

(

log

(

�1

�K+1

)

, . . . , log

(

�K

�K+1

))⊤

.

p(y|µ,�) ∝ |�|−
1
2 exp

{

−
1

2
(y − µ)⊤�−1(y − µ)

}

.

� = φ−1(Y) =
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− 1
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Then, the underlying composition variable � can be written as a function of η:

Suppose we have an approximating density q(η) , then the marginal log density of W can be written as:

where the first part F(q(η),w) =
∫

q(η) log
p(w, η)

q(η)
dη is called the evidence lower bound (ELBO)37 and the 

second part DKL(q||p) =
∫

log
q(η)

p(η|w)
q(η) dη is the Kullback-Leibler divergence from p(η|w) to q(η) . Hence, 

minimizing the Kullback-Leibler divergence is equivalent to maximizing the following evidence lower bound 
(ELBO). In VGA, we assume q(η) is a Gaussian distribution, such that

Given the fact that q(η) is fully characterized by its mean vector and covariance matrix, the above lower bound 
is a function of the variational parameters m and V and we aim to find the optimal set of (m,V) such that it 
maximizes F(q(η,w)) . F(q(η,w)) can be separated into three parts:

Up to a constant, the last integral, which is denoted as γ , in the above decomposition is given as follows:

Similar to Blei and  Lafferty47, we use an upper bound for the expectation of log sum exponential term with a 
Taylor expansion,

where ξ ∈ R is introduced as a new variational parameter.
Here, we further assume that V is a diagonal matrix with the first K diagonal element of V as v2k and the K + 1th 

diagonal element is set to 0 such that

We also denote the k− th element of m as mk such that

Hence, the expectation

Based on this upper bound, we obtain a concave lower bound to γ and to the ELBO. The new concave variational 
Gaussian lower bound to the model evidence log p(w) is given as follows

(3)µ̃ = Bµ = (µ, 0)⊤; �̃ = B�B⊤ =

(

� 0K×1

01×K 0

)

.

(4)� = φ̃−1(η) =
exp ηk

∑K+1
k=1 exp ηk

k = 1 . . . ,K + 1.

log p(w) =

∫

log p(w) q(η) dη =

∫

log
p(w, η)/q(η)

p(η | w)/q(η)
q(η) dη

=

∫

[

log p(w, η)− log q(η)
]

q(η) dη +

∫

log
q(η)

p(η|w)
q(η) dη

= F(q(η),w)+ DKL(q||p),

q(η) = N(η|m,V) ∝ |V |−
1
2 exp

{

−
1

2
(η −m)⊤V−1(η −m)

}

.

F(q(η),w) = F(m,V) = −

∫

q(η) log q(η)dη +

∫

q(η) log p(η)dη +

∫

q(η) log p(w|η)dη.

γ =

∫

q(η) log p(w|η)dη = Eq(η|m,V)

[
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∑
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wk log

(
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(
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)
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− 1+ log(ξ),
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{
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[
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]

= exp

(
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2

)
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where �̃∗
=

(

�−1 0K×1

01×K 0

)

 is the generalized inverse of �̃ . Details on the derivation of this lower bound can 

be found in the Supplementary material Mathematical Detail section. Given fixed w , µ̃ , and �̃ , this lower bound 
only depends on the variational parameter set (m,V , ξ).

Maximization of the lower bound F̃
(

m,V , µ̃, �̃, ξ
)

 with respect to ξ has a closed form solution and is given by

However, maximization with respect to m and vk , k = 1, . . . ,K do not have analytical solutions. We use Newton’s 
method to search for roots to the following derivatives:

with v2 = (v21 , . . . , v
2
K , 0) denoting the diagonal element of V as a vector; and

Details can be found in the Supplementary material Mathematical Detail section.

Mixture of logistic normal multinomial models. Assume there are G subgroups in the population, 
with πg denoting the mixing weight of the g− th component such that 

∑G
g=1 πg = 1 . Then, a G−component 

finite mixtures logistic normal multinomial models can be written as

where fg (w | ϑg ) represents the density function of the observation W = w , given that W comes from the g− th 
component with parameters ϑg.

Provided n observed counts, w = (w1, . . . ,wn) with a transformed underlying the composition 
Yi , i = 1, . . . , n , the likelihood of a G−component finite mixture is given as

In clustering, the unobserved component membership is denoted by an indicator variable 
zig , i = 1, . . . , n, g = 1, . . . ,G that takes the form

Therefore, conditional on zig , we have

In order to utilize the variational approach for parameter estimation, we again define a new latent variable η 
such that η = BY and

Therefore, the complete data (i.e., observed counts W and unobserved class label indicator variable) log-
likelihood using the marginal density of W is

(5)

F̃
(

m,V , µ̃, �̃, ξ
)

=w⊤m−

(

K+1
∑

k=1

wk
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∑
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2
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− 1+ log(ξ)
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−
1

2
log |B⊤�̃B| −

1

2
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∗
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1

2
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∗
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1

2

K
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K

2
,
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)

.

(7)
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∗
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To perform variational inference on the mixture model, we substitute log
[

∫

p(wi|ηi)p(ηi|µg ,�g )dηi

]

 by the 
variational Gaussian lower bound F̃

(

m,V , µ̃, �̃, ξ
)

 derived in Section "A variational Gaussian lower bound". 
Hence, the variational Gaussian lower bound of complete data log likelihood can be written as:

Hence, we need to find optimal solutions to variational parameters (mig ,Vig , ξi) that are associated with each 
observation wi , i = 1, . . . , n , as well as the model group-specific Gaussian parameters (µ̃g , �̃g ), g = 1, . . . ,G , 
such that the complete data variational Gaussian lower bound L̃ is maximized. The use of VGA provides great 
reduction in the computational time.

The variational EM algorithm. Parameter estimation can be done in an iterative EM-type approach, 
from here on referred to as variational EM such that the following steps are iterated until convergence. For the 
parameters that do not have a closed form solution to the optimization, we perform one step of Newton’s method 
to approximate the root to their first derivatives. 

Step 1: Conditional on the variational parameters (mig ,Vig , ξi) and model group-specific Gaussian parameters 
(µ̃g , �̃g ) , E(ZigWi) is computed. Given (µ̃g , �̃g ) , 

 This involves the marginal distribution of W and hence, we use an approximation of E
(

Zig | wi

)

 where we 
replace the marginal density W by the exponent of ELBO such that 

Step 2: Update ξ̂i , m̂ig , V̂ig:

• update ξ̂i according to Eq. (6);
• update m̂ig by performing one step of Newton’s method for approximating the root to the derivative in 

Eq. (7), then let m̂ig(K+1) = 0;
• for k = 1, . . . ,K , update v̂2igk by performing one step of Newton’s method searching root to the derivative 

in Eq.  (8), let v̂2ig(K+1) = 0 , then V̂ig = diag(v̂2ig1, . . . , v̂
2
ig(K+1)).

Step 3: Update πig , µ̃g and �̃g as 

Note that the original parameters µg and �g can be obtained by the transformation

An Aitken acceleration  criterion48 is employed to stop the iterations. More specifically, at t  th iteration, when 
t > 2 , calculate

where ℓ(t) = F̃
(

wi ,mig ,Vig , µ̃g , �̃g , ξi

)
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approach can generate exact results, fitting such models can take substantial computational time. For example, 
fitting one iteration using a fully Bayesian MCMC model for a five dimensional dataset (from Simulation study 
1) with n = 1000 takes on average of 45 minutes. In a clustering context, the number of iterations required for 
the analysis is typically in hundreds. Thus, we provide a computationally efficient hybrid approach in which

– Step 1: Fit the model using the VGA based approach.
– Step 2: Estimate the component indicator variable Zig conditional on the parameter estimates from the VGA 

based approach.
– Step 3: Using the parameter estimates from Step 1 as the initial values for the parameters and using the 

classification from Step 2, compute the MCMC based expectation for the latent variable η̃ig as: 

 And θ (k)ng  is a random sample from the posterior distribution of η̃ig simulated via the RStan  package51 for 
iterations k = 1, . . . ,R (after discarding the burn-in).

– Step 4: Obtain the final estimates of the model parameters as: 

The hybrid approach comes with a substantial reduction in computational overhead compared to a traditional 
MCMC based approach but it can generate samples from the exact posterior posterior distribution. Detailed 
comparison on computational time among the VGA based approach, the hybrid approach, and the MCMC-EM 
approach could be found in the results section. When the primary goal is to detect the underlying clusters (which 
is the case for our the real data analysis), the VGA based approach is sufficient. However, when the primarily 
goal is posterior inference, we recommend the hybrid approach as it can better yield an exact posterior similar 
to the MCMC-EM approach but is computationally efficient. For simulation studies 1 and 2 in which we show 
parameter recovery, we show parameter estimation using both VGA and the hybrid approach.

Initialization. For initialization of ẑig , we used k-means  clustering52,53 on the estimate of the underlying latent 
variable ηi obtained by first calculating the underlying composition using wi/

∑K+1
k=1 wik for each observation; 

mapping this composition to the latent variable yi using the additive log-ratio transformation in Eq.  (1), 
and transforming the variable to get ηi through Eq.  (2). For initializing the variational parameters for each 
observation wi , we obtain ηi first, same as in the ẑig initialization step. We use this calculated latent variable ηi as 
initialization of mig . Vig for each i are initialized as K + 1 diagonal matrix such that Ṽkk = 1 for k = 1, . . . ,K and 
Vkk = 0 for k = K + 1 . ξi ’s are initialized using 1. According to the initialization on the group label ẑig , µ̃g and 
�̃g are initialized as group-specific mean and covariance of ηi , respectively.

Model selection and performance assessment. In the clustering context, the number of components 
G is unknown. Hence, one typically fits models for a large range of possible G and the number of clusters is then 
chosen a posteriori using a model selection criteria. The Bayesian information criterion (BIC)54 is one of the 
most popular criteria in the model-based clustering  literature32. Here, we use an approximation to BIC defined as

where L̃ , defined in Eq. (9), is the variational Gaussian lower bound of the complete data log likelihood, 
and d is the number of free parameters in the model. Specifically, when fitting a G−component model, 
d = (K+1)K

2 × G + K × G + G − 1.
When the true class labels are known (e.g., in simulation studies), we assess the performance of our proposed 

model using the adjusted Rand index (ARI)55. It is a measure of the pairwise agreement between the predicted 
and true classifications such that an ARI of 1 indicates perfect classification and 0 indicates that the classification 
obtained is no better than by chance.

Results
Main simulation studies. To illustrate the performance of our proposed clustering framework, we 
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5. To initialize the variational parameters, we need to use the additive log-ratio transformation which takes the 
log transformation of the observed count for taxa k divided by total count for all taxa for sample i. If there 
are any 0 in the generated count data, we substitute the 0 with 1 for initialization.

We also compared the performance of our proposed model to Dirichlet-multinomial mixture models (DMMs)20 
which is widely used to cluster microbiome data. Implementation of the Dirichlet mixture model is available in 
the R package DirichletMultinomial56. We also applied Gaussian mixture models (GMMs) on the ALR-
transformed compositions derived from these datasets with BIC for model selection. The GMMs were fitted using 
the Mclust function in the R package mclust . A family of finite mixture models with different covariance 
structures are implemented in mclust . The GMM model with unconstrained covariance structure “VVV” (the 
one that is most comparable to our proposed unrestricted covariance structure) encountered computational error 
for all simulated datasets. Only models assuming a spherical shape converged.

Simulation study 1. In this simulation study, we generated 100 datasets where the underlying latent variable 
Y came from two-component, three-dimensional multivariate Gaussian distributions with mixing proportions 
π = (0.6, 0.4) ; see Fig. 1a. The first three dimensions of the observed counts W are shown in Fig. 1b. The first 
component consists of n1 = 600 observations and the second component consists of n2 = 400 observations. 
The parameters used to generate the datasets are summarized in the Supplementary Table  1. We fitted the 
models with G = 1, . . . , 5 on all 100 datasets. In 100 out of 100 datasets, BIC selected a two-component model. 
The models selected by BIC yielded an average ARI = 0.94 with a standard deviation of 0.02. The average and 
standard deviation of the estimated parameters for all 100 datasets using the VGA approach are summarized 

Figure 1.  True and predicted cluster structure for one of the 100 datasets in Simulation Study 1. Panel (a) is 
the three-dimensional scatter plot of the underlying latent variable highlighted in true labels. Panel (b) is the 
first three dimensions of the observed count highlighted in true labels. Panel (c) is the relative abundance of 
observed counts of the four taxa for the predicted clusters. For this dataset, ARI was 0.95.
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in Supplementary Table 1 and the hybrid approach are summarized in Supplementary Table 2. Note that the 
parameter estimations using both approaches are very close to the true value of the parameters.

The hybrid approach comes with a substantial reduction in computational overhead compared to a traditional 
MCMC-based approach but it can generate samples from the exact posterior distribution. The average 
computation time for Simulation Study 1 using the proposed VGA approach was 2.64 (sd of 0.61) minutes. The 
mean computation time using the hybrid approach was 47.78 (sd of 16.45) minutes. On the other hand, it took on 
average 45.14 (sd of 15.84) minutes for one iteration of the full Bayesian, and the number of iterations required 
for clustering is typically in the hundreds.

Figure 1c illustrates a clear difference in the distribution of the relative abundance of taxa in the two predicted 
groups. We also ran the DMMs and the GMMs on the ALR transformed compositions for G = 1 : 5 and selected 
the best model using BIC. In all 100 out of 100 datasets, a G = 4 or 5 model was selected for DMM with an 
average ARI of 0.46 (sd of 0.05). Similarly, in all 100 out of 100 datasets, a G = 4 or 5 model was selected for 
the GMMs with an average ARI of 0.39 (sd of 0.03). Both the DMMs and GMMs overestimated the number 
of components by splitting the true clusters into multiple clusters with some misclassifications among them.

Simulation study 2. In this simulation study, we generated 100 datasets with the underlying latent variable 
Y from three component five-dimensional multivariate Gaussian distributions (see Fig.  2a for the three-
dimensional scatter plot of the first three dimensions of the underlying latent variable Yi).

There are n1 = 300 observations in Group 1, n2 = 400 observations in Group 1, and n3 = 200 observations 
in Group 3. The true parameters are summarized in Supplementary Table 3. Figure 2b shows the first three 

Figure 2.  True and predicted cluster structure for one of the 100 datasets in Simulation Study 2. Panel (a) is 
the first three dimensions of the underlying latent variable highlighted in true labels. Panel (b) is the first three 
dimensions of the observed count highlighted in true labels. Panel (c) is the relative abundance of observed 
counts of the four taxa for the predicted clusters. For this dataset, ARI was 0.95.
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dimensions of the observed counts Wi’s. There is a clearer separation between the groups when visualizing the 
latent variables as opposed to the observed counts.

The proposed algorithm was applied on all 100 datasets where for each dataset, we fitted the models with 
for G = 1, . . . , 5 . In all 100 datasets, a G = 3 model was selected using the BIC and an overall mean ARI of 0.93 
(sd of 0.02). The average and standard deviation of the estimated parameters for all 100 datasets using the VGA 
approach are summarized in Supplementary Table 3 and the hybrid approach are summarized in Supplementary 
Table 4. Note that the parameter estimation using both approaches are very close to the true value of the 
parameters. The average computation time for Simulation Study 2 using the proposed VGA approach was 3.03 
(sd of 0.94) minutes. It took on average 40.84 (sd of 16.64) minutes for only one iteration of the MCMC-EM 
algorithm using the fully Bayesian approach (and the number of iterations required until convergence can be 
in the hundreds); whereas the mean computation time for fitting the hybrid approach until convergence (i.e., 
the sum of the computational times for all iterations) was 43.87 (sd of 17.58) minutes. Figure 2c illustrates a clear 
difference in the distribution of the relative abundance of taxa in the predicted groups. We also ran the DMMs 
on the observed abundance matrix and the GMMs on the ALR-transformed compositions for G = 1 : 5 and 
selected the best model using BIC for both approaches. In all 100 out of 100 datasets, both the DMMs and the 
GMMs overestimated the number of components. The DMMs selected a G = 4 model for 7 datasets and selected 
a G = 5 model for the remaining 93 datasets with an average ARI of 0.31 (sd of 0.03). The GMM selected a G = 5 
model for all 100 datasets with an average ARI of 0.57 (sd of 0.03).

Additional simulation studies. To test the performance of the proposed algorithm on higher dimensional 
datasets, as well as datasets generated from a mixture of Dirichlet-multinomial models, we performed a series of 
10 additional simulation studies, each containing 100 datasets, as described below:

• Generate 100 datasets from a two-component mixture of logistic normal multinomial models with each of 
the following:

– K, the dimension of the latent variable, being 5, 10,  and 20;
– n, the sample size, being 100, 200,  and 500.
– True parameters are the same for different n but the same K.

• Generate 100 datasets from a mixture of two-component Dirichlet-multinomial models with dimension 6, 
and a sample size of 200.

• Generate 100 datasets from a mixture of two-component high dimensional logistic normal multinomial 
models with K=50 and n = 500.

We ran the proposed algorithm for G = 1 : 5 on all datasets and used BIC for model selection. We also applied 
the DMMs and GMMs on the ALR-transformed compositions derived from these datasets with BIC for model 
selection.

When data were generated from a mixture of logistic normal multinomial models, in all simulation scenarios, 
the proposed algorithm identified the correct number of components for all 100 datasets with average ARI ≥ 0.98 . 
Also, it is observed that, in general, when sample size increases, the average ARI also increases and the standard 
deviation of ARI decreases. However, the Dirichlet-multinomial mixture model did not perform as well on data 
simulated from the logistic normal multinomial mixture models. Even in the case of K = 20, n = 200 , where it 
correctly selected the two-component model 99 out of 100 times, the average ARI was only 0.63 with a standard 
deviation of 0.13. The GMMs on the ALR transformed data did not perform well either. While all models with 
different covariance structures available in the mclust package were fitted, the most comparable one with 
unrestricted covariance structure, specifying modelName = “VVV′′ , encountered computational errors for all 
simulated datasets. Only models assuming a spherical shape converged and the GMM tended to overestimate 
the number of clusters (see Supplementary Table 5). Table 1 provides the number of correct G selected across 
100 datasets fitting the proposed algorithm, the DMM, and the GMM on ALR transformed data, and the average 
ARI with standard deviation computed across all 100 datasets in each simulation scenario. Note that G > 2 
encountered computational issues when fitting GMM with unrestricted spherical cluster model (“VII”) on ALR 
transformed data for high dimensional K = 50 scenario for all datasets. Thus, only G = 1 and G = 2 were fitted 
and G = 1, . . . , 5 could only be fitted for the model with equal spherical covariance across components (“EII”) 
for the GMM. In 71 out of the 100 datasets, a G = 2 model with“VII” covariance structure was selected as the 
best fitting model. Although ARI here is high compared to fitting GLM on ALR-transformed data from other 
simulation settings, it must be noted that models with G > 2 encountered computational issues for the “VII” 
covariance structure.

When the data was generated from the Dirichlet-multinomial mixture models, our proposed model was 
able to recover the underlying cluster in 61 out of the 100 datasets with an average ARI of 0.78 and standard 
deviation of 0.18 whereas the Dirichlet-multinomial mixture model was able to recover the underlying cluster 
structure in all 100 datasets with an average ARI of 0.95 (sd=0.07). When performing each simulation study, 
the computational job was distributed onto a computer cluster, where the proposed algorithm applied on each 
one of the 100 datasets was run on a one-core slot. Table 1 summarizes the average elapsed time for running 
the proposed algorithm in, with standard deviation. In most cases, it takes the proposed algorithm less than 
60 seconds. As the number of observations and the dimensionality of data increases, the time to convergence 
increases as well.
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The number of times each G = 1 : 5 were selected by the proposed algorithm are summarized 
in Supplementary Table 5. In nine out of the ten studies, our approach was able to identify the correct number 
of components for all 100 datasets. We also summarized the average of L1 norm between the true parameters 
and the estimated values along with the standard errors for the simulations with data generated from a mixture 
of logistic normal multinomial models in Supplementary Table 6. It shows that, when the dimensionality is low, 
the proposed algorithm can not only identify the correct underlying group structure but also is able to recover 
the true parameters well. As the dimensionality increases, the proposed algorithm can still capture the true 
number of components in the data with high classification accuracy and the estimated central location parameter 
( µ ) is also close to the true value. However, the estimation of the spread parameter ( � ) become less precise as 
dimensionality becomes higher; however, the distance between the true and the estimated parameters decreases 
as the sample size becomes larger.

Real data analysis. Scenario 1: Clustering microbiome data at a lower taxonomic level. Here, we utilized 
our proposed algorithm to cluster the microbiome dataset at a lower taxonomic level. We applied our proposed 
algorithms to two previously published microbiome datasets.

• The martínez dataset: The study compares the fecal microbiota of individuals (40 adults) from two non-
industrialized regions (20 participants from each of the Asaro and Sausi communities) in Papua New Guinea 
(PNG) with the individuals (22 adults) from the United States (US). The individuals from the Asaro and Sausi 
communities live a traditional agriculture-based lifestyle. The study found a greater bacterial diversity and 
lower inter-individual variations in the microbiome compositions of PNG individuals that were distinctly 
different from the individuals from industrialized US societies but no difference in bacterial diversity between 
the two PNG communities. The dataset was previously used for cluster analysis by Shi et al.57 and is available 
through the R package MicrobiomeCluster via https:// github. com/ Yushu Shi/ Micro biome Clust er. git. 
Here, we conducted the analysis at the OTU level.

• The ferretti 2018 dataset: The Ferretti 2018  study58 aims to understand the acquisition and development of 
the infant microbiome and assess the impact of the maternal microbiomes on the development of an infant’s 
microbial communities from birth to 4 months of life. Twenty five mother- infant pairs who vaginally 
delivered healthy newborns at full term were recruited for the study. For each mother, stool (a proxy for gut 
microbiome), dorsum tongue swabs (for oral microbiome), vaginal introitus swabs (for vaginal microbiome), 
intermammary cleft swabs (skin microbiome) and breast milk were obtained. Here, we applied our algorithms 
to a subset of the dataset to compare the oral microbiome of the infants with their mothers. Oral samples of 
infants were taken at two different time points: Day 1 and Day 3. Here, we used measurements from Day 1. 
The resulting dataset consists of 39 individuals (23 adults and 16 infants). The dataset available through the 
R package curatedMetagenomicData59 as FerrettiP_2018 dataset. We conducted the analysis 
at the genus level.

As our approach is currently not designed for high dimensional data, we utilize two different approaches for 
dimension reduction prior to clustering:

Table 1.  Summary of the number of times the correct model is selected along with the average ARI (with 
standard deviation, across all 100 datasets ) and average time per simulation (in seconds; with standard 
deviation) for completion for the 100 datasets for each of the 11 simulation studies described in the Additional 
Simulation Studies section fitting the proposed algorithm, the Dirichlet-multinomial mixture (DMM) models, 
and fitting the Gaussian mixture model (GMM) on additive log-ratio (ALR) transformed composition data.

 Simulation setting

Proposed algorithm DMM
GMM on ALR transformed 
data

Average time in sec. (sd) Correct G ARI (sd) Correct G ARI (sd) Correct G ARI (sd)

K=5, n=100 3.20 (1.46) 100 0.98 (0.03) 1 0.00 (0.01) 2 0.47 (0.10)

K=5, n=200 5.76 (1.39) 100 0.99 (0.01) 5 0.00 (0.04) 0 0.42 (0.05)

K=5, n=500 16.90 (5.26) 100 0.99 (0.01) 3 0.11 (0.06) 0 0.40 (0.02)

K=10, n=100 6.18 (1.47) 100 1.00 (0.02) 64 0.42 (0.26) 0 0.51 (0.11)

K=10, n=200 14.28 (2.03) 100 1.00 (0.00) 88 0.57 (0.10) 0 0.45 (0.06)

K=10, n=500 55.22 (10.77) 100 1.00 (0.00) 0 0.37 (0.11) 0 0.45 (0.05)

K=20, n=100 12.00 (3.72) 100 1.00 (0.01) 20 0.14 (0.29) 28 0.77 (0.18)

K=20, n=200 39.45 (11.21) 100 1.00 (0.00) 99 0.63 (0.13) 0 0.47 (0.06)

K=20, n=500 151.12 (22.52) 100 1.00 (0.00) 0 0.48 (0.10) 0 0.43 (0.03)

DMM (k=5, n=200) 11.12 (5.02) 61 0.78 (0.18) 100 0.95 (0.07) 0 0.43 (0.09)

High Dimensional - K=50, 
n=500  1128.73 (312.71)  100  1.00 (0.00) 29  0.50 (0.39) 71 0.88 (0.19)

https://github.com/YushuShi/MicrobiomeCluster.git
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• In Case I, we first extracted the top ten most abundant taxa using the R package HMP60and used it for the 
clustering analysis. This approach requires no prior information on the cluster structure and can be utilized 
in a true clustering scenario. Here, we used the top ten most abundant taxa for both datasets. To preserve 
the compositional nature of the data, the remaining taxa were all grouped into a taxa category “Others”. This 
“Other” taxa was then used as the reference level for conducting the additive log-ratio transformation.

• In Case II, we first utilized the R package ALDEx261,62 for differential abundance analysis on the observed 
taxa counts to identify the taxa that are different among different groups in the datasets. This step is analogous 
to conducting differential expression analysis in RNA-seq studies before performing cluster analysis to 
identify variables that are group differentiating.

The motivation behind proposing two different cases is to illustrate that while Case I requires no prior 
information on cluster structure, using the top most abundant taxa may not be always appropriate. When the top 
most abundant taxa contain group differentiating information, the proposed approach provides a good clustering 
performance. However, when the taxa with lower abundance are group differentiating features, in such case, not 
including those features may result in a decrease in the clustering performance. When the taxa that are group 
differentiating are identified in Case II using differential abundance analysis, the proposed approach can 
provide a better clustering performance on the same datasets.

We applied our algorithm to all datasets for G = 1 to 4. We repeated the analysis 10 times with different 
k-means initialization and selected the final model using BIC. We also ran the Dirichlet-multinomial mixture 
model with the same set of taxa and the GMM on the transformed latent variable for G = 1 to 4 on all datasets 
and utilized BIC for model selection. A summary of the clustering performances is provided in Table 2.

For both datasets, our approach outperformed the Dirichlet-multinomial mixture models and the 
GMM applied to the latent variables under both scenarios. When there is a good overlap between the group 
differentiating taxa and most abundant (i.e., in the case of the Martínez dataset), the proposed approach, Dirichlet 
multinomial mixture model, and the Gaussian mixture model with the transformed variables all provide good 
clustering performance for Case I and Case II. On the other hand, when the group differentiating taxa differ 

Table 2.  Cross tabulation of the clusters obtained by our proposed algorithm and Dirichlet-multinomial 
mixture model on all three real datasets.

Proposed (ARI: 1)
DMM model 
(ARI: 0.61)

GMM model (ARI: 
0.46)

Estimated clusters
Estimated 
clusters Estimated clusters

1 2 1 2 3 1 2 3 4

The Martínez  Dataset

Case I

US 22 – 22 – – 22 – – –

PNG – 40 - 25 15 – 11 14 15

Proposed (ARI: 1)
DMM model 
(ARI: 0.76)

GMM model (ARI: 
0.69)

Estimated clusters
Estimated 
clusters Estimated clusters

1 2 1 2 3 1 2 3 4

Case II

US 22 – 22 – – 12 10 – –

PNG – 40 – 33 7 – – 35 5

Proposed (ARI: 
0.71)

DMM model 
(ARI: 0.62)

GMM model (ARI: 
0.61)

Estimated clusters
Estimated 
clusters Estimated clusters

1 2 1 2 1 2 3 4

The Ferretti Oral microbiome subset

Case I

Infant 13 3  12 4 14 1 1 –

Adult – 23  - 23 – 18 2 3

Proposed (ARI: 1)
DMM model 
(ARI: 0.80)

GMM model (ARI: 
0.37)

Estimated clusters
Estimated 
clusters Estimated clusters

1 2 1 2 1 2 3 4

Case II

Infant 16 –  14 2 7 3 6 –

Adult – 23 – 23 – – 7 16
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from the most abundant taxa (i.e., in the case of the Ferretti dataset), in such scenario, all models tested perform 
better for Case II.

Scenario 2: clustering healthy microbiome samples from Human microbiome project at a higher taxonomic 
level. We also applied our algorithm to the HMP2012  dataset63 available from the R package 
curatedMetagenomicData59. The dataset comprises microbiome compositions of 129 males and 113 
females. “Healthy” individuals (i.e., individuals without any evidence of diseases) were recruited and samples 
were collected from one or more of the five different body sites (nasal cavity, oral cavity, skin, stool, and vagina). 
In total, we have n = 748 microbiome sample profiles. Here, we focused on analyzing the dataset at the Phylum 
level. First, the top ten most abundant phyla were extracted and phyla with at least 5% non-zero counts were 
retained which resulted in 8 phyla that were retained. The remaining phyla were all grouped into a phylum 
category “Others” which was used as a reference level for conducting log-ratio transformation.

We utilized our algorithm to the HMP2012 dataset for G = 1 to 10 and we repeated the analysis 10 times 
with different k-means initialization and selected the final model using BIC. A seven-component LNM-MM 
was selected. Figure 3 provides a visualization of the relative abundances of the top most abundant phyla across 
the seven components and the cross-tabulation of the estimated cluster membership against the five body sites 
is provided in Table 3.

Cluster 1 comprised only of stool samples and clusters 2 and 3 comprised only oral cavity samples. Cluster 
6 is also comprised primarily of oral cavity samples. Cluster 4 comprised a mix of samples primarily from 
the nasal cavity and skin; cluster 5 comprised a mix of samples primarily from the nasal cavity and vagina; and 
cluster 7 comprised a mix of samples primarily of the stool and vagina. It is interesting to note that samples from 
the same body sites are clustered into multiple clusters, in some cases, with samples from other body sites. For 
example, samples from the nasal cavity were clustered into two clusters: cluster 4 and cluster 5 where the cluster 
5 also comprised samples from the skin. Visualization of the relative abundance of samples from the skin and 
nasal cavity assigned to clusters 4 and 5 in Fig. 4 reveals that in fact, the microbiome profiles of samples from 

Figure 3.  Boxplot of relative abundances of the top most abundant phyla for all seven components.

Table 3.  Cross tabulation of the estimated cluster membership against the five body sites and the 
compositions of the estimated clusters.

Clusters Nasal cavity Oral cavity Skin Stool Vagina

1 – – – 73 –

2 – 124 – – –

3 – 116 – – –

4 59 2 26 – 1

5 29 6 1 3 39

6 3 160 – 1 –

7 2 6 – 70 27
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the nasal cavity in cluster 4 are more similar to the microbiome profiles of samples from the skin than to the 
samples from the nasal cavity assigned to cluster 5. This is in alignment with the findings of the original  study63 
where a high overlap between the nasal cavity samples and skin samples is observed in the principal coordinates 
plot of the samples.

Similarly, samples from the oral cavity were assigned to three clusters: 2, 3 and 6. Boxplots of the relative 
abundances of the samples in Fig. 3 reveal that the relative abundances of taxa in the three clusters are different. 
Samples in cluster 3 have a much higher relative abundance of Spirochaetes compared to clusters 2 and 3 and 
samples in cluster 6 have a higher relative abundance of Firmicutes compared to samples in clusters 2 and 3 
and a lower relative abundance of Fusobacteria compared to samples in cluster 2. The DMM model and the 
GMM applied on latent variable were also fitted to the same dataset for G = 1 to 10 and BIC was utilized for 
model selection. A six-component model was selected by DMM and a similar trend as our proposed algorithm 
was observed. The samples from the oral cavity were assigned to distinct three clusters, and part of the samples 
from the nasal cavity were clustered together with samples from the skin. Similar to what we observed from the 
simulation studies and the other real data results, GMM on the ALR transformed data overestimated the number 
of components here as well. A ten-component model was selected and a similar trend as the proposed algorithm 
result was observed, where the two oral cavity sample clusters and one of the stool sample clusters were further 
split into two smaller clusters each separately.

Discussion
A model-based clustering framework for microbiome compositional data is developed using a mixture of logistic 
normal multinomial models. The novelty of this work is multi-fold. Previous  work23 has indicated that the 
logistic normal multinomial models can model the dependency of the bacterial composition in a microbiome 
compositional data in a more flexible way than the commonly used Dirichlet-multinomial models. The latent 
variables in the logistic normal multinomial model are assumed to follow a multivariate Gaussian distribution 
and a closed form expression of the log-likelihood or posterior distributions of the latent variables do not exist. 
Hence, prior work on model fitting relied on Markov chain Monte Carlo (MCMC) sampling techniques that 
come with a heavy computational burden. This is compounded in the clustering context where MCMC sampling 
needs to be utilized at every iteration of the variant of the EM algorithm that is typically utilized for parameter 
estimation. Here, we employed a variational Gaussian approximation to the posterior distribution of the latent 
variable and implemented a generalized EM algorithm that does not rely on MCMC sampling thus making 
it feasible to extend these models for clustering. This also opens up the possibility of efficiently scaling and 
extending these models to a high-dimensional setting.

Through simulation studies, we have shown that the proposed algorithm delivers accurate parameter 
recovery and good clustering performance. The proposed method is also illustrated on three real datasets in 
Section "Real data analysis" where we demonstrate that the proposed models can recover the interesting cluster 
(group) structure in the real data. While in the datasets with small sample sizes, we focus on small dimensional 
data by data aggregation to most differentially abundant genera in real data analysis, for larger datasets, more 
taxa can be used. Because of adopting an underlying Gaussian distribution, the number of parameters in the 
covariance matrix alone grows quadratically with K. Thus, in high dimensional datasets with small sample size, 
estimating �−1 becomes more challenging as it can lead to degenerate solutions and a host of other issues related 
to model convergence and fitting while using a traditional maximum likelihood-based expectation-maximization 
approach. This a well-known issue with Gaussian mixture models and is typically dealt with either variable/
feature selection or dimension reduction. Feature selection typically eliminates the redundant or irrelevant 

Figure 4.  Visualization of the relative abundances of skin samples and samples from nasal cavity assigned to 
clusters 4 and 5.
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variables and reduces computational cost, provides a better understanding of data and improves  predictions64. 
ALDEx2 utilized here is a widely used variable/feature selection technique specifically designed for microbiome 
data that identifies taxa that are differentially abundant in different conditions. Through a comparative study of 
ALDEx2 with other approaches commonly used for differential abundance analysis, Quinn et al.65 showed that 
ALDEx2 has high precision (i.e., few false positives) across different scenarios. However, information on the 
group structure or conditions may not be available a-priori. In such cases, one may conduct feature selection by 
selecting the top few most abundant taxa and collapsing low-abundant taxa into one category “Others” to preserve 
the compositional nature of the data. Alternately, mixtures of logistic multinomial models can be extended to 
high-dimensional data by introducing subspace clustering techniques through the latent  variable66–68. This will be 
the topic of some future work. Additionally, it has been well-established that different environmental or biological 
covariates can affect the microbiome compositions. Some future work will also focus on developing a mixture 
of logistic normal multinomial regression models to investigate the relationship of biological/environmental 
covariates with the microbiome compositions within each cluster.

Data availability
The datasets used in this manuscript are publicly available from the R package curatedMetagenomicData 
(https:// bioco nduct or. org/ packa ges/ curat edMet ageno micDa ta/) and MicrobiomeCluster (https:// github. 
com/ Yushu Shi/ Micro biome Clust er).
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