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Abstract 

Solar energy is the most abundant energy resource available and can be utilized for 

a variety of applications such as photovoltaics and promote chemical reactions.  Dye-

sensitized solar cells (DSSCs) are a class of photovoltaic cells that have been well studied 

for their low cost and environmentally friendly materials.  Previous research focused on 

developing more efficient liquid phase solar cells, but little work has gone into solid state 

DSSCs.  Moving towards the solid state would improve the lifetime of the cells, preventing 

leaking of electrolyte and corrosion of the electrode while potentially being a more scalable 

process for mass production, improving feasibility.  Our focus is exploring the use of vapor 

phase polymerized (VPP) poly(3,4-ethylenedioxythiophene) (PEDOT)  as a solid 

electrolyte to replace the liquid electrolyte commonly used.  The challenge in fabricating 

solid state DSSCs is the interaction between the photosensitizer dye and the solid state 

electrolyte acting as the hole transport layer.  Since VPP occurs in the vapor phase, it has 

the potential to penetrate the mesoporous titanium dioxide (TiO2) which can improve the 

interaction between the dye and hole transport layer PEDOT. 

There has also been an increased interest in TiO2 fibers as a photocatalyst for the 

degradation of persistent organic and biopharmaceutical toxins in the environment. The 

photocatalytic efficiency of TiO2 fibers is typically limited to UV irradiation due to its wide 

semiconductor bandgap.  In DSSCs a photosensitizer dye is used to absorb visible light and  
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inject an electron into the TiO2 electron transfer material.  Our focus is utilizing this concept 

in the fabrication of ruthenium dye-sensitized TiO2 fibers to enhance the degradation of the 

biopharmaceutical pollutant phenazopyridine under visible irradiation. 
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Chapter 1 Introduction to Dye-Sensitized Solar Cells 

1.1 Overview of Solar Energy 

According to the Environmental Protection Agency (EPA), 90% of energy 

consumed in the United States in 2015 was produced by nonrenewable energy resources 

including coal, oil, natural gas and nuclear.  While these resources are the most common, 

they are also limited and have been linked to greenhouse gas emissions.  For these reasons, 

there has been an effort to increase the use or renewable energy resources such as wind, 

solar and bio fuels.  Looking at the energy available for each renewable source per year, 

solar is the most abundant as shown in Table 1-1.  In addition to being the most abundant 

energy resource, solar does not require a combustion reaction which produces carbon 

dioxide, a known green house gas.  This makes solar an available and clean alternative to 

fossil fuels that are currently the standard. 
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Table 1-1: Available energy for renewable energy resources per year. 

Energy Resource Available Energy (TWy/year) 

Solar 23, 000 

Wind 25-70 

Bio Mass 2-6 

Hydro 3-4 

Geothermal 0.3-2 

 

 There are several methods solar energy can be converted to useable energy 

including direct solar, photovoltaics, and water splitting.  Photovoltaics and water splitting 

offer the most promise as they require less area compared to direct solar.  Water splitting 

or artificial photosynthesis can be used to generate hydrogen.  Hydrogen has gained interest 

as an alternative fuel source to be used in fuel cells.  Finding a cheap, clean source of 

hydrogen will be important if fuel cells are to become feasible for consumers.  

Photovoltaics directly convert solar energy to electricity, making it a strong candidate to 

power homes and businesses.  While solar energy is the most abundant and reaches most 

places on the planet every day, there are fluctuations in the amount of energy reaching the 

earth’s surface.1  With advances is energy storage devices such as batteries and capacitors, 

unused energy generated during the day can be stored for when solar is not available.1 

 Photovoltaics convert light energy into current by creating electron-hole pairs at a 

junction between two materials, creating an electric potential difference across the interface 

as shown in Figure 1-1.2  On one side of the junction is an n-type material which electrons 
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travel through, the other is a p-type material for holes.  To date, most commercially 

available solar cells use doped forms of crystalline or amorphous silicon.  While these solar 

cells are efficient, they can also be expensive from the high temperature processing leading 

to the development of new classes such as the dye-sensitized solar cell (DSSC).2 

 

Figure 1-1: General overview of how photovoltaic cells produce energy. 

 The solar cell efficiency (η) is calculated from the short-circuit current (ISC), open-

circuit voltage (VOC) the fill factor (FF) and the power input (Pin) which accounts for the 

area of the cell and the intensity of light.3 

     𝜂 =  
𝐼𝑆𝐶𝑉𝑂𝐶𝐹𝐹

𝑃𝑖𝑛
           (1) 
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The FF is a term that is calculated from the maximum power (Pmax), VOC and ISC 

and illustrates how close to the theoretical maximum the solar cell is based on loss from 

series and shunt shunt resistance.3  The Pmax term is the product of the photocurrent and 

photovoltage where the power output is maximal.3 

        𝐹𝐹 =
 𝑃𝑚𝑎𝑥

𝐼𝑆𝐶𝑉𝑂𝐶
          (2) 

A current-voltage curve (IV) curve is used to measure the variables needed to 

calculate the efficiency of a solar cell.  A representative IV curve is shown in Figure 1-2.  

The ISC and VOC are where the curve crosses the x and y-axis.  The current at maximum 

power (Imp) and voltage at maximum power (Vmp) are used to determine the Pmax.  Based 

on this the FF can be calculated, allowing of the solar cell efficiency to be calculated.  

Factors that can decrease the solar cell efficiency include series and shunt resistance (Rs 

and Rsh respectively).  Series resistance is the loss of energy from electrons moving through 

the layers of the solar cell.  Shunt resistance is the resistance that prevents early 

recombination of the electron-hole pair which would result in a short in the system.  For 

highly efficient solar cells, a low Rs and high Rsh is required. 
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Figure 1-2: A representative IV curve used to determine the ISC, VOC, and Pmax which are 

used to calculate the solar cell efficiency. 

 

1.2 Dye-sensitized Solar Cell Overview 

The first reported efficient DSSC demonstrated the potential for a solar cell with 

<7% efficiency using inexpensive materials and processes.4  Although this was not the first 

DSSC, the breakthrough for the technology was the use of a titania nanoparticle layer 

instead of a thin film of titania.4-6  The nanoparticles formed a mesoporous n-type anode 

that increased the surface area and the available surface for the anchored photosensitizer 

by over a thousand fold.4  The increase in dye loading drastically improved power-

conversion efficiencies to become competitive with other generations of solar cells.7  The 

schematic of a general DSSC is shown in Figure 1-3.8  The dye photosensitizer is bound to 

the semiconductor mesoporous material such as TiO2 or ZnO is used as the n-type material 
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on a transparent electrode such as indium tin oxide (ITO) or fluorine doped tin oxide (FTO).  

The p-type material is most commonly a liquid electrolyte, especially an iodide/triiodide 

system.  While a liquid electrolyte, specifically an iodide triiodide solutions is the most 

common, solid-state electrolytes have been explored as well.  Liquid electrolytes undergo 

an oxidation/reduction reaction and diffusion to shuttle an electron from the electrode to 

the dye molecule.  Solid electrolytes use a tunneling or hoping mechanism, depending on 

the material that is being used in the system. 

 

Figure 1-3: Liquid and solid state DSSC device schematic (adapted from Ref. 3). 

 While there have been a range of photosentizers used in DSSCs including 

porphyrins, metal complexes and organic molecules, ruthenium polypyridyl complexes.  

Of the photosensitizers, ruthenium polypyridyl complexes have been extensively studied 

for their broad absorption spectra, suitable ground and excited state energy levels, 

relatively long excited-state lifetimes and good (electro)chemical stability.3  The properties 

of the complexes can be tuned based on the substituents on the bipyridine ligands as shown 
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in Figure 1-4 which has led to the numerous dye structured studied.3, 9  While there has 

been a range of dyes synthesized and studied, there are common components such as an 

anchoring group and an electron donating ligand such as isothiocyante.7  The anchoring 

group is needed for the dye to bind to the semiconductor layer which is especially important 

when a liquid electrolyte is used to prevent removal of the dye.  The electron donating 

ligand helps with the regeneration of the dye from the electrolyte and broadens the 

absorbance spectrum, allowing for more light to be utilized.3 



 
 

8 
 

 

Figure 1-4: Structure of some common ruthenium polypyridyl complexes used as 

photosensitizers in DSSCs. 

A common component of the dyes is the presences of an anchoring group such as 

a carboxylate, ester, acid chloride, sulfonate, silane or phosphate group.3, 10, 11  Although 

phosphates have been shown to bind stronger than carboxylates, the stability and easy of 

synthesis has made carboxylates the most common anchoring group.3  In addition to 
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adhering to the n-type semiconductor, the anchoring group plays an important role in the 

rate of electron injection as the functional group plays a role in the wave function overlap 

with the semiconductor.12  Carboxylates have been shown to favor electron injection by 

allowing delocalization of the dye LUMO over the anchoring group towards the 

semiconductor surface.13-15  Studies adjusting the distance between the anchoring group 

and the sensitizer with nonconjugated spacers showed an exponential decrease in injection 

rate.16  This suggests the mechanism of the electron injection is through the anchoring 

group not through space as shown in Figure 1-5. 
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Figure 1-5: Proposed mechanism of dye absorbing a photon of light and 

undergoing a MLCT followed by injection of an electron into the conduction band of 

TiO2 through the carboxylate anchoring group. 
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1.3 Regeneration of Photosensitizer with Liquid Electrolytes 

After the sensitizer injects an electron into the semiconductor, for the reaction to 

occur again the oxidized molecule must be reduced.  A liquid electrolyte is commonly used 

because of a liquid’s ability to fill the mesoporous TiO2 layer.  The iodide/triiodide system 

in an organic solvents has been commonly used because of the slow recombination kinetics 

between the electrons in the titania with the oxidized dye and the triiodide electrolyte.17-19  

There are several drawbacks of the liquid electrolyte though including corroding of the 

electrode, leaking and requiring special sealants.7  In addition to the lack of long term 

stability, the regeneration of the dye is slow based on the mechanism for the reduction of 

the oxidized sensitizer (S+) as shown in Scheme 1-1.3  The first step is likely the binding 

of iodide to the thiocyanate ligand of the dye, followed by a transfer of one electron 

between S+ and I-.20  The second step is the addition of a second iodide forming a complex.  

The I2
- will leave and form triiodide and iodide.21 

Scheme 1-1: Mechanism for the reduction of an oxidized sensitizer with an iodide/triiodide 

electrolyte. 

 

 As mentioned previously, there have been a lot of research into the development of 

new dyes with larger extinction coefficients and broader absorbance yet DSSC efficiencies 

have not improved greatly.  To understand why, it is important to look at the electron 

transfer kinetics as shown in Figure 1-6.12  The through bond electron transfer from the 
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excited sensitized dye to the TiO2 following excitation has been reported on the picosecond 

time scale.12  The regeneration of the dye is much slower on a microsecond time scale.12  

The slower regeneration rates could be a result of the regeneration of the dye being less 

favorable, resulting in a low regeneration efficiency and requiring an overpotential to drive 

the redox reaction.22 23  It has been proposed if the overpotential is reduced, the efficiency 

of DSSCs can reach over 20%, competing with the efficiency of thin-film and silicon based 

solar cells, making DSSCs feasible for consumers.23  For this to happen, an alternative to 

the currently used liquid is required.   

 

Figure 1-6: Electron transfer kinetics in a DSSC determined using transient absorption 

spectroscopy (adapted from Ref. 12). 

1.4 Inorganic p-type Semiconductors 

 When considering alternatives to the liquid electrolyte in a DSSC, there are certain 

properties that are required of the material.  The material needs to transfer holes from the 

photosensitizer dye efficiently, fill the porous n-type material layer, fabrication of the layer 

cannot damage previous layers, and be transparent in the visible region or be as efficient 
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as the dye at electron injection.24  Common p-type semiconductors such as SiC and GaN 

cannot be used in the fabrication of DSSCs because their high temperature depositions 

would degrade the dye layer.  For this reason other p-type materials have been explored 

including CuI, CuBr and CuSCN.25-27 

 Of the copper semiconductors, the most studied is CuI which was first used by 

Tennakone et al.27  By replacing cyanidin with N3 dye, the group was able to fabricate a 

solar cell with an efficiency of 2.4%.28  The drawback of CuI is the material is unstable, 

degrading faster than liquid-state DSSCs.29  The films were found to oxidize under constant 

illumination from interaction with the TiO2 layer while excess iodine from the synthesis 

decreased the photocurrent of the solar cell.30, 31  To overcome the stability issues of CuI, 

CuSCN was used as an alternative.  While the stability of the cells were found to improve, 

the efficiency of the cells were lower, likely due to the lower hole conductance.24  While 

other p-type semiconductor materials have been explored, there has not been a material 

found that can replace the liquid electrolyte efficiently. 

1.5 Molecular Hole Transporting Materials 

 An alternative to p-type semiconductors is organic small molecules with the most 

popular currently 2,2’, 7, 7’-tetrakis(N,N’-di-p-methoxyphenylamine)-9, 9’ – 

spirobifluorene (spiro-OMeTAD) shown in Figure 1-7.  While DSSCs with spiro-

OMeTAD has reached efficiencies of 7.2%, they have not yet been able to match 

efficiencies with liquid electrolytes.32  Spiro-OMeTAD has produced the highest 

efficiencies of solid state DSSCs, likely because its HOMO level is optimally located to 

balance the hole transfer yield and the open circuit voltage, allows oxygen induced doping 

in the presence of chemical oxidants and shows good pore filling.33  Spiro-OMeTAD has 
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shown promise, there are limitations including a strong absorption band in the visible when 

oxidized and a relatively low hole mobility.34, 35  The major challenge with using a solid 

state electrolyte like spiro-OMeTAD the most efficient solar cells have been thinner than 

liquid state DSSCs.  The reason thinner TiO2 layers are needed could be more efficient is 

a lack of penetration into the mesoporous layer, lack of conductivity or the filtering of light 

from reaching the photosensitizer.33  Decreasing the thickness can minimize these however 

it also decreases the dye loading possible which will decrease the maximum efficiency 

achievable.  For a solid state DSSC to match the efficiency of liquid DSSCs, the 

mesoporous layer must be thicker to increase dye loading but still effectively fill the 

semiconductor layer, have high hole mobility and be transparent.  While other molecules 

have been explored, nothing has been found better than Spiro-OMeTAD.33 

 

Figure 1-7: Chemical structure of the hole transport material spiro-OMeTad. 
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1.6 Intrinsically Conducting Polymers as Hole Transport Materials 

One possible alternative to small molecules such as spiro-OMeTad as a hole 

transport material is an intrinsically conducting polymer (ICP).  While there are numerous 

ICPs, poly(3,4’ethylenedioxythiophene) (PEDOT) has shown the most promise as a hole 

transport material.  PEDOT is a p-type conducting polymer that transfers electrons through 

a redox process as shown in Figure 1-8.  PEDOT is an insoluble polymer but 

copolymerizing it with polystyrene sulfonate (PSS) produces PEDOT:PSS which is 

soluble, allowing for solution processing.  The PSS however is an insulator and reducing 

the conductivity of the material.  An alternative to PEDOT:PSS solution processing is 

utilizing an in-situ method such as electrochemical, chemical vapor deposition (CVD), 

chemical oxidation polymerization and vapor phase polymerization (VPP).36 

 

Figure 1-8: Mechanism of electron transfer from the oxidized and reduced states of 

PEDOT. 

 Currently the most commonly used method of forming PEDOT as a hole transport 

material in a DSSC is using an in-situ photoelectrochemical polymerization (PEP) 

method.37-41  First reported by Saito et al in 2003, the original PEP-PEDOT solar cell had 

an efficiency of 0.53% which at the time was one of the most efficient solid state DSSC 

using an organic polymer as a hole transport material.41  The efficiency was attributed to 
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an increase is the transparency and charge transport properties of PEDOT.41  The efficiency 

of PEP-PEDOT solar cells improved as the polymerization conditions were optimized 

including the anion dopant, the photosensitizer, solvent, and irradiation conditions.38-40  

The current record for a PEP-PEDOT solar cell is 7.11%, rivaling the record for spiro-

OMeTAD which is 7.2%.37  The high efficiency was attributed to the higher doping of the 

PEDOT which resulted in a hole conductivity of 2.0 S/cm.37 

 Another method reported of using PEDOT as a hole transport material is a thermal 

polymerization of the brominated monomer.42  Kim et al compared the conducting 

polymers PEDOT and poly(3,4-ethylenedithiathiophene) (PEDTT) as hole transport 

materials and found solar cells with PEDOT were more efficient as shown in Table 1-2.42  

The higher efficiency was attributed to the higher conductivity of PEDOT which is 

supported by the conductivity measured with a 4-point probe and short-circuit current 

density (JSC).  Based on the increase of efficiency in the PEP-PEDOT solar cell and when 

comparing PEDOT to PEDTT, the conductivity of the hole transport material is important 

in the overall efficiency of a solid state DSSC.42  This suggests developing a more 

conductive PEDOT layer in a solid state DSSC could further increase the efficiency of the 

solar cell. 

Table 1-2: Solar cell efficiency and other values based on using PEDOT or PEDTT as a 

hole transport material. 

Sample V
oc

 (V) 
J

sc
 (mA/cm

2

) 
FF η (%) σ (S/cm) 

PEDOT 0.64 18.6 0.56 6.8 10 

PEDTT 0.66 11.2 0.56 4.1 0.5 
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 Based on the literature, to further improve the efficiency of solid state DSSCs with 

PEDOT as a hole transport material, more conductive PEDOT is needed.  The method and 

conditions of polymerizing PEDOT can greatly change the chemical and physical 

properties of the resulting films, including the transparency and conductivity.36, 43  Of the 

reported methods, CVD and VPP have resulted in the most conductive films, which have 

exceeded 1000 S/cm.36, 43, 44  While the CVD method requires specialized equipment to 

sublime the oxidant, the VPP method coats the substrate using solution processing such as 

spin coating.44  This makes the VPP method of interest for its combination of simplified 

setup for processing while still achieving high conductivity. 

 The conductivity of VPP PEDOT can vary based on the oxidant initiator, vapor 

pressure and environmental conditions such as temperature.44-47  When iron(III) p-

toluenesulfonate (FePTs) is used as an oxidant, there are several reports of PEDOT thin 

films with conductivity greater than 1000 S/cm.44, 48, 49  High conductivities are possible 

and have been reported using iron (III) chloride (FeCl) as an oxidant to produce single-

crystal PEDOT nanowires with conductivities of 7619 S/cm.50  These reported 

conductivities are several orders of magnitude greater than the conductivities of PEDOT 

found as hole transport materials in solid state DSSCs. 

 In addition to being highly conductive, VPP PEDOT has shown to be highly 

transparent in the visible region, preventing light filtering in solid state DSSCs.44, 46  While 

other conducting polymers such as polypyrole, (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-

cyclopenta[2,1-b;3,4-b0]dithiophene)-alt-4,7-(2,1,3-benzothiadia-zole)] (PCPDTBT) and 

poly(3-hexylthiophene-2,5-diyl) (P3HT) have been explored, they absorb visible light and 

reduce the number of photons reaching the dye.33, 51-55  Absorbing light in the conductive 
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oxidized state is also a limit of small molecules such as spiro-OMeTAD which supports 

DSSCs with PEDOT could someday become the most efficient solid state DSSC. 

 Using  an in-situ polymerization such as PEP has shown to allow for penetration of 

the mesoprous TiO2 layer, one of the major challenges transitioning to a solid electrolyte.54  

VPP is another in-situ method of polymerization where the monomer is in the vapor phase 

which has been shown to fill the mesoporous layer.56  Other p-type conducting polymers 

such as polythiophene and poly-[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] 

(PMEHPV) were explored in DSSCs but were limited by pore filling.38, 57, 58  Based on the 

ability to fill the mesoporous TiO2 layer, the high transparency in the visible region and the 

high conductivity, VPP PEDOT could lead to improved solid state DSSCs. 

Previous work in the group has demonstrated the ability to fabricate highly 

conductive, transparent PEDOT thin films using VPP PEDOT, however no working DSSC 

has been fabricated.44, 46, 56  It was proposed using the oxidant FePTs reduced the TiO2 layer 

based on x-ray photoelectron spectroscopy (XPS) results before and after soaking TiO2 in 

the oxidant solution.  To overcome this, it was proposed copper (II) chloride (CuCl2) could 

be used as an oxidant.  While the conductivities of VPP PEDOT fabricated with CuCl2 is 

lower than FePTs, the conductivities are still greater than PEP-PEDOT or the thermal 

polymerization of brominated EDOT.56 
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1.7 Dye Sensitized TiO2 to Enhance Photocatalytic Properties Under Visible 

Irradiation  

While use of dyes to expand the absorbance of DSSCs into the visible has been well 

studied, the concept could also be applied to other systems.  TiO2 is a well-studied 

photocatalyst for the degradation organic pollutants but uses UV irradiation based on the 

wide band gap.59, 60  To make TiO2 a more feasible photocatalyst, efforts have been made 

to extend the absorption into the visible region which makes up more of the solar spectrum.  

Modifying TiO2 through metal, metalloid, and non-doping or through surface modification 

can increase the photoactivity of TiO2 under visible irradiation.60, 61  There are several 

examples of doping TiO2, there is less investigation of utilizing a dye sensitizer like is a 

DSSC.  By attaching a dye to the surface of TiO2 the dye can absorb a photon of light, and 

inject the excited electron into the conduction band of TiO2 as shown in Figure 1-9.  The 

transfer of an electron from the photosensitizer to the TiO2 layer has been well studied in 

DSSC systems which should transfer to the photodegradation system. 

 

Figure 1-9: Utilization of dye photosensitizers in DSSC to expand region of absorbance 

into the visible region, promoting electron injection into the conduction band of TiO2. 
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1.8 Problem Statement and Dissertation Overview 

 This dissertation has been broken into six chapters.  The introduction chapter has 

covered the need to utilize solar energy as a clean, abundant renewable energy resource 

through photovoltaics.  It describes the mechanism for converting solar energy to electricity 

and the importance of the development of the DSSC which offers a cheaper alternative to 

semiconductor and thin film solar cells.  The first chapter highlights the commonly used p-

type materials in current DSSCs and how VPP PEDOT could make solid state DSSCs as 

efficient as other generations of solar cells.  Lastly, the chapter discussed how utilizing 

dye-sensitized TiO2 could improve photocatalytic activity of TiO2 under visible irradiation, 

making it more feasible to use with solar irradiation. 

 The second chapter will discuss the fabrication of solid state DSSCs using VPP 

PEDOT or PEDOT:PSS as hole transport materials.  The chapter will demonstrate the 

importance of using both a VPP and PEDOT:PSS layer for an efficient solar cell  It will 

look at the effects of TiO2 thickness as well as the duration of the VPP PEDOT 

polymerization.  The chapter will also compare using CuCl2 and FePTs as an oxidant for 

the VPP PEDOT. 

 Chapter three will discuss the progress in the synthesis and characterization of 

thiophene containing ligands for the polymerization into the PEDOT hole conducting 

material.  The ligands were polymerized with EDOT to form a new copolymer using an 

oxidant initiated solution polymerization to prepare thin films.  It will also discuss the 

synthesis of new ruthenium dyes containing the two new ligands. 

 Chapter four will focus on the use of dye-sensitized TiO2 fibers for the degradation 

of phenazopyridine under visible irradiation.  It will compare the photocatalytic activity of 
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bare TiO2 fibers to the dye-sensitized fibers under visible/UV irradiation and visible 

irradiation.  The chapter will discuss the proposed mechanism of electron transfer in the 

material to produce the radicals used in the degradation of phenazopyridine. 

 Chapter five will discuss the fabrication and characterization of conducting fibrous 

materials using electrospinning and VPP PEDOT.  It will compare the use of different 

template polymers and show the effects of electrospinning conditions and oxidant loading 

on the conductivity of the fibers.  The chapter will demonstrate the use of electrospinning 

to fabricate polyvinylidene fluoride forms β-phase of the polymer which is a known 

piezoelectric material but typically requires a poling process to form.  The fabrication of 

new dye materials and further experiments are discussed in the sixth chapter. 
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Chapter 2 

Investigation of Vapor Phase Polymerized Poly(3,4-Ethylene Dioxythiophene) as a 

Hole Transport Layer is a Solid State Dye Sensitized Solar Cell 

2.1 Introduction 

Dye sensitized solar cells (DSSCs) have gained interest for their high efficiency, 

simple fabrication and low cost of production.1 2 3 Commonly, DSSCs use a liquid 

electrolyte as the p-type material or hole transport material to regenerate the dye molecule 

following electron injection.  The liquid electrolyte allows for penetration of the 

mesoporous TiO2 layer, providing a close interaction with the adsorbed dye.3, 4  Liquid-

phase DSSCs have the highest reported efficiencies for DSSCs, but are known to be 

relatively unstable.  The electrolyte is known to leak, evaporate, or corrode the electrode, 

reducing the longevity of the solar cell.3  In addition to the stability concerns, the liquid 

phase may play a role in limiting the efficiency.  With a liquid electrolyte, the regeneration 

of the dye is limited by the rate of diffusion of iodide and triiodide, making it the slow step 

in the process as shown in Figure 2-1.5 6  In addition to the slow rate of diffusion, the 

electron transfer for the redox reactions involving the electrolyte solution is several orders 

of magnitude slower than the rate of electron injection into the TiO2.
5, 6 
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Figure 2-1: Rate of electron injection from dye and regeneration of the dye from a liquid 

electrolyte (modified from Ref. 5).  

An alternative to liquid phase DSSCs is the solid-state dye sensitized solar cell 

(ssDSSC).  Using a solid electrolyte can make the solar cell more stable and provide a 

faster electron transfer using a hopping or tunneling mechanism instead of diffusion.7  To 

date ssDSSCs have shown lower efficiencies than their liquid counterparts, however.  The 

lower efficiencies can be attributed to the challenges of producing a solid state material 

that is highly conductive, penetrates into the mesoporous layer, mild processing conditions 

and is transparent in the visible region of the spectrum.8  There are several materials that 

have been used as a solid HTL including inorganic, organic, molecular and polymeric 

materials each having their advantages and disadvantages.8 3 9 7  One of the challenges is 

having a solid material that can fill the mesoporous semiconducting layer.8  One method to 

overcome this challenge is the use of an in-situ polymerization of a conducting polymer. 

Poly(3,4-ethylenedioxythiophene (PEDOT), shown in Figure 2-2, is a material that 

has been explored as a HTL.  PEDOT is a conjugated polymer that is chemically stable and 
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a known hole-conductor, but is insoluble.10  To process PEDOT, it can be copolymerized 

with Poly(3,4-ethylenedioxythiophene polystyrene sulfonate (PEDOT:PSS) that is water 

solution allowing for solution processing.10  In addition to PSS making the polymer soluble, 

it also reduces the conductivity since it is an insulating material.  PEDOT:PSS has been 

explored as a HTL however it lacks the ability to fill the nano pores in the TiO2 layer.7  

This can limit the amount of active dye in the solar cell which decreases the efficiency of 

the solar cell.  An alternative to PEDOT:PSS is using an in situ polymerization to grow the 

PEDOT within the TiO2 layer, increasing the interaction with the dye molecules compared 

to PEDOT:PSS. 

 

Figure 2-2: Structure of PEDOT in the doped state. 

 There are several mechanisms of EDOT polymerization that are considered in situ 

methods.  These methods include chemical vapor-deposition (CVD), electrochemical 

deposition, oxidant initiated in situ and vapor phase polymerization (VPP).10  An oxidant 

initiated in situ method was reported, but the best performance was 0.012% after post 

polymerization treatment.11  The low efficiency was attributed to a poor contact between 
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the dye and HTL however it is also possible the PEDOT had low conductivity.  The oxidant 

initiated method has some of the lowest reported conductivities in the literature because of 

the poor crystallinity and short polymer length.  To have a more efficient solar cell it is 

important to use methods that produce highly conductive PEDOT.  A more promising 

method uses a photoelectrochemical polymerization (PEP).12 13 14 15 16 17 18 19 20  After using 

post-polymerization treatment and optimizing the energy overlap of the dye and PEDOT, 

these ssDSSCs have exceeded 7% efficiency which is approaching the record for the liquid 

phase DSSCs. 

While an electrochemical deposition has been developed for ssDSSCs, there have 

been no reports of a VPP method.  VPP heats the monomer into the gas phase and uses an 

oxidant to initiate the polymerization as shown in Figure 2-3.  VPP PEDOT has been shown 

to have the highest order and crystallinity in forming PEDOT thin films without post 

processing treatments.10  These properties are desirable to have a highly conductive 

PEDOT layer.  The higher ordering can potentially lead to more efficient solar cells by 

decreasing the defects and trap sites in the HTL.21  VPP PEDOT films have been reported 

to have conductivities greater than 1000 S/cm with transparency greater than 90% in the 

visible region.10  The reaction conditions for VPP uses low temperature processing that 

should not degrade the dye.  Based on the mild conditions, high conductivities and 

transparencies, VPP PEDOT could be an important material for the advancement of the 

ssDSSC. 
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Figure 2-3: Mechanism for the vapor phase polymerization of PEDOT using an 

oxidant as an initiator. 

Previous work in the group has focused on the development of procedures to 

produce highly conductive, transparent VPP PEDOT thin films.  It was found that iron(III) 

p-toluenesulfonate (FePTs) was the best oxidant, producing films with conductivities 

exceeding 1000 S/cm.22  The VPP PEDOT procedure was used to fabricate ssDSSCs but 

the efficiencies were 0%.  X-ray photoelectron spectroscopy (XPS) showed FePTs could 

reduce the titanium in the mesoporous layer.  Even after switching to copper (II) chloride, 

efficiencies did not improve.23  It was proposed the indium tin oxide (ITO) on the 

poly(ethylene terephthalate) (PET) substrate would crack upon flexing during fabrication, 

decreasing the conductivity of the electrode.  This chapter focuses on the fabrication of 

ssDSSCs using VPP PEDOT as a HTL using a glass substrate. 
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2.2 Experimental  

2.2.1 Materials and Methods 

 Glass coated with 10 Ω FTO was purchased from Pilkington Group Limited. TiO2 

nanoparticles, 75% wt. titanium diisopropoxide bis(acetylacetonoate), TiO2 paste, N3 dye, 

EDOT, terpineol ethylcellulose, and Fe(PTS)3 were purchased from Sigma-Aldrich.  

Isopropanol and pyridine were purchase from Fisher. CuCl2 was purchase from J.T. Baker. 

200 proof ethanol was purchased from KOPTEC.  Clevios™ SV3 PEDOT:PSS was 

purchased from Heraeus Kulzer.  Gold shots were purchased from Kurt J. Lesker. 

2.2.2 General Methods 

 For characterization methods, a Titan Solar Simulator was used for producing IV 

curves, along with obtaining resistances, fill factors, and efficiencies.  FESEM Supra 55 

VP from Zeiss was used for characterizing thicknesses of layers of the solar cells and 

qualitatively investigating the structure of the cells.  The CHA Evaporator was used to 

evaporate gold. 

2.2.3 Preparation of Substrate 

 Float glass was cut into pieces approximately 2 cm x 2 cm. ITO was sputtered onto 

the substrates giving a thickness of approximately 120 nm. Following the ITO deposition, 

a blocking layer of ZnO was sputtered, giving a thickness of approximately 70 nm. 

 FTO coated glass was cleaned using soap, rinsed with DI water before being 

sonicated in acetone followed by ethanol.  The substrates were then treated with ozone for 

6 minutes to help with adhesion of the TiO2 blocking layer.  75% weight percent titanium 
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diisopropoxide bis(acetylacetonoate) was diluted to 50 mM with isopropanol by combining 

1 mL titanium diisopropoxide bis(acetylacetonoate) to 41.2 isopropanol. The solution was 

left to stir until adequately dispersed.24  FTO sputtered substrates were placed on a hot plate 

and about 0.5 cm of the top of the glass was covered with masks to allow contact with the 

anode.  The hotplate was set to 450°C and the samples were allowed to heat up for 10 

minutes to reach the setting temperature.  Samples were sprayed at a rate of 0.318 mL/s 

using dry air at 15 psi.  This was done at 5 second bursts while waiting 30 seconds to repeat 

each time.  A total of 45 seconds of active spraying was performed to produce a thickness 

of about 70 nm.  The samples were annealed for 30 minutes at this temperature, followed 

by cooling to room temperature.24 

2.2.4 Preparation of MesoprousTiO2 Layer 

 The TiO2 paste prepared for doctor blading contained all of: TiO2 nanoparticles, 

oxidant (either Fe(PTS)3 and pyridine, or CuCl2), and N3 dye. Into a 20 mL glass vial, 1.0 

g of TiO2 nanoparticles (MW=79.866 g/mol), and 0.0028 g N3 dye (MW=705.641 g/mol) 

were added, followed by 10 ml isopropanol. Depending on the oxidant used, 0.949g 

Fe(PTS)3 (MW=677.51 g/mol) and 60 µL pyridine, or 0.2367g CuCl2 (MW= 134.45 

g/mol) were also added. The vial was wrapped in aluminum foil and left stirring for 24 

hours. 

 Approximately 0.5 cm of the ITO/ZnO sputtered substrate was masked with tape 

and placed on a flat surface. The doctor blade was set to the desired height and a glass pipet 

was used to drop the TiO2 paste onto the substrate, covering the entire substrate with the 

mixture. The doctor blade was then used to scrape off excess TiO2 mixture as shown in 
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Figure 5 below and set in a vacuum oven at 100°C for 10 minutes to dry. The resulting 

thickness was 4-60 µm depending on height of doctor blade used. 

3.0 g of TiO2 paste, 3.802 mL ethanol, 114 µL terpinol, and 114 µL ethylcellulose solution 

(10 percent weight in ethanol) were combined, sonicated, and put under heat to achieve a 

homogenous mixture.  The ratio of TiO2 to ethanol can be changed to produce different 

viscosities and therefore different thicknesses when depositing the layer.  The solution was 

sonicated using an ultra-sonication bath for 10 minutes before spin coating to reduce 

aggregation of the nanoparticles.24 

 The FTO was masked with tape to allow for contact to the anode and the substrate 

was centered on the spinning block.  Approximately 100 µL of the paste from 3.4 was 

dropped onto the glass.  Using a 2 step process, the substrates were spun at 600 rpm for 20 

seconds with an acceleration of 480 rpm/s, followed by 1500 rpm for 6 seconds at an 

acceleration of 810 rpm/s.  The spin speeds can also be altered to achieve different 

thicknesses of thin films.  The tape was removed and the substrates were heating using the 

follow temperature program: 100°C for 10 minutes, 150°C for 10 minutes, 325°C for 30 

minutes, 450°C for 5 minutes, and 500°C for 40 minutes.24  After the substrates had cooled 

to room temperature, they were placed standing up vertically in a beaker containing 25 mL 

of 1.4x10-4M N3 dye in ethanol.  The beaker was wrapped in Parafilm M® and aluminum 

foil to prevent evaporation of the solvent and degradation of the dye.  The substrates were 

allowed to soak for 24 hours before removal and to dry at 100°C for 10 minutes. 
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2.2.5 Vapor Phase Polymerization of PEDOT 

 For films prepared via Dr. Blading, the oxidant was preloaded in the solution 

applied to the substrate while the spin-coated TiO2 needed to have an oxidant added.  A 

solution of CuCl2 or FePTs was prepared by adding 0.2367g CuCl2 or 0.600 g FePTs to 10 

ml isopropanol (60 µL of pyridine was added to the FePTs solution). This was allowed to 

stir until all solids dissolved. The substrate was then placed on the spin coater and masked 

at the top. A glass pipet was used to apply oxidant, covering the entire surface of the 

substrate, and the spin coater was then run at 720 rpm for 10 seconds. The substrates were 

removed and allowed to dry in a vacuum oven for 10 minutes at 100°C. 

 For the VPP process, 100 µL of EDOT was placed in the center of the petri dish 

inside a vacuum desiccator oven. The substrate was then suspended over the monomer at 

55°C as shown in Figure 2-4.  The polymerization was performed for 40 minutes, and upon 

removal the cells were rinsed with ethanol to remove excess oxidant. The cells were dried 

in an oven for 10 minutes at 100°C. 
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Figure 2-4 Schematic showing the EDOT monomer heated to the gas phase in an oven 

desiccator with an oxidant coated substrate suspended above the dish. 

2.2.6 Application of PEDOT:PSS Layer 

 A solution of PEDOT:PSS was prepared by adding 5 mL PEDOT:PSS to 5 mL 

isopropanol and stirring for 1 hour.  The solution was then applied using the spin coating 

method at varied RPMs depending on the desired thickness.  The cells were removed and 

dried for 10 minutes at 100°C using an oven. 

2.2.7 Counter Electrode Deposition 

 For solar cells with a silver electrode, the Magnetron Sputtering System from Torr 

International with a silver target was used to produce a 130 nm thick film of silver.  
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 When gold was used as a counter electrode, a shadow mask was used to apply a 2 

x 2 mm gold electrode using an evaporation method.  The gold electrode thickness ranged 

from 65-80 nm. 

2.3 Results and Discussion 

2.3.1 Solar Cells Using Dr. Blade Method 

 Solar cells were prepared using the general experimental procedure listed above.  

The final stack for the first generation of solar cells use glass as a substrate with an ITO 

transparent conducting electrode (TCE), ZnO blocking layer, mesoporous TiO2 layer, 

mono layer of N3 dye, VPP PEDOT and silver counter electrode as shown in Figure 2-5. 

 

Figure 2-5: The stack of layers used in the doctor blade method of fabricating DSSCs. 

 Before the procedure in the experimental section for the preparation of mesoporous 

TiO2 layer was used, others were attempted.  When a TiO2 nanoparticle solution was 

applied without the oxidant present, the film contained visible defects and had poor 

adhesion to the substrate.  The image in Figure 2-6 using optical microscopy for 

characterization shows the large pin holes and defects of the TiO2 layer.  The presence of 
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defects was found to increase the shorting in the solar cell which might reduce the overall 

efficiency.  To improve the uniformity of the TiO2 layer, the oxidant was added to the 

solution.  The films produced were more uniform so this method was used for the following 

experiments. 

 

Figure 2-6: Image from optical microcopy of the TiO2 layer produced from doctor 

blading a solution without oxidant. 

 The IV curve and relevant data for the solar cell with TiO2 prepared by the doctor 

blade method shown in Figure 2-7.  The overall efficiency of the cell was 0.24% even with 

a relatively low fill factor of 0.242.  The low fill factor is a result of the series resistance 

being on the kΩ scale, reducing the Isc.  The series resistance can be improved by improving 

the conductivity of the PEDOT or by decreasing the thickness of the TiO2 layer. 
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Figure 2-7: IV Curve for cell 5 with CuCl2 as the oxidant, along with the parameters 

 SEM of the cross section for the solar cell above is shown in Figure 2-8.  From the 

SEM image, the thickness of the TiO2 layer was determined to be 56 µm.  The average 

DSSC in the literature uses a thickness of 8-10 µm.  A thicker layer provides a longer 

pathway for electrons to travel before reaching the electrode.  This would explain the large 

series resistance which causes the low fill factor observed.  To improve the solar cell 

efficiency a thinner mesoporous layer is needed.  This can be achieved by decreasing the 

height of the blade for doctor blade method. 

  

Voc 0.524 (V)

ISc 472.80 (µA)

Vm 0.2595 (V)

Im 0.000 (A)

Pm 0.000 (W)

FF 0.242

η 0.24 (%)

Rs 1.10 (kΩ)

Rsh 7.21 (kΩ)

Voc 0.524 (V)

ISc 472.80 (µA)

Vm 0.2595 (V)

Im 0.000 (A)

Pm 0.000 (W)

FF 0.242

η 0.24 (%)

Rs 1.10 (kΩ)

Rsh 7.21 (kΩ)
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Figure 2-8: SEM image of the above cell 5, showing thickness and structure 

 A series of solar cells were fabricated, systematically decreasing the height of the 

blade for the doctor blade method with films ranging from 56-4.4 µm based on SEM cross 

sections.  The data from IV curves based on the TiO2 thicknesses is shown in Table 2-1.  

The results show the optimal thickness of the TiO2 layer was 14.3 µm.  This produced the 

largest Voc and Isc of the thicknesses studied.  The films were thin enough to allow electron 

transport through the TiO2 without being too thin to limit dye loading.  None of the solar 

cells were able to be reproduced, including the 0.24% from earlier.  To better understand 

this, SEM images were taken of the cross-sections of the solar cells. 
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Table 2-1: Results from IV curves when changing the thickness of the TiO2 layer. 

 

 From the SEM images in Figure 2-9, it was observed as the films became thinner, 

the uniformity also decreased.  When the TiO2 layer was 36 and 40 µm thick as shown in 

Figure 2-7 e and f respectively, the films appeared to be continuous.  The thickness of these 

films though would slow down the transfer of the electron from the n-type material to the 

 
4.4µm thick 

TiO2 

7.6µm thick 

TiO2 

9.2µm thick 

TiO2 

14.3µm thick 

TiO2 

 Avg SD Avg SD Avg SD Avg SD 

Voc 

(V) 

0.0009 0.0007 0.0342 0.0224 0.0254 0.0158 0.3779 0.1806 

Isc 

(µA) 

2.09 2.27 2.46 0.48 2.39 1.63 3.07 0.21 

FF 0.081 0.125 0.306 0.059 0.172 0.120 0.392 0.051 

Rs 

(kΩ) 

0.38 0.23 11 6 8 5 51 9 

Rsh 

(kΩ) 

0.37 0.23 13 9 7 4 178 124 

 23µm thick 

TiO2 

36µm thick 

TiO2 

40µm thick 

TiO2 

52µm thick TiO2 

 Avg SD Avg SD Avg SD Avg SD 

Voc 

(V) 

0.0487 0.0494 0.0534 0.0436 0.0006 0.0004 0.1694 0.2118 

Isc 

(µA) 

2.19 1.02 2.28 1.02 2.65 1.24 2.83 0.31 

FF 0.381 0.131 0.249 0.142 0.028 0.040 0.334 0.070 

Rs 

(kΩ) 

13 12 15 12 253 156 24 18 

Rsh 

(kΩ) 

19 21 53 91 248 149 16 8 
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electrode based on the long path length.  Decreasing the thickness of the TiO2 layer would 

result in a shorter pathway however the films produced this way became less uniform 

resulting in more defects.  Increasing the number of defects presented more opportunities 

for shorting in the solar cell which was likely the cause of the low efficiencies.  Although 

the reproducibility of the solar cells was poor, there was evidence to suggest VPP PEDOT 

can be used as a HTL.  The limitation of the solar cells produced was the mesoporous TiO2 

which led to using a spin coating method for the application of the TiO2 layer. 
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Figure 2-9: SEM images of the cross section for ssDSSCs with TiO2 thickness of a) 4.4 

µm b) 7.6 µm c) 9.2 µm d) 14.3 µm e) 36 µm f) 40 µm 

2.3.2 Solar Cells Using the Spin Coating Method 

 Based on the poor uniformity of the mesoporous layer, a new procedure was needed 

for the fabrication of the solar cells.  This led to the next generation of solar cells produced 

using a glass substrate with a FTO TCE, TiO2 blocking and mesoporous layer, N3 dye, 

PEDOT and gold counter electrode.  The final stack is shown in Figure 2-10.  FTO is 

known to be more conducting compared to ITO which makes it a better TCE.  TiO2 has 

shown to reduce the rate of recombination when compared to ZnO.25  The mesoporous 

TiO2 layer was prepared using a spin coating method which can allow for more uniform 
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thin films compared to the Dr. Blade method.  To improve the connectivity between the 

nanoparticles, a heating step was added to sinter the TiO2 layer.  The counter electrode was 

switched from sputtered silver to evaporated gold.  Evaporation is a milder method of 

depositing the electrode than silver which can reduce the penetration of the electrode into 

the solar cell causing shorting. 

 

Figure 2-10: The stack of layers used in spin coating method of fabricating DSSCs. 

To determine if VPP was a better method of applying PEDOT compared to 

PEDOT:PSS a solar cell was fabricated with a 700 nm PEDOT:PSS HTL using a spin 

coating method.  When tested with the solar simulator, the solar cell had a short circuit 

current density (ISC) of 2.36 µA , open circuit voltage (VOC) of 0.481 V, and fill factor (FF) 

of 0.449, resulting in an efficiency of 0.006%.  The low efficiency was likely due to the 

low ISC value, generally a result of having a high series resistance.  As stated previously 

and shown in the SEM in Figure 2-11, the PEDOT:PSS did not fill the pores of the 

mesoporous TiO2 layer.  This produced a void between the dye layer and the HTL, 
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decreasing the rate of hole injection.  The slow hole injection was able to increase the series 

resistance, resulting in a low ISC as observed.  

 

Figure 2-11: Cross-section SEM image of solar cell using PEDOT:PSS as a HTL. 

To improve the filling of the mesoporous TiO2 layer, a solar cells was fabricated 

with a VPP layer and tested using a solar simulator.  The solar cell had an ISC of 20 µA , 

VOC of 0.016 V, and a FF of 0.235.  The low VOC could be attributed to a low shunt 

resistance which would cause the cell to short circuit.  A cross-section SEM of the solar 

cell, shown in Figure 2-12 showed there was no visible separation between the TiO2 layer 

and the gold electrode.  To prevent recombination from occurring, the separation of the 

electrode and TiO2 needed to be increased. 
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Figure 2-12: Cross-section SEM image of solar cell using VPP PEDOT as a HTL. 

 To improve the separation of the TiO2 layer and the gold electrode, a solar cell was 

fabricated using both the VPP PEDOT and a 750 nm PEDOT:PSS layers before a gold 

electrode was evaporated on top shown in Figure 2-13.  Using both layers, produced a ISC
 

342 µA, a VOC of 0.0591V and a FF of 0.358 producing a solar cell with a 0.18% efficiency.  

It is proposed the VPP layer of PEDOT produced a high ISC since it could fill the pores of 

the TiO2 creating a good contact between the dye and the HTL.  The addition of the 

PEDOT:PSS layer on top, helped create a barrier between the TiO2 layer and the gold 

electrode.  This separation could help prevent shorting of the cell, increasing the VOC. 
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Figure 2-13: SEM of the cross-section for the VPP DSSC with 500 nm layer PEDOT:PSS 

layer. 

 

 The results of the solar simulator for the different ssDSSCs are summarized in 

Table 2-2.  Based on the efficiencies, it is important to add a layer of PEDOT:PSS on top 

of the VPP PEDOT layer.  This could help prevent the gold from interacting with the TiO2 

layer, shorting the solar cell.  This was supported by the series resistance (Rs) and the shunt 

resistance (Rsh) of the cells in Table 2-2.  For a solar cell, it was important to have a low 

series resistance and a large shunt resistance to maximize the efficiency.  When no 

PEDOT:PSS was added, the series resistance was greater than the shunt resistance, 

meaning the solar cell was shorting.  When there was a 700 nm layer of PEDOT:PSS, the 

shunt resistance was higher than the series, meaning it was less likely to short.  Even though 

this was the case, there was still a need to improve the fill factor which was explored using 

different thicknesses of the PEDOT:PSS layer. 
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Table 2-2: Influence of PEDOT:PSS and VPP layer on I-V curve characteristics.  

 Only PEDOT:PSS Only VPP VPP and PEDOT:PSS 

 Average St. Dev Average St. Dev Average St. Dev 

VOC (V) 0.481 0.173 0.016 0.013 0.059 0.003 

ISC (µA) 2.36 0.13 20 10 342 75 

FF 0.449 0.123 0.235 0.097 0.358 0.097 

η (%) 0.006 0.003 0.002 0.001 0.18 0.03 

RS (Ω) 6664 670 1092 1044 123 29 

RSh (Ω) 512584 344146 1056 1030.8 135 34 

 

 Since the thickness of the PEDOT:PSS layer could play a role in the series and 

shunt resistance, solar cells were prepared using different thicknesses as shown in Table 2-

3.  Comparing 0, 550, 700 and 1400 nm thick PEDOT:PSS layer, the cell with the best 

performance was the 700 nm thick PEDOT:PSS layer.  Having too thick of a layer 

decreased the VOC and ISC of the cell since PEDOT:PSS was less conductive than VPP 

PEDOT.  If the PEDOT:PSS layer was not thick enough, shorting could still occur between 

the gold and TiO2 layer.  
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Table 2-3 Solar cell efficiency based on PEDOT:PSS thickness with VPP PEDOT. 

PEDOT:PSS 

Thickness 

VOC (V) ISC (µA) FF η (%) 

0 nm 0.016 ± 0.016 20 ± 10 0.235 ± 0.097 0.002 ± 0.001 

550 ± 20 nm 0.037 ± 0.004 172 ± 49 0.401 ± 0.06 0.06 ± 0.02 

700 ± 30 nm 0.059 ± 0.003 342 ± 75 0.358 ± 0.097 0.18 ± 0.03 

1400 ± 150 nm 0.020 ± 0.003 134 ± 35 0.484 ± 0.171 0.03 ± 0.02 

 

 The previous cells discussed have had a mesoporous TiO2 thickness of 2.5 µm, 

much thinner than the optimal thickness found in the literature.  To achieve a thickness of 

8 µm, the ratio of TiO2 paste to ethanol was changed to 3:2.  Decreasing the ethanol ratio 

resulted in thicker films and only required one layer from spin coating.  The 8 µm thick 

mesoporous layer was used for the following experiments. 

When the mesoporous layer was increased to 8 µm and the previous method of 

applying VPP PEDOT was used, the resulting cells produced no photo voltage.  The thicker 

mesoporous layer increases the surface area available for PEDOT to grow.  This could 

result in a thicker PEDOT layer that would filter light from the photoactive dye layer.  To 

reduce the thickness of PEDOT, the spin speed for the oxidant was increased to 800 RPM 

for 10 seconds followed by1200 RPM for 2 seconds.  The duration of the VPP was reduced 

from 40 minutes to 5, 10, and 15 minutes to produce thinner VPP PEDOT layers.  The 

results in Table 2-4 show that 10 minute VPP produced the most efficient solar cell.  This 

was likely from having a long enough polymerization time to have generated enough 

PEDOT to be conductive but thin enough layer to increase the transparency of the film. 
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Table 2-4 Solar cell efficiencies based on different VPP durations using CuCl2 as an 

oxidant. 

VPP Duration VOC (V) ISC (µA) FF η (%) 

5 min 0.200 ± 0.07 106 ± 100 0.125 ± 0.05 0.05 ± 0.04 

10 min 0.178 ± 0.07 147 ± 128 0.128 ± 0.07 0.09 ± 0.06 

15 min 0.180 ± 0.06 92 ± 46 0.044 ± 0.02 0.013 ± 0.006 

 

 Previous research has shown that CuCl2 was a better oxidant for ssDSSCs than 

FePTs because the FePTs reduced the titanium, thereby reducing the overall efficiency of 

the cell.  These experiments were done with more oxidant for longer polymerization times 

compared to the results in Table 2-5.  A series of cells were fabricated with a VPP PEDOT 

using FePTs as an oxidant for 5, 10 and 15 minutes to determine if the change in 

polymerization conditions could improve solar cell performance.  The cells followed the 

same pattern as the cells produced with CuCl2 where the 10 minute polymerization was the 

optimal however the overall efficiencies of the cells were greater than the CuCl2 VPP cells.  

It has been well reported in the literature VPP PEDOT thin films have the highest 

conductivity when using FePTs as an oxidant.  The decrease in polymerization time could 

limit the interaction between the oxidant and the titanium.  This combined with the increase 

in conductivity of the HTL has given the highest efficiency solar cells using a VPP PEDOT 

HTL. 
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Table 2-5 Solar cell efficiencies based on different VPP durations using FePTs as an 

oxidant. 

VPP Duration VOC (V) ISC (µA) FF η (%) 

5 min 0.173 ± 0.03 216 ± 86 0.244 ± 0.09 0.18 ± 0.01 

10 min 0.335 ± 0.03 114 ± 22 0.248 ± 0.10 0.20 ± 0.01 

15 min 0.161 ± 0.06 108 ± 23 0.155 ± 0.03 0.06 ± 0.03 

 

 Based on the results from Tables 2-4 and 2-5, the 10 minute polymerization 

duration produced the most efficient solar cells.  It is proposed the 10 minute 

polymerization allows for the thinnest film of PEDOT that is still conductive enough to act 

as a HTL.  This is important in minimizing the series resistance as well as the filter effect 

which reduces the voltage of the cell.  It was also determined that oxidants containing iron 

can still be used for the VPP method where it was previously reported to not be viable.   

2.4 Conclusions 

 Based on the results, the spin coating method produced the most uniform thin films 

of TiO2 for the n-type material in the DSSCs.  The uniformity of the TiO2 layer is important 

in reducing the shorting of the DSSC as well as in the reproducibility.  The spin coating 

method can be used to produce films of varying thicknesses which may still need to be 

optimized. 

 The addition of a PEDOT:PSS layer prior to the electrode also plays an important 

role in the efficiency of the DSSCs reported.  When PEDOT:PSS was used as a HTL, the 

lack of penetration into the mesoporous layer limited the number of active dye molecules.  
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When VPP was used as a HTL, the thin layer allowed for contact between the gold 

electrode and the TiO2 layer, resulting in the solar cell shorting.  The combination of the 

VPP PEDOT and PEDOT:PSS layer greatly increased the efficiency by allowing 

penetration of the mesoporous layer and forming a blocking layer between the TiO2 and 

gold which prevented shorting.  The thickness of the VPP and PEDOT:PPSS layers both 

play a roles in the series resistance and the transparency of the films. 

 Previously it was reported that FePTs could not be used as an oxidant for initiating 

VPP in DSSCs because it reduced the TiO2 resulting in 0% efficiencies.  By decreasing the 

amount of oxidant solution and reducing the time of the VPP, FePTs produced the highest 

reported ssDSSC using VPP PEDOT as a HTL.  It is possible that changing the 

concentration and spin speed for the application of the oxidant can produce higher 

efficiencies.  More work needs to be done in exploring post polymerization treatments as 

reported in the literature and other oxidants such as FeCl3. 
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Chapter 3:  

Design and Synthesis of Thiophene Containing Ligands for the Polymerization of 

Ruthenium Dyes with PEDOT in Solid State Dye-Sensitized Solar Cells 

3.1 Introduction 

There has been interest in transitioning from a liquid electrolyte to a solid 

electrolyte in DSSCs.1-5  This could improve the overall stability and rate of electron 

transfer by removing the corrosive liquid and providing a tunneling or hopping mechanism 

of electron transfer.3  One of the challenges with moving to a solid electrolyte is finding a 

material that can provide a close interaction between the sensitizer and HTL.  An in-situ 

polymerization of PEDOT could allow for the filling of the mesoporous layer but it does 

not guarantee a close interaction with the dye.  The interaction between the dye and n-type 

semiconductor material has been achieved through anchoring groups such as 

carboxylates.6, 7  The carboxylate plays an important role in adhering the dye to the 

semiconductor but has also been shown to promote electron transfer from the dye to the n-

type semiconductor.8  To further enhance the regeneration of the dye, it is important to find 

a method of binding the photosensitizer to the hole transport material. 

When looking at PEP PEDOT DSSCs, it has been shown the choice of 

photosensitizer is important for the fabrication of efficient solid state DSSCs.  Using a dye 

that contains thiophene functional groups improved the overall efficiency of the solar cell.  

This was attributed to the more favorable interaction between the PEDOT and the dye 
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based on the thiophenes interacting through a physical bond.  To further enhance the 

interaction like in the dye/semiconductor transition, a chemical bond would be needed. 

As discussed previously, VPP PEDOT has shown to work as a hole transport 

material in solid state DSSCs.  One reason is the ability of VPP PEDOT to fill the 

mesoporous layer of the mesoporous TiO2 during the in-situ polymerization.  The 

polymerization of PEDOT occurs through a carbon-carbon coupling of the Cα carbon of 

the thiophene.  A ligand of interest is 4′-[4-(thiophen-3-yl-methoxymethyl)phenyl]-2,2′: 

6′,2′′-terpyridine or ttp that has been used as a receptor in a fluorescent conjugated polymer 

chemosensor as shown in Figure 3-1.9  The terpyridine would allow for binding to the 

ruthenium metal center while the thiophene could allow for polymerization with EDOT.  

The bromine bound to the Cα position should not prevent polymerization as PEDOT can 

be polymerized from a brominated EDOT monomer.10, 11   

 

Figure 3-1: Reaction scheme for the synthesis of molecules 6 and 7 to be used as ligands. 

 For this study, an oxidant initiated solution polymerization of PEDOT was used 

instead of a VPP method.  The solution method allows for thicker films to be synthesized 
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than the VPP method which allows for easier characterization since thin film methods are 

required.  As discussed earlier, PEDOT like other polythiophenes is insoluble so methods 

such as Raman, UV-Vis and conductivity measurements can be used to show 

polymerization.  While the oxidant initiated solution polymerization of PEDOT utilizes a 

different setup, the mechanism for the polymerization is the same.  This means that if 

polymerization occurs in solution, it should also occur when transitioned to the VPP 

method which would be used is DSSCs. 

3.2 Experimental  

3.2.1 Materials and Methods 

3,4-ethylenedioxythiophene (EDOT), iron (III) p-toluenesulfonate hexahydrate (Fe(pTS)3, 

4’-(4-methylphenyl)-2,2’:6’2”-terpyridine, 3-thiophenecarboxaldehyde, 2,2’-azobis(2-

methylpropionitrile), N-Bromosuccinimide, carbon tetrachloride and nitric acid were 

purchased from Sigma-Aldrich. pyridine and 30% hydrogen peroxide was purchased from 

Fisher Scientific. Ethanol was obtained from Pharmco-Aaper.  Chloroform was purchased 

from spectrum chemicals and pre-cleaned plain glass microslides were obtained from 

VWR Scientific. All chemicals were used without further purification except the 

recrystallization of 2,2’-azobis(2-methylpropionitrile) and N-Bromosuccinimide. Prior to 

vapor-phase polymerization of PEDOT, the glass slides were treated with piranha acid, 

washed with ethanol and dried.  

3.2.2 Material Characterization 

The monomers were analyzed with a Bruker Advance III 600 MHz NMR.  The 

chemical composition of the materials were studied with a Raman spectroscopy and spatial 

http://www.aeroelectronicsinc.com/distributor-pharmco-aaper-ethanol-high-purity-chemicals-sterile-solvents.html
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Raman mapping were performed using a Thermo Scientific DXR Raman microscope. The 

wavelength of the excitation laser was 532nm and the power of the laser was kept at 5mW 

without any sample damage. The laser spot size was about 0.7μm with an x50 objective 

lens. Each spectrum has an average of 200 acquisitions. UV-Vis absorption measurements 

were taken with a Perkin Elmer Lambda 2S UV- 52 vis spectrometer using a clean glass 

side as a reference.  Film thicknesses were measured with an SPM (STM/AFM) AFM.  

Conductivity measurements were taken with a 4-point probe set up. 

3.2.3 Monomer Synthesis 

Synthesis of 4′-[4-(thiophen-3-yl-methoxymethyl)phenyl]-2,2′: 6′,2′′-terpyridine 

monomer (6): A mixture of 4′-(4-bromomethylphenyl)-2,2′:6′,2′′-terpyridine (0.2153 g, 

0.55 mmol) and triethyl phosphite (3 mL) was heated slowly to 120 °C for 1 h. Excess 

triethyl phosphite was removed from the reaction mixture by vacuum distillation to give a 

faint yellow oil. The residue was dissolved in 6 mL THF; 3-thiophenecarboxaldehyde (0.2 

mL) was added. When dissolution was complete, KOBut (0.8 mL, 1 M in THF) was added. 

The mixture was stirred at room temperature for 2 h. The product mixture was poured into 

ethanol and filtered, yielding a tan powder (yield 25%).  1H NMR (600 MHz, CDCl3) δ 

8.78 (s, 2H), 8.76 (d, 2H), 8.70 (d, 2H), 7.94 (d, 2H), 7.91 (td, 2H), 7.64 (d, 2H), 7.40 (m, 

5H), 7.26 (dd, 2H, trans-vinyl-H). 

Synthesis of 4′-{4-[2-(2,5-Dibromothiophen-3-yl)-vinyl]phenyl}-2,2′:6′,2′′- 

terpyridine monomer (7):  Was synthesized using the same method as described for 6 

above. 1H NMR (600 MHz, CDCl3): δ 8.75 (s, 2H), 8.73 (d, 2H), 8.67 (d, 2H), 7.92 (d, 

2H), 7.86 (td, 2H), 7.62 (d, 2H), 7.35 (td, 2H), 7.24 (s, 1H, 4-pyrrole-H), 7.02 (dd, 2H, 

trans-vinyl-H). 
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3.2.4 Polymer Synthesis 

Synthesis of poly( 3,4-ethylenedioxythiophene) (PEDOT) 

Two solutions were prepared by mixing 0.035 mL EDOT in 5 mL 1:1 ratio ethanol and 

chloroform and dissolving 0.4962 g FePTs in 10 mL of 1:1 ratio ethanol and chloroform 

with 6 µL pyridine.  A glass slide was placed in a Petri dish within an oven at 60°C.  The 

films was prepared by placing 1 mL of the EDOT solution and 2mL of the oxidant solution 

onto the glass slide and allowed to react for 40 minutes.  The slides were then rinsed with 

ethanol to removed excess oxidant and dried at 100 °C for 10 minutes. 

Synthesis of poly (4′-[4-(thiophen-3-yl-methoxymethyl)phenyl]-2,2′: 6′,2′′-

terpyridine) (pttp) 

Two solutions were prepared by mixing 0.0476 g molecule 6 or 0.0317 g molecules 7 in 5 

mL 1:1 ratio ethanol and chloroform and dissolving 0.4962 g FePTs in 10 mL of 1:1 ratio 

ethanol and chloroform with 6 µL pyridine.  A glass slide was placed in a Petri dish within 

an oven at 60°C.  The films was prepared by placing 1 mL of the ligand solution and 2mL 

of the oxidant solution onto the glass slide and allowed to react for 40 minutes.  The slides 

were then rinsed with ethanol to removed excess oxidant and dried at 100 °C for 10 

minutes. 

Synthesis of 3,4-ethylenedioxythiophene, 4′-[4-(thiophen-3-yl-

methoxymethyl)phenyl]-2,2′: 6′,2′′-terpyridine copolymer 

Solutions used in the synthesis of PEDOT and pttp were mixed in ratios of 1:3, 1:1, and 

3:1.  A glass slide was placed in a Petri dish within an oven at 60°C.  The films was prepared 

by placing a total of 1 mL of monomer solution and 2mL of the oxidant solution onto the 



 
 

65 
 

glass slide and allowed to react for 40 minutes.  The slides were then rinsed with ethanol 

to removed excess oxidant and dried at 100 °C for 10 minutes. 

3.2.5 Ruthenium Dye Synthesis 

Synthesis of (iso-thiocyanato) (2,2-bipyridyl-4,4-di-carboxylato) (4′-[4-(thiophen-3-

yl-methoxymethyl)phenyl]-2,2′: 6′,2′′-terpyridine) ruthenium (II) Ru(ttp-

H)(dcbpy)(SCN) 

In a round bottom flask, 0.2374 g (6) and 0.1037 g RuCl3 was purged under nitrogen for 

15 minutes.  Anhydrous DMF (20 mL) was added to the round bottom under nitrogen and 

heated at 130 °C for 4.5 hours.  After 4.5 hours, 0.173 g 2,2-bipyridyl-4,4-d-carboxylic 

acid was added and heated at 130 °C for 4 hours.  The temperature was then decreased to 

100 °C and 2.4191 g ammoniumthiocyanate was added and allowed to reflux overnight.  

After cooling, the product was recovered through removing solvent under heated vacuum, 

before being acidified with 1 M HCl. And filtered.  The product was then purified with a 

sephadex column using methanol as a solvent. 

Synthesis of (iso-thiocyanato) (2,2-bipyridyl-4,4-di-carboxylato) (4′-{4-[2-(2,5-

Dibromothiophen-3-yl)-vinyl]phenyl}-2,2′:6′,2′′- terpyridine) ruthenium (II) Ru(ttp-

Br)(dcbpy)(SCN) 

Was synthesized using the procedure described above using (7). 

3.3 Results and Discussion 

The monomers were synthesized by bromonating 4’-(4-methylphenyl)-2,2’:6’2”-

terpyridine using a free radical reaction with NBS followed by a Wittig reaction.  The two 
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monomers were used in the oxidant initiated polymerization reactions discussed in the 

experimental section. 

 Molecules 6 and 7 were confirmed using 1H NMR with the resulting spectrum 

shown in Figure 3-2.  The formation of the doublet of doublets around 7 ppm in each 

spectrum represent the alkene formation from the Wittig reaction, confirming the formation 

of the final product.  No other peaks appear in the NMR spectrum showing a high purity 

of the final product was recovered. 

 

Figure 3-2: 1H NMR spectrum of monomers 6 and 7 showing the doublet of doublets at 

~7 ppm showing alkene from the Wittig reaction. 

Polymers were synthesized using different ratios of EDOT and monomers 6/7.  The 

resulting polymers could not be characterized using solution based NMR because they 

were insoluble.  Solid state C13 NMR was used to characterize the material as shown in 

Figure 3-3.  The top spectrum is of the ttp-Br monomer using a cross-polymerization (CP-
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MAS) shows aromatic carbon between 110 and 160 ppm as expected.  A CP-MAS spin-

echo experiment was used to produce the bottom spectrum of the copolymer between 

EDOT and ttp.  The signal to noise ratio is poor and while there is a broad peak around 50 

ppm which could be from CH2, it is not definitive.  For this reason, other methods need to 

be used to determine if the ttp monomer is polymerizing with EDOT. 

 

Figure 3-3: Solid state NMR spectrum for ttp-Br monomer and product of ttp-EDOT 

copolymerization reaction. 

A common method of characterizing PEDOT thin films is using Raman.  The resulting 

Raman spectrum from the different polymers are shown in Figure 3-4 a and b.  In Figure 

3-4a the R= H.  All the spectrum show the characteristic Raman stretch between 1400 and 

1500 cm-1 corresponding to the Cα-Cβ stretch of the thiophene ring.12, 13  As the 
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concentration of EDOT monomer is added to the reaction, the maximum red shifts and 

narrows as shown in Figure 3-4b.  The broader peaks toward the poly-ligand suggests an 

increase in vibrational modes which can be different phases of the copolymer.13  Films 

were also prepared with monomer 7 and EDOT with the resulting Raman spectrum shown 

in Figure 3-4c.  As more monomer is added, the peak at 1425 cm-1 decreases, suggesting a 

lack of polymerization between monomer 7 and EDOT.  Based on this, monomer 7 is not 

polymerizing with EDOT and would not be an option as a ligand for a sensitizer.  This 

could be a result of the difference in kinetics between the two monomers when one contains 

bromine and the other does not.  The oxidant initiated solution polymerization is rapid and 

is one of the reasons for the relatively low conductivities from films made using this 

method.10  When the bromine is present, the group needs to be removed from the thiophene 

before polymerization occurs, adding a step. 

a) .  
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b)  

c)  

Figure 3-4: Raman spectrum of thin film products with a) ttp-H and EDOT, b)ttp-H and 

EDOT focused on thiophene region, and c) ttp-Br and EDOT. 
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UV-Vis of the polymer films prepared using the monomer where R=H shown in Figure 

3-5 shows a broadening of the peak at 325 nm and an increase in absorbance in the near IR 

as the concentration of EDOT is increased.  This suggests copolymerization occurs and as 

the EDOT concentration increase, the absorbance in the near IR also increases.13  The 

absorbance in the IR corresponds to the bipolaron state of PEDOT which indicated anion 

doping and an extended polymer chain conformation.14 

 

Figure 3-5: UV-vis spectrum of thin films produced from ttp-H and EDOT at different 

ratios. 

Conductivity measurements were done using a 4-point probe for the sheet 

resistance and AFM to determine the thickness of the films.  The conductivity of the in situ 

PEDOT is relatively low compared to the literature but is attributed to using a glass 

substrate which has poor adhesion compared to PET.  The conductivity decreases as the 

concentration or ligand is increased, the poly-ligand no measurable conductivity.  PEDOT 

has a high conductivity compared to other polythiophenes because the structure prevents 

cross-linking from polymerization of the Cβ.  The synthesized monomers have an open Cβ 
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which could allow cross-linking to occur, reducing the conductivity of the films.  This is 

supported with the broadening observed in the Raman spectrum. 

Table 3-1: Conductivity for polymer films synthesized with different ratios of 

EDOT to monomer. 

 Polymer Conductivity (S/cm) 

PEDOT 1.13E-04 

1 Ligand:3 EDOT 7.92E-06 

1 Ligand:1 EDOT 6.25E-06 

3 Ligand:1 EDOT 3.24E-06 

Poly(Ligand) 0 

 

 Based on the Raman, UV-Vis and conductivity results, monomer 6 would be a 

potential ligand for a sensitizer in a ssDSSC with VPP PEDOT as a HTL.  Dyes were 

synthesized based on a one-pot reflux as described in the experimental section with 

proposed structures in Figure 3-6.  The actual structure of the dyes has yet to be determined 

because a single crystal for x-ray diffraction has not been successfully obtained.  Because 

ruthenium is paramagnetic, NMR cannot be used to determine the structure of the 

molecules. 



 
 

72 
 

 

Figure: 3-6 Proposed structure of dyes with (left) ttp-H ligand and (right) ttp-Br ligand. 

 The dyes were characterized using UV-Vis spectroscopy and the molar extinction 

coefficient was plotted based on wavelength as shown in Figure 3-7.  The dyes were plotted 

with N3 dye as a comparison to a dye commonly used in the literature.  The terpyridine 

ligand absorbs more broadly than the bipyridine peak evident by the broadening of the π-

π* transition from ~250 nm-400 nm.  Both dyes contain MLCT at 500 and 575 nm which 

is characteristic of ruthenium polypyridyl dyes.  Based on the UV-Vis, the new dyes are 

comparable to the N3 dye in terms of absorptivity.   
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Figure 3-7: Wavelength versus molar extinction coefficient for ruthenium polypyridyl 

complexes with ttp ligands and N3 dye. 

3.4 Conclusion 

 Based on the results, the ttp-H can be polymerized with EDOT to form a copolymer 

while ttp-Br cannot.  Dyes were synthesizes with either the ttp-H or ttp-Br ligands and 

compare favorably to N3 dye in terms of absorption of visible light.  The resulting dyes 

can be used to compare the effects in solar cells when the dye is polymerized into PEDOT 

or isn’t based on the ligand of choice.  This could provide great insight as to the important 

of the rate of dye regeneration from the solid state electrolyte VPP PEDOT. 
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Chapter 4 

The Role of Ruthenium Photosensitizers in the Degradation of Phenazopyridine 

with TiO2 Electrospun Fibers 

4.1 Introduction 

 Semiconducting oxides are a promising class of materials for the photodegradation 

of organic pollutants.1-5  Titanium dioxide (TiO2) has been thoroughly investigated as a 

photooxidizer that is stable, low cost, and environmentally friendly.  However, its wide 

band gap (~3.0 eV) requires UV radiation, which is not optimal for environmental 

applications, particularly in remote settings, that rely on visible solar radiation.  In order 

for TiO2 to be more feasible photocatalyst, it must be able to absorb more of the solar 

spectrum in the visible and near IR irradiation from 400-800 nm, making up 43% and 52% 

of the solar spectrum respectively.  To improve the effectiveness of these photocatalysts in 

the visible region, TiO2 can be modified with metal nanoparticle loading, metal ion doping, 

dye sensitization, composite semiconductor and anion doping.2-6  One issue with doping is 

the introduction of trap sites decreases the efficiency of the electron/hole transfer to the 

surface, reducing the number of radicals present in solution.3  For this reason, our focus is 

to modify the surface to expand the region of absorption into that commonly used in dye 

sensitized solar cells (DSSCs).7 

Ruthenium polypyridyl complexes are common sensitizers used in TiO2 based 

DSSCs due to their strong visible absorption and efficient electron injection into 
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semiconductor layers.7-12  Here, the dye studied was cis-dichlorobis(2,2’-bipyridyl-4,4’-

dicarboxylic acid)ruthenium (II)  (Ru(dcbpyH2)2Cl2), shown in Figure 4-1a.  The dye is a 

strong electron injector due to of the covalent interactions with the metal oxide through the 

carboxylic acid anchoring groups and the close energy of the LUMO compared to the 

conduction band of TiO2 as shown in Figure 4-1b, resulting in electron injection rates on 

the sub-picosecond timescale.9 13, 14 
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a.  

b.  

 

Figure 4-1: a) Molecular structure of Ru(dcbpyH2)2Cl2.  b) Energy level diagram for TiO2 

and Ru(dcbpyH2)2Cl2. 

 Our group has previously studied the degradation of the biopharmaceutical 

pyridinediamine,3-(phenylazo) monohydrochloride, or phenazopyridine (PAP), shown in 

Figure 4-2.15  PAP is commonly used as an analgesic and anesthetic drug to reduce pain 
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from urinary tract infections.  PAP serves as a model pollutant due to its structural 

similarity to other known organic toxins found in biomedical waste water.16 The presence 

of its azo-group, amines, and phenyl ring are similar to functional groups present on many 

toxic organic pollutants and other antibiotics like amoxicillin and tetracycline.  These 

products can build up in biomedical waste streams and lead to contamination of 

environmental waters. 

NH2N

N

NH2

N

HCl

 

Figure 4-2: Chemical structure of the environmental pollutant phenazopyridine. 

 Here we exhibit the feasibility of using TiO2 as a photocatalyst under environmental 

conditions for the degradation of organic pollutants by expanding the dye sensitized 

absorption into the visible region.  This was accomplished using the same concept as 

DSSCs using a dye as a photosensitizer, injecting electrons into the electron conducting 

TiO2 layer as shown in Figure 4-3. Cis-dichlorobis(2,2’-bipyridyl-4,4’-dicarboxylic 

acid)ruthenium(II) is a known electron injecting dye that will be used to sensitize TiO2 

electrospun fibers.  Prior studies have shown that excited electrons in the conduction band 

favor the formation of peroxide radical anions in the presence of adsorbed oxygen on the 

surface.  The generation of these radicals in the presence of visible light is expected to 

improve the effectiveness of the TiO2 catalyst, increasing the rate of PAP degradation. 
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Figure 4-3: The absorption of a photon promotes the excitation and injection of an 

electron for the photosensitizer to the semiconductor. 

4.2 Experimental  

4.2.1 Materials 

All materials were purchased commercially and used as received unless otherwise 

indicated. Poly(methyl methacrylate) (PMMA), 4,4-dimethyl-2,2’-bipyridine, 

RuCl3(H2O)3, titanium isopropoxide (TTIP), anhydrous dimethylformamide (DMF), and 

ethanol were purchased from Sigma-Aldrich. Chloroform, diethyl ether, acetone, and 

sodium dichromate were purchased from Fisher. The solvents hydrochloric acid and 

sulfuric acid were purchased from JT Baker.  Cis-dichlorobis(2,2’-bipyridyl-4,4’-

dicarboxylic acid)ruthenium(II) (Ru(dcbpyH2)2(Cl)2) was synthesized using a procedure 
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from the literature under nitrogen and was used without further purification.17  Reactions 

that were light sensitive were conducted in the dark and the reaction apparatus was covered 

with aluminum foil.  

4.2.2 Characterization 

 The pre-calcined TiO2 polymer fibers were fabricated using a high voltage 

Spellman SL 30 generator. The photodegradation experiments were performed using an 

Oriel 66001 UV lamp (100-400 nm range) with Oriel 68805 40-200 Watt universal Arc 

lamp power supply. UV-Vis measurements of aliquots of PAP were made on a Hewlett 

Packard 8452A Diode Array spectrophotometer to track concentration change during the 

photodegradation experiment.  Fourier transform infrared spectra (FTIR) of 

Ru(dcbpyH2)2Cl2 and Ru(dcbpyH2)2Cl2-sensitized TiO2 fibers were obtained using a 

Bruker Equinox 55. Scanning electron microscopy (SEM) images were obtained on a 

FESEM, Supra 55 VP from Zeiss. X-ray diffraction(XRD) of the calcined fibered was 

obtained using, PANalytical's X'Pert PRO Materials Research Diffractometer with Cu Kα 

X-radiation (λ = 1.5418 Å). 

4.2.3 Synthesis of TiO2 Electrospun Fibers 

TiO2 fibers were prepared by a using a sol-gel synthesis, followed by 

electrospinning of polymer sol-gel, and calcination treatment of polymer fibers.18, 19  A 

polymeric sol-gel was generated by stirring and ambient hydrolysis of TTIP using 1:2 mass 

ratio of PMMA:TTIP, where 320 mg of PMMA (MW = 35,000 g/mol) was completely 

dissolved in 2 mL of chloroform followed by drop wise addition of 640 mg of TTIP with 
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continuous stirring for 30 min. 2 mL of DMF was then added and stirred for 2 h to increase 

the dielectric constant of the composite solution which aids in the electrospinning process.  

The high voltage (25 kV) pulled the precursor sol-gel from the syringe onto the 

conductive Al collector forming polymer fibers. The resulting polymer fibers were left 

overnight to allow for complete hydrolysis of TTIP to Ti(OH)4 and further condensation to 

amorphous TiO2
  followed by calcination treatment of 360°C for 4h in air to create mixed 

TiO2 crystal phase fibers. 

4.2.4 Preparation of Ru(dcbpyH2)2(Cl)2- sensitized TiO2 Fibers 

0.7 mg of Ru(dcbpyH2)2(Cl)2  was added to 33.2 μL of 0.1 M NaOH solution, 20 

mL of ethanol was added and the solution allowed to stir in the dark for ~0.5 h. To the 

solution, 12.2 mg TiO2 fibers was added and stirred for 24 h. The resulting solution was 

washed with ethanol to remove any excess dye. For the washing process, the solution was 

centrifuged and the supernatant fluid was decanted and dried under vacuum.  

4.2.5 Photodegradation Procedure 

To a quartz vial or glass beaker, 12.0 mL of 144 µM PAP/water solution, 14.0 mg 

of photocatalyst (either Ru(dcbpyH2)2Cl2, TiO2 fibers or Ru(dcbpyH2)2Cl2 - sensitized 

fibers) was added.  To determine the stability of PAP, 12.0 mL of 144 µM PAP/water 

solution was used without the addition of a catalyst.  This solution was allowed to stir in 

the dark for 1 h. At 15 min time intervals, 1.0 mL aliquots were taken with a syringe during 

a 2 h time period. The 1.0 mL aliquot was centrifuged for 5 min and then 0.5 mL of the 

upper solution was obtained for concentration measurements using a UV-Vis diode array 

spectrophotometer monitoring the absorbance at 424 nm. The remainder of the solution 
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from the 1.0 mL aliquot was not put back into the reaction cell. The solution in the reaction 

cell was stirred in the dark for 1 h and then irradiated with a UV lamp for another hour to 

perform degradation.   

4.3 Results and Discussion 

Electrospun TiO2 fibers were prepared from a sol-gel precursor solution as 

described in the procedure and shown in Scheme 4-1.  The solution was electrospun at 25 

kV with an 11 cm working distance from copper tip to aluminum collector.  The fibers 

formed under these conditions at room temperature had an average diameter of 500 nm and 

a smooth morphology. The fibers were calcined at 360 ℃ for 4 hours under an ambient 

atmosphere to form crystalline TiO2 fibers.  These fibers were used as the control group 

for all subsequent testing.  The preformed, calcined fibers were soaked in a 5.29 M 

Ru(dcbpyH2)2Cl2 dye solution to promote binding of the dye at the surface of the fiber.  

After soaking, the fibers were rinsed with ethanol to wash any unbound dye, leaving a 

uniform mono layer of dye.20  Prior studies with derivatives of Ru(dcbpyH2)2Cl2 have 

shown strong binding through the carboxylic acid function group to the surface of TiO2 

particles and thin films.21 All of the samples were allowed to dry prior to further studies. 
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Scheme 4-1: Schematic procedure for the process of the fabrication of the TiO2 fibers and 

dye sensitized fibers including sol-gel preparation, electrospinning of polymer sol-gel 

solution, calcination treatment of polymer fibers, and soaking in dye solution. 

 

SEM images were obtained of the electrospun TTIP polymer fibers, post-calcined 

TiO2 fibers and the Ru(dcbpyH2)2Cl2-TiO2 sensitized fibers.  Figure 4-4a shows an SEM 

image of TiO2 polymer fibers after electrospinning the sol-gel solution. The fibers are long 

with a smooth surface morphology. The average diameter of the polymer fiber was 

approximately 500 nm. Figure 4-4b shows an SEM image of TiO2 fibers after calcination. 

Compared to 4-4a, the fibers in 4-4b are shorter and more rod like with a folded surface 

morphology. The lengths of the fibers are shorter due to breakage during the calcination 

process.  The loss of carbon from the PMMA polymer during calcination also results in a 
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reduced average diameter to approximately 200 nm.  Figure 4-4c shows the dye substituted 

TiO2 to have a similar diameter and structure to those in 4-4b.  However, there appears to 

be less of the folded morphology and a rougher surface morphology in this case.  

a)    

b)  
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c)  

Figure 4-4. SEM image of a) TiO2 polymer fibers after electrospinning b) TiO2 fibers 

after calcination at 360 ℃ for 4 hours under ambient atmosphere and c) 

Ru(dcbpyH2)2Cl2-TiO2 fibers. 

X-ray Diffraction (XRD) was used to confirm the formation of post calcination 

crystalline TiO2 fibers prior to adding dye. For the anatase phase, the major peaks were 

obtained at 2θ values of 25.2, 37.9, 48.1, 54.0, and 55.0° representing the Miller indices of 

(101), (104), (200), (105), and (211) planes, respectively. For the rutile phase, peaks were 

observed at 2θ values of 27.4, 36.1, 41.3, and 54.4°, respectively, representing the Miller 

indices of (110), (101), (111), and (211) planes, respectively. The weight fraction of 

anatase-to-rutile transformation in the post-calcined TiO2 fibers can be calculated from the 

equation of WR=1/[1+0.8(IA/IR)], where IA is the X-ray integrated intensities of the (101) 

reflection of anatase at 2θ of 25.2° and IR is that of the (110) reflection of rutile at 2θ of 

27.4°.22, 23  The TiO2 fibers were determined to be 18% rutile based on the XRD in Figure 

4-5.  This anatase-to-rutile fraction was chosen because it is close to the fraction of Degussa 

P25 (25% rutile), which has been found to have better photocatalytic properties than pure 

anatase phase TiO2.24 
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Figure 4-5: XRD data for post-calcined fibers showing an 18% rutile fraction.  The solid 

vertical lines and dashed vertical lines represent pure anatase and rutile phase TiO2 

respectively. 

FTIR spectroscopy was used to examine the binding of the Ru(dcbpyH2)2Cl2 on the 

TiO2 by comparing the pre and post soaked TiO2 fibers shown in Figure 4-6. The splitting 

of the carbonyl peak in the dye at 1714 and 1605 cm-1 is a result of protonation and 

deprotonation of the carboxylic acid group on the dye.  When looking at the dye bound to 

TiO2 there are no peaks above 1700 cm-1 suggesting that only deprotonated dye is bound.21  

There is an observed shift from the fibers at 1631 cm-1 to 1619 cm-1 in the dye sensitized 

fibers.  This is in the region of the carboxylic acid group showing binding of the dye to the 

TiO2.  The low intensity of the dye peaks in the dye-sensitized fibers is a result of a less 

than 1 wt.% loading of the dye on the fibers resulting in a weak signal. 
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Figure 4-6: IR spectrum for the dye, TiO2 fibers, and dye soaked TiO2 fibers. 

 To explore the efficiency of the new materials as visible photocatalysts, 

degradations of PAP were conducted under both UV and visible irradiation in an aqueous 

solution.  UV-Vis measurements were taken over time to monitor the changes in 

concentration of PAP.  To determine the stability of the dye-sensitized fibers, an aqueous 

solution of fibers were irradiated with UV-light continuously for 53 h, showing no change 

in the absorbance.  The dye sensitized fibers were compared to the control fibers, the dye, 

and samples with no catalyst under UV and visible irradiation to determine the role that 

the ruthenium dye plays in in the degradation process of PAP.   

Two controls and two experiments were conducted in duplicate.  These experiments 

used a quartz cell which would allow UV irradiation to penetrate to the sample.  The first 

control used PAP solution with no catalyst.  The second control used a solution containing 

Ru(dcbpyH2)2Cl2 and PAP.  Experiments used bare TiO2 fibers or Ru(dcbpyH2)2Cl2 – 

sensitized TiO2 fibers as a catalyst in a PAP solution within a quartz cell.  The 
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concentrations of PAP were tracked by measuring the absorbance at 424 nm over the 

course of 2 hours. The first hour (t = -60 to t =0) of the experiment was conducted in the 

dark to allow the adsorption of PAP to equilibrate. This allowed for the stirring of the 

photocatalyst and PAP and thus adsorption of PAP molecules onto the surface of TiO2.4  

During the second hour of the experiment (t =0 to t = 60), the sample was irradiated with 

a UV lamp.  While the UV lamp was on, there was no significant changes in the 

temperature of the reaction vessel.  An aliquot of the solution was taken every 15 min 

which was centrifuged to remove any suspended catalyst.  The sample was taken from the 

centrifuged solution, and diluted with deionized water before absorbance measurements 

were recorded. 

Under the experimental conditions stated above, the UV-Vis absorption spectrum 

of the PAP degradation using TiO2 fibers and Ru(dcbpyH2)2Cl2 - sensitized TiO2 fibers are 

shown in Figure 4-7. From the absorbance data, the initial rates of the reactions were 

determined to be first order based on the plot in Figure 4-8.  Although the ratio of TiO2 to 

PAP is 100:1, the reaction is not considered pseudo-first order.  The molar ratio does not 

take into account only surface TiO2 without dye adsorbed would be active in producing 

radicals, therefore no reactant is in excess.  From the plot, the rate constant for the 

photodegradation of PAP using bare TiO2 fibers and Ru(dcbpyH2)2Cl2 - sensitized TiO2 

fibers were determined to be 0.032 ±  0.003 min-1 and 0.012 ± 0.002 min-1, respectively 

while the controls showed no degradation.  
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Figure 4-7. Absorption of PAP over time when exposed to no catalyst, Ru(dcbpyH2)2Cl2 

TiO2 fibers and Ru(dcbpyH2)2Cl2 - sensitized TiO2 fibers in dark and under UV 

irradiation. 

 

Figure 4-8: First order rate law plot for the degradation of PAP with TiO2 fibers and 

Ru(dcbpyH2)2Cl2 - sensitized TiO2 fibers under UV/visible irradiation. 

An equivalent experiment was carried out in a glass beaker which was chosen to 

filter light at energies higher than 320 nm, therefore blocking any UV irradiation from 
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being absorbed by the catalyst.  Again the concentration during the reaction was monitored 

using UV Vis as shown in Figure 4-9.  Like previously, no degradation was observed for 

the controls.  From the absorbance data, the initial rates were again determined to be first 

order rate law, this time having 0.014 ± 0.001 min-1 and 0.012 ± 0.0002 min-1 for TiO2 

fibers and Ru(dcbpyH2)2Cl2 - sensitized TiO2 fibers respectfully as shown in Figure 4-10.   

 

Figure 4-9: Absorption of PAP over time when exposed to no catalyst, Ru(dcbpyH2)2Cl2, 

TiO2 fibers and Ru(dcbpyH2)2Cl2 - sensitized TiO2 fibers in dark and under visible 

irradiation. 
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Figure 4-10. First order rate law plot for the degradation of PAP with TiO2 fibers and 

Ru(dcbpyH2)2Cl2 - sensitized TiO2 fibers under visible irradiation. 

The results in Table 4-1 show that PAP is stable in an aqueous solution both with 

and without the dye present when irradiated with either UV or visible light.  The most 

efficient catalyst was found to be the bare TiO2 fibers under UV irradiation.  A decrease in 

the rate of degradation was observed when going from UV to visible irradiation with non-

sensitized TiO2.  The band gap of TiO2 is in the UV region meaning it will absorb light and 

create the most electron-hole pairs in the UV range.  The initial rate for the TiO2 fibers 

when exposed to visible light were similar to the Ru(dcbpyH2)2Cl2– sensitized TiO2 fibers 

when exposed to both UV and visible irradiation.  All the fibers with similar rates were all 

lower in rate than the bare fibers under UV irradiation.  The decrease in the initial rate 

going from the bare fibers under UV irradiation to the dye sensitized fibers under UV 

irradiation suggests there is a charge transfer from the dye, resulting in a decrease in 

efficiency. 
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Table 4-1. Initial rate constants of PAP degradation using TiO2 fibers and 

Ru(dcbpyH2)2Cl2– sensitized TiO2 fibers in quartz vial and glass beaker. 

Photocatalyst  Quartz vial (UV/Visible 

Irradiation) 

Glass beaker (Visible 

Irradiation) 

No Catalyst No degradation No degradation 

Ru(dcbpyH2)2Cl2 No degradation No degradation 

TiO2 Fibers 0.032 ± 0.003 min-1  0.014 ± 0.001  min-1  

Ru(dcbpyH2)2Cl2– 

sensitized TiO2 Fibers  

0.012 ± 0.002 min-1  0.012± 0.001 min-1 

 

The role of the dye was to absorb light in the visible region through a metal to 

ligand charge transfer (MLCT) transition.  This has previously been shown to inject 

electrons into the TiO2 conduction band.7,8  This process would help expand the region of 

absorption and electron-hole separation following injection as shown in step 1 and 2 of 

Figure 4-11.  There are competing pathways that decrease efficiency and electron-hole 

separation under visible irradiation, namely, steps 3 (back electron transfer) and 6 (electron 

reaction with oxygen).  If the rate for the recombination is faster than the rate of radical 

formation, there will be a decrease in radical formation.  This decrease in radical formation 

will be further amplified under UV irradiation because the TiO2 will be populating the 

conduction band with electrons from the valence band.  A similar mechanism has been 

shown with the use of 2,4,6-triphenylpyrilium hydrogen sulfate (TPPHS) as a 

photosensitizer.6  It was found using TPPHS as a photosensitizer increased the rate under 

UV irradiation, while there was a reduction in the rate during visible irradiation compared 

to bare TiO2.  This was attributed to the increase electron hole separation under UV 
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irradiation.  Another example uses CdS as a photosensitizer which was able to increase the 

rate under visible light, however the material leached Cd2+
 showing the instability of the 

material.5  These examples of surface modifications showing enhancement in the 

degradation rate suggestions binding to the TiO2 surface can still improve degradation.  

This supports the observed decrease in rate being a function of electron pathway over the 

reduction of active sites on TiO2.  These examples, along with the results in this paper, 

show three different results when using different photosensitizers, showing different 

mechanisms.  All of this suggests surface modification of TiO2 with photosensitizers is a 

more complex system than in a DSSC.4-6, 25 

 

Figure 4-11: Proposed mechanism for formation of radicals from dye-sensitized TiO2 

fibers. 

 Ruthenium polypyridyl dyes are known electron injectors, increasing the 

population of electrons in the conduction band of the TiO2.7-12  There has been previous 

attempts to use ruthenium dyes to enhance the rate of degradation under visible 

irradiation.26 27  These examples showed no enhancement under visible irradiation, but did 

not test the material under UV irradiation as presented here.  The decrease in rate of 
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degradation under UV irradiation when dye is attached supports the preferred pathway for 

the degradation of PAP progressing through the formation of hydroxyl radicals.   

PAP has been explored previously in the literature, examining the effect of pH, 

ozone, and reactive oxygen species on the degradation rate of PAP.28  It was determined 

that pH and amount of ozone play a role in promoting charge separation in the TiO2.28  

Gaseous oxygen showed no improvement because the electron transfer is too slow.28 29  

When a hydroxyl radical scavenger (NaH2PO4) was added, the degradation was 

significantly reduced, supporting the results above.  Instead of using electron injecting 

surface modifications, hydroxyl radical formation and charge separation could be enhanced 

with a hole transport modification such as introduction of poly(ethylene dioxythiophene) 

(PEDOT).  PEDOT has been shown to enhance the photocatalytic performance of different 

semiconductors.30,   There are other materials which could also be explored and which are 

known hole transporting materials such as NiO. 

4.4 Conclusion 

The results suggest that the electron transfer from the conduction band of TiO2 does 

not play a major role in the degradation of PAP.  This is based on the decrease in rate of 

degradation from TiO2 fibers to dye sensitized TiO2 fibers under UV irradiation and the 

consistent rate for the dye sensitized TiO2 fibers.  It is possible that the degradation 

efficiency would be improved with the use of a hole-transport dye which would increase 

the radicals formed from the valence band of TiO2. 
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Chapter 5 

Fabrication and Characterization of Electrospun Conducting Fibers for 

Piezoelectric Materials 

5.1 Introduction 

Intrinsically conducting polymers (ICP) or “synthetic metals” are polymers that that 

have electrical, magnetic and optical properties common of metals and semiconductors.1  

ICPs have been explored for their applications in flexible organic electronic devices 

including photovoltaics, light-emitting diodes, sensors, actuators and thin-film transistors.2  

Polymer nano fibers have drawn interest based on the large surface area to volume ratio 

achieved when fibers become sub-micron in diameter.3  Nanofibers have been found to 

have superior mechanical properties and flexibility in surface functionalities compared to 

other forms of the same material.3  This has led to conducting nanofibers being developed 

for controlled drug release, membranes for ultrafast lasers, liquid separation, solar cells and 

as chemical sensors.1, 4-7  The range of applications of conducting fibers makes it important 

to continue to develop better materials. 

A popular method of fabricating conductive fibers is the electrospinning method.1, 

3, 8  Electrospinning uses an electric field to create a jet of polymer solution.  As the solution 

travels through the air, the solvent evaporates leaving behind a charged fiber that is 

collected on a conducting collector as shown in Figure 5-1.9  Electrospinning is a versatile 

method that can be tuned to produce a broad range of materials because of the range of 
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solvents and materials that can be incorporated into the precursor solution allowing for 

composite materials.3  The properties of the materials can further be changed by changing 

the viscosity, conductivity and surface tension of the solution or the electric potential and 

distance between the collector and tip.9 

 

Figure 5-1: Electrospinning method using a copper wire tip and an aluminum collector. 

 Electrospinning solutions use high molecular weight polymers to increase the 

interactions of the polymers in solution to increase the viscosity of the solution.10  Since 

most conductive polymers are either low molecular weight or insoluble presenting 

challenges for electrospinning.  To overcome this, a high molecular weight polymer can be 

used as a template polymer.  There are several different template polymers that have been 

used including Poly(methyl methacrylate) (PMMA), shown in Figure 5-2.  PMMA is a 

polymer that has been well studied in electrospinning because of the control of the fiber 

diameter based on the electrospinning conditions.11  PMMA has also been a popular choice 

in the literature for forming composites with carbon based materials or the fabrication of 

TiO2 nano fibers.4, 12-14  The ability to use PMMA in a range of composite materials makes 
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it an attractive candidate as a template polymer.  One challenge in using PMMA as a 

template polymer is it is an insulator.  Because of this, it is important to consider other 

template polymers. 

 

Figure 5-2: Chemical structure of the polymer PMMA. 

Another option of a template polymer is polyvinylidene fluoride (PVDF) shown in 

Figure 4-3.  PVDF is a known piezoelectric polymer that has been used for actuators, drug 

delivery and sensors with the chemical structure shown in Figure 5-3.  PVDF is commonly 

used as a membrane material in lithium ion batteries because it is chemically inert with the 

electrolyte solution.5  This would help make the resulting device using PVDF stable, 

preventing ions from mixing until sensitized with an electric field. One of the unique 

properties of PVDF is as a piezoelectric material, it has a negative d33 value which means 

when an electric field is applied, the polymer will compress instead of expand.  PVDF has 

previously been used to prepare electrospun fibers, supporting the use as a template 

polymer.15-17 
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Figure 5-3: Chemical structure of the polymer PVDF 

 The polymer poly(vinylidene fluoride-hexafluoro propylene) (PVDF-HFP) is a 

copolymer based on PVDF as shown in Figure 5-4.  PVDF-HFP has been used as a polymer 

electrolyte because of its conductivity and cycling behavior.18  Like PVDF, PVDF-HFP 

has known piezoelectric properties which would increase the applications of fibers 

prepared using the polymer as a template polymer.19  PVDF-HFP is also a polymer that has 

been electrospun, making it a candidate for a template polymer.20, 21 

 

Figure 5-4: Chemical structure of the polymer PVDF-HFP 

Because PVDF and PVDF-HFP are piezoelectric material, the fibers can be used to 

develop an electroactive material.  The piezoelectric material acts as the ion in shown in 

Figure 5-5 and the ICP acts as the electrode.  When an electric field is produced, the ions 
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will align, resulting in a conformational change.  Electroactive polymers have particular 

interest in the biomedical field as an actuator or artificial muscle.22 

 

Figure 5-5: Mechanism for the conformational change that occurs in an electroactive 

polymer when an electric field is applied. 

 To make a conducting composite material, one method is incorporating a 

conducting material such as carbon into the fibers.  Conductive fillers such as carbon black, 

graphene, carbon nanotubes, and expanded graphite have been used with polymers such as 

Nylon 6 and PMMA to increase the conductivity of composites.4, 12, 23, 24  Graphene nano 

platelets (GNPs) are a class of material that has small stacks of graphene usually 1-15 nm 

thick.25  GNPs can be dispersed into composites and have been shown to improve the 

electrical and thermal conductivity, fracture toughness and storage modulus of nano-

composite materials.25 

An alternative to using GNPs is incorporating an intrinsically conducting polymer 

(ICP) in the fibers.  Conductive polymers have been explored for their potential as a 

cheaper alternative to metal based electrodes.26-28  One conducting polymer that has 

received interest is poly(3,4-ethylenedioxythiophene) (PEDOT) as shown in Figure 5-6.  
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As discussed previously, PEDOT is an insoluble polymer so an in situ method of growing 

the polymer is required to add it to the PMMA polymer template.  The in situ method used 

was a vapor phase polymerization (VPP) method which has shown to give some of the 

highest conductivities reported in the literature.2, 29, 30  To use VPP, an oxidant is required 

to initiate the polymerization of the monomer 3,4-ethylenedioxythiophene (EDOT) which 

is in the vapor phase.  The oxidant used is iron(III) p-toluenesulfonate (FePTs) since it has 

given some of the highest reported conductivity values of PEDOT films.2, 31 

 

Figure 5-6: Molecular structure of the conductive polymer poly(3,4-

ethylenedioxythiophene) (PEDOT). 

Previous work has looked at fabricating conducting fibrous composite material using 

carbon or conducting polymers.4, 7, 8, 32  The conductivity of the electrospun fibrous mats 

have been much lower than thin films of similar materials.  For this reason, new 

combinations of conducting materials and template polymers need to be explored.  This 

chapter focuses on the fabrication and characterization of fibrous mats containing either 

graphene nanoplatelets or PEDOT as a conductive material using PMMA, PVDF, and 

PDFV-HFP as a template material. 
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5.2 Experimental  

5.2.1 Materials  

All materials were purchased commercially and used as received unless otherwise 

indicated. Poly(methyl methacrylate) 350k g/mol (PMMA), polyvinylidene fluoride 

(275k g/mol), poly(vinylidene fluoride-hexafluoro propylene) (455k g/mol)  anhydrous 

dimethylformamide (DMF), iron (III) p-toluenesulfonate hexahydrate (FePTs) and 

ethanol were purchased from Sigma-Aldrich.  Chloroform, isopropanol, pyridine, and 

acetone were purchased from Fisher.  

5.2.2 General Methods 

The polymer fibers were fabricated using a high voltage Spellman SL 30 generator.  

Scanning electron microscopy (SEM) images were obtained on a FESEM, Supra 55 VP 

from Zeiss.  Conductivity was measured using a two-point probe method.  Two pieces of 

stainless steel metal electrodes (1.5 cm2 surface area) were pressed with fibers between to 

ensure good contact.  The resistance was measured with a voltmeter and the thickness was 

measured with a micrometer. 

5.2.3 Preparation of Electrospun Fibers 

Preparation of PMMA Electrospun Fibers 

Generally, the PMMA fibers were fabricated using an electrospinning method as 

described in the overview section.  The fibers were spun from a solution that contained 320 

mg PMMA (350k g/mol) in 2 mL of chloroform and 2 mL of DMF.  From here the process 

could be modified to functionalize the PMMA fibers to make them conductive. 
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Preparation of PMMA-graphene Infused Electrospun Fibers 

To make the PMMA fibers conductive allowing for the aligning of ions required for a 

conformational change, 3, 6, and 9 wt% graphene nanoplatelets (NPs) were added to the 

PMMA solution prior to electrospinning.  These solutions were electrospun at 25 kV and 

a working distance of 18 cm from the copper tip to the aluminum collector.   

Fabrication of PEDOT/PMMA Fibers  

Two methods were used for the fabrication of PEDOT/PMMA fibers.  For the 

fabrication of the PMMA/PEDOT fibers, PMMA fibers were aquired through the 

electrospinning method previously discussed.  The fibers were then soaked in an oxidant 

solution before undergoing the VPP process. 

Fabrication of PEDOT/PVDF Fibers 

A solution of 0.7345 g PVDF (275k MW) was dissolved in 4 mL DMF and 2 mL 

acetone which was electrospun at 15 kV and 11cm working distance.  A 0.13 g sample of 

the resulting fibers was soaked in 3 mL of a 0.1g/1 mL solution of FePTs in ethanol with 

21 µL pyridine for 1 hour.  The fibers were removed and dried overnight before undergoing 

VPP at 60 °C for 2 hours.   

 For PVDF fibers fabricated with preloading of the oxidant, a solution was prepared 

with 0.3863 g PVDF (275, 000 g/mol) and 0.2277 FePTs in 2 mL DMF, 1 mL acetone and 

14 µL pyridine.  The fibers were electrospun at 20 kV and 15 cm working distance. 
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Fabrication of PEDOT/PVDF-HFP Fibers 

For PVDF-HFP fibers fabricated by soaking fibers prepared from a solution of 

0.7808 g PVDF-HFP (455,000 MW) in 4 mL DMF and 2 mL acetone.  The fibers were 

electrospun at 15 kV and 11 cm working distance. 

5.3 Results and discussion 

PMMA fibers were fabricated using an electrospinning method as described in the 

overview section.  The fibers were spun from a solution that contained 320 mg PMMA 

(350k g/mol) in 2 mL of chloroform and 2 mL of DMF with 3, 6 and 9 wt% graphene 

nanoparticles added to the solution.  The 9wt% was the limit for graphene loading based 

the dispersion of the nanoparticles in solution.  Larger wt% of graphene would settle, 

clogging the syringe, preventing the formation of fibers.  The resulting fibers were gray in 

color, getting darker as more graphene was added as shown in Figure 5-7. 
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Figure 5-7: Electrospun PMMA doped with 3, 6, and 9 wt% graphene NPs (from 

left to right). 

The conductivity of the fibers were measured using 4-point probe showing the 

fibers were insulating except for the 9 wt% fibers which had a sheet resistance of 2-5 

kΩ.  SEM was used to look at the surface morphology of the electrospun PMMA fibers.  

The SEM shown in Figure 5-8 is from the 9 wt% graphene NP PMMA fiber.  The SEM 

showed the graphene NPs aggregated on the surface of the PMMA.  This would mean 

the graphene is not evenly dispersed throughout the fibers which would explain the low 

conductivity of the fibers.  To have an electroactive polymer, the ions need to align 

throughout the entire sample.  Having the aggregates would prevent this from 

happening, limiting the confirmation change of the material.  This would mean that 

graphene would need to be replaced with another conducting material. 
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Figure 5-8: SEM image of PMMA with 9 wt% graphene nano platelets loaded. 

 An alternative to incorporating graphene into the polymer matrix is using a 

conducting polymer such as PEDOT.  As previously discussed, PEDOT can be fabricated 

through a variety of methods including a VPP method.  The oxidant for VPP can be added 

either prior to electrospinning or the fibers can be soaked after as shown in Scheme 5-1.  

After the oxidant loaded fibers have been prepared, they are placed in a vacuum oven in 

the presence of the monomer EDOT to form the PMMA-PEDOT fibers.   
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Scheme 5-1 Two methods for fabricating PMMA-PEDOT fibers depending on when the 

oxidant is added to the fibers. 

 

 

Although both methods of loading the oxidant produced PMMA-PEDOT fibers, 

the mechanical properties varied.  The fibers that were spun with the oxidant retained the 

light weight, soft mechanical properties of the PMMA fibers.  The fibers that were soaked 

in the oxidant solution became more solid and rigid.  SEM of the fibers in Figure 5-9 a and 

b show the soaked fibers have cross-linking between the fibers likely caused by the VPP 

process.  The fibers spun with the oxidant present in the precursor solution do not appear 

to have the cross-linking junctions as shown in Figure 5-9b.  The presence of the 

polymerized junctions could be the cause of the change in mechanical propertied.  To retain 

the properties of the template polymer, the fibers with oxidant in the precursor solution 

were further studied. 
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Figure 5-9: SEM images of PMMA-PEDOT fibers based on a) soaking fibers in oxidant 

and b) spinning fibers with oxidant. 

Raman spectroscopy was used to characterize the PMMA fibers before and after 

VPP as shown in Figure 5-10.  The PMMA fibers show the main characteristic peak around 

3000 cm-1 corresponds to the C-H stretching vibration, matching the literature.  After VPP 

was performed, the PMMA-PEDOT fibers show a broad peak around 1500 cm-1 

corresponds to the characteristic Cα-Cβ stretch in PEDOT.33  The C-H peak from the 

PMMA is still present in the fibers.  
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Figure 5-10: Raman spectrum of electrospun fibers before and after the VPP process. 

 

SEM was used to characterize the PMMA fibers before and after the VPP process 

to see if the PEDOT was distributed evenly throughout the sample as shown in Figure 5-

11.  Figure 5-11a shows a smooth surface morphology for the PMMA fiber.  After the VPP 

process, the fibers have a rougher surface with multiple folded layers as shown in Figure 

5-11b.  These layers are the PEDOT that was grown on the fibers surface, acting as an 

electrode for the electroactive polymers.  Based on the Raman and the SEM, the PEDOT 

is present and evenly distributed on the fibers which was not observed with the graphene 

nano platelets.   
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Figure 5-11: SEM images of a) PMMA fibers pre-polymerization and b) PMMA fibers 

post-polymerization. 

 To determine the amount of oxidant to use in the precursor solution, three different 

wt % of oxidant was fabricated.  Having too much oxidant can result in rapid 

polymerization which will reduce the crystallinity.  If not enough oxidant is used, the 

polymerization will be incomplete resulting in shorter chains of PEDOT which will have 
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lower conductivities.  Three different concentrations of oxidant were used with the results 

shown in Table 5-1.  The wt% oxidant is the amount of oxidant relative to the PMMA 

fibers being soaked.  As the concentration of oxidant was decreased, the conductivity of 

the fibers also decreased.  Currently the maximum concentration used was 50% due to the 

solubility of the oxidant in solution.  Using less oxidant may prevent the polymerization 

from reaching completion which would reduce the conductivity. 

 Table 5-1: Conductivity of PEDOT-PMMA fibers based on the wt% of FePTs. 

Voltage Distance 

Wt% 

Oxidant Temperature Color 

Sheet 

Resistance 

19 kV 15 cm 50% 60 C Blue 121 ± 27 Ω 

19 kV 15 cm 33% 60 C Blue 1175 ± 300 Ω 

19 kV 15 cm 14% 60 C Orange Nonconducting 

 

The fibers spun with the oxidant prior to VPP were spun at different voltages and 

distances to determine effect on conductivity shown in Table 5-2.  The diameter of the 

fibers was determined using SEM.  From the results, there was no relationship between 

the electrospinning conditions and the conductivity of the fibers. One possibility is the 

diameter of the fiber is not the major factor for the conductivity of the fibers.  The 

difference between the most and least conducting fibers is 0.08 S/cm while the diameters 

ranged from 200-600 nm.  The other possibility is the template polymer is playing a 

larger role in the conductivity than the PEDOT.  Since PMMA is an insulating polymer, 

it could reducing the overall conductivity of the fibers.  This is supported by other 
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PEDOT coated fibers with greater conductivity using template polymers other than 

PMMA. 

Table 5-2: Conductivity of PEDOT-PMMA fibers based on electrospinning 

voltage and working distance. 

Voltage Distance Conductivity Diameter 

18 kV 19 cm 0.13 ± 0.1 S/cm 284 ± 63 nm 

18 kV 17 cm 0.19 ± 0.1 S/cm 620 ± 164 nm 

18 kV 15 cm 0.14 ± 0.2 S/cm 462 ± 226 nm 

18 kV 13 cm 0.14 ± 0.1 S/cm 460 ± 156 nm 

15 kV 15 cm 0.20 ± 0.1 S/cm 486 ± 124 nm 

18 kV 15 cm 0.14 ± 0.2 S/cm 462 ± 226 nm 

21 kV 15 cm 0.16 ± 0.2 S/cm 230 ± 72 nm 

24 kV 15 cm 0.12 ± 0.1 S/cm 575 ± 300 nm 

 

 An alternative to PMMA is PVDF which is a polymer electrolyte used in 

membranes for batteries.  Using a polymer electrolyte instead of an insulating material 

could increase the conductivity of the composite material.  PEDOT-PVDF fibers were 

prepared by electrospinning fibers preloaded with oxidant solution and by soaking PVDF 

fibers in an oxidant solution.  SEM micrographs of fibers prepared by each method are 

shown in Figure 5-12.  Based on the SEM images, the fibers prepared by spinning the 

oxidant were more uniform in size and appear to be smoother than the fibers that were 

soaked in an oxidant solution prior to VPP.  The difference in the morphology could be a 

difference in where the PEDOT is located.  In the fibers preloaded with oxidant, the oxidant 
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would be incorporated into the fibers.  This could result in a PEDOT infused PVDF fiber.  

The fibers that were soaked in the oxidant solution may have more PEDOT on the surface 

based on the morphology difference.  If the oxidant is only present on the surface of the 

fibers, this could result in a PEDOT coated fiber. 

 

 

Figure 5-12 PEDOT-PVDF fibers when a) oxidant was spun with fibers and b) when 

fibers were soaked in an oxidant solution. 
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PVDF films are known to be piezoelectric if a poling step is used before the 

formation of the film.5  One way to predict piezoelectric properties is looking at the phase 

of PVDF.  Based on the literature, PVDF can be in three phases, α, β, and γ phase.  The β 

phase is the phase that has the best piezoelectric properties based on the alignment of the 

dipole.34  FTIR can be used to determine the phase of the PVDF present.  The FTIR-ATR 

plots of the fibrous mats are shown in Figure 5-13.  Focusing on the peak at 840 cm-1 

would be indicate the PVDF is β-phase however there is a shoulder around 833 cm-1 

which represents γ-phase.  Based on the IR, electrospinning of PVDF fibers produced a 

material that is β-phase which could offer an alternative to poling. 
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Figure 5-13: FTIR-ATR spectrum of PEDOT-PVDF fibers. 

 The conductivity of the PEDOT-PVDF fibers remained the same regardless of 

when the oxidant was added as shown in Table 5-3.  If the fibers are to be used as an 

electroactive polymer, it is important that the PEDOT be only on the surface of the fibers.  

If the PEDOT is infused into the fibers, the alignment of the polymer in the electric field 

may not be drastic enough to induce a large conformational change.  Based on the SEM 
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images in Figure 5-12, the soaking method could provide a surface coating of PEDOT.  

When comparing the conductivity of the PEDOT-PVDF and PEDOT-PVDF-HFP as 

shown in Table 5-3, the conductivity using PVDF-HFP was significantly greater.  PVDF-

HFP could be a promising template polymer in the fabrication of conductive fibrous mats 

as it produced the highest conductivity of the materials reported in the study.  To further 

enhance the conductivity of the PVDF-HFP fibrous mat, different diameter fibers can be 

prepared and the utilization of post polymerization treatments could be explored. 

Table 5-3: Comparing loading oxidant prior or post electrospinning effect on the 

conductivity of PEDOT-PVDF fibers and initial results of PEDOT-PVDF-HFP fibers. 

Template 

Polymer 

Oxidant 

Loading 

Step 

Voltage Distance Diameter Conductivity 

PVDF Pre-

spinning 

20 kV 15 cm 125 ± 9 nm 0.17 ± 0.4 S/cm 

PVDF Post-

spinning 

15 kV 11 cm 124 ± 35 nm 0.16 ± 0.2 S/cm 

PVDF-

HFP 

Post-

spinning 

15 kV 11 cm 261 ± 105 nm 0.28 ± 0.2 S/cm 

 

5.4 Conclusions  

 PEDOT-PMMA fibers had very little difference in conductivity regardless of the 

electrospinning parameters.  This could be because PMMA is an insulating material which 

could limit the overall conductivity of the material.  It was shown that increasing the wt% 

of oxidant increased the conductivity of the resulting fibers.  This could be because more 

oxidant is needed for the complete polymerization of PEDOT resulting in the most 

conducting material.  When using PMMA as a template polymer, when the oxidant is added 

plays a role in the mechanical properties of the resulting material.  When the oxidant was 

added prior to electrospinning, the fibers retained the mechanical properties of PMMA.  
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When the fibers were soaked in an oxidant solution, the fibers became more rigid and stiff, 

possibly from the increased cross-linking observed in the SEM. 

 Using PVDF as a template polymer showed no difference in conductivity or 

mechanical properties based on when the oxidant was added.  The fabrication of PVDF 

fibers using the electrospinning method produced fibers that shown to be β-phase of PVDF 

which is the piezoelectric phase of the polymer.  This is important because the use of 

electrospinning showed to replace the poling which is required for the fabrication of β-

phase PVDF.  Preliminary results show that PVDF-HFP produced the most conductive 

fibers of 0.28 S/cm.  Further optimization of the fibers are required based on the 

electrospinning parameters and the polymerization procedure. 
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Chapter 6 

Summary and Future Work 

 Solid state DSSCs using VPP PEDOT as a solid electrolyte and dye sensitized TiO2 

electrospun nanofibers for the degradation of PAP under visible irradiation was 

investigated.  Solid state DSSC’s offer a cheaper alternative to other photovoltaics and 

there have been great interest transitioning to solid state electrolytes.  We have fabricated 

the first working solid state DSSC utilizing a VPP PEDOT hole conducting material with 

efficiencies as great as 0.2%.  The work provides a foundation for future devices to be 

fabricated utilizing the VPP method. 

 In Chapter 2 we showed the fabrication of solid state DSSCs perform better using 

a spin-coated mesoporous TiO2 layer than a Dr. Blade coated layer.  It was also 

demonstrated that a combination of VPP PEDOT and PEDOT:PSS provide the best 

combination of filling of the TiO2 layer and preventing shorting with the gold layer.  

Results show the duration of the VPP has a great effect on maximizing of the Isc and VOC 

and thus the efficiency.  While previously reported to not be a viable oxidant, FePTs 

produced the highest efficiency of the solar cells fabricated. 

 While working solar cells were fabricated using VPP PEDOT, the efficiencies are 

much lower than other reported methods using PEDOT.  To further improve the 

efficiencies, device optimization is required.  Solar cells need to be fabricated with different 

blocking layer, mesoporous, VPP PEDOT and PEDOT:PSS thicknesses to find the optimal 
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conditions for fabrication.  It is also possible to improve the conductivity of the VPP 

PEDOT and PEDOT:PSS layers using a post deposition treatment such as ion exchange.  

Increasing the conductivity of the hole conducting materials will improve the Isc which 

should improve the efficiency of the solar cell.  It is also important to further explore FePTs 

as an oxidant for the VPP method.  XPS studies on TiO2 after the polymerization of PEDOT 

could determine if the Ti is being reduces at the conditions used for the device fabrication. 

 Chapter 3 demonstrated the successful synthesis of two possible ligands for new 

dye molecules to be used in DSSCs.  Results support the copolymerization of ttp-H with 

EDOT and suggest ttp-Br does not polymerize.  Using the ligands ttp-H and ttp-Br, new 

dye molecules have been synthesized and characterized with UV-Vis.  The molar 

extinction coefficients for the new dyes rival the N3 dye which is commonly used in 

DSSCs. 

While dyes have been synthesized, crystal structures are needed to confirm the 

successful synthesis of the molecules.  Solar cells can then be fabricated using each dye 

and compared to determine the role polymerizing the dye into the PEDOT layer has on the 

solar cell efficiencies.  Other thiophene ligands can be explored, specifically looking at 

effect of chain length between the thiophene and dye as well as bipyridine derivatives.  It 

is proposed by polymerizing the dye into PEDOT, the regeneration of the dye will occur 

through bond like in the electron injection into the semiconductor material.  This could be 

tested by changing the linkage between the thiophene and dye.  Comparing different length 

conjugated and unconjugated chains would alter electron transfer rates if the process 

occurred through bond.  Utilizing bipryidine ligands instead of terpyridine can allow for 
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the synthesis of neutral dyes instead of positively charged dyes.  Starting in the neutral state 

could help with the injection of an excited electron into the TiO2 layer. 

The focus of Chapter 4 was comparing the photocatalytic activity of TiO2 and dye-

sensitized TiO2 fibers in UV/Visible and Visible irradiation for the degradation of PAP.  

The results showed that incorporating a ruthenium sensitizer does not enhance the 

degradation rate under visible irradiation which gives insight into the mechanism.  One 

possibility is the dye provides an alternative pathway for the relaxation of electrons, 

reducing the number of electrons reaching the surface of TiO2.  Another possibility is the 

degradation of PAP is predominately from the hydroxyl radical formation which would not 

be enhanced with an electron injecting dye.  This contributed to previous work in the area 

of modified TiO2 under visible irradiation, specifically using dye anchoring.  

To further understand the reason for the reduced degradation rate, it is important to 

determine the degradation pathway of PAP.  This could be done using GC-MS and NMR 

to determine the degradation products, giving insight if the major radical is hydroxyl or 

peroxide.  It is also possible to explore other surface modifications.  Other studies in the 

group showed PEDOT improved the degradation rates of PAP.  Exploring the use of P3HT 

on the surface of TiO2 could improve the rates under visible irradiation.  P3HT is commonly 

used in organic solar cells as part of the photosensitizer layer while being conductive like 

PEDOT.  This could provide absorbance in the visible region while extending the lifetime 

of the electron-hole pair through charge separation. 

 Chapter five discussed the fabrication and characterization of conducting 

electrospun nanofibers using different template polymers and PEDOT.  The results show 

that the choice of the template polymer plays a major role in the conductivity of the 
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resulting fibers.  We were also able to demonstrate using FTIR electrospun PVDF produces 

the β-phase of the polymer which is a known piezoelectric material.  This is important 

because normally to prepare β-phase PVDF a poling step is required.   

 Although FTIR shows the PVDF is β-phase which is piezoelectric, it is important 

to determine the piezoelectric coefficient.  This would quantify how piezoelectric the 

materials are and can be compared to thin films.  Another application of the materials is in 

super capacitors.  The group has made super capacitators using PEDOT with very high 

capacitance and showed increasing the surface area is important in capacitance 

performance.  Electrospun fibers can have high surface area which would increase the 

loading of PEDOT in the material.  Comparing the difference composite materials would 

show the effect of conductivity and surface area on the capacitance of the materials. 
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