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Abstract 

Functional nanoparticles serve as an intriguing class of probes in medical 

theranostics for enabling rapid, sensitive, multiplexing, and point-of-care treatment and 

diagnosis.  One important aspect of these applications is the exploitation of the unique 

plasmonic properties of certain metal nanoparticles.  A key challenge is the understanding 

of effective harnessing of the plasmonic coupling of the nanoparticles upon interacting with 

the targeted biomolecular species.  This thesis work focuses on investigating the 

interparticle interactions of chemcially-labled and bioconjugated gold and silver based 

nanoparticles and their influences on the plasmonic coupling for specctroscopic  detection 

of biomolecules.  Examples of the interparticle interactions include dye-mediated 𝜋–𝜋 

stacking, antigen-antibody recognition, and DNA complementary binding.  These 

molecular and biomolecular interactions lead to the formation of interparticle “hot-spot” in 

terms of plasmonic coupling of the nanoparticles responsible for the surface enhanced 

Raman scattering (SERS) and the localized surface plasmon resonance (LSPR).  The 

interparticle plasmonic coupling induced SERS and LSPR characteristics are probed by 

experimental measurements and theoretical simulations for establishing the correlation 

between the interparticle structures and the spectroscopic properties.  The results have 
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provided new insights for a better understanding of the design and control parameters of 

multifunctional nanoparticles and interparticle interactions for spectroscopic 

enhancements in biomolecular recognition and detection. 
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Chapter 1 

Overview of Nano-Structured Materials 

1.1. Significance of Molecular Detection 

 Identification and intervention of biomolecules such as amino acids, proteins, DNA, 

microRNA, bacteria are important for medical diagnostics.  Among the various techniques 

for such diagnostics, the surge of interests in exploring gold or silver based nanoparticles 

as diagnostic probes stems largely from the unprecedented amplification of optical, 

spectroscopic, electrical and magnetic signals and their bio-functionality and bio-

compatibility.  These capabilities are further enhanced by the controllable sizes, shapes, 

compositions and surface properties, especially conjugation with desired biospecificity or 

assembly with the desired signal transduction mechanism.  Therefore, the exploration of 

gold based nanoparticles (AuNPs) for detection, diagnostics, manipulation, targeting or 

transport of biomolecules is a topic of broad interest to drug delivery,4,5 disease detection,4 

bio-sensing.5,6  There are also increasing interests in exploiting nanoparticles’ 

antimicrobial properties, including wound dressings, and biological responses.7  One area 

of interest involves colorimetric detection of amino acids and small peptides, which are 

known to play different roles in heart disease, rheumatoid arthritis and AIDS.8  For example, 

homocysteine is involved in the metabolism of methionine and is considered as a risk factor 



2 

 

for heart disease.8  Glutathione, a tripeptide, is known to protect red blood cells from 

oxidative damage, and plays an important role in the detoxification of the cell, as well as 

the removal of harmful organic peroxides and free radicals.  L-cysteine plays an important 

role in living systems and its deficiency is associated with a number of clinical situations 

(liver damage, skin lesions, AIDS, and certain neurodegenerative diseases).  D-cysteine, 

on the other hand, is believed to interfere with many targets inside the cell.  A common 

characteristic of these biologically relevant amino acids, such as cysteine and 

homocysteine, and small peptides such as glutathione is the thiol group in the structure, 

which has a strong affinity to gold or silver surfaces.  Their conjugation to gold 

nanoparticles and the unique interparticle interactions provide a means for colorimetric 

detection of these biologically-relevant molecules.  

The bio-conjugation ability of gold nanoparticles, on the other hand, enables them to 

function as an intriguing drug carrier or vehicle, which is an important area of current 

interest.  Upon entering biological systems, AuNPs function as a carrier to deliver 

biomolecules (e.g., miRNA) in cell transfection, or as an antibacterial agent to inactivate 

bacteria, or potential toxic agent to damage biological functionalities (nanotoxicity).  The 

importance of miRNA in the treatment of cancer and for the manipulation of genetic 

expression has been recognized.  The study of AuNPs as carriers of certain miRNA (e.g., 

miR-130b), which express differently in glucocorticoid-sensitive versus glucocorticoid-

resistant MM.1 cell lines, is one of the latest examples in cell transfection.  Another area 

of current interest involves bacterial contamination of platelets which is the leading cause 

of morbidity and mortality from a transfusion transmitted infection, and bacterial 

inactivation which is considered as an option to reduce infection risk.9  There is an 
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increasing need to understand the mechanistic details of the cell interactions of 

antimicrobial agents in microorganisms.  Due to the high surface to volume ratio for a more 

efficient bacterial disinfection, nanoscale metal particles such as silver nanoparticles 

(AgNPs) are widely studied in antimicrobial applications.  The introduction of magnetic 

cores in silver nanoparticles enables effective separation and delivery of the antibacterial 

agents in biological systems. 

In comparison with the exploration of metal nanoparticles as probes, carriers or 

vehicles, one of the active research areas focuses on the assembly of nanoparticles.  Broadly 

speaking, the assembly of nanoparticles is a result of the interparticle interactions leading 

to an association of the individual nanoparticles ranging from dimers or trimers to arrays 

or thin films.  Such assemblies influence the collective optical or spectroscopic properties 

which can be harnessed for the detection of biomolecular recognition of proteins, DNA, 

and other biomarker molecules.  There have been increasing interests in nanoparticle-based 

approaches to DNA analysis largely because of the potential enabling spatial multiplexing 

in an array format to produce simple and portable biosensor devices.  Among various 

techniques, surface enhanced Raman scattering (SERS) technique using Au and Ag NPs 

has emerged as one class of the highly-sensitive spectroscopic probes for biomolecular 

detection.10  It is the interparticle interaction or assembly that enables the creation of “hot-

spots” for the observation of SERS effect.  Theoretical calculations have shown that the 

SERS effect is closely related to the local electric field enhancement around nanoparticles, 

especially near corners, edges or gaps (so-called “hot-spots”), that are responsible for its 

high sensitivity and fingerprinting capability.11-14  Recent interests in exploring magnetic 

nanoparticle cores with gold or silver shells largely stem from the possibility of exploiting 
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the unique combination of the SERS effect of Au or Ag NPs11-13 and the nanoscale 

magnetic properties of magnetically-active nanoparticles for bio-specific separation, 

delivery, or targeting. 

Indeed, the ability to impart magnetic functionality to gold or silver nanoparticles has 

led to increasing opportunities in the design of new strategies in theranostic applications.  

One important strategy for exploiting Au or Ag based nanoparticles involves an effective 

coupling of biomolecular detection and intervention (Figure 1.1.1).   

 

Figure 1.1.1. Illustration of bifunctional NPs for detection and magnetic intervention of 

biomolecular activities in a solution.  

 

For example, this strategy can be used for the recognition of complementary single 

strand (ss)-DNA anchored to two different nanoparticles, i.e., Raman-labeled AuNPs and 

Au- or Ag-coated or decorated magnetic NPs, and the enzymatic cutting of the double 

strand (ds)-DNA.  The creation of “hot-spot” by the interparticle plasmonic coupling as a 

result of double strand (ds)-DNA linkage provides a means for SERS detection.  This 

ability stems from interparticle distance-dependent local electric field enhancement (i.e., 

“hot-spot”) in between NPs linked by ds-DNA (e.g., dimer), as demonstrated by theoretical 
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modeling using discrete dipole approximation method.13  Upon enzyme cutting of the ds-

DNA at a specific site, the “hot-spot” can be removed.  On the other hand, the incorporation 

of a magnetic component in the nanoparticles provides the capabilities of easy intervention 

and bioseparation.   

This type of functional nanoprobes could enable interparticle “hot-spot” formation 

and bio-separation capability for monitoring DNA assembly and cutting processes in 

biological fluids in real time.  The understanding of the effective coupling of the localized 

fields between particles and substrates15 will be useful for diagnostics, drug delivery and 

DNA separation,16 including cetuximab conjugated magnetic core-shell nanoparticles for 

early detection of colon cancer, and bioassays of DNA cleavage and binding by human p53 

that may be useful for pathogen detection and disease analysis.17  While much has been 

learned about the DNA-conjugated nanoparticles for assays on solid substrates,6,18,19 

relatively little is known about monitoring the detailed processes related to protein binding 

and cutting of DNA in a biologically-relevant solution phase.17,20  The assembly of AuNPs 

by complementary-strand binding of DNA designed using the cyclin G promoter sequence 

for p53 recognition leads to the formation of a double strand in between AuNPs, which 

provides a p53 recognition site.  It also provides a recognition site for a restriction enzyme 

that cuts the ds-DNA at a specific site, allowing the use of nanoparticle assembly as a probe 

to the interactions and relativities of the ds-DNA directly in a solution.17     

The signal amplification and fingerprinting capability of SERS have led to increasing 

interests in studies of nanomaterials of different sizes, shapes and structures, especially 

gold or silver NPs for various applications.21  The exceptionally strong confinement of 

electromagnetic energy around plasmonic-active metal nanoparticles exhibits 
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approximately fourth power of the field enhancement at the particle surface, especially in 

the vicinity of sharp features or small gaps in nanostructures.  The synthesis of pure dimers 

is a challenge, but there have been several intriguing approaches to controlling the 

enhancement gap (e.g., gold nanogap particles21).  Indeed, various nanostructures of Au 

and Ag have been extensively exploited for SERS, which has rapidly emerged as highly 

sensitive colorimetric and spectroscopic techniques for the detection of DNAs, proteins or 

enzymes.9,11,15,17,22-25  In comparison with solid-state SERS substrates for antibody-antigen 

binding of AuNPs on a gold thin film,23,24 the enhancement of SERS using nanoparticles 

suspended in a solution15,23 is smaller, but understanding the interparticle plasmonic 

coupling (“hot-spot”) as a result of the formation of small clusters of nanoparticles such as 

dimers and trimers23 is useful for developing the capability for biomolecular signal 

transduction and activity intervention in a solution phase.  Considering the limited surface 

modification and potential nanotoxicity of magnetic nanoparticles (MNPs, e.g., iron, nickel, 

or cobalt oxides) in bioseparation and controlled delivery3, or magnetic resonance imaging 

(MRI),26 there is an increased interest in introducing desired surface functionalization of 

MNPs using gold or silver as a shell.  This type of surface chemistry has been demonstrated 

for biomolecular separation from solutions,15,23-25 cancer-cell targeting,27 and SERS 

detection.28  The detection in these studies involved using solid substrates or magnetic 

enrichment.  Recent insights into the reactivity of restriction enzyme at DNA-mediated 

assembly of AuNPs in a solution phase have demonstrated the possibility of the nanoprobes 

strategy for potential p53 protein recognition.26  

Another pathway for exploring the assembly of nanoparticles as functional materials 

involves molecularly-mediated thin film assemblies of metal nanoparticles as sensing 
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materials for electrical detection of volatile organic compounds (VOCs), which has 

potential application in the detection of breath biomarkers linked to different diseases, 

including diabetes29 and lung cancers.30  In addition to 4–5% more CO2 and 4–5% less O2 

inhaled, vapors and trace gases include 5% H2O, a few ppm(V) of H2 and CO2, NH3 and 

acetone, methanol, ethanol and other VOCs.31  The detection of biomarkers from breath 

samples of patients with different diseases has attracted increasing interests.  One example 

involves detection of acetone as a breath biomarker from diabetes, which has been 

identified to link to the level of blood sugar.  Traditionally, GC and GC–mass spectroscopy 

have been used in breath sample analysis for diabetes, cancer and oxidative stress in 

diabetes.  In contrast to existing serum or urine analysis, the breath analysis features 

noninvasiveness and real-time monitoring.  The development of nanoparticle-structured 

sensor arrays for breath analysis could lead to a potential point-of-care diagnostic tool.  

Overall, there have been major advances in many areas exploring nanoparticles and 

assemblies for potential diagnostic applications, including latest examples in infectious 

disease detection, cancer diagnostics and imaging, and cancer biomarker detection32 which 

exploit optical and spectroscopic signals due to DNA and protein adsorption and 

assembly33 and interparticle spacing or aggregation.  Several recent reviews have discussed 

different nanostructure bioconjugation and plasmonic nanoparticle based biosensing34,35 

and therapeutic applications.  Rather than comprehensively describing the exploration of 

nanoparticles for various applications in theranostics, which have been discussed in a 

number of recent reviews, each focusing on a different aspect, this work focuses on 

harnessing functional nanoparticles and assemblies as a strategy for the creation of the 

structurally-tailored multifunctional properties for biomolecular detection and intervention.  
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In addition to describing progress in synthesis and processing of metal and magnetically-

functional nanoparticles and assemblies, examples in colorimetric detection of amino acids 

and small peptides, SERS detection of biomolecular recognition of proteins and DNA, 

targeted delivery in cell transfection and bacteria inactivation, and nanostructured flexible 

sensor array for the detection of biomarkers of human breath will be highlighted. 

1.2. Synthetic Design of Nanomaterials 

1.2.1 Synthesis of gold or silver based nanoparticles 

The synthesis of AuNPs generally involves wet-chemical reduction of chloroauric 

anions (AuCl4
−) as the gold precursor.  For the synthesis of AuNPs in aqueous phase, 

seeded growth method has been reported for controlling particle size, most of the methods 

have been based on the modification of Turkevich method through a two-step process (two-

step process: (1) nucleation and (2) growth).  For the control of size, which is often difficult, 

a highly-effective method was developed in our laboratory for the growth of highly-

monodispersed AuNPs in the size range of 10 to 100 nm diameter,15 which involves AuCl4
− 

as a starting Au-precursor and acrylates as both reducing and capping agents in a seeded 

“aggregative growth” process.  This is in contrast to Ostwald ripening, where smaller 

particles dissolve preferentially with subsequent crystallization onto larger particles.  

Insights into the growth mechanism were gained by the determination of the size and 

optical properties as a function of the growth parameters such as the reaction time and the 

seed/precursor concentrations,14 demonstrating the operation of the aggregation growth 

mechanism in this simple and reproducible growth process.  AuNPs with average sizes in 

10-100 nm range can be easily grown using smaller particles as seeds (Figure 1.2.1.1(A)).  

While the overall morphology of these nanoparticles appears spherical, faceted edges along 



9 

 

the outlines of nanoparticles can be observed upon close examination, which is consistent 

with the polycrystalline properties of the AuNPs.  The size monodispersity is evidenced by 

narrow size distributions (Figure 1.2.1.1(A)).  The relative standard deviations (RSD) are 

~8% for the smaller sized (<30 nm), ~4% for the medium-sized (30~50 nm), and ~3% for 

the larger-sized (>50 nm) nanoparticles.  The mass of the seed-grown particles is 

quantitatively correlated with the concentration of AuCl4
−.  By analysis of the correlation 

of nucleation parameters with the particle sizes and distributions, the growth was shown to 

follow a “seeded and aggregative growth” mechanism, which is consistent with the general 

characteristics of aggregative growth mechanism.36 

 
(A)    (B) 

Figure 1.2.1.1. (A) Seeded and aggregative growth of gold NPs. Middle panel: TEM for 30 nm seeds (a), 

and seed-grown 60 (b) and 90 nm (c) AuNPs. Bottom panel: Size distributions.  (B) Thermally-activated 

processing of AuNPs capped by alkanethiolate monolayer. Middle panel: TEM of AuNPs produced by 

thermal processing in the presence of alkanethiols of different chain length (n): n=5 (right, 7.60 0.43 nm), 

and 15 (middle, 5.86 0.31 nm) and the precursor Au2nm-DT (left, 2.01  0.41 nm). Bottom panel: Size 

distributions (left) and Dependence of particle size on capping alkyl chain length (right).  (Reproduced with 

permission from refs. 49, 55, and 56. Copyright 2006, 2010 American Chemical Society.) 

 

For the synthesis of AuNPs in organic phase,37 a key process in the Brust−Schiffrin 

Method for thiol-protected AuNPs, reported first in 1994, is to transfer AuCl4
− from 

aqueous phase to toluene using tetraoctylammonium bromide (TOABr), where it is reduced 

by sodium borohydride (NaBH4) in the presence of dodecanethiol.38  The resulting particles 
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are in the range of 2-5 nm.  A further modification of this method by manipulating the 

reaction temperature and other parameters was reported by Murray et al., demonstrating 

the ability to control size down to about 1 nm with relatively high monodispersity or 

introducing different capping ligand structures.  The smaller size characteristic is perhaps 

one of the main attributes in comparison with AuNPs synthesized in aqueous phases.  

Starting from nanoparticles synthesized by this route, one of the approaches to size control 

developed in our laboratory exploits the nanoscale phenomenon of melting point decrease 

for certain metal nanoparticles,39,40 which is inversely proportional to the particle size and 

free energy reduction driven coalescence of surface-melting particles, leading to the 

increase of particle size.  For example, alkanethiolate-capped AuNPs can be obtained by 

thermal activation of smaller-sized starting particles, e.g., decanethiolate (DT) capped 

AuNPs (Au2nm-DT, 1.9 0.7 nm), via shell desorption, core coalescence and shell re-

encapsulation in a toluene solution containing TOABr and capping molecules such as DT 

under controlled temperature (149 1.5 C) towards larger-sized nanoparticles.40  The size 

distribution is strikingly narrow, as shown in Figure 1.2.1.1(B).  The uniform interparticle 

spacing between the nanoparticles with a predominant hexagonal packing array feature 

shows an edge-to-edge distance of ~1.0 nm, corresponding closely to the distance expected 

for an interdigitation of alkyl chains between shells of the neighboring nanoparticles 

(Figure 1.2.1.1(B)).40 

The thermally-activated processing of a solution of pre-synthesized nanoparticles 

involves coupling of the molecular capping and re-encapsulation to the interparticle 

coalescence, different from simple Ostwald ripening processes.  The particle size growth 

is shown to be a function of chain length of the capping alkanethiols (CH3(CH2)nSH) 



11 

 

(Figure 1.2.1.1(B)).35,39  The cores for nanoparticles evolved using shorter chain thiols were 

found to be larger than those evolved in the presence of longer thiols.  For example, the 

AuNPs obtained using alkanethiols with n=15 (Figure 1.2.1.1(B)) an average core diameter 

of 5.86  0.31 nm was obtained.  Since our early demonstration of this strategy for 

producing highly-monodispersed AuNPs,40 also showed viability for processing copper 

and other metal nanoparticles.  Using this approach with slight modifications, gold-based 

alloy and other metal (e.g., copper) nanoparticles of different sizes have also been 

prepared.40  The molecularly-tuned size selectivity39 provides an important means for 

processing nanoparticle size and monodispersity.  In addition, depending on the alkanethiol 

concentration, the size of the nanoparticles after the thermal treatment is linearly dependent 

on the chain length of alkanethiols used (Figure 1.2.1.1B), exhibiting a slope of -0.2 

nm/methylene unit.  This correlation demonstrates the important role played by cohesive 

interactions in regulating interfacial reactivities of nanoparticles for the control of particle 

sizes, in contrast to a chemical synthesis route from precursor molecules.38,41  In fact, deep 

insights into the importance of aggregative growth mechanism for the control of AuNPs 

size have recently been gained in both experimental and theoretical studies of the kinetics 

and mechanism for the size evolution of AuNPs under the thermally-activated evolution 

process.36,42  By using the well-known KJMA model for aggregative growth, a 

straightforward analytical method was derived for analysis of the growth kinetics.  The 

method allows extraction of separate aggregative-nucleation, aggregative-growth, and 

Ostwald-ripening rate constants.  The established aggregative nucleation rate and size 

distribution are contrasted to classical LaMer nucleation and growth, in addition to Ostwald 

ripening.  In aggregative growth, which is a nonclassical nucleation and growth process, 
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the nucleation parameters can be systematically varied by conditions that influence the 

stability of the initial small particles, leading to controlled size and distribution. 

Similar approaches have also been used for the synthesis and processing of silver and 

gold-silver alloy nanoparticles.43  In the synthesis of silver and gold-silver alloy 

nanoparticles encapsulated with alkanethiolate monolayer,43 two-phase reduction of 

AuCl4
− (in toluene) and AgBr2

− (in toluene) is used44.  The synthesis can be carried out by 

separately transferring AgBr2
− and AuCl4

− from aqueous phase to organic phase using 

TOABr as the phase transfer reagent.  Different compositions of alloy nanoparticles were 

synthesized by controlling the feed ratios of the two metal precursors.  The size 

monodispersity is better than those synthesized by citrate reduction of Ag+ in aqueous 

solutions.  The alkanethiolate-capped Ag and AgAu nanoparticles also allow the thermally-

active processing to achieve the controllability of the particle size in the range of 2 to 10 

nm. 

1.2.2  Synthesis of Magnetically-functionalized nanoparticles 

In combination with various synthesis methods, the thermal activation strategy has 

also been demonstrated for controlled processing of metal, alloy and core-shell 

nanoparticles in solutions in terms of size and morphology under an elevation of 

temperatures ranging from 100 to 200 oC.  Examples include Au, Cu, AuAg, AuCu, AuPt 

and Fe2O3 or Fe3O4@Au.39,40 By a combination of the lowered melting temperature for 

metal nanoparticles and the un-affected melting temperature of iron oxide nanoparticles, a 

thermally-activated hetero-interparticle coalescence was demonstrated for fabricating 

core@shell type of Fe-oxide@Au) nanoparticles.24,45  One example involves the formation 

of Fe2O3 or Fe3O4 and Au nanoparticles in a solution by thermally-activated hetero-
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interparticle coalescence between gold and Fe2O3 or Fe3O4 nanoparticles under 

encapsulating environment (Figure 1.2.2.1A).  The stabilization of the nanoparticles is 

achieved by organic ionic materials such as tetraoctylammonium bromide (TOABr) in the 

solution and the capping molecules such as alkanethiols (e.g., decanethiols (DT)) for Au 

nanoparticles and oleylamine and/or oleic acid for Fe-oxide nanoparticles.  The thermal 

microenvironment facilitates core-shell coalescence to produce monodispersed Fe-

oxide@Au nanoparticles of controlled sizes, depending on the relative ratio of the two 

precursors.  It is the combination of the solution temperature, the composition and the 

capping structures, along with the competition between growing Au and Fe-oxide@Au 

NPs, that leads to the formation of larger-sized core@shell nanoparticles with a single or 

multiple Fe-oxide cores (pomegranate-like) Figure 1.2.2.1A.  

 
 (A)        (B) 

Figure 1.2.2.1. (A) Scheme and TEM for Fe2O3@Au nanoparticles produced from Au and Fe2O3 precursor 

nanoparticles by the thermally-activated processing route. (B) Scheme and TEM for Fe3O4@Au 

nanoparticles produced by combined bottom-up synthesis and thermal processing in a seeded-growth process 

(2* =gold precursor, reducing and capping agents, and temperature manipulation): Fe3O4 (5.2 ± 0.4 nm) and 

Fe3O4@Au (6.6 ± 0.4 nm).  (Reproduced with permission from refs. 24, 45. Copyright 2005 and 2007 

American Chemical Society.)    

 

The magnetic core-gold shell nanoparticles can also be prepared by combining wet-

chemical synthesis and thermal processing in a seeded-growth process.24,45,46  Figure 
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1.2.2.1B shows an example is the synthesis of highly-monodispersed Fe2O3@Au and 

Fe3O4@Au nanoparticles45,47 using Fe3O4 seeds capped with oleylamine and/or oleic acid 

chemical reduction of Au(CH3COO)3 in the presence of capping agents at 180 °C.  The 

formation of core-shell nanoparticles is supported by the change in particle sizes in TEM 

and HR-TEM images (Figure 1.2.2.1B), the observation of Au-shell specific surface 

chemistry, the change in magnetization and blocking temperature, and the demonstration 

of their use in magnetic bio-separation or as spectroscopic probes.24,46  The latter also 

involved many other core-shell types of magnetic or metal nanoparticles (e.g., 

MnZnFeO@Au, Fe3O4@Au@Pt, Pt@Au, AuAg, AuPt, PtVFe, PtNiFe23,43,46-48). 

To achieve tunable nanomagnetism, MnZn ferrite nanomaterials with a spinel 

structure represent an important class of tunable magnetic materials.49  In comparison with 

binary MFe2O4 (M = Fe, Co, Mn, Zn, etc) nanoparticles,50 MnZn ferrite nanoparticles 

provide an increased tunability.  A novel core-shell structured nanocube of MnZn ferrite 

was synthesized by controlling reaction temperature and composition in the absence of 

conventional reducing agents in one-pot synthesis.  The highly-monodispersed and cube-

shaped core-shell structure consists of an Fe3O4 core and an (Mn0.5Zn0.5)(Fe0.9Mn1.1)O4 

shell (Figure 1.2.2.2A).  The HR-TEM for the core-shell structure shows a Moiré pattern, 

indicating a highly-crystalline combination of core and shell with slightly different lattice 

constants or rotation of the core relative to the shell.49  In Figure 1.2.2.2B, two different 

phases are revealed, corresponding to a core of Fe3O4 and a shell of MnZn ferrite 

(Mn0.5Zn0.5)(Fe0.9Mn1.1)O4.  They can be either antiferromagnetic or ferrimagnetic because 

of the antiparallel arrangement of the ions on the tetrahedral vs. the octahedral sites, 

resulting in the saturation magnetization of ~96.5 emu/g.  The highest value of 
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magnetization, 45.6 emu/g, is close to the maximum magnetization value for Fe3O4 (5.2 

nm) (66 emu/g).45  The MnZn ferrite nanoparticles could also be synthesized in aqueous 

solutions, but the controllability over size monodispersity and shape is rather limited46. 

 

  
(A)        (B) 

 
(C)      (D) 

Figure 1.2.2.2.  (A) Morphologies of MnZn ferrite (MZF) core-shell nanocubes: TEM/HRTEM (a-c) and 

ED pattern (d) for MnZn ferrite nanoparticles (size: 20.6  1.8 nm, core (Fe3O4)/shell 

((Mn0.5Zn0.5)(Fe0.9Mn1.1)O4)). (Right: structural model for MZF nanocubes consisting of Fe3O4 core (inverse 

core) and MZF shell where the tetrahedral sites are doped by (0.5-) Zn2+ whereas the octahedral sites are 

doped by Mn3+, Mn2+, and the rest of Zn2+.  (B) EDS composition mapping for MZF@Au (left) and MZF@Ag 

(right) nanoparticles in terms of overlapping of Fe (red) with Au (MZF@Au) and Ag (MZF@Ag).  Mn and 

Zn detected are not shown. (C-D) Plots showing the magnetic separation kinetics in terms of the change in 

absorbance of SP band at ∼534 nm for a solution of MZF (a), and MZF@Au (b) (C), and ∼420 nm for 

solutions of MZF (a), MZF@Ag (b), and mixed MZF and Ag NP (c) (D). (Insets: photos showing color 

changes before and after applying a magnet, leading to gradual separation (for D: t0 = 0; t1 = 30; t2 = 60 min).  

(Reproduced with permission from refs. 9, 49 Copyright 2010 and 2011 American Chemical Society, and 

from ref. 20 Copyright 2013 Royal Society of Chemistry.) 

 

The MnZn ferrite nanoparticles have been coated with Au or Ag shells of various 

thicknesses by either seeded growth method.24,46  In one method,23 35 nm MnZn ferrite 

core size was coated with 1.2 nm Au shell.24  In a recent study,21 the thermally activated 

processing method was used24 for the preparation of Au- and Ag-decorated MZF 

nanoparticles, by heating a concentrated toluene solution with Au-DT (or Ag-DT) and 
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OAM/OA-capped MZF nanoparticles in a certain ratio at 150 °C.  The distributions of Fe, 

Mn, Zn, and Au or Ag are shown by the EDS data for MZF/Au and MZF/Ag NPs.  There 

is clear indication that Au or Ag metals are decorated on the MZF core, as evidenced by 

overlapping Fe and Au in the case of MZF/Au or Fe (Figure 1.2.2.2B) and Ag in the case 

of MZF/Ag.  The functional properties of these magnetic core-shell type NPs are also 

observed by a gradual decrease of the surface plasmon resonance bands of the NPs under 

a magnetic field (Figure 1.2.2.2C), similar to those reported recently.9,24  For example, a 

gradual decrease of the SP band absorbance is observed in Figure 1.2.2.2D for MZF@Ag 

nanoparticles, revealing clear differences for MZF@Ag, mixed MZF and Ag, and MZF.  

The magnetic properties are also evidenced by the decrease of color for MZF@Ag NPs in 

the solutions under the magnetic field. 

1.3. Optical and Electrical Properties of Nanomaterials 

 Nanostructured materials have found increasing applications in medical therapies 

and diagnostics (theranostics) many of which stem from their unique optical, 

electromagnetic, and catalytic properties.  These materials can be manipulated in these 

applications by tuning their properties.  For instance, metal nanomaterials like gold 

colloidal solutions, when excited by light undergo oscillations of their surface electrons 

when frequency of the electromagnetic field (EMF) matches that of the surface electrons.  

These oscillations that occur only on the boundaries between the NP surface and solution, 

produce a surface plasmon resonance (SPR) band that is unique to the metal of a particular 

size (Scheme 1.3.1).  These oscillations can also be identified using Surface Enhanced 

Raman Scattering (SERS) spectroscopy, by the tracking the changes in the polarizability 

of the NP.1-3 
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Scheme 1.3.1. Illustration of SPR as an oscillation of surface electrons between two metallic 

nanoparticles.1 

 

A key challenge is the ability to impart the nanomaterials with structurally-tailored 

functional properties which can effectively target biomolecules but also provide signatures 

for effective detection.4,5  The harnessing of functional nanoparticles and assemblies serves 

as a powerful strategy for the creation of the structurally-tailored multifunctional properties 

(Scheme 1.3.2).  This thesis highlights important findings of recent investigations of metal 

(especially gold and silver), and magnetically functionalized nanoparticles, and 

molecularly assembled or biomolecularly conjugated nanoparticles with tunable optical, 

spectroscopic, magnetic, and electrical properties for applications in several areas of 

potential theranostic interests.  Examples include colorimetric detection of amino acids and 

small peptides, SERS detection of biomolecular recognition of proteins and DNA, targeted 

delivery in cell transfection and bacteria inactivation, and chemiresistive detection of 

VOCs and breath sensing.  A major emphasis is placed on understanding how the control 

of the nanostructures and the molecular and biomolecular interactions that impact these 

biofunctional properties, which has important implications for bottom-up designs of 

theranostic materials. 
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Scheme 1.3.2  Illustrates the ability to functionalize the surface of the NPs for various applications: 

Antigen, mRNA, DNA. Oligoethylene glycol, dye and more.1 

 

1.3.1  Bio-conjugation of nanoparticles 

The rich surface chemistry is one of the key attributes of Au or Ag based NPs that 

enables bio-conjugation of thiol-containing amino acids, small peptides, proteins, miRNA, 

and DNA in effective ways (Figure 1.3.1.1).  Gold nanoparticles can be conjugated with 

microRNA (miRNA) for delivery into cells for genetic manipulation or cellular 

marking.51,52  Figure 1.3.1.1A shows an example in which AuNPs are conjugated with Cy5 

(or Cy3) labeled miR-130b on the AuNPs (miRNA-AuNPs).53  The dye molecules could 

serve as fluorescent or SERS labels.12,15,23  Upon conjugation, the miRNA-AuNPs, show 

an increased mobility in gel electrophoresis, consistent with the increased negative charge 

on the nanoparticle surface by miRNA.  By performing ligand exchange reaction of 

miRNA-AuNPs with bis(p-sulfonatophenyl)phenylphosphine (BP), a negatively charged 

surfactant used for increasing the surface charge,23 in the solution, the mobility remains 

unchanged, indicating that the miRNA-conjugation is quite stable. 
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Scheme 1.3.1.1. Illustrations of bioconjugation on AuNPs with: (A) thiol-containing miRNA duplexes 

consisting of sense and antisense miRNA (labeled with a fluorescent dye (e.g., Cy5)) along with 

oligoethyleneglycol thiol (OEG) to keep the miRNA from folding and electrostatically binding, (B) proteins 

(e.g., antibody) via a linking molecule (e.g., DSP (dithiobis (succinimidyl propionate))) along with a Raman 

label (RL) as a reporter, and (C) thiol-functionalized DNA.   

 

Effective conjugation of protein molecules (antibody or antigen) and Raman label to 

nanoparticle surfaces is important for SERS-based immunoassay.  As shown in Figure 

1.3.1.1B, AuNPs can be labeled with Raman label and protein by controlled concentrations 

of dithiobis(succinimidyl propionate) (DSP), mercaptobenzoic acid (MBA), and protein A.  

This approach is relatively simple for controlling the coverage of MBA on the surface, and 

also has some flexibility in terms of the sequence of immobilizing MBA and protein.24  

Similar to homocysteine-mediated assembly of AuNPs,54 the control of salt concentration 

in the solution is also important in determining the stability of the nanoparticles in an 

aqueous system, which is dependent on the chemical nature of capping molecules and the 

electrical double layer charges. 

DNA-based nanoparticle assembly16,55,56 is another important area exploiting the 

optical properties of the nanoparticles for the detection of enzymes and proteins associated 

with diseases and pathogens.  For example, p53 protein, a DNA binding protein, is found 
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in more than 50% of all tumors. The study of p53 recognition sites, mdm2, p21 and cyclin 

G genes, is important for understanding the role of DNA transcription in cancer.  In Figure 

1.3.1.1C, the assembly of AuNPs by complimentary-strand binding of DNA, designed 

using the cyclin G promoter sequence, involves AuNPs conjugated with the top and bottom 

single-stranded DNA (ss-DNA).17  A double strand is formed by interparticle 

complimentary binding of the two DNA in between AuNPs, which is a p53 recognition 

site.  In proof-of-concept demonstration experiments, two different DNA strands, (DNA1: 

5’-/5ThioMC6-D/AGGCCAGACCTGCCCGGGCAAGCCTTGGCA-3’ (bottom strand) 

and DNA2: 5’-/5ThioMC6-D/TGCCAAGGCTTGCCCGGGCAGGTCTGGCCT-3’ (top 

strand)) were used.17  For alkanethiolate-capped nanoparticles synthesized in organic 

phases, the bioconjugation can be achieved by transferring them to aqueous solution via 

ligand exchange reaction (e.g., mercaptoundecanoic acid) before conjugating with DNA or 

proteins.   

1.3.2  Assembly of nanoparticles with tunable with optical and electrical functions 

The interparticle linkage or assembly of NPs leads to changes in optical and 

spectroscopic properties which provide not only ways for determining their correlation 

with the nanoscale parameters (size and composition).  Changes in absorbance and 

wavelength of the surface plasmon (SP) band provide a measure of particle size, shape, 

concentration and dielectric medium properties, which can be described by Mie theory or 

SERS intensity.  The wavelength (λmax) at maximum absorbance of the SP bands is 

dependent on the particle size.  The increase of the λmax value of the SP band with increased 

particle size is very comparable between the experimental and the theoretical data.  Insights 

have been developed into the correlation among particle size, SP band, and SERS intensity.  
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For example, the particle size – SERS correlation has been demonstrated by comparison of 

SERS spectra of Raman labels on AuNPs in solution and on a solid substrate.23  For Au 

thin-film substrate immobilized with AuNPs, two intense diagnostic peaks of the MBA 

were observed at 1081 cm-1 and 1591 cm-1, displaying a maximum intensity for 

nanoparticles of 60 ~ 70 nm in size (Figure 1.3.2.1A).  In contrast, the SERS intensity for 

MBA adsorbed on AuNPs in an aqueous solution shows a gradual increase with the particle 

size (Figure 1.3.2.1B).  The SERS signals are clearly detectable for particle sizes greater 

than 40 nm.  The size correlation of SERS intensity suggests the existence of a critical size 

range of the nanoparticles in the solution beyond which the particle-particle interaction is 

operative and responsible for the SERS effect.  Experimentally, the nanoparticles capped 

with MBA in solution were first subjected to centrifugation before taking Raman spectra.  

Since no peak was observed prior to centrifugation, it is likely that the decrease in the 

interparticle distance between the particles, via formation of small clusters of nanoparticles 

such as dimers or trimers, allowed more effective plasmonic coupling.  The adsorbed MBA 

molecules confined in such clusters are thus the “hot-spots” responsible for the observed 

SERS effect. 

The formation of dimers/trimers is supported by the dependence of the SERS intensity 

on centrifugation speed and salt concentration.  The SERS intensity is found to increase 

with the speed of centrifugation, which is consistent with the increase of the SP band15,54 

around ~750 nm characteristic of the nanoparticle aggregation (Figure 1.3.2.1C).  

Furthermore, while the dimer/trimer formation is also dependent on the salt concentration, 

the salt-induced aggregation of the MBA-capped nanoparticles is irreversible whereas the 
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centrifugation-induced aggregation of nanoparticles can lead to small clusters, which are 

dispersible and stable in the solution.   

 
(A)   (B)   (C) 

Figure 1.3.2.1. SERS spectra for MBA-labeled Au90nm on a Au-film substrate (A, Insert: SERS intensity at 

1591 cm-1 vs. particle size), MBA-labeled Au90nm in aqueous solution (B, Insert: SERS intensity at 1594 cm-

1 vs. nanoparticle size), and solutions of MBA in the presence of Au60nm after centrifuging at different speeds: 

2000 (a), 14000 (b) rpm (C, Insert: UV-vis spectra for the corresponding solutions).  (Reproduced with 

permission from ref.23. Copyright 2008 IOP science.) 
 

The controlled interparticle linkage could also lead to assembly of the nanoparticles 

into thin films with changes in optical and electrical properties that are dependent on 

particle size and interparticle spacing parameters.  For example, the SP band for thin film 

assemblies of AuNPs of different sizes which are linked by alkyl dithiols (ADTs) or 

carboxylic acid-functionalized thiols (CATs) of different alkyl chain lengths are studied as 

a model system is shown to exhibit a red shift of the SP band (lmax) in comparison with the 

solution counterpart,57 depending on the chain length (n) (Figure 1.3.2.2A) and the particle 

diameter (2r) (Figure 1.3.2.2A insert).57  The correlation of the SP band evolution with 

particle size, interparticle distance, and dielectric medium properties is in agreement with 

Mie theory, providing information for assessing the optical properties for the 

nanostructured thin films.57  Such optical properties have also been observed for 

molecularly-mediated assembly of AuAg58 and Fe3O4@Au NPs.45  For example, the SP 

band for 1,6-hexanedicarboxylic acid (HDA)-mediated assembly of Au23Ag77 NPs shifts 
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to longer wavelength (515 nm) in comparison to that before the assembly (460 nm).58  The 

SP band shift is a common characteristic for NDT- or MUA-mediated thin film assemblies 

of AuNPs. 

   

(A)      (B) 

Figure 1.3.2.2. (A) Surface plasmon resonance band wavelength lmax vs. interparticle chain length and 

particle size (2r, insert) for thin film assemblies of Au NPs mediated by ADTs of different chain lengths (HS-

(CH2)n-SH).  (B) Electrical conductivity vs. temperature and interparticle distance for thin film assemblies of 

2-nm Au NPs mediated by ADTs of different chain lengths (HS-(CH2)n-SH). (Insert plots: activation energy 

vs. interparticle distance, and comparison of experimental (solid lines, triangle) and calculated results (dashed 

lines, square) for two different particle sizes).  (Reproduced with permission from refs. 59, Copyright 2007 

Royal Society of Chemistry, and from ref. 57, Copyright 2008 American Chemical Society.) 

 

Figure 1.3.2.2B shows the experimentally determined conductivity and activation 

energy data for ADT-mediated thin film assemblies of AuNPs of two different sizes (2 and 

4 nm) and different chain lengths (0.8 – 2 nm) on interdigitated microelectrodes (Figure 

1.3.2.2B), revealing a linear dependence on interparticle distance and particle size.59  On 

the basis of activated electron tunneling proposed first by Murray et al. in studying the 

electrical conductivity () of monolayer-protected nanoparticles, the electrical 

conductivity depends on activation energy (EA, kJ/mol), T (K), electron coupling term (), 

interparticle distance (), and intrinsic conductivity of the nanoparticles (0) as defined in 

Abeles’s electrostatic model.  The experimental data show very good agreement with the 

theoretical model in terms of activation energy increase with chain length and decrease 
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with particle size.60  AuAg nanoparticle thin film assemblies also exhibit similar trends.58  

The detailed electron transport in the nanoparticle films depends on other factors, as 

evidenced by the observation of CO2-plasticizing effect on the electrical conductivity.60  

1.3.3  Computational modeling of NP assemblies 

 The application of noble metals in many areas of research have been exhaustively 

studied throughout the past few decades.72-74  Many of which have been employed in 

biological sensors, but others have also been used as catalysts in different fuel cell 

devices.74-76  Particularly, gold – and silver – based nanoparticles are commonly applied in 

areas of biological interest for different theranostic approaches, as previously 

mentioned;72,73 however alloys of gold used in catalysts have showed promising results.  

For instance, Chang et al. demonstrated the enhancement in Pt-Au alloy nanowires over 

the NP counterparts in the reduction reaction of oxygen.  They found that there was a 

synergy within the metals in the NW due to the absorption energies and decrease in atomic 

distance.76  Other common noble metals, like Cu, Ni, and Fe, have been alloyed or 

composited with plasmonic metals to further enhance the manipulation and signal produced 

from these components.77-79  Although the combination of these metals show great 

advancements in research, the application of these systems are limited in the design and 

plasmonic effect. 

 To further understand the role of the metals in these applications, researchers have 

explored the use of computational methods.80-86  Such applications have involved different 

numerical approaches, like extended Mie theory, discrete dipole approximation (DDA, 

DDSCAT), and finite difference time domain (FDTD).  All of these methods use different 

approaches to solve Maxwell equations and monitor the surface charges of the particles 
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used.84-86  For instance, Punji et al. demonstrated the capabilities of numerical approaches 

to further substantiate the assembly of nanoparticles using the scattered intensity at a set 

gap distance based off a generalized Mie theory.82  Similarly, Albella et al. discussed 

findings on the application of the numerical approach, discrete dipole approximation 

(DDA), to monitor the changes in the plasmonic bands of the Ag nanotip.83  Although many 

of these approaches employ Mie theory to monitor the plasmonic changes, they account 

for the system as a whole and not as individual parts.84-86  To accommodate for the 

generalized equations, a simulation toolbox was developed that discretizes the surface 

boundaries between different dielectric materials called boundary element method 

(BEM).84-86  This method commonly used for metal NPs and focuses on the optical changes 

to simulate plasmonic and electromagnetic changes of metal nanomaterials 

(MNPBEM).84,85,87  The implementation of this toolbox can provide an understanding of 

the simulated electromagnetic field enhancement observed experimentally. 

1.4   Application of Bio-functional nanoprobes and assemblies 

1.4.1  Colorimetric detection of amino acids and small peptides 

Thiol-containing amino acids, such as cysteine (Cys) and homocysteine (Hcys), and 

small peptides, such as glutathione (GSH), are important biomolecules9,24,50,54,61,62 because 

of their linkages to cardiovascular disease and other medical disorders.  In the studies of 

Hcys- and Cys-mediated assembly of AuNPs,53,54 the interparticle interaction is proposed 

to involve zwitterion-type electrostatic interaction of the amino acids attached via thiol 

group on the surface of AuNPs.  The change of the SP band as a result of the interparticle 

interactions enables colorimetric or fluorimetric detection of the amino acids.  For 

glutathione (GSH, a tripeptide and a reducing agent or antioxidant), the assembly of AuNPs 
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involves primarily hydrogen-bonding.  In general, the interparticle zwitterion-type 

electrostatic and hydrogen-bonding interactions of these systems can be illustrated in 

Figure 1.4.1.1 (top panel).  Cys is essential to the function of proteins and enzymes, in 

which the molecular chirality has important implications to medicine for specific targeting.  

Chiral recognition of cysteine driven by AuNPs is discovered, as shown in Figure 1.4.1.1 

bottom panel.62   

 
Figure 1.4.1.1. Top panel: Interparticle zwitterionic interaction, chiral recognition and hydrogen-bonding for 

the assembly of AuNPs by Hcys, Cys and GSH.  Bottom panel: (Left): Kinetic plots of SP band absorbance 

(at 630 nm) for assemblies of Au13nm in the presence of LL- (●), DD- (■), and DL- (▲) Cys.  The dotted lines 

represent curve fitting by a 1st order reaction model.  Insert: UV-Vis spectral evolution for the Au13nm 

mediated assembly of LL- (a), DD- (b) and DL- (c) Cys.  The arrows indicate the direction of the spectral 

evolution.  (Right): Normalized rate or rate constant (k) vs. enantiomeric percentage of cysteines (%) in the 

presence of AuNPs of two different sizes Au60nm (■) (pH = 5), Au13nm (●) (pH = 6) and Au13nm (▲) (pH = 7).  

Inactivity was also illustrated for mixing Au13nm with NAC (♦).  (Reproduced with permission from ref. 62, 

Copyright 2009 American Chemical Society.)  

 

For the visualization of the nanoparticle-driven pair-wise zwitterionic interactions by 

enantiomeric cysteines adsorbed on AuNPs, imagine a hypothetical quasiplane for the 

interparticle zwitterion interaction of different chiralities (L and D) (see the structural 
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model), including homochiral (LL and DD) and heterochiral (DL) modes.  There are 

differences between the homochiral and heterochiral interactions based on thermodynamic 

considerations and computational modeling results.  The assembly of AuNPs by 

interparticle pair-wise zwitterionic interaction of the cysteines adsorbed on AuNPs can be 

monitored by the change of the surface plasmon (SP) resonance band of AuNPs.  Upon 

introducing cysteines into a solution of AuNPs of 13 nm diameter (Au13nm), and the SP 

band decreases in absorbance at 520 nm and increases in the ~630 nm region (Figure 

1.4.1.1 bottom panel), displaying an isosbestic point at ~540 nm.  The apparent rate 

constant (k) obtained by curve fitting of the SP band evolution using 1st-order kinetics 

(Figure 1.4.1.1 bottom panel) shows k values of ~1 order of magnitude greater for the LL 

and DD assemblies than that for the DL assembly (50% L and 50% D).  By modeling the 

interparticle pair-wise dimerization using an idealized model, the heterochiral dimerization 

is found to be less favorable than the homochiral, which is indeed evidenced by the 

experimental data (k(DL) << k(LL)  k(DD)), and a minimum reaction rate at an enantiomeric 

fraction(L) of 50%.  The correlation between the apparent rate (r) or k of the interparticle 

reactivity and the relative concentration of the enantiomer (L%) is shown in Figure 1.4.1.1 

bottom panel for AuNPs of two different sizes, revealing a characteristic “valley” feature 

with the minimum appearing at 50%L:50%D.  The important role of the pair-wise 

zwitterionic interaction in the interparticle chiral recognition and nanoparticle assembly is 

further supported by the inactivity for the assembly of AuNPs using N-acetyl-L-cysteine 

(NAC) as a mediator.   

The interparticle homochiral vs. heterochiral reactivities feature preferential 

interaction and differentiation of the enantiomeric structures, which have important 
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implications to the exploration of the nanoparticle-driven chiral recognition of cysteines in 

biomedical applications.  One example involves early diagnosis and identification of 

elevated levels of cysteine to medical disorders (e.g., Parkinson’s and Alzheimer’s).  

Another potential application is the development of an effective route for controlling the 

enantiomeric specificity considering the fact that L-cysteine’s deficiency is associated with 

a number of clinical situations (liver damage, skin lesions, AIDS, etc.), yet the role in the 

central nervous system is not well understood and D-cysteine interferes with many targets 

inside the cell.  The exploration of the nanoparticle-driven chiral recognition differs from 

chiralities with single-crystal surfaces and chiral structures on metal NPs mainly in terms 

of the interparticle chiral reactivity. 

1.4.2  Functional nanoprobes for cell transfection and bacteria inactivation 

The explorations of functional nanoparticles for cell transfection and bacteria 

inactivation have attracted increasing interest in recent years due to their potential 

applications in drug delivery and drug discovery.  One example involves miRNA-

conjugated AuNPs for cell transfection, which has potential application in delivering 

miRNA into cells for genetic manipulation and cancer treatments, such as the resistance of 

multiple myeloma (MM) to glucocorticoid treatment.  The use of AuNPs for the delivery 

of siRNA (small interfering RNA) into cells for efficient knockdown of target genes 

without significant cytotoxicity exploits the unique optical properties, low cytotoxicity, and 

enhanced lifespan in the blood stream.63  The manipulation of genetic expression has been 

demonstrated recently for miR-130b which express differently in glucocorticoid-sensitive 

versus glucocorticoid-resistant MM.1 cell lines.  Figure 1.4.2.1A shows a scheme for using 

miR-130b conjugated AuNPs in cell transfection.  Its over-expression in the MM.1S cell 
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line decreases the expression of a glucocorticoid receptor protein (GR-a), inhibiting 

glucocorticoid-induced apoptosis of cells. 

  
(A) 

   
 (B)     (C) 

Figure 1.4.2.1. (A) Preparation of miRNA-AuNP conjugates for delivering miRNAs to cells (miRNA is 

labeled with fluorescent dyes (e.g., Cy5)). The sense and antisense miRNA were combined first to form 

miRNA duplexes which are then immobilized onto AuNP via thiol group, followed by refilling with 

oligoethyleneglycol thiol (OEG) to keep the miRNAs from folding and electrostatically binding. (B) 

Confocal/fluorescent microscopic image: MM.1S cells 48 hours after transfection was initiated with Cy5-

labeled miRNA-AuNPs. (C) Plot showing the result of the functional luciferase assays for Cy5 (black bars) 

and Cy3 (red bars) labeled miRNA-AuNPs, and a mimic system (insert chart).  (Reproduced with permission 

from ref. 53, Copyright 2012 American Chemical Society.)  

 

For demonstrating miRNA-conjugated AuNPs in cell transfection, a multiple 

myeloma cell line (MM.1S) is used.  Figure 1.4.2.1B shows the uptake of the conjugated 

nanoparticles Cy5-miRNA-AuNPs in the MM.1S cells, as evidenced by the clear contrast 

in fluorescence from the dye-labeled miRNA-AuNPs.  The ability for the conjugated 

nanoparticles to reduce luciferase expression is further evidenced by functional luciferase 

assays (Figure 1.4.2.1C).  Upon increasing concentration (to 2nM) of Cy5-miRNA-AuNPs, 

an observable reduction in gene expression is observed.  Considering ~15 miRNA per 



30 

 

AuNP in the miRNA-AuNP solution for the luciferase knockdown and comparing the 

knockdown efficiencies between siRNA-AuNPs (~20% at 48 hours, ~33 siRNAs per 

particle 52) and miRNA-AuNPs (~40% at 48 hours), the miRNA-AuNPs are found to be 

more efficient at a much lower concentration52 for the transfection of the miRNA-AuNPs 

in multiple myeloma cells.  

Another area of interest involves the development of functional antibacterial agents 

in biological fluids, which stems from the need to store platelets at room temperature where 

pathogen contamination can occur and pose a risk of infection associated with transfusion.  

It would be desirable to introduce antibacterial particles in the platelets for inactivating 

bacteria which can be subsequently separated out prior to transfusion.  For AgNPs, the 

added value of incorporating magnetic function is the ability of efficient bacterial 

disinfection with reduced presence of Ag ions in the fluid.  One intriguing approach 

involves the introduction of the magnetic cores (M) into the AgNPs to enable effective 

separation, delivery and targeting.  This approach is illustrated in Figure 1.4.2.2A for 

developing M@Ag NPs for bacterial inactivation in blood platelets.  The reduction in 

bacterial growth of several types of Gram-positive bacteria (e.g., Staphylococcus aureus 

and Bacillus cereus) and Gram-negative bacteria (e.g., Pseudomonas aeruginosa, 

Enterobacter cloacae, and Escherichia coli) has been examined to assess bacterial 

inactivation efficiency of the functional MZF@Ag NPs.  For the growth of Gram-positive 

Bacillus cereus in saline solutions containing antimicrobial NPs over a 24-hour period and 

the bacterial concentration exhibits a clear reduction as a function (Figure 1.4.2.2B (Left)).  

For Gram-negative Enterobacter cloacae, an increased speed of inactivation is observed 

(Figure 1.4.2.2B (Middle)). 
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(A) 

  
(B) 

Figure 1.4.2.2. (A) Schematic illustration of magnetic core@shell nanoparticles (M@Ag) as a functional 

antimicrobial agent in blood platelets and the magnetic separation. (B) Experimental data for the inactivation 

of Bacillus cereus (Left) and Enterobacter cloacae (Middle) in a PBS buffer (a), in a solution of MZF@Ag 

NPs (b), and in a solution of AgNPs (c); and E. coli (Right) in water (a), MZF NPs (b), and MZF@AgNPs 

(c) in blood platelets.  (Reproduced with permission from ref. 9, Copyright 2011 American Chemical Society.)  

 

For blood platelet samples containing E. coli, the inactivation by MZF@AgNPs is 

also effective, as demonstrated by the drop of bacterial concentration below a detectable 

level after only 6 hours of exposure (Figure 1.4.2.2B (Right)).  The inactivation is mainly 

caused by the direct contact of Ag on NPs rather than Ag ions leached into the solution.  

Considering the low level of the amount of silver found in the platelets, the use of 

MZF@Ag NPs as a functional antibacterial agent is potentially much safer when giving a 

transfusion after the removal of the magnetic core-shell nanoparticles.  In light of the 

increasing use of AgNPs as antimicrobial agent in commercial products in terms of the 

nanotoxicity,64 the magnetically-functional nanoparticles could offer the ability to reduce 
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the unwanted toxicity, which is clearly desired from the patient or the environment 

perspectives.   

While the unique properties of metal nanomaterials enable new opportunities in 

theranostics, some of the nanoparticles may have unpredictable toxic potential upon being 

released into the environment during use or disposal, either unintentionally (such as during 

wear and tear), or intentionally (such as nanomedicine).  There is a need to evaluate the 

potential toxic effects of nanoparticles.  While gold-based nanoparticles have shown the 

least nanotoxicity towards different biological systems in comparison with various 

nanoparticles, there are increasing studies to understand the nanotoxicity.  For example, 

exposure to Co and Ni NPs is shown to cause lung inflammation in rats, and oxidative 

stress and increased matrix metalloproteinase-2 and -9 expression and activity for human 

monocytes.65  Several studies also demonstrated that exposure to some metal nanoparticles 

may cause genotoxic effects.  For example, exposure of A549 cells to Co NPs has been 

shown to cause DNA damage, whereas their exposure to TiO2 NPs does not cause DNA 

damage.66  Exposure to CoNPs is shown to cause an increase in Gadd45 expression in 

cells which could invoke various cellular responses such as cell cycle arrest, apoptosis, and 

importantly, DNA repair.  Understanding the potential toxic and genotoxic effects of 

nanoparticles is important for the development of safe nanomaterials for the various 

applications. 

1.4.3  SERS detection of proteins and DNA via assembly, disassembly, or separation 

Gold (or silver) nanoparticles and magnetically functional Au or Ag NPs have been 

demonstrated the viability for SERS detection of the bio-reactivity of proteins and DNA 

with magnetic separation capability.23,24  The exploitation of the specific and selective 
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binding activity between antibodies and antigens on NPs serves as important means of 

sandwich-type immunoassay.  SERS readout of the assay has the capability of 

multiplexity.12  This type of protein recognition was recently expanded to the interparticle 

assembly between reporter-labeled AuNPs and magnetic core (M)@AuNPs for achieving 

both magnetic bio-separation and SERS-based bio-detection (Figure 1.4.3.1).23,24  

Attributes such as magnetic separation capability, enhanced stabilization of the magnetic 

particles, fine-tunable surface to impart biocompatibility have been demonstrated by a 

number of examples involving the immobilization of recognition sites on Au or M@Au 

NPs and spectroscopic labels for detection.23,24  The plasmonic coupling of the localized 

fields between nanoparticles and substrates produces an enhanced SERS effect,12,13 as 

evidenced by the size correlation of the surface plasmon resonance properties for AuNPs.23  

In particular, dimer/trimers of the NPs in the solution via interparticle interactions produce 

“hot-spots”13 for the SERS effect,15,25 which is illustrated in Figure 1.4.3.1 insert for 

developing SERS and magnetic nanoprobes for bio-separation and detection.   
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Figure 1.4.3.1. Illustration of the use of surface functionalized Au and magnetic core (M)/shell (Au) 

nanoparticles in bio-separation and detection to study the reactivity between protein A-labeled Au 

nanoparticles: L-Au-A and antibody-labeled M/Au nanoparticles: Ab-M/Au. Insert (right): SERS spectra 

showing the assembly of Au (80 nm) nanoparticles labeled with Protein A or BSA and MBA and M@Au 

NPs (~8 nm) labeled with antibody (IgG).  (Reproduced with permission from ref. 23. Copyright 2008 IOP.) 

 

As a proof-of-concept demonstration of SERS detection of the protein A-antibody 

binding activity, Raman label (L =MBA), Protein A (A) and antibody (Ab) are conjugated 

onto Au and M@Au (or Ag) nanoparticle surfaces.23,24  Upon applying a magnetic field to 

the solution containing the reaction product between Protein A capped AuNPs with a 

Raman label (L-Au-A) and the antibody-capped M@Au NPs (Ab-M@Au), samples are 

collected and then analyzed.  The reactivity with bovine serum albumin (BSA) serves as a 

control experiment.  Diagnostic signals of the MBA are clearly detected for the separated 

product ((L-Au-A)-(Ab-M@Au) pair) in the SERS spectra.  In contrast, there are no signals 

for the (L-Au-BSA)+(Ab-M@Au) combination in the control experiment using BSA.  This 

proof-of-contrast experiment demonstrates the viability of magnetic nanoprobes for SERS 

bioassays, which has been supported by a number of examples.9,23,24,54,61,62 

The creation of the SERS “hot-spot” is an important element of the nanoparticle-based 

strategy for the detection of DNA bioactivities (Figure 1.4.3.2).17,20  The use of magnetic 

nanoparticles with gold or silver shells with a Raman label (RL) has important advantages 

in overcoming many of the challenging problems in bio-probing.  This strategy has in fact 

attracted both fundamental and practical interests because of potential applications in areas 

such as ferrofluids, medical imaging, drug targeting and delivery, cancer therapy, 

separations and catalysis.  A key advantage is the ability of exploiting the rich and 

controllable surface chemistry and spectroscopic properties of gold or silver while 

maintaining the magnetic properties of the cores for the desired bio-separation capabilities.  
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Figure 1.4.3.2. Illustration of formation of "hot-spot" upon ds-DNA assembly of ss-DNA/M@Au NP with 

RL-AuNP via molecular recognition with free complementary ss-DNA in the solution, and dismantling of 

"hot-spots" following the enzymatic cutting of the ds-DNA using restriction enzyme and magnetic separation 

characteristic.   

 

As an expansion to the demonstration of using highly monodispersed gold NPs as 

SERS-active nanoprobes,15,24 and M@Au NPs on Au substrates for sandwich-type 

immunoassay detection,8,23,24 the small clusters of DNA-linked gold NPs and M@Au or 

Ag NPs were recently shown to be stable enough in solutions to allow SERS detection of 

DNA in terms of assembly and enzymatic cutting.17,20  The later efforts, built upon our 

abilities to enable the nanoparticles magnetically functional and/or SERS-active,9,49 now 

show promises in terms of proof-of-concept demonstration for the feasibility of the DNA 

detection, an area related to p53 mutation for cancer diagnostics,17 and miRNA detection 

related to cell transfection in cancer therapeutics.9  Consider first the use of AuNPs of 

different sizes as nanoprobes for DNA assembly and its enzymatic cutting in an aqueous 

solution using two different DNA strands with a thiol modification (bottom-DNA and top-

DNA, designed using the cyclin G promoter sequence for p53 recognition)17, the 

complementary binding of which forms a double strand (ds-DNA).  In one solution, AuNPs 

are conjugated with one of the single-stranded (ss), e.g., ss-bottom-DNA.  In another 

solution, AuNPs are labeled with Raman reporter molecule (e.g., MBA).  As shown in 

(Figure 1.4.3.3), by mixing the two solutions in the presence of free top DNA strand, 
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MBA's diagnostic bands can be detected as a result of the formation of ds-DNA-AuNP 

assemblies with an interparticle “hot-spot”. 

    

(A)   (B) 
Figure 1.4.3.3. Au NP-based SERS detection using a 30 bp DNA sequence where "hot-spots" form upon 

assembly of ss-DNA/AuNP with MBA/AuNP in an aqueous solution (A) ((a) bottom-DNA/AuNP mixed 

with MBA/AuNP; (b) bottom-DNA/AuNP and MBA/AuNP after addition of top-DNA), and MspI cutting of 

the ds-DNA/AuNPs (B) ((a) the ds-DNA/AuNPs; (b) after MspI addition.  (Reproduced with permission from 

ref. 17. Copyright 2013 Royal Society of Chemistry.) 

 

Figure 1.4.3.3A shows an example where controlled mixing of solutions of 13-nm 

bottom-DNA/AuNP and 39-nm MBA/AuNP in the presence of top-DNA, a gradual 

increase of the diagnostic Raman bands of the MBA label is observed at 1078 and 1594 

cm−1, corresponding to MBA’s ν(CC) ring-breathing modes.  Figure 1.4.3.3B shows 

another example where a restriction enzyme (e.g. MspI) is introduced into the solution of 

ds-DNA/AuNPs assembly, which is known to cut ss-DNA at CCGG site.  A clear decrease 

of the SERS intensities of the diagnostic peaks at 1078 and 1594 cm-1 is revealed, due to 

the removal of the interparticle “hot-spot” by restriction enzyme cleavage of the ds-DNA, 

demonstrating the important role of the interparticle “hot-spot” in the SERS detection. 

This strategy is expanded to use gold (or silver)-decorated magnetic nanoparticles as 

nanoprobes for demonstrating DNA assembly and enzymatic cutting in solutions.  Gold- 

and silver-decorated magnetic MnZn ferrite nanoparticles (MZF@Au or MZF@Ag) have 

been studied for demonstrating the viability.20  The distributions of the expected 
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components in MZF@Au, Fe, Mn, Zn, and Au, can be identified in HRTEM and EDS.  

During the formation of ds-DNA linkage or breakage between AuNPs and MZF@Au (or 

MZF@Ag) NPs, interparticle “hot-spots” are formed for real-time SERS monitoring of the 

assembly and enzymatic disassembly processes whereas the magnetic components provide 

an effective means for intervention in the solution (Figure 1.4.3.4A). 

 
(A) 

 
(B)     (C) 

Figure 1.4.3.4. (A) Magnetic NPs coupled with Au NPs for SERS detection. (B) Example using a 30 bp DNA 

sequence where "hot-spots" form upon the assembly of ss-DNA/ MZF@Au with MBA/AuNP in an aqueous 

solution ((a) the mixture of MBA-Au and MZF/Au-DNA1, and (b) mixture of MZF/Au-DNA1 and MBA-Au 

in the presence of DNA2). (C) MspI cutting MBA-Au-ds-DNA-MZF/Au ((a) the MBA-Au-ds-DNA-MZF/Au 

solution; (b) after MspI addition).  (Reproduced with permission from ref. 20. Copyright 2013 Royal Society 

of Chemistry.) 

 

In the case of MZF/Au NPs (11 nm) and MBA-Au NPs (39 nm) forming interparticle 

ds-DNA of DNA1 and DNA2, two clear SERS peaks are observed at 1078 and 1592 cm−1 

(Figure 1.4.3.4B), indicative of the interparticle “hot-spot” formation due to assembly of 

MBA-Au-DNA1/DNA2-MZF/Au, forming dimers or trimers in the solution.  Upon 

addition of MspI into this solution, there is a clear reduction of the two diagnostic peaks 
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(Figure 1.4.3.4C).  After the enzymatic cutting, the MZF/Au NPs could be separated from 

the solution by applying a magnetic field.  Similarly, the MZF/Ag NPs were also 

demonstrated to be viable for SERS detection of the DNA activities and the magnetic 

intervention after the enzyme cutting process.20 

In many of the examples such as thiol-containing amino acids, peptides, miRNA and 

bacteria, the SERS strategy could also be useful for their detection.  For example, polymer-

mediated assembly of AuNPs have been used for SERS detection of bacteria biomarker 

such as dipicolinic acid (DPA) and calcium dipicolinate (Ca-DPA),67,68 which has 

application for developing rapid and accurate detection of bacteria in foods or biological 

fluids.  In contrast to AgNPs traditionally used as SERS substrates for biomarker detection 

(e.g., Bacillus subtilis), the strong SERS effect produced by the particle-particle and 

particle-substrate plasmonic coupling of AuNPs was demonstrated to exhibit high 

sensitivity and low detection limit for SERS detection of biomarkers released from 

bacterial spores.67,68 

1.4.4  Chemiresistive detection of biomarkers from human breath 

Molecularly-mediated thin film assembly of AuNPs has been demonstrated as sensing 

materials for chemiresistive detection of breath biomarkers linked to diabetes.29  The thin 

films can be prepared by a combination of mediator and template forces in one-step 

assembly process.  This assembly technique builds upon the place-exchange reactivity39 

and expands the layer-by-layer technique.36  The initial ligand exchange reaction is 

followed by interparticle linkages.  Examples include thiolate-Au bonding on AuNPs, 

hydrogen-bonding of carboxylic acid terminal groups on AuNPs, and selective 

carboxylate-Ag bonding on AuAg NPs.  For the linker molecules, functionalized molecules 
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are used, including alkyl dithiols (ADT, HS-(CH2)n-SH), carboxylic acid-functionalized 

thiols (HO2C-(CH2)n-SH), and dicarboxylate acids (DCA, HO2C-(CH2)n-CO2H).58,59,69  For 

example, 1,9-nonanedithiol (NDT)-linked thin film assembly of AuNPs involves Au-

thiolate bonding at both ends of NDT.57  These parameters determine the activation energy 

in a thermally-activated conduction path, and thus have an important impact to the 

electrical signal amplification.  The array can be coupled to pattern recognition techniques 

to enhance selectivity.69  The design of chemiresistive sensing arrays using the 

nanoparticle-structured thin films exploits the correlation between the electrical 

conductivity and the nanostructural parameters such as particle size, interparticle distance, 

and interparticle dielectric medium properties which determine the activation energy in a 

thermally-activated conduction path,70 and the electrical signal amplification.  For example, 

the correlation between the chemiresistive responses to the sorption of volatile organic 

compounds (VOCs) and the interparticle spatial properties69 is established for the use of 

molecularly-mediated thin film assemblies of Au and AuAg nanoparticles with ADT and 

DCA of different chain lengths58 as sensing array elements.  Similar to the correlation of 

interparticle distances with the collective electrical or optical properties,57,59,69 the balance 

of the interparticle chain-chain cohesive interdigitation and the nanostructure-vapor 

interaction is an important factor for the correlation between the sensor array’s sensitivity 

or selectivity and the interparticle spatial properties.  The interparticle spatial properties 

play a dominant role in the sensor response characteristics.   

This work is recently expanded to flexible chemical/bio sensors for scalable thin-film 

assembly and printing on flexible substrates that allow exploring the unique 

electrical/optical properties under various device strains for detection of chemical, 
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biological or biomarker molecules (Figure 1.4.4.1A).70,71  One important aspect of the 

flexible chemical and gauge sensors explores the unique correlation between chemical 

sensing and device strain characteristics under different vapor/gas atmospheres.  A major 

finding is that an increase in resistance is observed in tensile strain (ts), and a decrease in 

the compressive strain (cs), displaying ∆R in the order of (hexane) > (nitrogen)  (acetone) 

>(ethanol) (Figure 1.4.4.1B).  The increase of the interparticle distance is responsible for 

the increase of resistance in the case of tensile strain, whereas the decrease of the 

interparticle distance leads to a decrease of resistance in the case of compressive strain.  

The overall changes reflect a combination of the interparticle spatial and dielectric 

properties as a result of vapor sorption in the thin film, which follow the theoretical 

prediction for some cases.  This study demonstrated the ability to tune the interparticle 

interactions via capping or linking molecules that can work cooperatively with the device 

strains and chemical environment over the device, an important feature for multifunctional 

devices. 

 

(A) 
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(B)      (C) 
Figure 1.4.4.1. (A) Illustration of thin film of nanoparticles assembled or printed on a flexible chemiresistor 

device for detection of vapor molecules (VOCs, biomarkers, etc.).  (B) Response profiles of relative change 

in resistance (R/R=R/RFL) for a flexible device with an NDT–Au2nm film in response to horizontal bending 

under nitrogen (a-b), ethanol (c-d), hexane (e-f), and acetone (g-h).  Strains: solid lines (tensile, ts), dashed 

lines (compressive, cs).  (C) PCA score plots in the PC1-PC2 plane (PC1: 96.8%; PC2: 2.9%.) for a 

chemiresistor array of thin film assemblies of Au NPs in response to several vapor samples: air (blank), 

acetone (210 ppm(M) in air), human breath (HB), and HB spiked with acetone.  (Reproduced with permission 

from ref. 71. Copyright 2014 Royal Society of Chemistry, and from ref. 29, Copyright 2012 Elsevier 

Publishing).  

 

To explore the sensor arrays with assembled or printed nanoparticle thin films for 

chemical sensing of biomarkers in human breath linked to diabetes or lung cancers, a 

preliminary proof-of-concept experiment (Figure 1.4.4.1C) has demonstrated the viability.  

In addition to showing the viability for quantitative detection of acetone, the results from 

the array’s response data to different samples of human breaths (HB1 and HB2) along with 

the various control experiments have demonstrated that the sensor arrays with 

nanostructured sensing films are viable for the detection of acetone, which is a volatile 

biomarker in diabetics’ breath.  The initial results have demonstrated the potential of the 

sensor arrays coupled with pattern recognition for the detection of acetone.  Further 

optimization of the performance parameters could lead to portable and noninvasive 

monitoring of diabetes.68,69,27  As shown by the PC1-PC2 plots in Figure 1.4.4.1C, air, 

acetone, human breath, and acetone-spiked human breath samples are clearly separated, 

demonstrating the feasibility of distinguishing human breath (with or without spiked 

acetone) from air (with or without acetone), as well as the potential of the sensor arrays 

coupled with pattern recognition for the detection of acetone in diabetic breath. 

In these illustrated examples, the ligand-framework nanostructures are exploited in 

terms of electrical and mass transfer properties.  For many other nanoparticle assemblies 

that are structurally defined for harnessing the collective nanoscale electrical, optical, 
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magnetic and spectroscopic properties, the basic principles are expected to operate 

similarly.  A wide range of technological applications should benefit from further detailed 

delineation of the interparticle parameters in terms of size, shape, composition and surface 

properties to optimize the multifunctional optical, magnetic and spectroscopic properties 

of the molecularly-mediated thin film assembly of nanoparticles. 

1.5   Current Status and Objectives of Thesis Work 

 The development of biosensors for detecting and targeting molecules in various 

bioassays has made significant advances.  However, a major challenge of the design of 

these sensors is the limited understanding of the interparticle spatial characteristics of the 

NPs that dictate the formation of the hotspot and the related spectroscopic intensity.  This 

understanding is important for using NPs as probes in detecting different molecules in 

solution, especially when the concentrations are very low.  The overall goal of this thesis 

work is to understand the interparticle plasmonic coupling induced SERS and LSPR 

characteristics by experimental measurements and theoretical simulations for establishing 

the correlation between the interparticle structures and the spectroscopic properties.  To 

this end, well-established molecular/biomolecular interactions were explored as model 

systems for the control of the interparticle spatial properties.  This control will allow 

tunability of the nanoprobes for achieving sensitive and selective detection of various 

molecular and biomolecular activities.  The specific objectives of the thesis work are 

outlined below. 

1.5.1  To explore Interparticle π–π* stacking of dye molecules adsorbed on 

nanoparticles 
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 The aggregation of dye molecules through π–π* stacking serves as a well-defined 

molecular glue of nanoparticles.  Such molecules display characteristic optical adsorption 

and Raman-active scattering bands for the spectroscopic detection.  In Chapter 3, results 

will be shown for the characterization of the π–π* stacking of cyanine dye molecules 

immobilized on the surface of AuNPs, as a model system.  This type of dye-induced 

aggregation of the NPs enables the control of the molecular distance between the NPs.  The 

interparticle spatial characteristics upon the π–π* stacking of dye molecules will be 

discussed, which has provided new insights into the control of interparticle plasmonic 

coupling for understanding SERS and LSPR. 

1.5.2  To investigate the interparticle spatial properties in nanoparticle-based 

immunoassays 

 Antigen-antibody recognition is a well-established key-lock mechanism, where 

every antigen has a lock that only a few antibodies have the key to open.  This mechanism 

has been continually used in the identification of many diseases and protein biomarkers 

that signify the development of diseases.  The ability to identify biomarkers early enough 

is essential for performing effective treatments.  There is a clear need for the establishment 

of methods in the rapid and early detection of diseases, with high sensitivity, high 

specificity, and low detection limit.  In Chapter 4, results will be shown for the SERS 

characterization of the interparticle interactions using antibody (goat anti-rabbit IgG) - 

protein A as a model system.  In doing so, we focus on understanding how the interparticle 

distance of the biomolecule system in solution correlates with SERS intensity under 

different concentrations of target and capture molecules. 
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1.5.3  To investigate the interparticle interactions of duplex DNA-mediated assembly 

of gold nanoparticles for SERS detection of DNA in solution 

 Duplex DNA-mediated assembly of gold nanoparticles is another well-established 

biomolecular recognition system involving complementary binding of nucleic acids, which 

is important for the early detection of diseases.  While NP assemblies mediated by DNA 

or RNA via complementary binding have been extensively studied, the correlation of SERS 

and LSPR properties with the interparticle spatial properties of the NPs in solutions remain 

elusive.  This is largely due to their differences from those under dry conditions where the 

distance between the NPs are decreased by the desolvation of the NP and strands of DNA, 

thus proving a clear need to study the duplex defined interparticle distance for NPs in 

solution.  In Chapter 5, results will be discussed for the investigation of the duplex-DNA 

mediated NP assembly in terms of the interparticle spatial properties and the SERS/LSPR 

properties.  The results from both experimental measurement and computational modeling 

have provided new insights into the design and optimization of the functional nanoprobes 

for the SERS detection. 

1.5.4  To understand the interparticle spatial properties of duplex DNA-mediated 

assembly of plasmonic nanoparticles in the presence of magnetic cores. 

 Plasmonic-magnetic NPs provide an intriguing nanoprobe system for SERS 

detection.  The introduction of magnetic components into the plasmonic NPs allows for the 

manipulation of the location and concentration through an external magnetic field for 

different enhancement capabilities.  While there are increasing studies of the utilization of 

magnetic component in a NP composite to increase the plasmonic coupling, how the 

magnetic component influences the interparticle interactions is not well understood, 
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especially in terms of the optical and electrical properties.  In Chapter 6, results from our 

experimental and theoretical studies of magnetic core – gold or silver shell NPs will be 

discussed.  The findings provide new insights into the design of better SERS nanoprobes 

for the sensitive detection of DNA and other biomolecules in solutions. 
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Chapter 2 

Experimental Measurements and Computational Methods 

2.1 Chemicals and Materials.   

Hydrogen tetrachloroaurate (III) hydrate (HAuCl4, 99%), sodium citrate (99%), 

sodium acrylate (97%), sodium chloride (NaCl, 99%), sodium phosphate (NaH2PO4, 99%), 

p-mercaptobenzoic acid (MBA), dithiothreitol (DTT), oleylamine (OAM, 70%), benzyl 

ether, 9-decanethiol (DT, 99%), 11-mercaptoundecanoic acid (MUA, 97%), 

tetraoctylammonium bromide (99%), sodium borohydride (99%) were purchased from 

Sigma-Aldrich (Milwaukee, WI) and used as received.  Iron (III) acetylacetonate 

(Fe(acac)3, 99%, Lancaster), manganese (II) acetylacetonate (Mn(acac)2, 95% Strem), zinc 

acetylacetonate (Zn(acac)2, 98%, Strem), and oleic acid (OAC, 99%, Alfa Aesar) were also 

used for the synthesis.  Phosphate buffer (0.05 M, pH 7), carbonate/ borate buffer (0.05M, 

pH 10) and disodium phosphate (Na2HPO4, 99%) was purchased from Fisher Scientific 

(Pittsburgh, PA).  Dithiobis (succinimidyl propionate) (DSP) and 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide hydrochloride) (EDC) were purchased from 

ThermoFisher Scientific. 
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NAP-5 columns were purchased from Amersham Biosciences (Uppsala, Sweden).  

Pre-cast polyacrylamide gels and 10X TBE (0.89 M Tris, 0.89 M boric acid, 20mM EDTA) 

were purchased from Biorad Corporation (Hercules, CA).   

The solvents including hexane (Hx, 99.9%), benzene (Bz, 99.0%), and toluene (Tl, 

99.8%) were from Fisher and ethanol (99.9%) and acetone (99.9%) from Aldrich.  Water 

was purified with a Millipore Milli-Q water system to achieve a final resistance of 18.2 

MΩ. 

Protein and antibody were purchased from Pierce Biotechnology, Inc. (Rockford, 

IL).  DNA oligonucleotides were commercially made (Integrated DNA Technologies, Inc. 

Coralville, IA).  DNA were dissolved in 0.2 M phosphate buffer (pH 8) at 120 μM 

concentrations.  The sequences used are as follows: DNA1 (bottom strand): 5’-

/5ThioMC6-D/AGG CCA GAC CTG CCC GGG CAA GCC TTG GCA-3’ and DNA2 

(top strand): 5’-/5ThioMC6-D/TGC CAA GGC TTG CCC GGG CAG GTC TGG CCT-

3’.   

2.2 Instrumental Measurements.   

UV-Visible (UV-Vis) spectra were acquired with a Hewlett Packard 8453 

spectrophotometer.  The spectra were collected over the range of 200-1100 nm, using a 

solvent blank.  A quartz cuvette with a path length of 1.0 cm was utilized.  

Surface-enhanced Raman scattering (SERS) spectra were measured by an 

Advantage 200A Raman spectrometer (DeltaNu) and the data were collected from 200 to 

3400 cm−1.  The laser power and wavelength were 5 mW and 632.8 nm, respectively.  The 

integration time (counts s− 1) is 60 s for each set of data in this report, unless otherwise 

noted.   
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The hydrodynamic diameter of the NPs were monitored using NanoSight Tracking 

(NS300) by Malvern. 

 

2.3 Nanoparticle Synthesis.   

2.3.1 Citrate-Capped NPs.  The citrate-capped gold and silver nanoparticles were 

synthesized using the reported procedure.1  Briefly, 5 mL freshly prepared sodium citrate 

(38.8 mM) is added to 45 mL boiling solution containing 1 mM HAuCl4 or AgNO3.  Upon 

the addition of sodium citrate to HAuCl4, the color of the solution turned ruby-red, which 

is an indication for the formation of the gold nanoparticles. The solution is heated for an 

additional 30 min, then the heating mantle is removed and the nanoparticle solution was 

cooled to room temperature under continuous stirring.  For the solution AgNO3, the metal 

solution and sodium citrate were purged at least 10 min. prior to the reaction and changed 

from colorless to dark golden-yellow. The final solution is about 0.02% by weight of the 

metal. 

2.3.2 Acrylate-Capped NPs.  The acrylate-capped gold and silver nanoparticles 

were synthesized following a seeded growth procedure, previously reported.2-3  

Nanoparticles smaller than 30 nm in diameter were synthesized based on a reported 

protocol4 with a slight modification for the control of size.5-6  The final solutions are about 

0.004% metal by weight.  

Nanoparticle seeds (~10 nm) were synthesized by reacting aqueous solutions of the 

metal precursors and sodium acrylate at room temperature3-7.  For example, in the synthesis 

of 30 nm nanoparticle seeds, an aqueous solution of HAuCl4 (2.0 × 10-4 M) was mixed 

with sodium acrylate (12.0 × 10-3 M) and the mixture was stirred for 3 days at controlled 
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room temperature.  The resulting solution displayed a deep-red color characteristic of the 

formation of gold nanoparticles.   

Gold nanoparticles with diameters larger than the seeds were prepared by seeded 

growth via the reduction of AuCl4
- in the presence of presynthesized Au seeds2, 6.  The 

basic element of the synthesis protocols involved seed formation and seeded growth using 

a combination of reducing and capping agents, including sodium citrates, sodium acrylates, 

and acrylic acids.  The actual sizes of the resulting nanoparticles depend on the seed sizes 

and the precursor concentrations.  Briefly, seeds of Au nanoparticles of between 20 and 30 

nm diameter were first prepared.  The seeds then underwent a seeded growth reaction in 

the presence of HAuCl4 under a range of controlled concentrations of the reducing and 

capping agents to form large AuNPs (up to ~60nm).  To synthesize larger AuNPs (up to 

~100 nm), larger seeds (e.g., 60 nm seeds grown from seeded growth) were used in 

combination with controlled concentrations of HAuCl4 and sodium acrylate.  The particle 

size was controlled by varying the concentration of the seeds and the concentration of 

AuCl4
-.  In addition, control of the pH of the reaction solution and the reaction temperature 

is essential to the control of seeded growth.  In most cases, the resulting particles displayed 

high monodispersity in the targeted size range.  In some cases, a small fraction of particles 

with smaller sizes were separated by centrifugation. 

Silver nanoparticles with larger NP diameters (40 nm) were prepared by the seeded 

growth method.  The metal precursor (AgNO3) was reduced in the presence of the smaller 

presynthesized Ag seeds and reducing agent (NaBH4).  The solutions were purged at least 

15 min. individually, before adding together and allowing to react for 3 days under 

vigorous stirring.   
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2.3.3 Au and Ag decorated MZF NPs.  The synthesis of MZF (magnesium, zinc, 

ferrite) nanoparticles was based on a method developed in our laboratory8, which involved 

thermal decomposition of metal acetylacetonate compounds, e.g., 0.469 g Fe(acac)3, 0.081 

g Mn(acac)2, and 0.087 g Zn(acac)2) in 20 mL of benzyl ether with 2 mL of oleic acid and 

2 mL of oleylamine. The mixture was refluxed for 60 min. The product was collected using 

a magnet. 

For the preparation of MZF/Au and MZF/Ag nanoparticles, a modified strategy of 

the thermally activated processing protocol was used.9  In a typical synthesis, 1.3 mL of 

concentrated Au-DT (or Ag-DT) and MZF nanoparticles (e.g., stock solutions of DT-

capped Au (2 nm, 33 μM) and OAM/OA-capped MZF (8 nm, 2.6 μM)) in toluene with 

certain ratio was placed in a reaction tube. The tube was then placed in a preheated Yamato 

DX400 gravity convection oven at 150 °C for 3 h. Temperature variation from this set point 

was limited to 1.5 oC. After the thermal treatment, the reaction tube was allowed to cool 

down, and the particles were re-dispersed in toluene.  The as-synthesized DT-capped 

MZF/Au and MZF/Ag particles were transferred to water by ligand exchange using 

mercaptoundecanoic acid (MUA). 

2.3.4 DT-capped AuNPs.  Gold nanoparticles of 2-nm diameter (Au2nm) 

encapsulated with decanethiolate monolayer shells were synthesized by two-phase 

reduction of AuCl4
- according to Brust’s two-phase protocol10-11 and a synthetic 

modification.12  The as-synthesized gold nanoparticles (DT-Au2nm) exhibited an average 

size of 2.0 ± 0.7 nm.  Gold nanoparticles with larger sizes were synthesized by a thermally-

activated processing route developed in our laboratory.13-14 Briefly, the solution containing 

the as-synthesized DT-Au2nm nanoparticles from the synthesis was heated at 150 C to 
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produce larger-sized Au nanoparticles.  Gold nanoparticles of 7.0 ± 0.5 nm diameters 

(Au7nm) produced by this method were used in this work.  Details for the morphology and 

size distribution can be found in previous reports.13-19   

2.4 Experimental Methods.   

2.4.1 DNA mediated assembly and restriction enzyme cleavage.  The detailed 

procedures for the assembly and the restriction enzymes cutting of the Au-DNA 

nanoparticle assemblies are as follows.   

2.4.1.1 Molecular assembly based on complementary oligonucleotides.  DNA1 and 

DNA2 were first dissolved in 0.1 M phosphate buffer (pH 8) at a concentration ranging 

from 300 to 370 μM.  The disulfide bonds in DNA1 and DNA2 were cleaved using an 

approach similar to the reported procedure20-24 where dithiothreitol (DTT) was added at 0.1 

M (final concentration) to ~10 OD of the nucleotides in a final volume of 400 μL.  The 

solution was allowed to react at room temperature for 2 hrs, and then put through a NAP-

5 column and an aliquot of 1.1 mL phosphate buffer (pH 8) was added to the column to 

elute the cleaved oligonucleotide.  The final concentration of the cleaved DNA was ~20 

μM with an OD260nm of 2.2.  The exact concentrations of DNA varied slightly depending 

on the specific experiment.   

The surface of 13 nm gold nanoparticles was functionalized with the cleaved DNA 

similar to the reported procedure20-24 to form DNA-Au.  Briefly, 1.45 mL of the cleaved 

DNA was added to 10 mL of gold nanoparticles (stock concentration 1.0 nM).  The solution 

was left standing at room temperature for 16 hrs, after which it was diluted to 20 mM NaCl 

and 10 mM phosphate buffer (pH 7) and allowed to stand for another 40 hrs at room 

temperature.  The DNA capped nanoparticles were then centrifuged and washed twice at 
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14,000 rpm (18,620 g) for 20 min (each time the solution was re-dispersed in a 20 mM 

NaCl/ 10 mM phosphate buffer (pH 7) solution) before being re-dispersed in its final 20 

mM NaCl, 10 mM phosphate buffer (pH 7) solution and stored at room temperature.   

The MBA labeled 11, 40, 60 nm gold nanoparticles were prepared as follows: 

sufficient volume of 0.1 mM MBA for a 50% surface coverage was added to 10 mL of 

gold nanoparticles (stock concentration 1.0, 0.1, 0.028 nM).  The solution was left standing 

at room temperature overnight.   

 To study the assembly of the DNA capped nanoparticle solution, 20 μL of DNA2 

was added to 250 μL of DNA1-Au in the presence of 500 μL of MBA labeled gold 

nanoparticles.  Then, the solution was heated to 80 oC using a quartz cuvette, or Raman 

cell, with a built-in liquid flow cell connected to a temperature controller, or in a water 

bath, for 20 min and gradually cooled down to room temperature.  The reaction monitored 

by UV-Vis and Raman, and the temperature of the solution was 80C controlled by using 

a temperature controller (Glas-Col, Digi Trol II) with the liquid flow controlled by a 

mechanical pump.   

2.4.2 Protein-mediated assembly.  Acrylate – capped gold nanoparticles (51.6  

2.0 nm) were synthesized following a seeded growth procedure.2, 5, 6  Protein A (proA) was 

dissolved in deionized water at a concentration of 1.3 mM and the antibody (goat anti-

rabbit immunoglobulin G) was used as purchased with a concentration of 9.6e-5 M.  The 

conjugation of AuNPs with the antibody (Ab) was similar to the reported procedure25-27 to 

form Ab/AuNP, and the same for the conjugation with the protein to form ProA/AuNP.  

The labeling of AuNPs with MBA (MBA/AuNP) was achieved by following a previously 

reported procedure25-27.   
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 Briefly, the aqueous solution of AuNPs was first reacted with the Raman label, 

different concentrations of MBA ranging from 1.1 - 13 μL (2 mM) and gently shaken for 

2 hrs.  The protein-coupling agent, DSP (7.8 μL of 1 mM) (or 10 μL of 0.1 M EDC), was 

then added to the solution and gently shaken for 30 min - 15 hrs.  The biomolecules were 

then added to the solution and gently shaken overnight (5 μL of antibody (Ab; antirabbit 

IgG; stock 2.4 mg∙ml−1) or 0.5 μL of protein (Protein A; stock 53 mg∙ml−1).  The resulting 

protein-capped nanoparticles were stored at room temperature. 

 Surface coverage of MBA (θ) theoretically estimated for 52-nm AuNPs was 0.07, 

0.5 and 0.7.  For the free protein (or antibody) assembly of gold nanoparticles in solution, 

0.5 μL of protein A (10 μM) (or 5 μL of antibody (2.4 mg∙mL−1)) was added to a solution 

(unless otherwise mentioned) containing 0.5 mL of Ab/AuNP (or ProA/AuNP) and gently 

shaken from 30 min to ~15 hrs.  For the bound protein (or antibody) assembly of gold 

nanoparticles in solution, 0.5 mL of ProA/AuNP (0.5 mL of Ab/AuNP) was added to a 

solution containing 0.5 mL of Ab/AuNP (0.5 mL of ProA/AuNP) and immediately 

analyzed or gently shaken for ~15 hrs.  Note the range of adsorption times were used to 

maximize adsorption of molecules and determine the lowest possible time required to 

obtain signal.  The assembly process was monitored using Raman spectroscopy before and 

after centrifugation at 14000 rpm for 15 min. 

2.5 Methods for Theoretical Calculations.   

2.5.1 Calculation of Interparticle Interaction Potentials.  The interparticle 

interaction potentials were analyzed by evaluating a simplistic dimer model of the steric 

repulsive and van der Waals attractive forces with relation to the interaction energies and 

the interparticle gap using equations (1) and (2).28-30  r, R1, and R2 are the particle radius of 
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the AuNP dimers where r is used for homo-sized dimers and R1 and R2 are used to denote 

the different size NPs in the hetero-sized dimers.  The  and  stand for the length and the 

diameter of a capping molecule on the nanoparticle surface in the steric repulsive and van 

der Waals attractive interaction energies with respect to the interparticle gap distance (D).  

In the steric calculations, the length and the diameter of the capping molecule (DNA) are 

10 and 2 nm, respectively.31-33  The Boltzmann constant (k, 8.617*10-5 eV K-1) and 

temperature (T, 298 K) used in this equation as well. 

𝐸𝑠𝑡𝑒𝑟𝑖𝑐  ≈  
100𝑟𝛿3

(𝐷 − 2𝑟)𝜋𝜎3
 𝑘𝑇 exp (

− 𝜋 (𝐷 − 2𝑟)
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For the van der Waals interactions, the size-dependent Hamaker constants were applied for 

the 3 different homo-sized dimers of 13, 39, and 62 nm, corresponding to 0.830212235, 

0.81772784, and 0.805243446 eV, respectively.33-36  All of the interactions were analyzed 

from a gap distance (D) from 0.1 to 60 nm.  The interparticle potentials were also calculated 

in terms of the effective shell thickness (0.1 to 10 nm) to identify the minimum energy (eV) 

and interparticle gap distance (nm). 

2.5.2 Computational Modeling of Interparticle Plasmonic Coupling and 

Electromagnetic Field.  The metallic nanoparticle boundary element method (MNPBEM) 

toolbox was developed by U. Hohenester based on the BEM approach by G. de Abajo and 

Howie.37  The MNPBEM toolbox determines the electrical intensity of the localized 
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surface plasmon resonances of the NPs to simulated the absorbance cross-section and 

enhancement intensity (log base 10) of the NPs when in an aqueous environment using 

optical constants and Maxwell equations to determine the surface charge and currents of 

the particles.37, 38  The simulation codes utilize the dielectric values of the environment (ε1 

≈ 1.77 or 1.332), the metal NP spheres and NP shells (ε2 and ε3) (Figure 2.5.2.1).  In these 

cases, the dielectric values of the metals (Au, Ag, Fe3O4, Co, Ni, Fe2O3 and Fe) in terms of 

energy (eV) and the respective real and imaginary parts over a range of 300 to 900 nm (1.4 

to 4.1 eV).39-42  Depending on the material used to coat the NPs, the dielectric constants of 

2.12 and 2.40 were used for DNA and cyanine dye, respectively.  The planes of excitation 

were x alone (1, 0, 0) or x and y (1, 0, 0; 0, 1, 0), with the detector in the z plane (0, 0, 1). 

   
(A)      (B) 

Figure 2.5.2.1.  Schematic of the NPs and its environmen: single core-shell NP (A) and 

dimer NP (B).37,38 

 

For each cros-section simulation, the resolution of the spherical NPs was maintained at 

150, resulting in 144 triangles on the particle for discretization (Figure 2.5.2.2).  For the 

cross-section analysis, the scattering, absorption, and extinction characteristics were 

calculated and integrated every 1 nm.   
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Figure 2.5.2.2.  Schematic of the resolution illustrating the discretized regions of the 

particles.37, 38 

 

Similarly for the simulated EMF enhancement the same particle resolution was used.  In 

these modeling, the excitation wavelength used is 632 nm and the output colorbar was 

maintained at 3 for comparison.  The resolution of the output grids to position the particles 

for the x axis were maintained at 2 points per grid box and 1 per grid box for the y axis 

(Figure 2.5.2.3).   

   
(A) 
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 (B)    (C) 

   
           (D)                     (E) 

Figure 2.5.2.3.  Schematic of the resolution illustrating the discretized regions of the 

particles (A) and the simulated EMF intensity and cross-sections of a single NP (B, C) 

and dimer NPs (D, E).37, 38 
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Chapter 3 
 

 

Harnessing the interparticle J-aggregate induced plasmonic coupling for 

surface-enhanced Raman scattering 
 

3.1 Introduction 

 The ability to harness the nanoparticles in solution is applicable in a broad range of 

applications by exploiting the plasmonic and spectroscopic properties.  The need to further 

understand the plasmonic coupling in addition to the surface plasmon resonance and 

surface-enhanced Raman scattering is necessary for detection of molecules with 

nanoparticles. 

 The highly conjugated p-structure characteristic of dye molecules plays a key role 

in various supramolecular or aggregate phenomena.  One important class of such 

phenomena is J- or H-aggregation, which is known for a variety of interesting 

photochemical, photoluminescence, electroluminescence, non-linear and other optical 

properties.1,2  The physical and chemical properties of an aggregate of cyanine dyes are 

determined by the non-covalent p-stacking interaction and molecular arrangement, which 

are explored as molecular building blocks in functional devices.  Due to stacking 

geometries and molecular ordering, the absorption spectrum red-shifts upon forming J-
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aggregates (brickwork- like) or blue-shifts upon forming H-aggregates (ladder-like) due to 

the interactions between the neighboring dipoles and the relative orientation.  Cyanine dyes 

serve not only as an ideal system of molecular glue,3 but also as an increasingly important 

class of probes for protein–ligand interactions via aggregation-related spectral singling, 

e.g., J-band and fluorescence, which are useful for non-covalent protein labeling and 

sensing.4  One intriguing system involves J-aggregate interaction with nanomaterials, as 

demonstrated earlier for an assembly of gold nanoparticles via the π–π* interaction of 

indolenine cyanine dyes5 and different conjugated molecules,6 such as perylene diimides 

with π–π* stacking and solvophobic interactions in J- or H-type configuration,7,8 and the J-

aggregate of a thiacyanine dye.9  There are two types of J-aggregation reported so far: one 

occurs on the surface of nanoparticles9–11 and the other occurs in between nanoparticles.5,6  

Questions such as what factors control the specific interparticle π–π* stacking structure 

and how such a structure determines the operation of plasmonic coupling for nanoparticles 

in solution remain elusive. 

 

http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/Articleimage/2015/CP/c5cp04920b/c5cp04920b-s1_hi-res.gif
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Scheme 3.1.1. (top panel) Molecularly tunable interface of J-aggregated cyanine dyes for harnessing 

interparticle plasmonic coupling. (a) Interparticle π–π interaction of positively charged cyanine dyes (Tlc) 

adsorbed on gold NPs capped with negatively charged acrylate or citrate capping molecules. (b) Brickwork-

like π–π stacking of Tlcs (J-aggregation).  (bottom panel) Harnessing the interparticle J-aggregate induced 

plasmonic coupling for surface-enhanced Raman scattering 

 

 The findings of an investigation aimed at addressing these questions through the 

measurement of surface plasmon resonance (SPR) and surface enhanced Raman scattering 

(SERS) characteristics using a combination of cyanide dyes and gold nanoparticles (AuNPs) 

as a model system will be discussed.  AuNPs function as a nanoprobe for probing the 

interparticle interaction via the so-called ‘‘hot-spot’’, as demonstrated in the exploration of 

dye-embedded core–shell colloidal nanoparticles for multiplexed SERS detection.12  In 

addition to the high SERS enhancement factor (as high as 1014),12 fluorescent dyes provide 

an additional 2–3 orders of magnitude amplification due to the additional resonance Raman 

enhancement, as demonstrated for the indocyanine green dye on colloidal silver and gold 

for application in living cells,13 and the multiplexed detection of different targeted 

oligonucleotides with a specific sequence and Raman labels.14  Fundamentally, the 

foundation for SERS is linked to local electric field enhancement (i.e., ‘‘hot-spot’’) for a 

dimer of NPs using the discrete dipole approximation method,15 where the E-field 

enhancement is dependent on the interparticle spacing.16–18a  Indeed, intriguing SERS 
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effects have been observed in studies of single gold nanoantennas, nanogaps from nano- 

dumbbells, and nanoparticle dimers, trimers and quadrumers,18 and, especially, in 

theoretical and experimental studies of silver nanoparticles.19  Despite the many SERS 

studies involving gold and silver nanoparticles, little is understood on how the SERS effect 

is correlated to the interparticle plasmonic coupling induced by interparticle π–π* 

interactions in solutions and kinetically.  This correlation is determined by monitoring SPR 

and SERS in the process of π–π* interaction and nanoparticle assembly.  As illustrated in 

Scheme 3.1.1, for a cyanine dye (i.e.,1,10-dibutyl-3,3,30,30-tetramethylindocarbocyanine 

iodide (Tlc)) electrostatically adsorbed on a gold nanoparticle (Aunm), the π–π* interaction 

of the Tlc molecules defines the interparticle spatial properties, which creates opportunities 

to tune the interface using different molecular dye structures for harnessing the interparticle 

plasmonic coupling. 

3.2 Experimental.   

 The synthesis of citrate-capped gold nanoparticles (Au13nm) was performed by the 

reduction of AuCl4
- by citrate under boiling condition; where citrate acts as both reducing 

and capping agents.1  Gold nanoparticles of larger sizes (30-100 nm) were synthesized by 

the growth of AuNP seeds by the reduction of AuCl4
- using acrylate at room temperature.2  

In this case, acrylate acts as both reducing and capping agents.  The stock concentration of 

gold nanoparticles was determined using the absorbance data and the average NP size.  The 

molar absorptivity for these nanoparticles was determined at the surface plasmon resonance 

band maximum.2a 

 The interparticle J-aggregation induced assembly of Aunm was carried out under 

ambient condition.  UV-Visible (UV-Vis) spectra were acquired with a HP 8453 
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spectrophotometer over the range of 200- 1100 nm.  A quartz cuvette with a path length of 

1.0 cm was utilized.  Surface-enhanced Raman scattering (SERS) spectra were measured 

by an Advantage 200A Raman spectrometer (DeltaNu) and the data were collected from 

200 to 3400 cm-1.  The laser power and wavelength were 5 mW and 632.8 nm, respectively. 

 The simulation of the surface plasmon resonance band and the electrical field was 

performed using MNPBEM toolbox,3 which involved setting up the nanoparticles’ 

boundary conditions and the dielectric environment to calculate the optical absorption and 

the electrical field around the nanoparticles.  Two AuNPs models were used in the 

theoretical simulations to understand the two naked AuNPs with an Tlc-defined 

interparticle distance.  The first provides a simplistic view of the interaction using a dimer 

and trimer model.  The second simulates a more-complexed system using “core-shell” 

dimer model; which considers the adsorption of Tlc on AuNP (Tlc shell: 1.5 nm thick, 

refractive index is 2.40) at an interparticle π–π* stacking distance (0.4 nm). 

3.3 Results and Discussion 

3.3.1 J-aggregation of cyanine dyes adsorbed on gold nanoparticles.  In comparison 

with the SPR characteristic of AuNPs, the J-aggregation of cyanide dyes is characterized 

by a red-shifted J-band with either a sharp peak or dip in the spectrum.  In contrast to our 

earlier work, with a different cyanine dye in the presence of AuNPs which showed a sharp 

peak for the J-band at ~630 nm,5 the Tlc dye’s J-band is shown as a dip at ~606 nm in the 

spectrum (Figure 3.3.1.1). 
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Figure 3.3.1.1. UV-vis spectra for Tlc (blue), AuNPs (red), and AuNPs in the presence of Tlc(green). Tlc 

(blue, [Tlc] = 1.23 μM), Au34nm (red, [Au34nm] = 0.155 nM), and Au34nm + Tlc (green, [Au34nm] = 0.155 nM, 

[Tlc] = 0.176 μM).  

 

Such spectral characteristics are related to interband and intraband interactions and depend 

on a number of factors such as the specific structure of the dye molecules, the nanoparticle 

size, composition, and surface charge.9  The model system for the NP-dye interaction 

incorporates a negatively charged surface due to the Citrate-/acrylate-capped gold 

nanoparticles (AuNPs, Aunm)20 and a positively charged surface from the Tlc.  Figure 

3.3.1.2A shows a typical set of spectral evolutions for the surface plasmon resonance (SPR) 

band of AuNPs (34 nm) as time increases in an aqueous solution upon addition of Tlc.  The 

broad emerging long-wavelength band at 600–800 nm, accompanied by a decrease of the 

band at 521 nm, is attributed to the SP bands of AuNPs as a result of interparticle linking 

by the π–π* stacking of the adsorbed Tlcs, forming small aggregates (e.g., dimers).  A clear 

isosbestic point is observed at ~560 nm between the two bands (Figure 3.3.1.2A), 

indicating the involvement of two types of species (unlinked and Tlc-linked AuNPs) at 
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equilibrium.  Overall, the spectral evolution reveals a clear increase of absorbance and 

broadening of the SP band, as reflected by the gradual increase in the longer-wavelength 

band (Figure 3.3.1.2B) and decrease in the shorter-wavelength band (Figure 3.3.1.2C). 

 

(A) 

 
 (B)       (C) 

Figure 3.3.1.2.  (A) Surface plasmon resonance spectral evolution.  (a) UV-Vis spectral evolution for Au34nm 

NPs in an aqueous solution ([Au34nm] = 8.9 × 10−2 nM) upon addition of Tlc ([Tlc] = 2.4 × 10−2 μM).  (B) 

Kinetic plot of the long-wavelength SP band (integrated peak area from 600 to 1000 nm); the first-order 

model (y = A1′(1 − e−kt)) yields k= 2.8 × 10-4 s−1; the Avrami model (y = A2′(1 − e−ktn)) yields k = 3.2 × 10−5 

s−1 and n = 1.3. (C)  Kinetic plot for the shorter-wavelength SP band; dotted line represent curve fitting by a 

1st order reaction model (y = A1 + A1’ × e-kt)) which yields A1= 46.05, A1’= 14.75, k= 1.2 x10-4 s-1.  

http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/Articleimage/2015/CP/c5cp04920b/c5cp04920b-f1_hi-res.gif
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 The above SP spectral evolution is accompanied by a clear spectral evolution of the Raman 

bands characteristic of Tlc, as shown in Figure 3.3.1.3A.  Note that these bands are not detectable 

in the absence of AuNPs in the solution.  Upon addition of Tlc into a solution of Au34nm, the intensity 

of the SERS peak at 1589 cm-1 exhibits a gradual increase as a function of time (Figure 3.3.1.3B). 

 An intriguing similarity is evident between the spectral evolutions of both SP bands 

and SERS bands, which are further analyzed by considering the adsorption of Tlc on 

AuNPs, which is relatively fast, and the subsequent dimerization involving the interparticle 

π–π* interaction, which is relatively slow5 and thus an apparent rate-determining step. 

 For a first-order reaction, the rate of the apparent rate-determining reaction is 

proportional to the concentration of AuNPs once a nucleus of a dimer is formed.  Based on 

the concentration of the monomer AuNPs (i.e., [Aunm(Cit)m1(Tlc)m2]), which is 

proportional to the absorbance of the SP band at 521 nm, and the concentration of the dimer 

(i.e., [Aunm (Cit)m1(Tlc)m2]2), which is proportional to the absorbance (A) of the broad band 

at 600–800 nm, the first-order reaction rate can be derived as an exponentially rising rate 

equation: 

A(SP@4600nm) = A1(1 – e-kt) (1) 

where A1 is a constant related to the extinction coefficients of AuNPs, and k is an apparent 

rate constant.  In view of the band broadening effect in the long-wavelength band region, 

the absorbance of the long-wavelength SP band, i.e., A(SP@4600nm), is best represented by 

the envelope in terms of the integrated peak area.  The integrated area is used to substitute 

for A in eqn (1) based on its proportionality to the area.  For the SP band spectral evolution 

(Figure 3.3.1.2B), the experimental data are clearly fitted very well by eqn (1), yielding an 

apparent rate constant (k) of 2.8 × 10-4 s-1 for the increase in the longer-wavelength SP band.  
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For the shorter-wavelength band, the fitting result (Figure 3.3.1.2C) reveals a k-value of 

1.2 × 10-4 s-1 for the decrease in the SP band, consistent with an exponential decay function 

derived for the change of the concentration of the monomeric AuNPs. 

 In concurrence with the SPR spectral evolution, a clear increase in the Raman bands 

is observed in the SERS spectral evolution (Figure 3.3.1.3A).  Since the Tlcs adsorbed on 

AuNPs are responsible for the formation of dimers or trimers, the increase in the SERS 

intensity can also be derived to follow an exponentially-rising rate equation (first order): 

I(SERS) = I1(1 × e-kt) (2) 

where I1 is a constant, and k is an apparent rate constant.  As shown in Figure 3.3.1.3B, 

eqn (2) indeed fits the experimental data very well. 
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Figure 3.3.1.3. SERS spectral evolution as a function of time for an aqueous solution of Au34nm upon addition 

of Tlc. Time: 1~6000 s (from red to blue). [Au34nm] = 0.089 nM; [Tlc] = 0.0238 μM. (Integration = counts/20s).  

(b) Kinetic plot of peak intensity (at 1589 cm−1) (I); the first-order model (y = A1′ (1 − e−kt)) yields k = 2.6 × 

10−4 s−1; the Avrami model (y = A2′(1 − e−ktn)) yields k = 3.2 × 10−5 s−1 and n = 1.3. 

 

 The fitting yields an apparent rate constant of k =2.6 × 10-4 s-1.  In comparison with 

the SP band fitting result (k =2.8 × 10-4 s-1), the SERS fitting result shows a very good 

agreement.  This finding indicates that the SERS effect is directly linked to the spectral 

evolution of the longer-wavelength SP band, which is consistent with the theoretical 

calculation results for other nanoparticles.19 In other words, the kinetic agreement 

demonstrates that the interparticle J-aggregation of AuNPs by Tlc molecules plays a major 

role in both SP and SERS spectral evolution. 

 Note that the first-order kinetic analyses were based on the dimer formation 

equilibrium (eqn (3)), which was an approximation in view of the nature of aggregative 

growth that could involve trimers, tetramers, etc.  Considering the recent study on the 

growth of gold nanoparticles in organic solutions by Buhro et al.,21 the aggregative growth 

can be well described by the Avrami model.22 This was also confirmed by our recent study 

on the aggregative growth of gold nanoparticles in aqueous solutions.20 According to the 

Avrami model,20–22 the concentration of the aggregates (C(aggregates)), which is proportional 

http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/Articleimage/2015/CP/c5cp04920b/c5cp04920b-f2_hi-res.gif
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to the intensity of the long-wavelength SP band or the intensity of the SERS peak, can be 

expressed as: 

C(aggregates)( A(Abs) or I(SERS)) = C (1 × 𝑒−𝑘𝑡𝑛
) (3) 

where C is the proportionality constant, k is the apparent rate constant, and n is the critical 

growth exponent. Indeed, the use of eqn (3) for the curve fitting of the kinetic data in 

Figures 3.3.1.2 and 3.3.1.3 is found to be better than the first-order model.  The fitting 

yields k = 2.6 × 10-5 s-1 and n = 1.3 for the SP band data in Figure 3.3.1.2B and k = 3.2 × 

10-5 s-1 and n = 1.3 for the SERS data in Figure 3.3.1.3B, respectively.  Again, similar to 

the first-order model fitting results, the two apparent rate constants are very close.  

Interestingly, the apparent rate constant from the Avrami model (~3×10-5 s-1) is about one 

order of magnitude smaller than the first-order model (~3×10-4 s-1), a finding consistent 

with the expectation of a slower rate for the formation of higher degrees of aggregation 

than the formation of dimers.  As shown in our earlier report,5 TEM could in principle be 

used to examine the formation of dimers for samples taken out of solution.  However, the 

propensity for aggregation during the sample drying process prevented us from assessing 

the dimers at each aggregation stage. 

 

3.3.2 Surface coverage and particle size dependencies.  The spectral evolution 

characteristics were further examined under conditions of different surface coverages of 

dyes and different sizes of NPs to assess their changes in relation to p–p interaction.  For 

an aqueous solution of low concentration of Tlcs, e.g., 0.218 mM in the presence of AuNPs 

(13 nm), the bands corresponding to the SP bands of AuNPs and the π–π* bands of Tlcs 

can be resolved in the spectral evolution (Figure 3.3.2.1A).  Theoretically assuming a 100% 
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adsorption of Tlcs on AuNPs, the number of Tlc molecules at this concentration would 

correspond to a theoretical surface coverage (𝜃T) of 0.18 in the presence of 2.5 nM Au13nm.  

Experimentally, a clear spectral evolution at ~700 nm is observed, which is similar to that 

in Figure 3.3.1.2A but at a much slower rate (in 1–2 hours) (Figure 3.3.2.1A).  Interestingly, 

the π–π* bands of Tlc, 514 and 543 nm (514 and 545 nm for Tlc only, dashed line), emerge 

only after the precipitation starts, as reflected by the decrease in the longer-wavelength SP 

band (at t ~ 1.3 h).  In the presence of 0.155 nM Au34nm, the data at 0.176 mM Tlc (i.e., 𝜃T 

= 0.43) showed also a similar spectral evolution of the SP bands (Figure 3.3.2.1B).  In this 

case, the 514 and 543 nm bands are revealed at a somewhat earlier stage of the long-

wavelength band appearance, which remains detectable even at the later stage of the 

spectral evolution and after precipitation.  The depression of the π–π* bands of Tlc in the 

beginning of the spectral evolution is associated with the J-aggregation induced 

interparticle linkage of AuNPs.  The overlapping with the AuNP SP band in the long-

wavelength region is partially responsible for the undetectable π–π* bands of Tlc. 

 

http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/Articleimage/2015/CP/c5cp04920b/c5cp04920b-f3_hi-res.gif
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Figure 3.3.2.1. Spectral evolution of surface plasmon resonance bands and SERS intensities for solutions 

containing AuNPs and cyanine dyes. (a) Upon addition of 0.218 μM Tlc to 2.5 nM Au13nm solution.  (b) Upon 

addition of 0.176 μM Tlc to 0.155 nM Au34nm solution.  Control: 0.31 μM Tlc.  (c) Plot of the normalized 

SERS peak intensity at 1585 cm−1 (integrated peak area) for J-aggregation of Tlc in the presence of AuNPs 

of different sizes. Note that there is a difference in particle concentration between (a) and (b) (by a factor of 

∼16), which is the reason for the observation of a higher degree of aggregation (as reflected by the long-

wavelength SP band) for Au13nm than for Au34nm. 

 

 The spectral evolution of the SP bands of AuNPs also depends on the particle size.  

In general, for smaller size particles (Figure 3.3.2.1 and Figure 3.3.2.2), the tendency for 

inter-particle Tlc linkage seems to be greater, as indicated by the rapid increase in the long-

wavelength SP band in comparison with the cases of larger-sized AuNPs.  For smaller-

sized AuNPs, e.g., Au13nm, upon addition of different amounts of Tlc (Figure 3.3.2.2A), 

there is a clear transition from the dominance of the SP bands characteristic of AuNPs to 

the dominance of π–π* bands characteristic of Tlc.  Interestingly, as shown by the SERS 

spectral evolution in terms of peak intensity vs. concentration of Tlc (Figure 3.3.2.2B), a 

maximum is revealed at the transition point (𝜃T = 0.11). 
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Figure 3.3.2.2. (a) Spectrum for a solution of Au13nm (2.5 nM) upon addition of Tlc (different concentration) 

in terms of the surface coverages (T) on the gold NPs. Control: 0.31 μM Tlc.  (b) Kinetic plot of 

corresponding SERS peak intensity (I) at ~1585 cm-1 vs. Tlc concentration.  The surface coverage was 

estimated based on 3D model of Tlc and densely packed monolayer on gold nanoparticle surface. e.g., for 

Au13nm, surface area is 4π (6.5nm)2 =5.31x10-12 cm2.  For Tlc, which can be treated as a rectangular box with 

short side, long side, or flat orientation anchoring the surface.  The long side is ~2.0 nm, the short side is ~1.4 

nm, whereas the thickness is ~0.5 nm.  For the short side orientation, the area is 0.70x10-14 cm2 for per Tlc, 

yielding 5.31x10-12 cm2 /0.70x10-14 cm2 = 759 Tlc/Au13nm. Similarly, 531 Tlc/Au13nm for short side orientation, 

and 190 Tlc/Au13nm for flat orientation. The average of Tlc molecules on per Au13nm is ~493.  Experimentally, 

for a solution of Au13nm (2.5 nM), the addition of 0.0528 μM Tlc would yield ~21 Tlc/Au13nm, which in 

terms of a surface coverage (T) would be 21/493=0.042.  

 

Similar phenomena were also observed for larger-sized particles with subtle differences in 

the relative spectral evolution for AuNPs and Tlc molecules (see for example Au45nm) 

(Figure 3.3.2.3).  The π–π* bands of Tlc disappear when the long-wavelength SP band 

appears, as a result of the interparticle π–π* stacking linkage.  In this case, the J-band is 

likely superimposed with the longer-wavelength SP band.  This assessment is substantiated 

by the re-emergence of the π–π* bands when the linked particles precipitate out of the 

solution.  The increase of SERS intensity correlates very well with that of the SP band. 
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Figure 3.3.2.3. UV-vis and SERS spectra for aqueous solutions of AuNPs in the presence of Tlc. (a) UV-Vis 

spectra and (b) SERS spectra for a solution of Au45nm (0.0259 nM) upon addition of Tlc dyes in different 

concentrations: 0.0146 μM (i.e., T = 0.10), 0.0293 μM (i.e., T = 0.20), and 0.146 μM (i.e., T = 1.0). (c) 

SERS spectra for AuNPs with five different particle diameters (13 nm (2.5 nM, T = 0.175), 34 nm (0.089 

nM, T = 0.102), 45 nm (0.0259 nM, T = 0.998), 52 nm (0.0242 nM, T = 0.590) and 82 nm (0.00718 nM, 

T = 1.0)).  

 

 The Raman intensity of Tlc upon J-aggregation in the presence of AuNPs of 

different diameters is also examined (Figure 3.3.2.3).  The results reveal that the intensity 

increases with the particle size, and interestingly also show a maximum at a particle size 

of ~50 nm (Figure 3.3.2.1C).  This is in sharp contrast to the characteristic of a gradual 

increase of a plateau as observed for gold nanoparticles in solution due to other inter-

particle attraction forces or linkages.23 The size dependence reflects the red shift of the SP 

band via plasmonic coupling with the laser excitation (633 nm).  It was shown earlier, for 

a gold substrate immobilized with 5,5’-dithiobis-succinimidyl-2- nitrobenzoate (reporter) 

labeled 60 nm AuNPs, that a strong coupling between the SP band at a wavelength of ~650 

nm and the laser excitation wavelength (633 nm) is responsible for the observation of the 

maximum SERS effect.24 



81 

 

 

3.3.3 Theoretical simulations of interparticle plasmonic coupling.  The plasmonic 

coupling as a result of interparticle J-aggregation is further assessed by theoretical 

simulation of the surface plasmon absorption and the electrical field enhancement using 

the MNPBEM toolbox,23 which provides useful information for assessing the experimental 

SP and SERS characteristics.  The simulation was based on the calculation of the optical 

absorption and the scattering of electromagnetic waves by single and dimer AuNPs with 

the relevant refractive indices defined by the nanoparticles, the dye molecule, and the 

environment (e.g., solvents), which are different for the naked AuNPs and the core–shell 

models.  By setting up the nanoparticles’ boundary conditions and the dielectric 

environment, the optical absorption and electrical field around the nanoparticles are 

calculated (Figure 3.3.3.1).  In addition to using naked AuNPs with the adsorbed Tlc to 

define the interparticle distance as a simple model in the dimer (Figure 3.3.3.2), our 

simulations of dimers considered a ‘‘core–shell’’ model (Figure 3.3.3.1A).  In comparison 

with the single AuNP, the plasmonic absorption for the dimer exhibits a new band at longer 

wavelength due to interparticle plasmonic coupling (Figure 3.3.3.1B).  A clear red shift in 

the wavelength (λmax) (Figure 3.3.3.1C) and an increase in the absorption intensity (Figure 

3.3.3.1D) are observed as the particle size is increased; the latter displays a maximum at 

55–60 nm.  Theoretically a higher degree of interparticle aggregation can be simulated but 

it is beyond the scope of this work.  The interparticle plasmonic coupling leads to more 

enhancements and red shifts for the plasmonic absorption band with a higher degree of 

aggregation than the dimer (Figure 3.3.3.2). 
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Figure 3.3.3.1. Simulated optical absorbance cross-sections and E-field enhancements upon interparticle 

plasmonic coupling. (a) A ‘‘core–shell’’ model of a dimer of Tlc-adsorbed AuNPs.  (b) Simulated E-field 

enhancement vs. particle size (the refractive indices: water (1.33) and Tlc (2.40). p–p stacking distance: 0.4 

nm, laser excitation: 633 nm).  (c) A 3D image for simulated E-field enhancement for a dimer of Au30nm. 

 

 The simulated E-field for the ‘‘core–shell’’ dimer shows a clear dependence on the 

particle size in terms of local intensity enhancement (Figure 3.3.3.1E).  The enhanced 

intensity shows a clear increase with the particle size, displaying a maximum at a size of 

~55 nm, which coincides with the particle size for the maximal absorption found for the 

simulated interparticle plasmonic band as shown in Figure 3.3.3.1D.  In the vicinity of the 

AuNPs of the dimer, the strongest enhancement of the local electric field occurs at the 

center position between the AuNPs (Figure 3.3.3.1F).  The core–shell model’s boundary 

conditions and the dielectric environment apparently reflect the dimer better.  Similar but 

stronger enhancements can be found for a higher degree of aggregation (Figure 3.3.3.2).  
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This finding is in agreement with the trend observed for SERS intensity (Figure 3.3.2.1C), 

and qualitatively consistent with the results reported for previous simulations under 

relevant conditions.15,24 

  
Figure 3.3.3.2. Simulated optical absorbance cross sections and E-field enhancements upon interparticle 

plasmonic coupling. (a-b) simple dimer (a) and trimer (b) models of AuNPs (naked NPs with adsorbed Tlc 

defining the interparticle distance). (c) Simulated absorbance cross section for dimer and trimer of AuNPs of 

different sizes with interparticle distance defined by π–π stacking of Tlc (3.4 nm). (d) Wavelength (λ, nm) at 

SP band maximum vs. particle size for dimer and trimer. (e) absorbance (Abs.) cross section (nm2) vs. particle 

size for dimer and trimer. (f) E-field intensity enhancement (in common logarithm) vs. particle size for dimer 

and trimer (633 nm laser excitation). (g-h) An example of 3D contour plot for the Efield enhancement for 

Au30nm dimer (g) and Au30nm trimer (h). 

 

3.4 Conclusion 

 Taken together, both experimental and the theoretical results reveal a similar 

dependence of the plasmonic coupling on the particle size in terms of the local E-field 

enhancement, demonstrating that the surface-enhanced Raman scattering work in concert 

with the plasmonic coupling.  The latter is evidenced by their comparable apparent rate 

constants in terms of nanoparticle dimerization or the aggregative growth in the solution 

with the π–π* interaction of J-aggregates defining the interparticle spatial characteristics.  
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This finding is substantiated by theoretical simulations of the plasmonic coupling, 

revealing a direct linkage between the spectroscopic signatures.  It also highlights an 

effective pathway for harnessing them for a broad range of applications exploiting the 

plasmonic and spectroscopic properties of gold nanoparticles, which were traditionally 

shown to be uncontrollable in most other simple mixings of linker molecules and gold 

nanoparticles.22 The finding also has implications for the precise design of dye-labeled 

nanoprobes for the sensitive detection of chemical or biological species.22 
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Chapter 4 

SERS Detection of Protein Mediated Assembly of Gold Nanoparticles in 

Solution 

4.1 Introduction 

 Biomolecular recognition is important in diagnosis and therapeutic treatments.1-5  

This recognition requires highly sensitive and selective probes for accurate detection.  One 

detection method is based on surface enhanced Raman scattering (SERS), which exploits 

the interparticle “hot-spot” accompanied with protein mediated assembly of gold 

nanoparticles in solution for signal amplification.   

Although there have been extensive studies in the targeting and detection of 

antigens, many of them take a long period of time for sample preparation.6-12  Some of the 

methods that were used to eliminate the time required in the sample preparation include 

the employment of magnetic nanomaterials and detecting the assemblies in solution.6,11-13  

Previously we reported in Lim et al. the development of gold based nanoprobes used for 

the detection of protein A (ProA), a membrane protein on the bacterium Staphylococcus 

aureus.6  In this report, the analysis of the protein targeting was observed through the 

functionalization of magnetic coated Au and metallic Au nanoprobes by an increase in the 

SERS signal upon detection.  The magnetic cores allowed for the cleaning of the 
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nanoprobes to remove the unbound antigens and isolation of the assemblies in a localized 

area for detection.  Similarly to other researchers, the drying involved with the sample 

preparation increases the time from assembly to detection. 

Although these devices have significant enhancements through sensitive and 

selective devices, the need to design rapid point-of-care devices is essential for the 

detection of protein biomarkers for disease and cancer.  In this section, we describe findings 

from an investigation of the use of Raman-labled gold and bio-conjugated gold 

nanoparticles for the detection of ProA in solution as a model protein.  In this system, a 

solution containing gold nanoparticles (AuNPs) functionalized with Raman reporter label 

p-mercaptobenzoic acid (MBA) and biomolecules (protein A or goat anti-rabbit IgG) were 

assembled to their complementary biomolecule, producing an interparticle “hot-spot” 

allowing for the monitoring of the diagnostic SERS bands (Scheme 4.1.1).   

 

Scheme 4.1.1.  Illustrations of gold nanoparticle-based SERS detection strategy.  This example uses a Protein 

A and goat anti-rabbit immunoglobulin G.  Formation of "hot-spots" for SERS detection upon the assembly 

of proteins and antibodies when conjugated to MBA/AuNP.  Note: The drawing with few proteins, antibodies, 

and MBA molecules is only to simplify the illustration. 

 

 The study involves optimization of Raman labeling of gold nanoparticles and 

protein mediated nanoparticle assembly in solution phase for rapid SERS detection.  The 

changes in the concentration of the Raman reporter in labeling gold nanoparticles were 
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studied for further control and optimization of this system.  Similarly, the optimization of 

this system in terms of bioconjugation will be studied and the detection capability of the 

optimized system will be presented.  The investigation aims to provide some insight into 

the design of nanoprobes for SERS detection of proteins in solution.   

4.2 Experimental. 

Chemicals and materials. Hydrogen tetrachloroaurate (III) hydrate (HAuCl4), 

sodium citrate (99%), sodium acrylate (97%), p-mercaptobenzoic acid (MBA) were 

purchased from Sigma-Aldrich (Milwaukee, WI) and used as received.  Protein and 

antibody were purchased from Pierce Biotechnolgy, Inc. (Rockford, IL).  Water was 

purified with a Millipore Milli-Q water system (18.2 MΩ).  

Experimental procedures  Acrylate – capped gold nanoparticles (51.6  2.0 nm) 

were synthesized following a seeded growth procedure.10,11  Protein A (proA) was 

dissolved in deionized water at a concentration of 1.3e-3 M and the antibody (goat anti-

rabbit immunoglobulin G) was used as purchased with a concentration of 9.6e-5 M.  The 

conjugation of AuNPs with the antibody (Ab) was similar to the reported procedure6 to 

form Ab/AuNP, and the same for the conjugation with the protein to form ProA/AuNP.  

The labeling of AuNPs with MBA (MBA/AuNP) was achieved by following a previously 

reported procedure.6,9   

Briefly, the aqueous solution of AuNPs was first reacted with the Raman label, 

different concentrations of MBA ranging from 1.1 - 13 μL (2 mM) and gently shaken for 

a maximum of 2 hrs.  The protein-coupling agent, DSP (7.8 μL of 1 mM), was then added 

to the solution and gently shaken from 30 min to 2 hrs.  The biomolecules were then added 

to the solution and gently shaken from 30 min to ~15 hrs (5 μL of antibody (Ab; antirabbit 
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IgG; stock 2.4 mg∙ml−1) or 0.5 μL of protein (Protein A; stock 53 mg∙ml−1).  Centrifuging 

the solution was not performed, because the nanoparticle assembly enhances SERS, 

making the biomolecule interaction negligible.  The resulting protein-capped nanoparticles 

were stored at room temperature. 

Surface coverage of MBA () theoretically estimated for 52-nm AuNPs was 0.07, 

0.5 and 0.7.  For the free protein (or antibody) assembly of gold nanoparticles in solution, 

0.5 μL of protein A (10 μM) (or 5 μL of antibody (2.4 mg∙ml−1)) was added to a solution 

containing 0.5 mL of Ab/AuNP (or ProA/AuNP ) and gently shaken for ~15 hrs or analyzed 

immediately.  For the bound protein (or antibody) assembly of gold nanoparticles in 

solution, 0.5 mL of ProA/AuNP (0.5 mL of Ab/AuNP) was added to a solution containing 

0.5 mL of Ab/AuNP (0.5 mL of ProA/AuNP) and analyzed in the same timeframe as the 

free assembly.  The assembly process was monitored using Raman spectroscopy before 

and after centrifugation at 14000 rpm for 15 min.  The time used to conjugate the NPs 

through shaking were to ensure the maximum adsorption and decreased to obtain 

maximum signal with minimum time. 

Instrumentation.  SERS spectra were measured by an Advantage 200A Raman 

spectrometer (DeltaNu) and the data were collected from 200 to 3400 cm−1.  The laser 

power and wavelength were 5 mW and 632.8 nm, respectively.  The integration time is 60 

s for each set of data presented, as noted in the Figure captions.  The hydrodynamic 

diameter was analyzed using Nanosight Tracking Analysis by Malvern NS300. 

 

4.3 Results and Discussion 

4.3.1. Determination of Surface Coverage of Raman Label on Gold NPs 
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The amount of molecules on the surface of the NPs are very important to control 

when using a mixed monolayer system for the detection of target molecules.1  In this case, 

the determination of the amount of Raman Label (RL) present on the surface is essential to 

obtain signal but too much will compromise the addition of the capture agents.  In order to 

optimize the signal, the coverage of the RL MBA must be determined.  Figure 4.3.1.1 

shows the comparison between the concentration of the RL and the intensity of the MBA 

1590 cm-1 peak.  It is clear that the coverage follows the Langmuir isotherm pattern, where 

a MBA coverage of 3 μM appears to exhibit full monolayer coverage of MBA (and DSP) 

on the AuNP surface.  As far as this type of biomolecule detection, it also showed that 

detection was best in conditions when detecting biomolecules free in solution or when 

conjugated to AuNPs.  In both cases, it is evident that there is a sequential effect upon the 

additon of biomolecules to the solution. 

    

Figure 4.3.1.1.  (A) SERS spectra of protein bound NPs in solution (black – MBA, red – Ab bound NPs, 

blue – assembly between protein and antibody bound NPs (Note: assembly addition of antibody bound NPs 

to a solution of protein bound NPs showed a similar trend but slightly higher peak). 

 

Figure 4.3.1.2 shows the overall spectra for biomolecule detection using 3 μΜ 

MBA, which based on our previous data (and Figure 4.3.1.1) portrays to be optimal for this 
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type of biomolecule detection.  This figure demonstrates the increase in signal intensity as 

the NP was functionalized and the assembly progressed prior to centrifugation.  It is also 

important to note that NP conjugated with proA for detection expressed a large peak at 

1575 cm-1, possibly from the protein A or another smaller MBA diagnostic peak.  This 

concentration will be used for the future concentrations in this section. 

 

Figure 4.3.1.2. SERS spectra (integration time 60 s) for the assembly of 52 nm MBA/Au NPs ( ≈ 200% 

theoretical) by protein A and antibody.  Depicts evolution of 1590 cm-1 MBA peak in respect to protein-

antibody assembly (MBA – black, with DSP – red, with capture antibody (blue), assembly with target protein 

in solution (cyan) and conjugated to a NP (magenta)).  Proof of concept that assembly can be observed in 

real-time in solution.  (Also observe evolution of 1575 cm-1 peak when protein A is introduced into the system) 

 

4.3.2. Optimization of Protein Linkage on Gold NPs 

4.3.2.1. Stability of Nanoprobes  

 In optimizing the NP-based sensor for detection the signal from the protein 

recognition was observed to determine the stability of the linkers in solution over time and 

in the presence of buffers.  The pH of the NPs were tested before and after surface 

functionalization and were found to be between 6 and 8, which are reasonably neutral pH 

measurements.  Upon resuspension in phosphate buffers of different pH (4,6,7,12), the 
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shifting of the SP bands were monitored using UV-Vis.  It was found that the larger NPs 

(50 nm) remained suspendable in the phosphate buffer and were independent of the raman 

label (MBA) (Figure 4.3.2.1.1A) and protein-linker (DSP) (Figure 4.3.2.1.1B), however 

they showed signs of aggregation by slight color change and the formation of a secondary 

peak in the UV-Vis spectra (Figure 4.3.2.1.1).  Although NPs greater than 50 nm were 

found to be suspendable in phosphate buffer, they appeared to be the most stable in 

deionized water, by lack of SP shifting. 

   

(A)     (B) 
Figure 4.3.2.1.1.  UV-Vis spectra of the change in SP band as the buffer increases compared to the original 

solution in deionized water (black) for NPs capped with MBA alone (A) and MBA and DSP (B).  Note the 

increase denoted by the arrow (pH: 4, 6,7, 12). 

 

 The stability of the nanoprobes were considered by monitoring the SERS peak 

intensity before and after the NPs were assembled by protein-antibody binding and after a 

few days (Figure 4.3.2.1.2).  The peak height of the 1590 cm-1 MBA peak, showed an 

increase in signal after the addition of protein (Figure 4.3.2.1.2(B)) as expected.  However, 

after the NPs were assembled and reexamined over a length of time it was evident that the 

nanoprobes linked with EDC decreased in signal, whereas the DSP linked probes continued 

to increase.  The decrease in signal of the EDC nanoprobes could be due to two mecahnisms: 
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(1) the destabilization or desorption of the molecules from the NP surface or (2) the further 

aggregation of the NPs by the antigen recognition which resulted in the decrease in 

excitation from the laser at this wavelength.  The cause of the changes in intensity over 

time, is more likely due to the continued aggregation of the NPs requiring more energy to 

excite the surface electrons; however further investigation needs to be conducted. 

   

(A)     (B) 
Figure 4.3.2.1.2.  The SERS spectra (A) and the peak heights analysis (B) of the 1590 cm-1 peak for the NP 

assembly for DSP- and EDC-linked nanoprobes after centrifuge. DSP- ((A) solid, (B) blue) and EDC-linked 

((A) dashed, (B) cyan) nanoprobes. 

 

4.3.2.2. Determination of Protein Linkage on Gold Nanoparticles 

 Controversy has occurred over the different protein linker available in these 

systems.  Many researchers claim the application of DSP as a linker, result in the hydrolysis 

of the nanoprobes; whereas who use EDC reported more controllable results, similar to that 

observed in Figure 4.3.2.1.2.1,2  To determine the best linker used in the detection of 

proteins using these nanoprobes, both protein linkers were tested using the optimal MBA 

concentration (Figure 4.3.2.2.1).  This figure shows the SERS spectra of the assembly with 

the two protein linkers over 3 different target ProA concentrations before and after 

centrifugation.  The assembly with DSP showed a slight increase in the SERS spectra 
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before centrifugation, however in post-centrifugation there were significant changes 

observed.  These were correlated to the increase in the peak intensity at the 1590 cm-1 peak 

(Figure 4.3.2.2.1E). 

     

(A)     (B) 

   

(C)    (D) 

    

(E)    (F) 



96 

 

Figure 4.3.2.2.1.  DSP (A, C, E) and EDC (B, D, F) linked NP-based systems before (black) and after (red) 

assembly in the presence of different protein concentrations (0.24, 53 – dotted line; 0.1, 5.3e-3 – dashed line; 

0.1, 5.3e-6 – solid line), before (A, B) and after (C, D) centrifugation, and peak heights at the 1590 cm-1 peak 

(E, F). 

 

 Alternatively, the assembly with EDC showed the same slight increase before 

centrifugtation, however after centrifugation the peak intensities were significantly higher 

than DSP (Figure 4.3.2.2.1B, D).  Based on the peak heights from the 1590 cm-1 peak, the 

change in intensity as the concentration increased showed an exponential increase (Figure 

4.3.2.2.1F).  The larger intensity demonstrates that the EDC assembly can detect a lower 

concentration of protein than DSP. 

4.3.3. Nanoparticle Size Effect on SERS Intensity 

 The protein assembly of nanoprobes using EDC linker was analyed in SERS 

comparing the assembly of different NP size pairings (Figure 4.3.3.1).  The NP pairings of 

the same size (homo – sized) dimers show an increase in signal with the introduction of the 

target protein, however it also shows a decrease in signal as the NP sizes were increased 

(Figure 4.3.3.1A).  Similar findings were observed with the different size (hetero – sized) 

dimers (Figure 4.3.3.1B), as well as in the assembly before it was centrifuged (spectra not 

shown).  On the other hand, the difference in peak intensities before and after the assembly 

demonstrated that a maximum intensity is observed from the 60 nm pairings after 

centrifugation with 80 nm pairings exhibiting a slightly larger signal before centrifuge.  

The hetero – sized dimers show no significant increase before centrifuge, but after 

centrifugation the 4080 nm pairings exhibited a larger intensity (Figure 4.3.3.1C).  In 

comparison, the 60 nm homo – sized pairings exhibit a larger intensity than the 4080 nm 

hetero – sized pairings; this effect may be due to the concentrations of the NPs used where 
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smaller NPs typically have a larger conentration than larger sized NPs.  Considering the 

intensities of the NP pairings, further analysis of the NP effect on assembly needs to be 

considered to further determine the effect size has on the protein-protein interactions.  

Preliminary studies of the changes in hydrodynamic diameter of these NP assemblies with 

different size pairings show an increase in the hydrodynamic diameter both before and after 

assembly and with the different NP sizes.  This strongly correlates the SERS data in that 

the decrease in SERS intensity of the homo – sized pairings after 60 nm, could be due to 

the increase in diameter after assembly where 60 nm pairings expressed 78.1 nm 

hydrodynamic diameter and 80 nm pairings showed 95.2 nm diameter.  This further 

aggregation would require more energy than provided using a 633 nm laser, causing this 

decrease in signal.  The hetero – sized NP pairings also exhibited an increase in 

hydrodynamic diameter (79.1 nm for 4060 and 86.2 nm for 4080), however the SERS 

intensity continued to increase.  This unexpected result raises the assumption that NP 

pairings with a hydrodynamic diameter greater than 90 nm require a stronger laser to 

monitor NP-based protein recognitions in solution. 

   

(A)      (B) 
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        (C) 
Figure 4.3.3.1.  SERS spectra of EDC-linked protein assembly of different NP pairings: homo – sized NP 

dimers of 40 (black), 60 (red), and 80 (blue) (A); hetero – sized NP pairing of 4060 nm (black) and 4080 nm 

(red) (B).  The difference in peak intensity of the 1590 cm-1 MBA peak before (black) and after (red) 

centrifugation (C).  Note the change in intensity is the difference before and after assembly. 

 

4.4 Conclusions 

 In conclusion, the formation of SERS “hot-spots” by antigen recognition with 

AuNPs have been demonstrated for the detection of ProA in solution.  This is supported 

by the observed increase and decrease of the SERS signals from a Raman reporter label on 

gold nanoparticles of desired sizes for achieving an optimal SERS effect.  However, the 

signals observed in many cases were limited in intensity.  Also the time allotted for sample 

preparation in these systems were not ideal, but the findings present here show that there 

is room for improvement.  The data presented here also demonstrates the applicability of 

the two protein linkers and their limitations in terms of target protein concentrations.  

Further research needs to be conducted to better adapt the system to solution-phase 

detection and then to other protein recognitions. 
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Chapter 5 

 

“Squeezed” Interparticle Properties for Plasmonic Coupling and SERS 

Characteristics of Duplex DNA Conjugated/Linked Gold Nanoparticles of 

Homo/Hetero-Sizes 

5.1 Introduction 

 The formation of interparticle duplex DNA conjugates with gold nanoparticles 

constitutes the basis for interparticle plasmonic coupling responsible for surface-enhanced 

Raman scattering signal amplification, but understanding of its correlation with 

interparticle spatial properties and particle sizes, especially in aqueous solutions, remains 

elusive.  This section describes findings of an investigation of interparticle plasmonic 

coupling based on experimental measurements of localized surface plasmon resonance and 

surface enhanced Raman scattering characteristics for gold nanoparticles in aqueous 

solutions upon introduction of interparticle duplex DNA conjugates to define the 

interparticle spatial properties.  Theoretical simulations of the interparticle optical 

properties and electric field enhancement based on a dimer model have also been 

performed to aid the understanding of the experimental results.  The results have revealed 

a “squeezed” interparticle spatial characteristic in which the duplex DNA-defined distance 

is close or shorter than A-form DNA conformation, which are discussed in terms of the 
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interparticle interactions, providing fresh insight into the interparticle double-stranded 

DNA-defined interparticle spatial properties for the design of highly-sensitive nanoprobes 

in solutions for biomolecular detection. 

 The exploitation of the plasmonic properties of metal nanoparticles (NPs), 

especially gold and silver nanoparticles, has been an important focus of research interests 

in developing spectroscopic techniques for the detection of biomolecules, diagnostic 

applications, controlled delivery, and specific targeting.1–4  One area of increasing interests 

involves the exploration of localized surface plasmon resonance (LSPR) and surface 

enhanced Raman scattering (SERS) for enhanced detection of DNA and proteins, 1, 5–10 

including experimental assessments of LSPR, SERS, and synchrotron small-angle X-ray 

scattering characteristics by tuning the interparticle distance through the length of duplex 

DNA.8, 9  There has been significant advancement in theoretical modeling to assist in the 

comprehension of the interactions using discrete dipole approximation method.10–17  These 

studies provide useful information for understanding LSPR and SERS properties of NPs 

by solving Mie theory to simulate LSPR and the electromagnetic field (EMF) 14, 18–22 in 

terms of particle and interparticle properties.  Recent examples include using finite 

difference time domain (FDTD) to theoretically determine the optimal SERS signals for 

DNA-directed gold nanodimers,11 3D finite element simulations of plasmonic properties 

in DNA detection,12 FDTD to simulate SERS intensity of DNA origami under controlled 

gaps,13 and theoretical simulation of the interaction involved in Au nanoparticle–core/Pd-

shell nanospheres based LSPR sensors.14  While the interparticle linkage by 

complementary binding of DNA has been widely explored for various applications, one of 

the long-standing issues is the lack of a clear understanding of the interparticle spacing 
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measured in most DNA-assembled nanoparticle systems.23–25  While there have been 

studies using TEM and other imaging techniques to characterize the assembly of DNA-

conjugated gold nanoparticles,26 including our own previous work,27 the understanding of 

the interparticle spatial properties is rather limited because the measurement performed 

under dry state for TEM may not represent the actual assemblies in solutions.  Therefore, 

measuring the SERS characteristic with the conjugated or linked nanoparticles being 

suspended in the solution phase, rather than under dried phase as in most of the previous 

studies, should provide an insight for understanding how the SERS signals correlate with 

the interparticle spacing and particle size under realistic bioactive conditions.  

Experimentally, the “hot-spot” formation due to the assembly of gold nanoparticles 

conjugated by DNA strands could lead to enhanced SERS characteristics, which is 

illustrated in Scheme 5.1.1 for a 30-base pair (bp) ds-DNA sequence and AuNPs labeled 

with a Raman reporter molecule (e.g., 4-mercaptobenzoic acid (MBA)).  This system 

provides an ideal system for the study of SERS “hot-spot” characteristics because the 

formation of the interparticle duplex DNA is experimentally confirmed in an earlier study 

by cutting using a restriction enzyme and analysis using a Southern blot method.27 

 

Scheme 5.1.1. Illustration of a dimer of AuNPs linked by two single-strand DNA (DNA1 and DNA2) through 

complementary binding (designed using the cyclin G promoter sequence for p53 recognition).  The 

highlighted region indicates the area of interest in terms of plasmonic and electric field enhancements, or the 

center the interparticle gap (EC). 
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 In order for the DNA-conjugated or linked nanoparticle assemblies to be 

suspendable in the solution, the size of the aggregates must be small, such as dimers and 

trimers.  Otherwise, they will be precipitated out from the solution.  As such, while an 

actual solution of suspendable conjugated or linked gold nanoparticles may contain dimers, 

trimers or somewhat larger aggregates, a dimer model would represent a simple approach 

to the theoretical consideration.  Herein we present the experimental results for a study of 

duplex DNA-linked gold nanoparticles in solution, and the understanding of their 

correlation with the interparticle spatial properties and particle sizes aided by theoretical 

simulations of the interparticle optical properties and electric field enhancement based on 

a dimer model.  We note that the intention is not to claim that only dimers were in the 

solution, rather, to show that using a dimer model in the simulation provides a theoretical 

assessment of the experimental data, and thus shine some light into the interparticle 

interaction.   

5.2 Experimental. 

 Gold nanoparticles of several monodispersed sizes, 13.3 ± 0.9 nm, 39.7 ± 1.8 nm 

and 62.4 ± 2.0 nm, were synthesized with either citrate or acrylate capping molecules 

according procedures reported earlier.28 – 30 

 SERS spectra were measured by an Advantage 200A Raman spectrometer 

(DeltaNu) and the data were collected from 200 to 3400 cm−1.  The laser power and 

wavelength were 5 mW and 632.8 nm, respectively.  The integration time is 60 s for each 

set of data presented.  
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 Two different oligonucleotides (bottom-DNA (DNA1): 5’-/5ThioMC6-D/AGG 

CCA GAC CTG CCC GGG CAA GCC TTG GCA-3’ and top-DNA (DNA2): 5’-

/5ThioMC6-D/TGC CAA GGC TTG CCC GGG CAG GTC TGG CCT-3’) were used, 

which were dissolved in 0.1 M phosphate buffer (pH 8) at a concentration of 120 μM.  The 

conjugation of AuNPs with the bottom-DNA1 to form bottom-DNA1/AuNP and the 

labeling of AuNPs with 4-mercaptobenzoic acid (MBA) was achieved using known 

procedure.  The theoretical surface coverages were estimated to be 0.07, 0.5, and 0.7 for 

solutions of 13, 39, and 62 nm AuNPs where the MBA concentrations were 2, 1, and 1 

µM, respectively.5, 31, 32  DNA assembly of the conjugated and/or labeled nanoparticles 

were achieved by addition of DNA2 to a solution containing DNA1/AuNP (16 or 0.1 nM) 

and 300 μL of MBA/AuNP (16, 0.1, or 0.028 nM).  

 The simulation of the optical absorption and the enhancement of the electric field 

intensity in the dielectric environment surrounding AuNPs due to the effect of their 

localized surface plasmon resonances was performed using the MNPBEM toolbox based 

on the boundary element method (BEM).20, 33  Using a dimer of AuNPs with specific core 

sizes and a shell thickness defined by DNA (11 nm) as a model, the simulation discretizes 

the particle boundaries of different materials then solves the Maxwell equations for the 

surface charge and currents.34  The optical constants, e.g. index of refraction and absorption 

coefficient of AuNP and DNA, are extracted from the experimental data,35, 36 

approximating the medium environment as pure water (n = 1.33).  Electric field 

enhancements were simulated using the same conditions as above and the laser excitation 

wavelength of 633 nm. 
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5.3 Results and Discussion 

5.3.1 Optical properties.  Experimentally, one of the major characteristics of interparticle 

linkage of AuNPs is the change of the LSPR band.  For example, for homo-sized AuNPs 

capped with DNA in the presence of the target DNA2 strand, there is a clear red shift of 

the SP band (Figure 5.3.1.1A).  The red shift LSPR band is clearly dependent on the size 

of the particles, showing a greater shift for the larger particle sizes.  This is indicative of 

aggregation as a result of interparticle linking by the duplex DNA.  In comparison with the 

homo-sized AuNP system, a hetero-sized system consisting of two different sized AuNPs, 

e.g., 13 nm DNA1/AuNP with 39 nm or 62 nm AuNPs in the presence of DNA2, was also 

examined.  In contrast to the homo-size system, where there is a subtle decrease of the SP 

band intensity after the assembly, the red shift for the SP band is much smaller (Figure 

5.3.1.1B), indicating a subtle difference between the homo-size and hetero-size systems. 

   
Figure 5.3.1.1.  UV-Vis spectral of LSPR band for AuNPs before (solid curves) and after (dashed curves) 

interparticle duplex DNA linkage.  (A) homo-sized AuNPs: 13 nm (black curves), 39 nm (red curves), and 

62 nm (blue curves); (B) hetero-sized AuNPs: 13 nm – 39 nm (black curves), and 13 nm – 62 nm (red curves).  

 

 In view of the fact that the DNA-conjugated or linked nanoparticle assemblies are 

suspendable in the solution, suggesting that the size of the aggregates must be small (e.g., 

dimers and trimers) or they will be precipitated out from the solution, we consider here a 
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dimer model as a simple approach to the theoretical simulation of the evolution of the 

optical properties as a function of particle size and interparticle spacing.  Figure 5.3.1.2A 

shows an example set of simulated results for a symmetric dimer of AuNPs (39 nm in 

diameter) as a function of interparticle gap.  There is a clear trend of red shift for the overall 

LSPR bands as interparticle gap is reduced, showing the emergence of a new LSPR band 

in the long wavelength region.  The red shift of the new long-wavelength LSPR band 

exhibits acceleration as the DNA shells become increasingly overlapped or squeezed.  It is 

evident that the larger the particle size, the more pronounced is the red shift as a function 

of the interparticle gap (Figure 5.3.1.2). 
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Figure 5.3.1.2. Simulated absorption cross-section spectra of ds-DNA-linked symmetrical dimer models (11 

nm (A), 39 nm (B), and 62 nm (C)) as the interparticle edge-to-edge gap distance is reduced (from 12 nm to 

1 nm with an interval of 0.5 nm.  The red shift is shown by the direction of the arrow).  

 

For an asymmetric dimer of nanoparticles as a model of the hetero-size nanoparticle system 

upon interparticle linking by duplex DNA, the LSPR is also simulated.  In comparison with 

the simulation results for the symmetric dimers (Figure 5.3.1.2A), there is a similar red 

shift of the LSPR band (e.g., 13 – 39 nm and – 62 nm AuNPs, Figure 5.3.1.3(A and B)), 

but the extent of the shift is much smaller.   

   
Figure 5.3.1.3. Simulated absorption cross-section spectra of ds-DNA-linked asymmetrical dimer models 

((A) 13 – 39 nm and (B) 13 – 62 nm) as the interparticle edge-to-edge gap distance is reduced (from 12 nm 

to 1 nm with an interval of 0.5 nm.  The red shift is shown by the direction of the arrow).  

 

 The trends can be fitted by exponential decay (Table 5.3.2.1), showing a smaller 

decay constant for the larger-sized particles, consistent with the experimental results 
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(Figure 5.3.1.4A).  Similarly for the hetero – sized dimers the fitting results show that the 

larger the difference in size between the two particles, the greater is the decay constant 

(Figure 5.3.1.4B and Table 5.3.2.1).  This finding is also consistent with experimental 

results (Figure 5.3.1.1B). 

   

Figure 5.3.1.4.  (A) Absorption band’s wavelength vs. the gap, where symmetric NPs are 13 (a), 39 (b), 

and 62 nm (c).  The lines represent fitting by exponential decay (Table 5.3.2.1)).  (B) Absorption band’s 

wavelength vs. the gap, where asymmetric dimers feature 13– 39 nm (a) and 13– 62 nm (b).  The lines 

represent fitting by exponential decay (Table 5.3.2.1)).  

 

5.3.2. SERS Characteristics 

 Experimentally, the interparticle plasmonic coupling as a result of the formation of 

interparticle duplex DNA conjugates with gold nanoparticles is responsible for surface-

enhanced Raman scattering signal amplification.  Figure 5.3.2.1 shows several sets of 

SERS spectra for homo-sized AuNPs of sizes 13 nm (A), 39 nm (B), and 62 nm (C) before 

and after duplex DNA assembly.  The observation of the SERS peaks at 1075 and 1587 cm-

1 after duplex DNA assembly, characteristic of the ring-breathing modes of MBA labels on 

the AuNPs, is a clear indication of SERS effect as a result of the interparticle linkage.  
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Figure 5.3.2.1.  SERS spectra for homo-sized AuNPs ((A) 13 nm, (B) 39 nm, and (C) 62 nm) system before 

(black curve) and after (red curve) the interparticle linkage by ds-DNA.  

 

 In addition to the homo-sized AuNPs, SERS spectra for hetero-size AuNPs were 

also examined.  Figure 5.3.2.2 shows two sets of SERS spectra for two hetero-size AuNP 

systems (39 – 13 nm and 62 – 13 nm),5 showing also a clear increase of the peak intensity 

after duplex DNA assembly.  The observation of the ring-breathing peaks of MBA labels 

on the AuNPs after duplex DNA assembly is again a clear indication of the interparticle 

linkage.   

    

Figure 5.3.2.2.  SERS spectra for hetero-sized AuNPs ((A) 13 – 39 nm and (B) 13 – 62 nm) system before 

(black curve) and after (red curve) the interparticle linkage by ds-DNA.  

 

  The peak intensity depends on the particle size and concentration, a comparison of the 

data shown in Figure 5.3.2.2A-B in terms of the normalized peak height at 1587 cm-1 show 
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that the SERS intensity increases with the particle size (Figure 5.3.2.3A).  Note that our 

experiments and simulations of the asymmetric systems have focused on those that vary 

size only for one part of the dimer (e.g., 13 – 39, and 13 – 62 nm) so that the comparison 

can be made with only one variable.  For the duplex system of 39 nm and 62 nm particles, 

the result indicated that it behaves similarly to the 13 – 39 nm and 13 – 62 systems, while 

the E-field intensity falls in between the two systems, which is consistent with intensity – 

size correlation (Figure 5.3.2.2A-B).  A comparison of the intensities for the different 

particle sizes after considering concentration difference, as shown in Figure 5.3.2.3B, 

indicates that the intensity increases with the particle size. 

   
Figure 5.3.2.3. (A) SERS intensity of the peak at 1587 cm-1 for the (A) homo-sized NPs solutions of different 

sizes (13, 39, and 62 nm) and (B) hetero-sized NPs solutions of different sizes (39 – 13 nm and 62– 13 nm).  

Note: the intensity is normalized peak intensity at 1076 cm−1 over total number of NPs.  

 

 The above SERS results were further assessed by theoretical simulation of the 

interparticle electric field (E-field) enhancement based on a dimer model.  Consider first a 

symmetric dimer model for the homo-size AuNP systems upon interparticle linking by 

duplex DNA.  Figure 5.3.2.4A shows a set of simulation results in terms of the intensity 

enhancement for a symmetric dimer of 39 nm AuNP as a function of the interparticle gap.  

There is a clear enhancement of E-field around and in between the nanoparticles as the gap 
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decreases, with the center in between the two nanoparticles being the strongest (“hot-spot”).  

The enhancement clearly increases as the interparticle gap is reduced (Figure 5.3.2.4B), 

exhibiting a trend similar to the red shift of the simulated LSPR band (Figure 5.3.1.4A).  

The E-field intensity enhancement apparently shows an exponential decay with the 

interparticle gap, where the magnitude is strongly dependent on the particle size (Figure 

5.3.2.4D).  The trends of these curves are also fitted quite well by exponential decay (Figure 

5.3.2.4D).  The results (Table 5.3.2.2) show a smaller decay constant for the larger-sized 

particles, which is quite consistent with the trend revealed by the results from fitting the 

red shift of LSPR (Table 5.3.2.1). 

   

   
Figure 5.3.2.4. (A and C) 2D and 3D plots of a symmetric dimer of (A) 39 nm AuNPs and an (C) asymmetric 

dimer of 39 – 13 nm AuNPs, each with a gap distance (d) of 4 nm.  (B and D) Plots of the change of E-field 

intensity enhancement at EC as a function of the interparticle gap for (B) symmetric dimers of three different 

particle sizes (13 nm (a), 39 nm (b), and 62 nm (c)), and for (D) symmetric dimers (13– 39 nm (a) and 13– 
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62 nm (b)).  The change is measured with respect to that at 12 nm gap.  The dashed lines represent fitting by 

exponential decay (Table 5.3.2.2)).   

 

 Simulation based on an asymmetric dimer model was also performed for the 

hetero–size AuNP system upon interparticle linking, revealing a similar trend in terms of 

the E-field enhancement around and between the nanoparticles (Figure 5.3.2.4C).  Again, 

the intensity enhancement is exponentially dependent on the particle size (Figure 5.3.2.4D).  

The change of the intensity enhancement for the asymmetric dimers is somewhat smaller 

by 1~2 orders of magnitude in comparison with those observed for the symmetric dimers 

(Figure 5.3.2.4B).  Interestingly, the curve fitting results (Figure 5.3.2.4D) show again that 

the larger the difference in size between the two particles, the greater is the decay constant 

(Table 5.3.2.2); which is again very consistent with the trend revealed by fitting the red 

shift of LSPR (Table 5.3.2.1). 

 
Table 5.3.2.1.  Fitting results from fitting the simulated LSPR data in Figures 5.3.1.4A and B by exponential 

decay as a function of the interparticle gap (d) (𝐴 = 𝐴0 +  𝐴1 ∗ exp(− 𝑘𝑑)). 

NP size 𝐴0 A1 k 

13 nm 572.8 69.9 0.83 
39 nm 581.0 117.9 0.44 
62 nm 585.0 176.8 0.43 

13–39 nm 572.9 84.7 0.86 
13–62 nm 571.2 169.1 1.42 

 

Table 5.3.2.2.  Fitting results from fitting the simulated E-field intensity enhancement data in Figures 

5.3.2.4B and D by exponential decay as a function of the interparticle gap (d) (𝐸 = 𝐸1 ∗ exp(− 𝑘𝑑)). 

NP size E1 k 

13 nm 4.3x102 1.87 
39 nm 9.5 x104 1.45 
62 nm 1.1 x106 1.44 

13–39 nm 5.4 x103 1.17 
13–62 nm 3.2 x104 1.93 

 

 The above experimental results for the homo-size and hetero-size AuNP systems 

and theoretical results for the symmetric and asymmetric dimer models are further 

compared (Figure 5.3.2.5).  These findings are remarkable because it demonstrates that the 
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“hot-spot” can be tuned very effectively by manipulating the particle size and the 

interparticle gap.   

  

  

Figure 5.3.2.5. Normalized experimental SERS peak intensities and theoretical E-field intensity 

enhancements: (A) the homo-size system vs. the symmetric dimer model (from 13, 39 to 62 nm AuNPs), (B) 

the hetero-size system vs. the asymmetric dimer model (from 39 nm – 13 nm to 62 nm – 13 nm AuNPs), and 

(C) the symmetric vs. asymmetric dimer systems.  (Theoretical data correspond to those at an interparticle 

gap of 3 nm).  

 

 Although the theoretical data shown correspond to a gap size of 3 nm, similar trend 

were also observed for other gaps, but the contrasts are relatively small for larger gaps.  An 

interesting observation is that for a significant E-field enhancement in the dimers, the gap 

appears to be smaller than the length of ds-DNA (11~12 nm). 

5.3.3. Discussion of Interparticle Interactions  

To further understand the above theoretical results in terms of the E-field enhancement vs. 

the interparticle gap, we also considered the interparticle interactions on the basis of simple 

models for steric repulsive and van der Waals attractive interactions in terms of interaction 
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energies with the interparticle gap.37–39  The calculations were based on dimer models of 

AuNPs (r, R1, R2 are particle radius) in which the steric repulsive and van der Waals 

attractive interaction energies as a function of interparticle gap (D) are calculated by the 

following equations ( and  stand for the length and the diameter of a capping molecule 

on the nanoparticle surface). 34-36 

𝐸𝑠𝑡𝑒𝑟𝑖𝑐  ≈  
100𝑟𝛿3

(𝐷 − 2𝑟)𝜋𝜎3
 𝑘𝑇 exp (

− 𝜋 (𝐷 − 2𝑟)
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)                           (1) 
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As shown in Figure 5.3.3.1, the calculated interparticle potentials are clear functions of the 

edge-to-edge gap between the NPs in a symmetric dimer of AuNPs.  In addition to the DNA 

shell thickness (11 nm), the calculation also took the size-dependent Hamaker constant into 

considerations.40–42   

   

(A)      (B) 

Figure 5.3.3.1.  Calculated steric repulsion, van der Waals attraction, and the total interaction potentials for 

symmetric dimers of AuNPs (13 nm (a), 39 nm (b), and 62 nm (c)) (A) and for asymmetric dimers of AuNPs 

of 13nm – 39 nm (a) and 13 nm – 62 nm (b) (B) as a function of the interparticle edge-to-edge gap. 
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 For the symmetric dimer, the minimum potential energy for the balanced 

interactions was found to correspond to a particle edge-to-edge distance of 6~8 nm (Figure 

5.3.3.1).  It showed a subtle dependence on the particle size, revealing a change from 7.8 

nm to 6.5 nm as NP size increases from 13 nm to 62 nm.  The trend is consistent with the 

increase of simulated E-field intensity enhancement with particle size, but the gap values 

are somewhat larger than those of simulation corresponding to a significant E-field 

enhancement.  In comparison with the three forms of double-stranded DNA in terms of 

conformations (A, B, and Z forms) (Scheme 5.3.3.1), the calculated gap values somehow 

correspond to A-form (7.8 nm), which are usually observed with dehydration of DNA in 

cases such as protein binding that strips solvent off DNA.43  Considering the length of the 

other types of ds-DNA being longer (10~11 nm), this finding suggests the possibility that 

the nanoparticles may effectively compress the interparticle double-stranded DNA by 

“squeezing” solvent off DNA.  Interestingly, this biomolecular interparticle linkage 

appears to parallel an earlier finding on molecularly-mediated assembly of alkanethiolate-

capped Au nanoparticles where a combination of interparticle hydrogen bonding and van 

der Waals interactions was proposed to lead to “squeezed” spatial property.44  A similar 

result was also obtained for asymmetric dimer model (Figure 5.3.3.1B).  Note that the 

interaction energy calculation is based on a simple model of the steric and attractive 

interactions at this point for a qualitative assessment of the data, in which the 

approximations consider that the electrostatic interaction is smaller than the steric repulsion. 
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Scheme 5.3.3.1.  Models of three forms of double-stranded DNA (A, B, and Z forms) for a 30-bp duplex 

DNA derived under three different parameters (rotation/bp and increase/bp along axis: 32.7 degrees and 0.26 

nm for A-form, 34.3 degrees and 0.34 nm for B-form, and 30 degrees and 0.37 nm for Z-form).  

 

5.4 Conclusion 

In summary, the experimental results on the interparticle plasmonic coupling induced 

localized surface plasmon resonance and surface enhanced Raman scattering 

characteristics of gold nanoparticles in aqueous solutions upon introduction of interparticle 

duplex DNA conjugates to define the interparticle spatial properties were assessed by 

theoretical simulations of the interparticle optical properties and electric field enhancement 

based on a dimer model of both homo-sized and hetero-sized AuNPs.  In addition to 

showing a clear dependence of the LSPR and SERS characteristics on the interparticle gap 

and particle size, the results have revealed a “squeezed” interparticle distance that are 

intriguingly close to or shorter than the conformation of A-form for the duplex DNA.  The 

findings have provided a fresh insight into the interparticle interaction and spatial 

properties defined by double stranded DNA linkage.  A future in-depth study of the 

generality of this finding in many different cases of interparticle molecular/biomolecular 
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linkages would have important implications for the design of highly-sensitive nanoprobes 

in solutions. 
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Chapter 6 

Assessing Interparticle Spatial Characteristics of DNA-Linked Core-Shell 

Nanoparticles with or without Magnetic Cores in Surface Enhanced Raman 

Scattering 

6.1 Introduction 

 Surface enhanced Raman scattering (SERS) of plasmonic nanoparticles enables 

their use as nanoprobes for the detection of biomolecules in solutions, which exploits the 

“hot-spot” arisen from small aggregates of the biomolecule-linked nanoprobes for effective 

harnessing of the interparticle plasmonic coupling of gold nanoparticles.  While a 

‘squeezed’ interparticle spatial characteristic has been revealed from the duplex DNA-

linked gold nanoparticles as dimers in solution, how this interparticle spatial characteristic 

is operative for plasmonic nanoparticles containing magnetic components remains 

unknown.  We describe herein new findings of an investigation of the interparticle spatial 

characteristics of DNA-linked core-shell type nanoparticles consisting of magnetic cores 

and plasmonic gold or silver shells, focusing on theoretical-experimental correlation in 

terms of localized surface plasmon resonance (LSPR) and electromagnetic field (EMF) 

enhancement.  In comparison with Au nanoprobes, the simulated results of the SERS 
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enhancement for the DNA-linked dimers of plasmonic-magnetic M@Au nanoprobes show 

a similar agreement with the experimental data in terms of the ‘squeezed’ interparticle 

spacing characteristic.  Remarkably, for M@Ag nanoprobes, the same interparticle spacing 

characteristic does not seem to show agreement between the simulated and experimental 

results for DNA-linked dimers of M@Ag and Au nanoprobes.  Instead, an agreement was 

revealed by simulations of the DNA-linked dimers of M@Ag and Au nanoprobes at an 

interparticle spacing of essentially zero.  This finding was analyzed in terms of effective 

thickness of the DNA layers on the nanoparticles and the strong magnetic attraction for 

M@Ag nanoprobes, providing new insight into the control of nanoprobe composition and 

shell structure in optimizing the plasmonic coupling and spectroscopic enhancements for 

biomolecular detection. 

 Surface enhanced Raman scattering (SERS) based theranostics is a rapidly 

developing field, which allows for rapid and point-of-care detection in medical treatment 

and diagnoses.1-4  A well-studied point of interest in the development of these systems for 

treatments and diagnostics, is the ability to manipulate the biomolecules in solution.1-5  

Researchers have conducted experiments that employ magnetic nanoparticles (MNPs) in 

biosensor systems to allow for the navigation of the biomolecules to desired locations using 

magnetic fields.  They have found that magnetic based NPs exhibit a stronger plasmonic 

coupling effect, proving to be an efficient nanoprobe for biomolecule detection.6-11  For 

instance, Rong et al. discussed the promising application of Fe3O4@Ag and Au@AgNRs 

in the capture of CEA biomolecules using SERS spectroscopy.6  Similar findings were also 

observed from Fan et al. who determined that Ag–Fe3O4 nanocomposites had a positive 

effect on the plasmonic coupling by controlling the arrangement of the nanocomposites on 



122 

 

the substrate.7  Since MNPs are composed of metals that are not typically biocompatible 

and have limited surface chemistry, researchers have functionalized their surfaces with 

gold and silver.8  The application of dual functional NPs in molecular detection utilize the 

magnetic susceptibility of MNPs in combination with the unique properties from the 

coupling of metallic NPs, provide promising opportunities to the early detection and 

treatment of diseases.9,10 

We have recently reported the study of interparticle plasmonic coupling responsible 

for SERS signal amplification as a result of formation of interparticle duplex DNA 

conjugates with gold nanoparticles, revealing a ‘squeezed’ interparticle spatial 

characteristic in which the duplex DNA-defined distance is close to or shorter than A-form 

DNA conformation.12  Similar findings were also reported, like Lee et al. in the analysis 

of Au-Ag nanodimers which demonstrated a stronger intensity at a lower interparticle 

distance than expected.13-16  Other studies have also found that there is a stronger NP 

coupling with magnetic particles due to dipolar interactions in addition to the axis 

orientation.17,18  However, how this type of interparticle interaction is operative for 

plasmonic nanoparticles containing magnetic component is not yet established.  Recent 

studies have employed simulation methods and SQUID technique to address this issue.7,19  

For example, Fan et al. showed that the SERS intensity of Ag – Fe3O4 nanocomposites was 

dependent on the external magnetic field and the gap distance between Ag and Fe3O4 NPs.7  

Similarly Srivastava et al. analyzed the assembly of FePt or Au NPs with ferritin using 

SQUID technique, and found that the magnetic core of the protein increased the magnetic 

interaction of the nanoparticles.19  Although there have been extensive studies on the 

applications of magnetic coated NPs and their orientation, there is limited understanding 
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of how the magnetic core of the NP plays a role in the “hot-spot” formation and how it 

relates to SERS detection of biomolecules.  In an earlier report, 8 we demonstrated that 

magnetic MnZn ferrite NPs decorated with a shell of Au or Ag (M@Au or M@Ag) could 

be used as functional nanoprobes for SERS detection of DNA via interparticle linkage of 

double-strand DNA between M@Au or M@Ag NPs and AuNPs.  The experimental data, 

along with those with interparticle double-strand DNA linked AuNPs,20 have indicated that 

SERS intensity depends on particle sizes and compositions, including magnetic properties.  

However, little is understood on how this dependence correlates with the interparticle 

properties of such magnetic nanoprobes. 

In this section, the interparticle spatial characteristics of DNA-linked core-shell 

nanoparticles consisting of magnetic cores and gold or silver nanoparticles and the 

formation of the SERS “hot spot” in solution phase8 (Scheme 6.1.1) are theoretically 

modeled using dimers of various combinations of magnetic core – gold or silver shell 

nanoparticles. 

   
Scheme 6.1.1.  Illustration of “hot- spot” formation of DNA – mediated dimeric assembly of core-

shell nanoparticles containing magnetic cores and gold or silver nanoparticles in a solution.   
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The study focuses on the correlation between the experimental measurements and the 

theoretical simulations in comparison with those for gold or silver nanoparticle 

counterparts without magnetic cores.12  New insights are gained into how the effective 

thickness of DNA layers on the nanoparticles and the interparticle interactions for magnetic 

core – metal shell nanoparticles operate in terms of composition and structure for 

optimizing the plasmonic coupling and spectroscopic enhancements. 

6.2 Experimental.   

Chemicals.  Nanoparticle synthesis and functionalization were performed using sodium 

citrate (99%), sodium borohydride (NaBH4, 99%), silver nitrate (AgNO3, >99%), sodium 

acrylate (97%), hydrogen tetrachloroaurate (III) hydrate (HAuCl4), dithiothreitol (DTT), 

and 4-mercaptobenzoic acid (MBA), which were used as purchased from Sigma-Aldrich 

(Milwaukee, WI).  Buffers of carbonate/borate (0.05 M, pH 10) and phosphate (0.05 M, 

pH 7) were purchased from Fisher Scientific (Pittsburgh, PA).  Thiol modified DNA 

(bottom-DNA: 5’-/5ThioMC6-D/AGGCCAGACCTGCCCGGGCAAGCCTTGGCA-3’ 

and top-DNA: 5’-/5ThioMC6-D/TGCCAAGGCTTGCCCGGGCAGGTCTGGCCT-3’) 

with standard desalting purification for DNA functionalization were purchased from 

Integrated DNA Technologies, Inc. (Coralville, IA).  10X TBE (0.89 M Tris, 0.89 M boric 

acid, 20 mM EDTA) buffer and pre-cast polyacrylamide gels purchased from Biorad 

Corporation (Hercules, CA) were used to purify DNA.  Water (18.2 MΩ) was purified 

using a Millipore Milli-Q water system.  

Synthesis, Instrumentation and Simulation.   



125 

 

 Nanoparticle Synthesis.  Using the reported procedure, citrate – capped (11.7 nm) 

and acrylate – capped gold nanoparticles (39.7 nm and 62.4 nm) were synthesized.19-23 

Citrate – capped (10 nm) silver nanoparticles were synthesized using the same procedure 

as the gold nanoparticles.22,23 Similarly, acrylate-capped silver nanoparticles were 

synthesized using the same seeded growth method used for acrylate gold nanoparticles.19-

22  The bare and coated MZF nanoparticles (8 nm MZF NP, 9 nm M@AgNP, and 11 nm 

M@AuNP) were synthesized using the previously reported procedure and capped with 11-

mercaptoundecanoic acid (MUA).8   

DNA-linked Assemblies of Au or Ag and core@shell NPs.  Two oligonucleotides, 5’-

/5ThioMC6-D/AGGCCAGACCTGCCCGGGCAAGCCTTGGCA-3’ ((bottom-DNA) 

and top-DNA: 5’-/5ThioMC6-D/TGCCAAGGCTTGCCCGGGCAGGTCTGGCCT-3’ 

(top-DNA), were dissolved in 0.1 M phosphate buffer (pH 8) at a concentration ranging 

from 260 to 300 μM.  The bottom-DNA (10 μM) was conjugated to acrylate–capped NPs 

of Au and Ag and MUA–capped MZF NPs.8,23,24  The labeling of AuNPs with Raman 

Label (RL), i.e., MBA, was achieved similarly to the reported procedure.8,23,24  Using the 

reported procedure, citrate – capped (10 nm) and acrylate-capped silver nanoparticles (30 

nm) were synthesized.21,22  The assembly of the NPs with DNA were monitored using UV-

Vis (HP 8453) over 200-1100 nm and SERS (DeltaNu Advantage 200A – 5 mW, 632 nm) 

spectrophotometry over 200 - 3400 cm-1.  Simulations of the localized surface plasmon 

resonance and electrical intensity were computed using MNPBEM toolbox, which 

incorporates the AgNP boundaries and dielectric environments.12 

Simulation Method.  The electrical intensity of the localized surface plasmon 

resonances of the NPs were simulated using the MNPBEM toolbox to obtain the absorption 
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and enhancement (log base 10) of the NPs when in an aqueous environment.12 The 

MNPBEM toolbox utilizes the optical constants and Maxwell equations to determine the 

surface charge and currents of the particles. 

6.3 Results and Discussion 

 In our recent study,12 the interparticle gap of DNA-mediated assembly of AuNPs 

would subject a small “squeezing” in the presence of AuNPs.  However, the role of the 

DNA or capping ligands in the interparticle interactions remained elusive.  Experimentally, 

for adsorption of surface species into the capping shell structure on the NP surfaces via 

place exchange reaction,25 the degree of the original capping ligands being replaced by the 

incoming ligands depends on the competitive adsorption.  Thus, there is an effective shell 

thickness determined by the original and incoming ligands which can impact the 

interparticle interaction energy, leading to different interaction potentials for different 

effective shell thicknesses (Figure 6.3.1A).  Figure 6.3.1A-B illustrates the changes in 

terms of the minimum energy and interparticle gap for a dimer of 40 nm AuNPs when the 

effective shell thickness (L’) of DNA shell is varied from 0.1 nm to 10 nm, i.e., from the 

original monolayer of citrate (or acrylate) capping to a full monolayer of DNA coverage. 

     

(A)     (B)  



127 

 

 
(C) 

Figure 6.3.1.  (A-B) Dependencies of the minimum interparticle gap and total interaction energy (EM) on 

effective DNA shell thickness (L’) for a dimer of 40 nm NPs (Hamaker constant: – 0.83 eV and DNA 

monolayer thickness – 2 nm and length – 11 nm). (Dashed lines: Emin. = -19.1  exp(-1.6  L’); Gmin. = 19.9 

 exp(0.1  L’))   (C) Simulated EMF spectra for dimers of 39 nm AuNP dimers at L’=10 nm (gap ≈ 40 nm), 

7 nm (gap ≈ 24 nm), and 2 nm (gap ≈ 3 nm). 

 

In this case, the effective ligand thickness would be smaller than the expected 11 

nm DNA shell length as a result of squeezing in the presence of AuNPs.  Based on the 

calculated potentials (Figure 6.3.2), under several effective thicknesses (L’ = 10 nm (gap 

≈ 40 nm), 7 nm (gap ≈ 24 nm), and 2 nm (gap ≈ 3 nm)) the simulated EMF intensity at the 

center of the dimer showed a sharp contrast between L’ = 10 nm and 2 nm (Figure 1C).  

While the center EMF intensity for L’= 2 nm displays a clear enhancement, there is 

essentially no enhancement for L’ = 10 nm (Figure 6.3.1). 
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(A)        (B)          (C) 

   
(D)     (E) 

Figure 6.3.2.  Calculated steric repulsion and van der Waals attraction potentials for symmetric dimers of 

AuNPs (13 nm (A), 39 nm (B), and 62 nm (C)).  Dependencies of interparticle Gap and total Energy (EM) on 

effective DNA shell thickness (L’) for a dimer of 13 nm (D) and 62 nm (E) NPs (Hamaker constant – 0.83 

eV and DNA diameter – 2 nm. 13 nm NPs: Emin = -5.1*exp(-1.7*L’), Gmin = 23.9*exp(0.1*L’) -26.7; 62 nm 

NPs: Emin = -30.3*exp(-1.6*L’), Gmin = 19.6*exp(0.1*L’) -20.8. 

 

The center EMF intensity for L’=7 nm displays an enhancement which is almost 

the same as that surrounding the NPs.  This finding is significant, demonstrating a clear 

need to assess the interparticle plasmonic coupling and SERS characteristics in terms of 

the effective thickness.  Similar findings were observed in dimers of smaller (e.g., 13 nm) 

or larger (e.g., 62 nm) AuNPs (Figure 6.3.2).  In view of the likelihood that part of the 

DNA strands are laying down on the surface of the NPs or over the original capping 

molecules, leading to a greatly-squeezed interparticle distance, our study focused on 

understanding how such smaller interparticle distance correlates with the interparticle 

plasmonic coupling and the SERS “hot-spot” effect, especially for nanoparticles with 

magnetic cores which could further squeeze the interparticle gap distance (g).  The results 
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are discussed in the next few subsections on interparticle plasmonic coupling and electric 

field enhancement for two different combinations of NPs linked by DNA strands, i.e., Au–

M@Au NPs and Au–M@Ag NPs.  The control experiments of Ag–Ag NPs, Au–Au NPs, 

and Au–Ag NPs will also be discussed to further substantiate the results presented. 

6.3.1 Combination of Ag – Ag NPs as a Control 

 In this section, we consider the metallic Ag-Ag combination as a control for the 

experimental analysis using UV-Vis and SERS.  Note that most experimental observations 

indicate that silver–based NPs have a stronger SERS enhancement than gold-based NPs; 

which is further substantiated from the results presented.  Combination of AgNPs of the 

same size (10 nm AgNPs) and different sizes (40 nm with 10 nm AgNPs) were analyzed.  

Experimentally, the intensity decreased after the addition of DNA; however, there was no 

change within the 10 nm AgNP dimer assembly but a very subtle change in the SP peak 

was observed in the 40 nm – 10 nm Ag-Ag NPs (Figure 6.3.1.1A-B).  The insignificant 

change in the SP peak of the 10 nm AgNPs could due to be minimal shifting observed in 

the simulated ACS of the dimer combination at smaller NP gaps (Figure 6.3.1.2C-D).   

   
(A)   (B)  
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(C)   (D) 

Figure 6.3.1.1.  Homo – sized AgNP dimers (10 nm) (A, C) and hetero – sized AgNP dimers (10 

nm – 30 nm) (B, D) assembled with DNA (before (black) and after (red) assembly) while monitored 

using UV-Vis (A, B) and the simulated ACS (C, D) of hetero – sized AgNP dimers over a range of 

gap distances. 

 

 The assembly of the two systems were analyzed using Raman.  Similarly to the 

UV-Vis, the smaller 10 nm AgNPs were showed no increase in intensity after assembly 

with DNA (Figure 2A).  On the other hand, the larger 10 nm and 39 nm AgNPs showed a 

significant increase after the addition of the target DNA (Figure 6.3.1.2B).  The 

significance, and lack thereof for the 10 nm AgNPs, in the SERS peak are evident from the 

simulated ACS peaks in that the smaller NP combination does not shift as far as the 10 nm 

– 39 nm AgNPs (Figure 6.3.1.1C-D).  Since the 10 nm – 39 nm AgNPs shift closer to 500 

nm (Figure 6.3.1.1D (gap = 1nm) it can be viewed in the 632 nm Raman. 

     
(A)   (B)     (C) 

Figure 6.3.1.2.  SERS spectra of same-sized AgNP dimers (10 nm) (A) and different sized AgNP 

dimers (10 nm – 30 nm) (B) assembled with DNA (before (black) and after (red) assembly) and 

the simulated EMF (C) of different sized AgNP dimers over a range of gap distances. 
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 The simulated EMF intensity of the different size AgNP dimers were analyzed over 

a range of gap distances (0 to 72 nm).  The intensity of dimers increase significantly below 

10 nm gap distance.  This is apparent from the increase in Raman signal after the addition 

of the DNA, which is smaller than 10 nm in length.  Similarly to Chapter 5 (AuNP 

assembly), it is observed that larger sized NPs have a more significant shift in SP band, 

thus a larger EMF intensity as expected.  Even though silver exhibits a stronger plasmon 

band than gold, signal is not apparent from smaller sized NPs unless they are paired with 

larger NPs. 

6.3.2 Combination of Au–M@Au NPs 

 In this section, we describe the DNA-mediated assembly of AuNPs and M@AuNPs, 

i.e., Au–M@Au assembly.  First we describe the surface plasmon resonance (SPR) optical 

characteristics based on experimental UV-Vis data and theoretical simulation of the 

plasmonic coupling.  It is then followed by the discussion of the Surface Enhanced Raman 

Scattering (SERS) intensity in correlation with the theoretical simulation of the 

interparticle electrical field enhancement. 

Experimentally, a subtle change can be detected in the SP band as shown by the 

UV-Vis spectra for an aqueous solution of MZF@Au-DNA1 and MBA-Au NPs before and 

after adding DNA2 (Figure 6.3.2.1A).  This change is reflected by a very small red shift in 

the SP band. 
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(A)    (B)    (C) 

Figure 6.3.2.1. (A) UV-vis spectra for an aqueous solution of MZF@Au-DNA1 and MBA-Au NPs before 

(black) and after (red) adding DNA2. [MZF@Au-DNA1] = 6.2 nM; [DNA2] =0.56 μM; [40 nm-Au@MBA] 

=4.3×10-2 nM.  (B-C) Simulated ACS spectra of AuNPs assembled to M@Au NPs (B) and AuNPs (C) with 

different gap distances (12, 7, 6, 2, 1, 0 nm).  

 

 Theoretically, the SP band characteristics of the Au–M@Au NPs were simulated 

in terms of absorbance cross-section spectra (ACS) as a function of g (Figure 6.3.2.1B).  

The general feature for the simulated ACS is similar to those observed experimentally.  

There is no obvious shift in the SP band.  The core size is 9 nm whereas the Au shell 

thickness is 0.5 nm for the simulation in the above example.  The insignificant shift of the 

simulated ACS band for the relatively larger-sized magnetic core and the relatively thinner 

Au shell thickness can be further analyzed through simulations (see Section 6.3.5). 

 In comparison with the band characteristics of the Au-M@Au NPs, the simulated 

ACS band Au-Au NPs showed a more red-shift as a function of g (Figure 6.3.2.1C).  As 

reflected by the appearance of the longer-wavelength band, the Au-Au NP dimer exhibits 

a larger shift below 10 nm gap, whereas the band for the Au-M@Au NP dimer does not 

show any significant shift until the gap distance is below 5 nm. 

An increase in SERS intensity was observed upon the M@AuNPs, as shown by the 

SERS spectra before and after addition of DNA2 to the solutions of DNA1-M@Au NPs 

and MBA-Au NPs (Figure 6.3.2.2A).  The SERS intensity of the Raman labels significantly 

increased upon the addition of the target DNA strands.  The SERS intensity was assessed 

by simulation of the EMF intensity using a dimer model consisting of 10 nm M@AuNP 

and 40 nm AuNPs as a function of g.  Figure 6.3.2.2B shows the 2D images of the 

simulated EMF around the Au–M@Au NPs (bottom) and Au-Au NPs (top) at g = 2 nm, 

showing clearly an enhanced intensity at the center of the interparticle gap.  The EMF 
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intensity for the Au–M@Au dimer measured at the center of the gap (“hot-spot”) increases 

as the interparticle distance increases (Figure 6.3.2.2C, open squares).  The EMF intensity 

for the Au-Au dimer is included for comparison (Figure 6.3.2.2C, closed squares). 

 (A) 

 (B)    (C) 
Figure 6.3.2.2. (A) SERS spectra for the assembly of MBA labeled AuNPs and DNA functionalized M@Au 

NPs (solid) (and AuNPs (dashed)) with target DNA strands (before assembly – black; after assembly – red).  

(B) 2D image of the simulated EMF around the Au-M@Au NPs (bottom, 9 nm magnetic core and 0.5 nm 

Au shell for M@Au NP) and Au-Au NPs (top, 40 nm) at g = 2 nm; (C) Plot of the simulated EMF intensity 

for the Au-M@Au NPs (open squares) and Au-Au NPs (closed squares) as a function of the interparticle gap 

(from 1 to 10 nm). 

 

 It is evident that the EMF intensity for Au–M@Au dimer is smaller than that for 

Au-Au dimer.  A significant increase in EMF at the “hot-spot” is observed when the gap 

distance is below 3 nm (Figure 6.3.2.2C).  The experimentally observed SERS intensity 
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enhancement is reflected by the theoretically-simulated EMF enhancement at the “hot-

spot”. 

A comparison of the above experimental data and theoretical simulation results for 

the Au–M@Au NPs and the Au-Au NPs at g = 2 nm is shown in Figure 6.3.2.3.  It is 

evident that both the SERS intensity and the EMF intensity for Au-Au NPs are higher than 

those for the Au–M@Au NPs, showing an excellent agreement between the experimental 

data and the simulation results.  This agreement is also validated for the other interparticle 

distances.  This finding is consistent with the stronger plasmonic coupling for Au-Au NPs 

than that for the Au–M@Au NPs, as described earlier (see Figure 6.3.2.1B-C).   

 

Figure 6.3.2.3.  Comparison of the experimental SERS intensity (black) and simulated EMF intensity (red) 

for the Au–M@Au NPs and the Au-Au NPs at an interparticle gap of 2 nm.  

 

6.3.3 Combination of Au – M@Ag NPs 

 Using M@Ag NPs to replace M@Au NPs, similar experiments and simulations 

were performed for the DNA-mediated assembly of AuNPs and M@Ag NPs, i.e., Au–

M@Ag assembly.  Both the SPR optical and the SERS characteristics are discussed in 

correlation with the theoretical simulation results. 
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A representative set of UV-Vis spectra for the DNA-mediated assembly of AuNPs 

and M@Ag NPs is shown in Figure 6.3.3.1A.  In comparison with the spectral features for 

Au–M@Au (Figure 6.3.2.1A), there appears a stronger plasmonic coupling for the Au-

M@Ag, as evidenced by the appearance of the SP band at a longer wavelength (~660 nm), 

demonstrating a subtle difference in plasmonic coupling between Au–M@Au and Au–

M@Ag NPs.  

  
(A) 

 

    
 (B)    (C) 

Figure 6.3.3.1. (A) UV-vis spectra for an aqueous solution of MZF@Ag-DNA1 and MBA-AuNPs before 

(black, bottom) and after (red, top) adding DNA2.  Inset of A shows before (black) and after (red) assembly 

of 10 nm AgNPs and 40 nm AuNPs with DNA.  (B) The simulated ACS Intensity of M@AgNPs and AuNPs 

when gap distance is decreased from 12 to 0 nm (arrows indicate the trend as the distance decreases: 12, 7, 

6, 2, 1, and 0 nm). [MZF@Ag-DNA1] =3.0 nM; [DNA2] =0.56 μM; [40 nm-Au@MBA] = 4.3×10-2 nM).  
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(C) The simulated EMF intensity of metallic 10 nm AgNPs assembled to 40 nm AuNPs with varying gap 

distances (arrows show shift from larger to smaller gaps: 12, 7, 6, 2, 1, 0 nm)). 

 

The simulated ACS spectra for Au–M@Ag NPs and the Au-Ag NPs are shown in 

Figure 6.3.3.1 as a function of the interparticle gap (g).  While there is no significant shift 

of the main SP band, similar to the case for Au–M@Au NPs and the Au-Au NPs; the 

spectral feature in terms of the appearance of the longer wavelength band as the 

interparticle gap approaches zero, appears to be in agreement with the UV-Vis spectra.  

 For a further comparison, we also examined the UV-Vis spectra for the assembly 

of AgNPs (10 nm) functionalized with DNA and AuNPs (40nm) functionalized with MBA 

(Figure 6.3.3.1A insert).  Interestingly, after introduction to the target DNA strand, the 

appearance of the red-shifted SP band at a longer wavelength (~800 nm) is evident, 

demonstrating a stronger plasmonic coupling for the Au-Ag NPs than Au-Au NPs, and 

some similarity in plasmonic coupling between Au-Ag NPs and Au–M@Ag NPs. 

A representative set of SERS spectra is shown in Figure 6.3.3.2A for the DNA2 

mediated assembly of DNA1-M@Ag NPs and MBA-Au NPs.  The SERS for the assembly 

of Au-Ag NPs is also included for comparison (Figure 6.3.3.2(A) (dashed lines, top)).  

There is a clear increase in SERS intensity after the assemblies of both Au–M@Ag and 

Au-Ag NPs, which was also assessed by simulations.  Similar to the simulation for the Au–

M@Au NPs and Au-Au NPs, the 2D images of the simulated EMF around the Au–M@Ag 

NPs and Au-Ag NPs at an interparticle gap of 2 nm, also showed a clear enhancement in 

intensity at the center of the interparticle gap (Figure 6.3.3.2B).  The EMF intensity for the 

Au–M@Ag dimer measured at the center of the gap (“hot-spot”) increases as the 

interparticle distance increases (Figure 6.3.3.2C, open circles), which is again lower than 

that for the Au-Ag dimer (Figure 6.3.3.2C, closed circles).  The experimentally observed 
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SERS intensity enhancement is consistent with trend of the theoretically-simulated EMF 

enhancement at the “hot-spot” as a function of the interparticle gap. 

 (A) 

 (B)   

(C) 
Figure 6.3.3.2.  (A) SERS spectrum of Magnetic Nanoparticles coated with Ag before (black) and after (red) 

assembly (control assembly of Ag and Au (dashed, top) and magnetic (solid, bottom)). (B)  Simulated EMF 

spectra of the metallic AgNPs assembled to AuNPs (top) and M@AgNPs with AuNPs (bottom) at g = 2 nm. 

(C)  The simulated EMF Intensity of 10 nm M@AgNPs (9 nm Magnetic core) and AuNPs (bottom, open 

circles) and Ag-Au NP dimers (top, closed circles) as gap distance decreases from 10 to 1 nm. 

 

In Figure 6.3.3.3, the experimental data and theoretical simulation results are 

compared for Au–M@Ag NPs and Au-Ag NPs at g = 2 nm.  In contrast to the trend 
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observed for the Au–M@Au and Au-Au NPs, a discrepancy between the theoretical and 

experimental data is observed.  While the simulated EMF intensity shows a decrease from 

Au-Ag NPs to Au–M@Ag NPs, the experimental SERS intensity exhibits an opposite trend, 

the origin of which is discussed in the next subsection. 

 

Figure 6.3.3.3.  Comparison of the experimental SERS intensity (black) and simulated EMF 

intensity (red) for the Au-M@Ag NPs and the Au-Ag NPs at an interparticle gap of 2 nm. 

 

6.3.4 A comparison between Au-M@Au and Au-M@Ag combinations 

 As shown in Figures 6.3.2.2 and 6.3.3.3 for both experimental SERS and simulated 

EMF at g = 2 nm, there is a clear agreement for the difference between Au-M@Au and 

Au-Au NPs.  However, there is a disagreement for the Au-M@Ag and Au-Ag NPs.  Also, 

the SERS intensity for Au-M@AgNPs is higher than that of the Au-M@AuNPs.  Note that 

most experimental observations indicate that silver–based NPs have a stronger SERS 

enhancement than gold-based NPs.  To address the experimental-theoretical disagreement, 

a key question that must be addressed is how the interparticle spacing is operational for 

plasmonic coupling of the dimeric nanoparticles in the presence of the magnetic cores and 

the effective monolayer capping shells.   
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 The interparticle spacing is determined by the interparticle interaction potentials for 

the DNA – mediated NP assembly, which were analyzed by considering the monolayer 

structure in terms of the number of DNA and capping molecules on the NP surface.  The 

approximate number of DNA and other capping molecules on the NP surface can be 

estimated from the model shown in Figure 6.3.3.4 (see Equations 3 and 4). 

     (1) 

      (2) 

 

  The estimated effective thickness (L’) is dependent on the orientation of DNA strands on 

the smaller NP surface (Figure 6.3.3.4).  When DNA stands on the surface, the thickness 

is approx. 11 nm, and when laying on the surface it is approx. 2 nm.  At an effective 

thickness of 2 nm, the mixed monolayer consists of 73% DNA.  This partial surface 

coverage provides an explanation of the finding on the small interparticle spacing for the 

experimental-theoretical correlation (Figures 6.3.2.2 and 6.3.3.3).    

 
Figure 6.3.3.4. Fractional surface coverage of DNA (black) and acrylate (red) as a function of the effective 

thickness (L’, nm) (DNA: 11 nm height, 2 nm diameter; acrylate: 0.5 nm height, 0.5 nm diameter). 
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6.3.4 Comparison between Au- and Ag-based NPs 

 We further examined the EMF intensity over the four dimer assemblies for g  2 

nm (Figures 6.3.2.2 and 6.3.3.3).  Figure 6.3.2.2 shows the simulated EMF spectra of Au–

M@Au at g = 0.1 nm and demonstrates the change in simulated EMF intensity as gap 

distance decreases from 2 nm to 0 nm for Au-Au (black, squares) and Au–M@Au (red, 

circle).  As the gap distance decreases, the EMF intensity of Au-Au NP dimers increase to 

a maximum at 0.5 nm gap and drops thereafter.  The Au–M@Au NP dimer shows a similar 

trend in EMF intensity as the gap decreases, and exhibits a maximum at 0.5 nm, except the 

intensity is much smaller compared to the Au-Au NP dimer.  When the NPs come into 

contact (g = 0 nm), the EMF intensity of the Au–M@AuNPs shows an increase which is 

practically the same in comparison with that for the Au-Au NP dimer.  A similar trend is 

evident for the EMF intensities observed for Au-Ag and Au–M@Ag NP dimers as the gap 

drops from 2 nm to 0 nm (Figure 6.3.3.3).  A close comparison of the data with that in 

Figure 6.3.4.1, the EMF intensity for the Au-Ag NP dimer showed a less sharp decrease 

after the maximum at 0.5 nm gap.  Interestingly, when gap = 0 nm, the EMF intensity for 

the Au-M@Ag NP dimers shows a dramatic increase, which is much greater than that for 

the Au-Ag NP dimer. 

 The above findings are interesting because the change of the simulated EMF 

intensities shows sharp contrasts as a function of the interparticle gap.  For gap > 0.5 nm, 

the Au-Au NP dimers display a higher EMF intensity than that of Au-Ag NP dimers.  For 

gap < 0.5 nm, the two systems show similar trends but the intensity of Au-Ag NP dimers 

is larger than the intensity of Au-Au NP dimers.  For dimers of Au–M@Au and Au–M@Ag, 

apparently, the intensity of Au–M@Au remains higher than Au–M@Ag when gap > 0 nm.  
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However at gap = 0 nm, the intensity for both Au–M@Au and Au–M@Ag dimers increase 

sharply; although the intensity for Au–M@Ag dimer is greater than that for Au–M@Au 

dimer. 

(A)  (B) 

   
(C)   (D) 

Figure 6.3.4.1. (A) Simulated EMF spectra of Au – M@Ag dimer at 0.1 nm gap.  (B) Plots of the 

simulated EMF intensity of 40 nm Au NP and 10 nm NP of Au (black squares), M@Au (red circles) 

(B), M@Ag (blue up triangles), and Ag (lime downward triangles) at interparticle gaps below 2 

nm. (C and D) Comparison of the simulated EMF and SERS intensities for heterodimers of Au – 

Au based NPs (C) and Au – Ag based NPs (D) above 0 nm (2 nm) and at 0 nm gap distances. 

 

 The simulated results are summarized in Figure 6.3.4.1C and D for an overall 

comparison with the experimental results.  The experimental SERS (red, squares) and 

simulated EMF (black, circles) intensities are compared for gap > 0 nm and gap = 0 nm.  

For Au-Au and Au–M@Au NP dimers (Figure 6.3.4.1C), the experimental SERS intensity 

for Au-Au is greater than Au–M@Au dimers, which is consistent with the simulated EMF 

intensities of Au-Au dimer being greater than Au–M@Au for gap > 0.  For gap = 0 nm, 
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the EMF for Au-Au is the same as or slightly lower than that of Au–M@Au.  For Au-Ag 

and Au-M@Ag NP dimers (Figure 6.3.4.1D), a sharp contrast is revealed.  For gap > 0 nm, 

the simulated EMF intensity for Au-Ag is higher than that for Au–M@Ag NP dimers.  But 

at g = 0 nm, the simulated EMF intensity for Au-Ag is lower than Au–M@Ag dimer which 

is clearly consistent with the experimentally-observed SERS intensities for Au-Ag dimer 

being smaller than Au-M@Ag NP dimers. 

 An important implication from the above results is that the interparticle plasmonic 

coupling and squeezing are strongly dependent on the composition of the nanoparticles.  

The presence of Ag and magnetic core in the nanoparticles apparently had a stronger impact 

on these interparticle properties in comparison with Au.  For pure metallic NPs, the 

effective monolayer thickness falls likely in the range of 1 – 2 nm, whereas the presence 

of magnetic cores appears to further squeeze the gap distance to approximately 0 nm.  

Squeezing of the DNA-capped NPs in the interparticle gap favors the peripheral region 

near the hot-spot contact region (edges of the gap), or in some cases the smaller-sized 

particle.  In these cases, it was found that the highest intensity is not necessarily at the 

center between the NPs when the gap distance decreases, instead it could be in the 

peripheral contact region.  These assessments were substantiated by a close examination 

of the EMF in peripheral region (Figure 6.3.4.2) for both Au–M@Au (Figure 6.3.4.2A)) 

and Au–M@Ag (Figure 6.3.4.2B) dimers.   
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(A)     (B)   (C) 

Figure 6.3.4.2.  Comparison of EMF Intensity in the center of the hotspot region (red) and 

maximum intensity in the upper peripheral region of the hotspot (black) of AuNP (39 nm) – 

M@AuNPs (10 nm) (A) and – M@AgNPs (10 nm) (B).  EMF schematic of Au – M@Ag NP at 0 

nm where X1 is the center of the hotspot and X2 is the peripheral region. 

 

 The metallic NPs appear to exhibit a strong experimental-theoretical correlation, 

whereas the correlation for the metal-coated magnetic NPs is apparent only at gap distances 

below 0.5 nm.  It is believed that the magnetic forces could have played an important role 

in the interparticle interactions other than van der Waals forces.  This leads to further 

squeezing of the interparticle spacing in comparison with only van der Waals interaction, 

pushing the DNA to the edges of the dimer (Scheme 6.3.4.1).   

   
(A)      (B) 

Scheme 6.3.4.1. Proposed structures in terms of the interparticle spacing depending on the metal-

metal dimer (A) and the metal-magnetic core@metal dimer (B) under an effective thickness for the 

DNA-capping monolayer. 

 

Moreover, the NP dimers that involve Ag component appears to have a stronger 

plasmonic effect than those involving Au component only, even though there appeared to 
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be less Ag on the magnetic NP than Au.  This finding could be due to a larger tendency of 

charge transfer from Ag than Au.13, 14, 16 This was further supported by the simulation 

showing the red-shift in SP bands near 700 nm.  Experimentally, since the excitation 

wavelength of the laser is 633 nm, the NP dimers involving Ag component exhibits a higher 

SERS intensity than those involving only Au component. 

6.3.5 Factors that affect Magnetic NP assembly 

 In the experiment M@AuNPs (1.5 nm thick) have a thicker shell than M@AgNPs 

(0.5 nm thick) used, however M@AgNPs exhibited a larger intensity than M@AuNPs.  

This section examines the influence of the relative magnetic core size and metal shell 

thickness on plasmonic coupling to identify the reason for the increase in intensity of thin 

NP shells.  The simulations were performed in terms of the different relative magnetic core 

size and metal shell thickness for the NP dimers, including (1) changing magnetic core 

while keeping the same metal shell thickness (0.5 nm), (2) changing shell thickness while 

keeping the same core size (9 nm), and (3) changing core size and shell thickness while 

maintaining the same overall NP size (10 nm) (Scheme 6.3.5.1). 
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Scheme 6.3.5.1.  Manipulation of bidirectional approach for the interpretation of 

magnetic coated dimers (left: decrease magnetic core in a 10 nm NP (top) or a NP with 

0.5 nm thick shell (bottom); right: increase metallic shell of 9 nm magnetic core). 

 

 As shown by the SP data (Figures 6.3.5.1) and the EMF (Figure 6.3.5.2) data, subtle 

changes in intensities of SP and EMF, as well as the wavelength of SP were observed 

(Tables 6.3.5.1-3).  Increasing the magnetic core size for Au–M@Au and Au–M@Ag 

dimers appeared to increase the red-shift of the SP band.  Similar trends were found when 

increasing the metal shell thickness of the dimers, except the SP bands initially far-red 

shifted and slowly shifted back towards the original SP band of the metal.  Increasing the 

shell thickness and magnetic core size for an overall 10 nm sized NP, the SP band showed 

a slight red-shift and decreased intensity.  Overall, while the SP band showed slight 

differences, the Au–M@Ag NP dimer’s red-shift was smaller than that for Au–M@Au NP 

dimer, and remained near 700 nm which is close to the laser’s wavelength (633 nm). 
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(A)   (B)    (C) 

     
(D)   (E)    (F) 

Figure 6.3.5.1. Normalized simulated ACS Intensity showing the SPR changes of M@AuNP (A, B, C) and 

M@AgNP (D, E, F) assembled to AuNPs when the NP gap distances is 0 nm that correspond to different 

core sizes when the shell thickness is 0.5 nm (A, D) (magnetic core size of 1 – black, a; 5 – red, b; 9 – blue, 

c), different shell thicknesses when the magnetic core is 9 nm (C, D) (shell thickness of 0.5 nm – black, a; 

5.5 nm – red, b; 15.5 nm – blue, c), and 10 nm total size with different core sizes (magnetic core size of 1 – 

black, a; 5 – red, b; 9 – blue, c). 

 

Table 6.3.5.1.  Long wavelength (nm) and Normalized ACS Intensity of 0.5 nm thick Au/Ag coated Magnetic 

NPs. 

Core, Shell NP 

diameter 

Au Ag 

M A* nm Intensity nm Intensity 

1 0.5 527.3 1.000 526.3 1.000 

5 0.5 844.8 0.026 764.7 0.043 

7 0.5 527.3 1.000 527.3 1.000 

12 0.5 806.8 0.020 730.7 0.032 

9 0.5 896.9 0.064 813.8 0.051 

9 5.5 674.6 1.000 648.5 1.000 

9 15.5 778.4 1.000 728.7 0.62 

 

Table 6.3.5.2.  Long wavelength (nm) and Normalized ACS Intensity of 10 nm Au/Ag coated Magnetic NPs. 
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Core, Shell 

diameter 

Au Ag 

M A* nm Intensity nm Intensity 

1 4.5 651.5 0.484 614.5 0.286 

5 2.5 664.6 0.333 618.5 0.267 

9 0.5 660.6 0.136 813.8 0.051 

 

 Similar trends were observed for the EMF intensities upon changing the shell 

thicknesses for an overall NP size of 10 nm (Figure 6.3.5.2).  A maximum EMF intensity 

was shown at gap = 0.5 nm for all three cases.  Increasing the shell thickness leads to an 

increase in the simulated EMF intensity.  

 

    

    
(A)   (B)    (C)   (D) 
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Figure 6.3.5.2. Different magnetic cores for 10 nm NPs with Au (A) or Ag (B) shell assembled to 39 nm 

AuNPs.  (Core diameters: 1 (black, square), 5 (red, circle), and 9 (blue, triangle)).  Different shell thicknesses 

for a 9 nm magnetic core assembled to 39 nm AuNPs: Au (C) or Ag (D) shell assembled to 39 nm AuNPs. 

(Shell thickness: 0.5 nm (black, square), 5.5 nm (red, circle), 15.5 nm (blue, triangle)). 

 

Table 6.3.5.3.  Exponential fitting of 10 nm coated magnetic NPs when magnetic core size changes (M = 1, 

5, 9 nm) and when metallic shell thickness changes (A* = 0.5, 5.5, 15.5 nm).  

 y = y0 + A*exp(R0*x) 

Core, Shell 

diameter 

Au Ag 

M A* y0 A R0 y0 A R0 

1 0.5 0.578 3.288 -0.224 0.563 2.948 -0.214 

5 0.5 0.589 3.692 -0.221 0.571 3.147 -0.218 

9 0.5 0.487 3.147 -0.130 0.466 1.245 -0.106 

9 5.5 0.642 4.493 -0.194 0.607 3.810 -0.192 

9 15.5 0.759 5.047 -0.193 0.692 4.649 -0.195 

 

 Upon further investigation of the different magnetic cores of Fe (e.g., Fe2O3 

compared to Fe3O4), it was observed that the different states of Fe did not have significant 

effect on the SP band (Figure 6.3.5.3).  The only significant changes observed in the SP 

spectra occurred in the near IR region.  These findings also have implications to other 

systems, including different monolayer shells, different metals (e.g., Cu, and alloys) 
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(A)   (B) 

   
(C)   (D) 

Figure 6.3.5.3.  Comparison of simulated ACS Intensity of different Fe oxide magnetic cores (Fe2O3 (A, B) 

and Fe3O4 (C, D)) when coated with 0.5 nm shell thickness of Au (A, C) and Ag (B, D). 

 

 The investigation of Ag and Au coated NPs with different metal cores have 

exhibited similar plasmonic coupling as that found in Ag and Au coated NPs with iron 

oxide cores (Figure 6.3.5.4) when gap distance between dimer particles were decreased.  

In many of these cases, there appeared a red-shift in the near IR region at 1 nm gap and 

there was evidence of an even farther red-shift in the IR region at 0 nm. 
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(A)   (B)   (C) 

 
(D)       (E)   (F) 

Figure 6.3.5.4.  Simulated ACS spectra of Ag coated (A-C) and Au coated (D-F) NPs 

with different metal cores: Co (A, D), Fe (B, E), and Ni (C, F) when gap distances are 22, 

12, 2, 1, and 0 nm. 

 

6.4 Conclusion 

These results have provided some important new insights into the interparticle spatial 

characteristics of DNA-linked core-shell type nanoparticles consisting of magnetic cores 

and plasmonic gold or silver shells in terms of the theoretical-experimental correlation.  In 

comparison with Au nanoprobes, the simulated results of the SERS enhancement for the 

DNA-linked dimers of plasmonic-magnetic M@Au nanoprobes show a similar agreement 

with the experimental data in terms of the ‘squeezed’ interparticle spacing characteristic.  

Remarkably, for M@Ag nanoprobes, the agreement between the simulated and 

experimental results for DNA-linked dimers of M@Ag and Au nanoprobes is achieved at 

an interparticle spacing of essentially zero, implying an important role played by the 

magnetic interaction in the interparticle interactions.  The results presented show that shell 
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thickness and magnetic core have a significant role on the plasmonic coupling of the NPs.  

These observations are remarkable, suggesting that both the gap and the chemical nature 

of the materials in the nanoparticles play an important role in the relative strength of 

interparticle plasmonic coupling.  These findings are also supported by studies of other 

core shell NPs showing significantly-reduced interparticle gap distance.14 These findings 

also have implications to other systems for the manipulation of biomolecules in detection 

systems. 
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Chapter 7 

 

 

Summary and Future Work 

 This work focused on the functionalization of gold- and silver-based nanoparticles 

as nanoprobes for the detection of different biomolecules.  The results have demonstrated 

the significance of the role played by the interparticle interactions on plasmonic coupling 

of the functional nanoprobes responsible for LSPR and SERS characteristics which are 

exploited for the detection of different molecules.  The major findings are summarized here.  

 First, the aggregation of dye molecules has been demonstrated as a model system 

for probing the plasmonic coupling via the π–π* stacking interaction.  The correlation 

between the experimental results and the theoretical simulations for both LSPR and SERS 

has provided insights into the effect of interparticle distance on plasmonic coupling.  The 

J-aggregation of the dye molecules defined the spatial parameters and provides 

spectroscopic signatures for establishing a strong correlation between LSPR and SERS.  

The insight into the interparticle interactions that produce the spectroscopic signatures has 

significant implications for the detection molecules. 

 Secondly, the antigen-antibody recognition by protein A and goat anti-rabbit IgG 

has been studied as a model system for defining the interparticle plasmonic coupling 
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between NPs in solution.  The effect of the interparticle interactions on the SERS 

characterization in this model were analyzed using different antigen concentrations.  

Through the analysis of different antigen concentrations, the antibody-conjugated 

nanoprobes showed promising results using Raman-labeled nanoprobes for SERS 

detection of protein A in solution with low concentrations.  The findings in this model 

system in terms of experimental - theoretical correlation have implications for the design 

of nanoprobes for exploring SERS technique towards point-of-care applications. 

 Thirdly, the study of duplex DNA mediated assembly of AuNPs by both 

experimental measurements and theoretical simulations has new insights into the 

understanding the effect of the interparticle interactions on the spectroscopic signal 

amplification.  The theoretical simulation of the plasmonic coupling and electromagnetic 

field enhancement of homo- and hetero-size NP dimers has provided useful information 

for assessing LSPR and SERS features in relation to the nanoparticle size and interparticle 

gap distance.  A major finding from this system was the interparticle squeezing to a distance 

smaller than the expected for the conventional perception of the duplex DNA linkage.  This 

finding has significant implications for understanding DNA-mediated NP assembly and 

exploring nanoprobe-enhanced SERS detection of DNA in solution.   

 Lastly, magnetic core – gold or silver shell NPs have been investigated as a 

multifunctional nanoprobes for the detection of DNA through experimentation and 

computational modeling to understand the effect of interparticle properties on the 

spectroscopic characteristics of LSPR and SERS.  The interparticle interaction of metallic 

shells in the presence of the magnetic cores has been shown to further squeeze the 

interparticle distance.  This is attributed to the magnetic attraction of the cores which 
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decreases the interparticle distances.  The results have demonstrated the significant role 

played by the effective shell thickness and magnetic core sizes in the interparticle 

plasmonic coupling.  These results have implications for the design of multifunctional 

nanoprobes with enhanced SERS and LSPR properties for biomolecular detection. 

 The findings presented in this work provide a great deal of answers to questions 

previously asked on the effect of the interparticle properties on the spectroscopic signatures 

involved in these systems.  However, they have also generated new questions to answer, 

one of which was derived from the theoretical simulation of different size NP dimers in the 

squeezing effect of the DNA on the NPs.  Since the magnetic core – Au or Ag shell NPs 

exhibit a gap distance of approximately 0 nm, the labels were pushed toward the peripheral 

contact region of the hotspot, posing the question on which particle should the Raman label 

(RL) be conjugated to in hetero-sized dimers in order to increase the NP enhancement.  The 

theoretical data provided some insight that the RL may form a hotter hotspot on the smaller 

NP or near the smaller NP.  This further understanding could aid the design of nanoprobes 

that produce a larger enhancement, allowing for the detection of molecules in lower 

concentrations. 

 Further experimentation is needed to obtain a more detailed understanding of the 

interparticle interactions on the intensity observed from the assembly of NPs with proteins.  

More studies need to be performed in the analysis of antigen-antibody binding orientation, 

to understand how the dehydration process affects the protein structure upon NP squeezing.  

Techniques such as FTIR, NMR, NanoSight Tracking, and Dynamic Light Scattering 

should be used to monitor bond formation and changes to surface potentials and 
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interparticle properties.  Similarly, it would be interesting to observe the theoretical results 

with the utilization of larger computing power to produce better resolved simulations. 

 Concurrently with these methods for the further understanding of the systems, it 

would be interesting to expand the preliminary work on the application of the metallic 

nanoprobes in microfluidic systems, like flow cells or on paper substrates.  This will allow 

for the analysis of other methods for simple, reusable and disposable methods of the point-

of-care analysis.  Some of these methods may also include the printing of NP inks used for 

disease detection on economical devices, like glass or paper substrates.  Further research 

needs to be conducted to allow for the detection of biomolecules using different optical 

and electrical techniques simultaneously on these low-cost substrates.  The results will 

provide useful information for the development of portable, highly specific, and non-

invasive sensors for the ability to monitor ones’ health without visiting a medical center. 

 In summary, significant progress has been made towards harnessing the metal 

nanoparticles and assemblies as an effective strategy to create multifunctional properties 

for detection, targeting, recognition and diagnostics.  Many of the examples of the 

multifunctional nanoprobes in this work focus on the optical, spectroscopic, electrical and 

magnetic properties for signal transduction or process intervention in a wide range of 

molecular or biomolecular applications such as amino acids, peptides, proteins, DNA, 

miRNA, bacteria, and biomarkers as well.  These multifunctional properties are often 

linked to the interparticle interactions and reactivities at the interfaces between the 

nanoparticles and the targeted biomolecules.  The examples illustrate the importance of 

understanding the detailed nanostructural parameters such as size, composition and surface 

properties in correlation with their optical, spectroscopic, electrical and magnetic 
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properties.  The fundamental understanding of the design parameters in nanoengineering 

of the functional nanoparticles in terms of the desired (e.g., specific targeting) and 

undesired (e.g., nanotoxicity effect) properties would allow for the development of 

practically-viable devices or technologies for diseases and cancer biomarker detection.  

The importance is reflected by many emerging research activities focusing on point-of-

care detection devices and low-cost printable and flexible sensing devices.  The progress 

in these fronts will provide both fundamental and practical knowledge for advancing 

nanoparticle based theranostic applications.  There are also other nanostructural parameters 

such as shape and interatomic distance or geometry and other material properties such as 

catalytic and thermoelectric properties which can regulate the interfacial interactions and 

reactivities for the nanotransduction and nanointervention, which are not discussed in this 

thesis but are actively investigated by many researchers, including our group in previous 

and on-going efforts. 
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