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ABSTRACT 

This research studied the behavior of several controllable variables that affect the fuel 

efficiency of trucks. Re-routing is the process of modifying the parameters of the routes 

for a set of trips to optimize fuel consumption and also to increase customer satisfaction 

through efficient deliveries. This is an important process undertaken by a food 

distribution company to modify the trips to adapt to the immediate necessities. A 

predictive model was developed to calculate the change in Miles per Gallon (MPG) 

whenever a re-route is performed on a region of a particular distribution area. The data 

that was used, was from the Dallas center which is one of the distribution centers owned 

by the company. A consistent model that could provide relatively accurate predictions 

across five distribution centers had to be developed. It was found that the model built 

using the data from the Corporate center was the most consistent one. The timeline of the 

data used to build the model was from May 2013 through December 2013. The predictive 

model provided predictions of which about 88% of the data that was used, was within the 

0-10% error group. This was an improvement on the lesser 43% obtained for the linear 

regression and K-means clustering models. The model was also validated on the data for 

January 2014 through the first two weeks of March 2014 and it provided predictions of 

which about 81% of the data was within the 0-10 % error group. The average overall 

error was around 10%, which was the least for the approaches explored in this research. 

Weight, stop count and stop time were identified as the most significant factors which 

influence the fuel efficiency of the trucks. Further, neural network architecture was built 
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to improve the predictions of the MPG.  The model can be used to predict the average 

change in MPG for a set of trips whenever a re-route is performed. Since the aim of re-

routing is to reduce the miles and trips; extra load will be added to the remaining trips. 

Although, the MPG would decrease because of this extra load, it would be offset by the 

savings due to the drop in miles and trips. The net savings in the fuel can now be 

translated into the amount of money saved.  
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Chapter 1 - Introduction 

1.1 Introduction 

The transportation of commodities is a very important part of any manufacturing 

business. The transition of goods to the customers located in different regions brings in 

revenue and also increases customer satisfaction. This generates profit and adds value to 

the business. The goods transportation sector can be considered as a major source of 

revenue for the US economy by providing timely delivery of quality goods at lower costs. 

The U.S. transportation network serves more than 300 million people and 7.5 million 

business establishments across 3.8 million square miles of land. The transportation of 

goods takes place through a vast network of rails, roads, waterways, and airways. Fruits, 

vegetables, and equipment are being transported across the length and breadth of the 

country to thousands of customers. The goods transportation sector accounts to 6.2% of 

the GDP of the entire country. Consequently, it has become a huge sector for investment 

and for obtaining large profits. There are a lot of logistic companies that ply their trade in 

this sector. The competition has increased many fold, especially in recent years. 

According to a Bureau of Transportation Statistics (BTS) report in 2001, on an average 

day, about 43 million tons of goods valued at about $29 billion moved nearly 12 billion 

ton-miles on the nation's interconnected transportation network. This represents an 

increase from about 37 million tons, valued at $20 billion in 1993. Given the increase in 
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the demand for quality goods, the transportation sector has become an area of importance 

in terms of revenue and customer satisfaction. 

1.2 Problems in Transportation and Distribution 

The number of customers banking on reliable and just in time deliveries of products has 

grown in recent years. Hence, it is necessary to develop state-of-the-art equipment to 

provide efficient service. This will help to build a large customer base for the distribution 

industry. Distribution companies must tend to the demand in locations very far away 

from the warehouse. There are numerous factors that affect the transportation of the 

finished products, such as weather, terrain, distance, and type of transport. The transport 

vehicles, irrespective of their type, must be sufficient enough to handle all the above 

factors when distributing the goods to the desired location. A distribution business cannot 

lose a potential customer just because the location is far away or they do not have the 

vehicles to transport the products. Sufficient research and development must be done by 

the distribution companies in this area. Larger distances also mean that the quality of the 

products should be maintained all through the journey from the warehouse to the 

destination. The appropriate technology must be used to prevent damage to the products. 

The key point is to reach the desired level of infrastructure to meet all kinds of demands. 

As trucks are involved in the transportation of goods, fuel plays a major role in 

contributing to the expenditure of a distribution business. Since fuel is an expensive 

commodity, the trips for the vehicles must be planned out efficiently. Also, the products 
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must be transported shortly after their production to remove the problem of excess 

inventory due to which the company can incur holding and shrink loss. There is a certain 

amount of uncertainty involved in all the processes that make up a distribution system. 

Since, they cannot be prevented, steps must be taken to minimize them so as to keep the 

customers happy and continue the inward flow of revenue.   

1.3 Food Distribution 

As discussed earlier, goods can be transported to different customer locations through 

rail, roads, airways, and water ways. For the purpose of this research, we will be focusing 

on the transportation of food products through trucks. Food transportation is very 

different from the transportation of hardware and equipment. Food should be handled 

with care and proper safety measures must be taken to maintain its quality. There are 

types of food that spoil very fast. Hence, while transporting food over long distances, 

built-in equipment on the trucks are a necessity to prevent it from perishing. Different 

kinds of food products require different kinds of packaging. The trucks must have the 

proper technology to maintain the quality of the food products. The majority of the 

transportation of products in the U.S. takes place through trucks. According to the BTS 

report of 2002, 67 percent of shipments were delivered through trucks all over the 

country. In 2012, truck transport services accounted for about $228 billion. The trucks 

may be designed for long distance or short distance trips, depending upon the customer 

location. It is essential that these trucks are of the highest quality to ensure the efficient 
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delivery of food products. The drivers who are driving the trucks must be well trained to 

cope with the challenges that come with long distance trips. One of the main problems 

with truck transportation is that these trucks are large and difficult to maneuver. The next 

problem that truck transportation faces is driver shortage. A deficiency of experienced 

drivers might result in customer dissatisfaction, which leads to a decrease in the revenues 

and profits of the company. It has been reported in 2012 that there was a shortage of 

25,000 drivers for every 750,000 trucks. Trips must therefore be planned properly and 

assigned to the appropriate drivers. The distribution company must also ensure that the 

drivers meet the drivers meet the federal and state safety regulations for the trucks for the 

trucks. Drivers are required to undergo extensive health checkups before they embark on 

their respective trips. The aim is to maximize safety and minimize incidents. 

The performance of trucks is affected by many factors, both preventable and 

unpreventable. Weather and topography cannot be controlled and the trucks must be 

modified to adapt to these changes. For example, snow tires might be suitable for the 

winters when the roads are very slippery. The topography also plays a very important role 

in the performance of the trucks. The altitude changes and the slopes of the roads 

improve or decrease the engine efficiency. The specifications of the trucks play a major 

role in the trucks' performance. The load carried by the trucks and the tire resistance are 

another set of important factors. 
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1.4 Problem Statement and Objective 

Fuel is an expensive commodity and is a major part of the expenditure of any distribution 

company, as all trucks need fuel. According to the BTS report of 2012, truck transport 

services consume about 32% of imported fuel. Fuel demand is going to increase about 

50% by the year 2050. This is a very costly issue and hence an aim should be to 

maximize the output of trucks by improving their performance and minimizing their fuel 

consumption. Petroleum is a limited source of fuel and its usage must be minimized. The 

problem statement of this research is to identify the factors that affect the fuel efficiency 

of the trucks and their sensitivity towards changes in route plans. As explained earlier, 

there are a lot of factors that affect engine and truck performance. Many of them directly 

or indirectly affect the fuel consumption. While most distribution companies tend to look 

at changing the routes and trips of the trucks to increase the performance, they do not 

look at minimizing fuel consumption. It has been estimated through studies by the 

distribution company that, at the present cost of fuel, 1/10th of an MPG can save around 

$400,000 annually. This amount is significant and is certainly an interesting area of 

research to be examined. Improper routing is another common problem in distribution 

companies. This can lead to a decrease in truck performance, driver dissatisfaction, and 

thereby result in inefficient service to the customers. There is extensive data mining 

research being done in order to save fuel by increasing fuel economy and optimizing 

routing of trucks. However, research has not been done to predict the impact on MPG due 
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to re-routing by identifying the most significant factors that affect fuel efficiency and 

building a predictive model based on these factors. This thesis currently addresses the 

above problems and also develops a tool to visualize these parameters on which decisions 

can be made to save fuel. The main objectives of this research is to develop a predictive 

model to measure the changes in fuel efficiency based on the identified factors and 

consequently, measure the sensitivity of the fuel efficiency towards changes in the trip 

plans for the trucks. If a working system is developed to predict the impact of re-routing 

on MPG and to calculate the net savings in fuel and dollars, it helps in developing an 

optimized routing system which is cost efficient and at the same time, develops a delivery 

system which provides quality service to the customers 

1.5 Thesis Overview 

Chapter 1 provides a brief overview of the common problems in the field of 

transportation and distribution. A part of the chapter is devoted to food distribution. It 

also provides a summary of the problem that is addressed through this research and the 

objectives that are going to be fulfilled by the end of it. 

Chapter 2 provides information about the various kinds of data mining techniques that are 

used to solve various problems generally and also in the field of transportation and 

distribution. Various research papers are reviewed as a basis for this particular research. 

It also explains what has not been done and how this thesis is unique compared to the 

reviewed articles.  
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Chapter 3 explains the methodology used to meet the objectives, in detail. It provides the 

steps taken to develop the predictive model to estimate fuel efficiency, related numbers 

and the validation of the models. This also provides a detailed study of the sensitivity 

analysis of the fuel efficiency towards the re-routing of trucks. 

Chapter 4 provides insights based on the observations made from the output obtained 

from the model. It also suggests the measures that can be taken to improve the fuel 

efficiency based on these insights.  

Finally, Chapter 5 concludes with a brief explanation of the future work wherever there 

are areas of improvement in the current thesis. 
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Chapter 2 - Literature Review 

2.1 Problems in Transportation and Distribution 

The transportation of goods involves many uncertainties, which affect the performance of 

the various participants in the processes. A lot of these uncertainties cannot be prevented, 

but they can be controlled. The transportation of goods is delayed by weather, terrain, 

traffic, driver performance, fuel performance, and technical glitches. There are also other 

factors related to logistics which play a major role in transportation and distribution. 

Historically, the transportation of goods has been very problematic. During the 

emergency of the Second World War, when American forces landed in Normandy to 

usurp the Nazi regime, they had to travel through dangerous terrains, which made the 

transportation of arms and ammunition a major hurdle. Several techniques were 

developed to make this process easier. Temporary bridges and all terrain trolleys were 

used to move the goods faster (Cohen, 1986). Moving forward in the timeline, during the 

Gulf War, many efficient ways were developed to move war machinery through 

treacherous routes of the Middle Eastern desert (Pisters, 2010). In more recent times, 

many logistics companies like DHL and FedEx have developed efficient ways of 

transporting goods to distant places in a quick and risk-free manner (Ulrich, 2011). With 

the competition in the logistics industry becoming more intense than ever, the companies 

need to find cheaper and quicker methods of transportation to be successful. Much 

research has been conducted to achieve these goals. The routing of trucks involved in 
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distribution is one of the most basic problems that have been addressed in recent years. 

Although the routing problem was extensively discussed during the 1950s (Dantzig and 

Ramser, 1959), it has only been recently implemented on a large scale. The vehicle 

routing problem involves the planning of a route for the truck to transport goods from the 

warehouse to the various customer centers. These customer centers might be located at 

varied distances from the warehouse. Therefore, an efficient route must be planned in a 

way that the truck delivers the goods to all the customers in the shortest time possible. 

The objective is to minimize the number of trucks involved and also to minimize the 

delivery time (Fan et al., 2009). In doing so, the trucks must not be overloaded and they 

must return to the warehouse after delivery. Simulation models were also developed to 

create efficient route plans using queuing networks and perturbation analysis (Solberg, 

1977). An optimization solution for the transportation of soft drinks was developed with 

various factors like number of trucks, truck capacity and routing costs (Privé, 2006). 

Most of the research is focused on decreasing the number of trips to the destinations as 

much as possible and maximizing the utilization of the trucks. Electronic devices have 

been developed to record various parameters to analyze the performance of the trucks 

based on the route plan (Duin and Kneyber, 2004). There has also been research done on 

the integration of advanced technology into the routing of the trucks like the 

establishment of wireless communication networks from the trucks to a relay center 

where the performance is analyzed. The aim is to reduce the number of instances when 

the trucks returns empty because backhaul is introduced (Hayashi and Yano, 2003). The 
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effect of traffic on route plans is a major player in the efficiency of the transport 

processes. Deliveries to customers located in metropolitan areas have resulted in longer 

times compared to customers located on the outskirts. However, longer distances also 

become a major player (Kovács, 2010). Therefore a balance must be struck between both. 

Another important problem in transportation and distribution is fuel economy. As 

explained earlier, fuel is a costly commodity and must be utilized efficiently. Since the 

days of the Gulf War, prices of fuel have increased exponentially with increasing 

demand. To add to this, studies have shown that the energy to output ratio has decreased 

by 55 percent since 1978 (Greene et al., 1999).  This is a very alarming trend. 

Encouragement of the usage of renewable sources of energy, reduction of oil extraction 

and restrictions on percentage of carbon emission from fuels are some of the steps 

undertaken to increase the energy to output ratio of fuels. The development of technology 

has had a significant impact on the efficient usage of fuels. Efficient fuel consumption 

leads to a significant amount of savings. This could increase the profits of a company 

many fold. Trucks should have proper emission systems to increase fuel efficiency. An 

added benefit it that this also helps minimize fuel’s effect on the environment. The 

quality of the fuel should be maintained at a very level. The extra cost of investment in 

high quality fuel could go a long way in saving millions of dollars due to the increase in 

fuel efficiency (Kydes, 1999). There are many factors that affect fuel efficiency. The 

Corporate Average Fuel Economy Standard sets a particular threshold for fuel economy. 

Trucks are allowed to carry more weight compared to passenger vehicles and the 
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threshold is lower compared to that of cars (Godek, 1997). In spite of this, there are many 

trucks that breach the threshold. This has been a major problem, which is costing millions 

of dollars. The engine performance plays a major role in fuel emission and economy. The 

effect of hydrocarbons, carbon monoxide, and nitrous oxide in the fuel exhaust on the 

fuel economy is very significant because of the deposition of precipitates on the inner 

walls of the exhaust pipes. This hinders the complete combustion of fuel which in turn 

decreases the efficiency. The engines need to be designed in such a way that all the above 

mentioned chemical particles need to be filtered before exhaust. Studies have shown that 

by doing this, the efficiency goes up by 10%. This is a significant increase and can save 

fuel and money (He et al., 2011). 

There are numerous factors that affect the fuel efficiency of the trucks, which range from 

fuel quality to driver performance. There has to be a systematic analysis to study the 

effect of each of these factors on the fuel economy. A data mining methodology to 

develop relationships between the fuel efficiency and these factors will shed some light 

on it. 

2.2 Introduction to Data Mining 

Data mining methodologies have already been used in the field of transportation and 

distribution of commodities widely.  Data mining techniques have been used to identify 

the factors influencing the fuel economy of cars (Gushue and Wu, 2004). But, the 

research was mainly on comparing the variables related to the car models and their sales, 
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to the variables related to the specifications of the cars. Data mining is the process of 

identifying hidden patterns to study the behavior of certain practices followed by an 

institution. Data is investigated to obtain useful information based on which important 

decisions can be made. Invariably, the output of data mining can be used to build models 

that help in foreseeing future behavior, identify behaviors that could not be observed 

earlier, develop relationships between two or more participants in the process, or adjust 

an existing principle in order to improve the process. There are various practical 

applications where data mining can be applied to improve processes. It is applicable in 

fields like health care, finance, space technology, and retail (Fayyad et al., 1996). There 

are a lot of data mining methods like neural networks, clustering, decision and 

association trees, which are widely used (Barai, 2003). Neural networks have seen a 

recent bump in their applications to various real life problems. They are very powerful 

tools to detect complex nonlinear patterns to fit the data in an accurate manner. 

Researchers have broadly classified data mining into two stages, the first stage being the 

generation of trends from the data that is acquired and the second stage being the 

translation of these trends to business decisions (Kohavi, Sommerfield and Dougherty, 

1997). Based on the outcome, we can proceed to develop models that can be used to 

produce these trends with the incoming data.  Regression tree techniques have been used 

on various applications like root cause analysis and fault detection (Loh, 2011). Pattern 

detection systems employ this technique in criminal analysis, forensic studies, and finger 
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print analysis. This method involves the division of data into sub groups, upon which 

separate models are built. 

Naturally, the data that is used for analysis and model building becomes a vital part of 

data mining. Without proper data, it is not possible to develop insights as to what 

decision can be taken. These expensive decisions cannot be based on improper data. This 

can be harmful to a business. The first step is to verify the origin of the data. Data can be 

collected in real time or from a device that has already recorded it. Both of these 

processes involve errors that need to be removed while analyzing the data. The next step 

is to look into the timeline of the data, which depends upon the objectives based on which 

the usage of long term or short term data can be determined. Once the data is obtained, it 

needs to be cleansed of the missing values and abnormal values, which might create bias 

in the analysis. The cleansed data can then be used to investigate for patterns and develop 

models. 
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Figure 2.1 Data mining process (Barai, 2003) 

As shown in the Figure 2.1, data must be mined to uncover patterns which are crucial to 

the development of knowledge based on which decisions can be taken. The most 

important part of data mining is to choose the right method to build models for the data. 

This will depend upon the type and behavior of the data (Fayyad et al., 1996). The 

developed models need to be validated by comparing the outcomes of the models to the 

real time results. Once the models are validated, business decisions can be established 

which will help improving the various operations in the company. 

2.3 Applications of Data Mining 

Data Mining is applicable in a wide range of fields, and within many specialties that 

require process improvement. 



15 

 

In the field of space technology, computational software has been developed to process 

huge amounts of image data of the universe from the Hubble space telescope and to 

categorize them based on certain characteristics. NASA has provided significant funding 

to integrate all the image observations from far away galaxies into a data bank. Its 

success can be measured by its ability to process three terabytes of data and compile 

them. A variation of the principal component analysis is used since the data is in the form 

of images instead of numbers (Foslien et al., 2004). The patterns obtained from mining 

this data is useful for measuring the velocity and mass of the galaxies and also the rate at 

which stars are born in these galaxies. It is also used to study the nature of formation of 

the galaxies. Data mining is also used in business and finance. Fayyad et al. highlighted 

the use of clustering to identify specific customer groups to market a particular product 

and forecast their behavior in the near future (Fayyad et al., 1996). Retail businesses have 

a lot of room for improvement in terms of increasing sales, customer satisfaction, and 

quality of products. Agrawal and Psaila, used clustering to identify closely related brands 

of the same product. The clusters can be used to place an alternate brand of the same 

product in a store if the original brand is out of stock (Agrawal and Psaila, 1995). This 

helps the retail stores to maintain the flow of revenue even though the major selling brand 

is not available.  It is widely known that all the major investment bankers use data mining 

techniques like neural networks and genetic algorithms to identify potential areas of 

investment and the business decisions to be taken on existing ones (Hall et al., 1996). The 

US treasury uses data mining methods to detect any kind of malpractice happening in the 
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financial world (Shapiro et al., 1996). Credit card frauds and risk analytics requires the 

application of advanced data modeling to predict the occurrence of strange activities in a 

customer transaction. Clustering, regression and classification techniques are employed 

to develop a fraud detection system (Ngai et al., 2011).  Data mining techniques are also 

used to prevent money laundering (Liao et al., 2012). Tax evasion is a serious crime and 

amounts to great losses to the country's revenue. A lot of research has gone into the 

application of data mining techniques to detect the occurrence of tax frauds. False 

transactions and identities have been detected, which could have led to tax evasions in 

billions of dollars. Clustering algorithms are used to develop root cause models which 

can lead to the detection of such kind of illegal practices (Gonzalez and Velazquez, 

2013). Bayesian techniques and association rules were used to detect irregularities in the 

ATM transactions (Li et al., 2012). In the field of manufacturing, clustering methods are 

used to detect and classify faults appearing in Boeing aircrafts (Kusiak, 2006). Data 

mining is also used to classify the type of weld formation. Machine learning models are 

developed to predict the type of weld formation on the joints of two metals (Barai and 

Reich, 2002). Studies have been done to compare the accuracy of predictions of advanced 

data mining techniques like decision trees, support vector machines and neural networks. 

The models are used to predict random occurrences where normal data mining techniques 

cannot be adopted. These methods are used to predict the occurrences of landslides 

(Pradhan, 2012). Neural networks have been used to develop steering technologies for 

unmanned vehicles. They also have applications in cyber security where they have been 
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used to detect attacks on sensitive data (Ahmad et al., 2009). Neural networks have been 

used in fingerprint detection (Arrietta et al., 2009).  Data mining is also used in the field 

of healthcare. They are used to identify the occurrence of any malpractices in health 

insurance (Koh and Tan, 2011). Prediction of surgery times and scheduling of hospital 

staff are done through data mining techniques. Sequential rules are used to analyze alarm 

sequences for a telecommunication company. This helps to obtain information from the 

incoming signals and translate them into a meaningful form (Mannila et al., 1995). 

Neural networks have found many uses in medicine. Neural networks are particularly 

useful in recognition and aiding in medical diagnosis for breast cancer analysis (Abbass, 

2009). 

2.4 Data Mining in Transportation 

Transportation and distribution involves various processes, many of which are expensive 

and have little room for error. A small mistake can lead to significant losses. Hence, it is 

necessary to be careful while making decisions related to scheduling and routing of trips 

assigned to the trucks. It has become clear that within transportation and distribution 

there are opportunities for process improvement via data mining. A lot of data that is 

collected has either been analyzed manually, which is subject to human errors, or the data 

has not been used at all. More recently, there has been a sharp rise in the amount of data 

mining research within this field. A huge amount of data is generated by the flow of 

vehicles, occurrence of accidents, quality of roads, transport of goods, routing of trucks, 
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and maintenance of vehicles. Reputed companies in goods distribution like DHL, FedEx, 

APL Logistics, Wilson Logisitics and other automobile industries base their decisions on 

the trends developed by analyzing the data. It has also been realized that this area requires 

a lot of collection of real time data. As a result, high-end devices have been developed to 

systematically store real time information and relay it back to the center for further 

analysis (Amado, 2000).  

In predicting the behavior of drivers, data mining techniques are used to predict the 

sleeping patterns and temperament of the drivers in order to promote safe driving (Ji et 

al., 2004). Traffic is a serious problem with a lot of uncertainties involved. By clustering 

traffic intervals with similar conditions, patterns are developed which are used to monitor 

the flow of traffic without any congestions (Wong and Woon, 2008). Optimization 

algorithms are also used to develop traffic patterns to prevent accidents and allow the free 

passage of vehicles. These algorithms are used to optimize the routing of trucks in 

distribution companies. 

Trucks that are carrying goods and are traveling long distances must have reliable 

equipment embedded in them. Any breakdown en route to the destination can cause huge 

delays in the delivery of goods and can decrease customer satisfaction. This has a huge 

impact on revenue and future business for the transportation company. Decision forest 

analysis has been used to find out the cause for fault occurrence in the trucks (Singh et 

al., 2012). Randomly occurring faults are hard to predict and analyze. The engine has a 
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lot of controls with very intricate designs. It is very important to collect data on various 

parameters affecting the engine performance. With all this data, a decision tree was 

developed to find out the cause of the fault. Artificial Neural Networks (ANN) provide a 

broad spectrum of functions which are required in the field of engine applications 

(modeling, especially for controller design, onboard testing and diagnostics). Exhaust 

emissions laws are becoming progressively more stringent, while the pressure on fuel 

economy has been intensifying significantly in the last few years. For diesel engines, a 

large number of technologies, such as, multi-pulse injection and variable valve actuation, 

show significant promise to both improve fuel economy and reduce exhaust emissions 

(Deng et al., 2008). 

2.5 Data Mining in Distribution - Routing and Fuel Economy 

Distribution companies possess trucks to transport the goods from warehouses to 

customers. They consume a significant of fuel and are very expensive. Hence, it is 

essential to develop optimized trips for the trucks so they will consume as little fuel as 

possible without compromising the quality of the service. It is also required to identify 

the factors that influence the fuel consumption. Once this is done, a predictive model can 

be developed to measure the fuel consumption based on the values for the identified 

factors and measures can be taken to save fuel. 

There are many data mining techniques that can be used to solve problems in routing. 

Association rules technique is one of them. It involves developing relationships between 
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metrics present in the data. Rules are generated based on this so as to satisfy a set of pre-

defined conditions for the problem. This technique was used to develop a routing plan for 

a set of vehicles so as to prevent congestion of vehicles in a particular area (Hasheem, 

2011).  

Principal component analysis has been used to investigate the major factors which 

influence the fuel consumption of a vehicle. Vernon and Meier identified that 91% of the 

fuel that is consumed is exposed to two major principal factors that decreases its quality, 

thereby causing pollution and increased consumption (Vernon and Meier, 2012). 

Statistical analysis can also be used to pinpoint the factors causing an increase in fuel 

consumption. Clustering is another method in which closely related factors associated 

with fuel can be grouped and insights can be generated based on the observations made 

(Vernon and Meier, 2012). 

Since transportation involves the moving objects, it is appropriate to use spatio-temporal 

data to solve many problems. Spatio-temporal data holds information about the location 

and time of the object in question at a particular instant. There are many case studies 

where this kind of data is analyzed, which have found that the objects travel in a 

particular pattern at specific intervals. Cao et al. considered the usage of this data to study 

the uncertainties involved with the movement of trucks. (Cao et al., 2007).  

Global positioning systems are used to collect real time data for vehicle movements. The 

data is collected through satellites, which are then transmitted back to data collection 



21 

 

station. This station is equipped with servers which maintain the database.  A 

combination of clustering and neural networks is used to mine this kind of data to obtain 

insights. Edelkamp and Schrödl used the data to develop search algorithms to find out the 

shortest path for the vehicles to move from one destination to another (Edelkamp and 

Schrödl, 2003). 

A feature that would allow any given airline the potential of predicting its fuel 

consumption throughout the year, select the plane/flight that minimizes the whole fleet 

consumption, make more precise estimations on the cost of fuel during a certain period of 

time and acquire the fuel when it is at its lowest price is of the utmost value (Spencer, 

2011). 

2.6 Chapter Summary 

There are many problems that affect the transportation processes involved in delivery of 

goods to customers in a timely manner. The trucks involved must be of the highest 

quality to increase the performance, thereby increasing the customer satisfaction and 

revenue to the company. These problems need to be addressed systematically to create an 

efficient distribution network. Fuel efficiency and vehicle routing are two of the major 

factors that affect the performance. But there are numerous other factors that affect the 

fuel efficiency. A data mining methodology helps in understanding the behavior of these 

factors and their effects on the fuel efficiency. This chapter reviews the literature on 

research, which is done to address the problems in the transportation and distribution 
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industry. It also throws light on the usage and advantages of data mining to solve many 

problems. 
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Chapter 3 - Methodology 

In this chapter, all the methods implemented to achieve the research objective are 

explained. A description of how the data is extracted and cleansed is provided, and 

methods for data modeling and validation are discussed. 

2 

3.1 Data Description 

The distribution company which is headquartered in Conklin, NY, specializes in the 

distribution of food products to customers located in over 38 states. Trucks are used to 

transport the goods from the warehouses located at the 10 distribution centers across the 

country to customer locations. The company delivers goods to established food chains 

like Red Lobster and Burger King. The drivers of the trucks are assigned trips to a set of 

customer locations. The trucks are equipped with Electronic On-Board Recorder (EOBR) 

systems to record the driver and truck data. This data is later used to manage the fuel 

efficiency of the trucks. The data that arrives needs to be stored in a database. There are 

many systems available and the company is currently using XATA, which is now called 

XRS Corporation. The original report from XATA is extracted by selecting filters, and 

then a dataset is created. The data is at the driver level. The extracted report consists of 

several variables, which describe the performance of the drivers in the selected time 

period. The primary aim is to investigate the relationships between the variables and also 

between fuel efficiency and the variables. It would also be helpful to identify the 
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variables that have the most impact on the MPG. Regression is a method to investigate 

these aforementioned relationships (Shapiro et al., 1996). 

 

 

Figure 3.1 Data extraction and cleansing 

Roadnet is a database software that is used by the company. This database stores the data 

for the trips undertaken by the drivers. The information stored in the database is related to 

weight of the trucks, number of trips, and the data for various parameters related to these 

trips. This software also helps in performing re-routing using a map depicting all the trips 

for the selected region. 
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The data from XATA with the driver information and the data from Roadnet related to 

the trip information are extracted and combined to form one single dataset containing 

both the driver and trip information against the driver names. The data was extracted for 

the Dallas region from May 2013 to December 2013. The reason for Dallas distribution 

center as a choice for extraction of data was because of the following reasons. Dallas is a 

new distribution center that was started in April 2012 and also one of the smallest ones. 

The weekly MPG values for the drivers from July 2013 were showing a decline 

compared to the corresponding values in July 2012 

The following factors were present in the initial dataset. 

Cruise MPG: The MPG of the trucks when the truck is in cruise mode (50 - 70 MPH). 

The general belief is that the longer the truck is in cruise mode, the higher the fuel 

efficiency of the truck is. The cruise mode of the truck depends upon the location of the 

destination, weather, terrain, and other topological factors. It might seem logical that the 

longer the distance is between the customer destination and the warehouse, the higher the 

chance is that the truck will be in cruise mode for a longer time. 

Cruise %: The percentage of the distance for which the trucks were in cruise mode. This 

is an extension of the "Cruise MPG" variable. This might not be a true reflection of the 

MPG because even if the distance is smaller and the truck stays in the cruise mode for 

most of the journey, then the Cruise % is high. This does not imply the cruise MPG is 

high. 
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Speeding miles and gallons: The number of miles and the gallons consumed when the 

truck is traveling over the speed limit. 

Idle time: The amount of time the truck is in idle mode even though the engine is 

running. This decreases the fuel efficiency of the trucks. The truck might idle under 

different circumstances ranging from stopping at a traffic signal or stopping for the 

delivery of the goods.  

Idle fuel: The amount of fuel consumed by the truck when it is idle. 

Torque band percentage: This reflects the range of operating speeds under which the 

engine is able to operate efficiently. The torque band range is only a center percentage of 

the engine speed range. Hence, higher the torque band percentage, higher is the efficiency 

of the engine which in turn increases the MPG. 

Weight: The amount of load that the truck is carrying while completing the trip. The  

higher the weight of the truck, the lower  the fuel efficiency. 

Backhaul: The amount of weight the truck is carrying as return load. This adds to the 

weight of the truck and decreases the fuel efficiency. 

Stop time: The total time that the truck has stopped without the engine running during the 

trip. 

Stop count: The amount of stops by the  truck during the trip to deliver the goods. 
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Age: The age of the drivers 

Experience of drivers in food service: Numbers of years in service of the drivers in the 

food service business. 

Experience of drivers in the company: Number of years in service of the drivers in the 

company from which the data is obtained. 

Driver names: Name of the drivers. 

These factors affect fuel efficiency in different ways. Many of them are controllable and 

many or not. There is a necessity to study the relationships between the controllable 

variables and fuel efficiency.  

3.2 Data Preprocessing 

The data set consists of the information related to the performance of the drivers in the 

Dallas region. The data contains of information related to a particular driver name called 

"AIMS" which is the identification name assigned to the trip when the truck is driven to 

the yard and back. After the completion of a trip or at the beginning of a trip, a truck is 

driven from the warehouse to the yard or vice versa. No particular driver is assigned to 

this task and hence it is assigned the name "AIMS". This task also consumes fuel and 

hence, it is recorded in the driver information log. It has numerous zero values for the 

associated variables and might cause bias in the results for any future analysis (Acuna 

and Rodriguez, 2004). Since it only comprises less than 2% of the data set, which has 
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2048 rows of data, it is feasible to omit them from analysis without any loss of 

information (Little and Rubin, 1989). 

There were also rows of data with the MPG as zero. This occurrence is not possible and 

was found to be an error after a discussion with the involved persons. As a result 25 rows 

of data were then removed.  

3.3 Regression 

The dataset in hand consists of many variables. To re-iterate, the primary goal is to 

develop a predictive model for fuel efficiency by developing relationships between the 

MPG and the performance variables found in the data. One of the most basic techniques 

to develop relationships between independent and dependent variables is regression 

analysis. If a data set contains both dependent and independent variables, regression 

analysis can help in establishing and quantifying the effects of the independent variables 

on the dependent variables (Bartz-Beielstein and Markon, 2004). One other use of 

regression analysis is to predict the dependent variables by fitting a model into the dataset 

of the independent variables. The two main types of regression are linear regression and 

nonlinear regression. 
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3.3.1 Linear Regression 

The simplest way to fit a model into the data with many variables is linear regression. It 

is the process of developing linear relationships between the independent and dependent 

variables. If a single dependent variable is present, it is called simple linear regression, 

and if there are more than one dependent variable, it is called multiple linear regression. 

Linear regression involves the development of a linear function, which predicts the 

independent variable and also quantifies the relationships between them (Bartz-Beielstein 

and Markon, 2004). 

The linear relationship between the dependent variable Y and "n" independent variables 

is denoted as: 

� =  � +  ����  +  �	�	 + . . . . . . . . . . . . + ����  +  �                                    (3-1) 

where X1, X2, X3........Xn are the independent variables, e is the predictive error between 

the actual value of Y and the predicted value from the expression. 

The co-efficient "b" is the slope of the regression line. The co-efficient "b" represents the 

value of Y when the independent variables are 0. 

When the prediction model is built, it should calculate the fuel efficiency very accurately. 

The difference error between the predicted MPGs and the actual MPGs should be low. 
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Thus, the aim of linear regression is to find the line that bests fit into the data so that the 

errors are minimal. 

This means that the line should provide values of Y which are very close to the actual 

values of Y for the same values of X. Thus the error term "e" in the equation 3-1 

represents the difference between the actual value and predicted value of Y from the 

model.  

 

 

Figure 3.2 Depiction of error term and residual 

The measured distance between the fit and the actual points of Y are called residuals as 

shown in Figure 3.2. Thus a good model would be where the residuals are close to 0. The 

effect of X on Y can be explained by the co-efficient "a" or the slope of the line. The 

higher the co-efficient value, the greater is the effect of X on Y. Since the dataset consists 

of numerous variables, it is not possible for all those variables to have the same effect on 

the fuel efficiency. A particular variable might have a greater positive effect compared to 
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another which has a lower negative effect. So it is very important to measure the 

significance of each variable. The significance of the variable X can also be explained by 

another term called the p-value. This value determines statistically whether there is really 

a non-zero co-efficient for X, or in other words, whether there is a true linear relationship 

between X and Y. The p-value is determined once the line is fit into the data and then the 

error values and the co-efficients are calculated (Passing and Bablok, 1983). If the null 

hypothesis is assumed as that there is no relationship between X and Y, a p-value of 

anything below 0.05 reveals that, from the available data provides evidence against the 

null hypothesis. Thus it is rejected and it can be inferred that there is indeed a strong 

relationship between X and Y. The lower the p-value, the higher the accuracy of the 

model in terms of low prediction errors, which also means a high linear relationship 

between X and Y. 

The goodness of fit for the linear model is measured by the R-squared value. It represents 

the amount of variation in Y that is captured by X. This measures the accuracy of the 

linear regression model. The R-squared value will be high if the fitted line is closer to the 

data points. 

        − ������� =  100 ∗  ��(����������) ��(�����)                                            (3-2) 

SS (regression) in (3-2) describes the variance within the estimated values of Y, and is 

the sum of the squared difference between each instance of Y and the mean of Y. The 
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squares are considered to avoid the positive and negative signs from the residual values. 

SS (error) accounts for the deviation from observed Y of the estimated Y. It is the sum of 

all the individual residual values. SS (total) describes the variation within the values of Y, 

and is the sum of the squared difference between each instance of Y and the mean of Y. 

3.3.2 Stepwise Linear Regression 

Stepwise regression is a type of regression where the best model is obtained by adding or 

removing variables in the model. There are basically two types: 

1. Forward selection 

2. Backwards elimination 

This method produces a model by including or excluding variables from the model based 

on the alpha values. 

1. Alpha to add variables, to include variables that are not present in the model at the 

time. 

2. Alpha to remove variables, to remove variables that are already present in the 

model at the time. 

The criteria used for model selection are: 
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1. Standard deviation of the residuals in the model. The model fits the data better if 

the standard deviation is small.  

2. R-Squared is the amount of variation in the dependent variable explained by the 

terms in the model 

3. R-Squared (adjusted) is a modified R  that has been weighted to prevent overly 

optimistic R-squared values. 

Forward elimination method starts with no independent variables in the model. The 

variables are added one by one based on the critical value i.e. alpha. Once they are 

included in the model, they are never removed. 

Backward elimination method starts with all the independent variables in the model. The 

variables are removed one by one based on the critical value i.e. alpha. Once, they are 

removed from the model, they are never included. 

3.3.3 Best Subset Regression 

Best subset regression starts with developing models with one independent variables and 

selecting the model with the best R-squared (adjusted) value. Then it develops regression 

models with two independent variables and selects the model with the best R-squared 

(adjusted) value. This process continues till all the independent variables are exhausted. 
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3.3.4 Nonlinear Regression 

The realm of the problem statement lies in the real world. As explained earlier, there are 

multiple uncertainties that affect the truck performance based on fuel efficiency. There is 

a possibility that there is no linear relationship at all between the variables and MPG. 

This means that a straight line cannot be fit into the dataset if there is no linear behavior. 

There is also a possibility that a combination of the variables might affect the MPG than 

the individual variables. All these possibilities lead to the necessity to consider nonlinear 

regression as part of the methodology. 

Nonlinear regression is a type of regression where there is a nonlinear relationship 

between the dependent and independent variables.  

                                                          �! =  �!" +  #!                                                      (3-3) 

where θ is the parameter to be estimated. Similar to linear regression, a least squares 

method can be used to estimate θ by minimizing, 

                                                 �($) =  ∑&�! −  �!"'	
                                               

 (3-4) 

The minimum of S is obtained by differentiating (3-4) with respect to θ, setting the 

derivative equal to zero,  
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()
(* =  −2 ∑&�! −  �!"'(log �!)�!" = 0                             

 (3-5) 

Rearranging (3-5),  

                                         ∑ �! (log �!)�!"/ =  ∑(log �!) �!	"/                                     

 (3-6) 

(3-6) can yield the least square estimate only by an iterative procedure starting at some 

assumed initial value. 

In most situations a linear line does not fit well. Instead, a nonlinear line with higher 

order terms fits very well into the data. A large sum of real world data behaves 

nonlinearly with many uncertain factors going into the model. A nonlinear model might 

help in accurately predicting the MPG and developing relationships between the 

variables, if it found that they behave nonlinearly. 

Now that the two leading methods of regression have been discussed, there is one more 

technique of classifying the data based on similarity by which the multiple regression 

models can be built on multiple sets of data. 

3.4 Cluster Analysis 

Another method of developing prediction models is to break up the data into different 

clusters and then analyze each cluster separately. Since the data is at the driver level, 
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there might be some minute variations that might not be captured when the whole dataset 

is used for regression. Thus, cluster analysis might help in studying the minute variations.   

 

3.4.1 K-means Clustering 

Since there is no prior knowledge on the rules for the division of data into clusters for the 

dataset in hand, it is preferable to use a technique that does not need any prior inputs to 

cluster the data. The K-means method is numerical, unsupervised, non-deterministic, and 

iterative (Kanungo et al., 2002). 

The main idea is to define k centroids, one for each cluster. The next step is to measure 

the distance between a point and each centroid and assign the class of the centroid which 

is closest to the point.  This process goes on until all the points are exhausted. (Kanungo 

et al., 2002). Now that all the points are assigned classes, new centroids of these classes 

must be calculated. After these k new centroids are obtained, the first step is repeated and 

the new classes are assigned which is followed by new K centroids and so on. The 

process stops when there is no significant difference between the old set of centroids and 

the new ones.. In other words, centroids do not move any more (Hartigan and Wong, 

1979). This algorithm aims at minimizing the squared error cost function. The cost 

function 
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                                         0 =  ∑ ∑ ||23(4) −  54||	�36�746�                                                 (3-7) 

where  is the squared distance between a data point  and the cluster 

centre , measures the distances between the data points and the cluster centers. Given a 

set of observations (x1, x2, …, xn), where each observation is a d-dimensional real vector, 

k-means clustering divides the observations into k sets (k ≤ n) S = {S1, S2, …, Sk} so as 

to minimize the cost function (Hartigan and Wong, 1979) shown in   (3-8) 

                         argmin    ∑ ∑ 82394: −  548�36�746�                                                           (3-8) 

The drawback of k means clustering is the assumption that the clusters must be of similar 

so that the nearest class assignment of the data points is performed without any errors. 

(Bradley and Manchek, 1998). The number of clusters k is an input parameter and hence, 

an inappropriate choice of k may yield poor results. That is why when performing k-

means, it is important to run diagnostic checks for determining the number of clusters in 

the data set. 

3.5 Sensitivity Analysis 

Once a model is established along with the relationships between the variables and the 

MPG, it is necessary to validate the model for its robustness in extreme scenarios. For 

example, the MPG might decrease drastically when the weight carried by the truck 
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becomes too high. It is also necessary to study the interactions between the variables 

themselves. 

Sensitivity analysis involves the testing of the model built after the data analysis. It 

consists of techniques that evaluate the model by modifying the parameters in it. It is also 

used to study the behavior of the model in extreme conditions or boundary conditions. 

This helps in understanding the advantage and the limitations of the model in hand. When 

data modeling techniques are applied in real life situations, there exists a significant 

amount of uncertainty.  These uncertainties contribute towards decreasing the accuracy of 

the model if they are not accounted for. Sensitivity analysis techniques help in analyzing 

the robustness of the model when encountered with these uncertainties It also helps to 

validate the relationships between the dependent and independent variables inserting 

extreme values to the independent variables and see how the dependent variables behave.  

Certain models have many inputs, which do not have a significant relationship with the 

output. These techniques help to remove unrelated inputs, thus making the model less 

complex. The accuracy of the models can then be increased by minimizing these errors.  

Sensitivity analysis depends upon the time taken to run the model for a particular 

scenario (Helton et al., 2006). There are some techniques, which are normally used for 

linear regression models that cannot be used for nonlinear ones. By varying the inputs 

based on different scenarios, the behavior of the output can be studied. This variation in 

the output is measured by the sensitivity index (Saltelli and Annonni, 2010). The simplest 
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and easiest method is to vary the value of one input at a time and studying the behavior of 

the output. The other variables are kept at their base-scenario values (Hamby, 1995). The 

sensitivity is measured based on the output using partial differentiation. This method is 

used when the input values are independent of each other.  By changing only one variable 

at a time, an understanding of the relationships between the output and each of the inputs 

can be developed. However, it does not work on models where there are relationships 

between the inputs themselves, which might to lead to wrong observations about the 

prediction performance of the model (Czitrom, 1999). An alternate method is to vary one 

input from its maximum to minimum value and see how the output changes. The ratio of 

the difference in the output for the maximum and minimum values of the input gives us 

the sensitivity index. This helps in testing the robustness of the model in extreme 

conditions (Gray et al., 2005).  

3.6 Chapter Summary 

A description of how the data is extracted and cleansed is provided, and methods for data 

modeling and validation are discussed in this chapter. It reveals the methodology 

involved in analyzing the available data. It also explains the different techniques of 

regression, cluster analysis and neural network required for data modeling. Finally, it 

explains the steps involved in sensitivity analysis, which is required for model validation. 

The data is extracted from the XATA database at the driver level. The data is cleansed by 

removing the missing values and treating the data that might cause bias in the analysis. 
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The cleansed data is used to develop a regression model to predict the MPG based on the 

relationship between the MPG and the variables and also between the variables 

themselves. It also helps in identifying the most significant variables that affect the MPG. 

The last step is to perform sensitivity analysis on the model to test for its accuracy in 

extreme scenarios. The relationships between the variables and the MPG are also 

quantified. 

 

Figure 3.3 Summary of methodology 
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Chapter 4 – Artificial Neural Networks 

4.1 Neural Networks 

An Artificial Neural Network is a data mining algorithm that is mimics the structure and 

operations of a human nervous system to sense and interact with objects around and 

process information. It consists of numerous interconnected layers consisting of 

processing units that function together to identify complex relationships in various 

problems. the human brain learns by experience and various iterations of trial and error. 

The artificial neural network behaves the same way. It is setup to develop relationships 

between the independent variables and the dependent variables. Neural Networks help in 

identifying complex relationships between the inputs and the output. They are called 

Artificial Neural Networks because of the fact they are used to study human computer 

interactions in artificial intelligence. In the most basic sense, they are mathematical 

models used to approximate a function ; ∶ � → � or a distribution over X or 

both X and Y. 

Neural networks are incorporated by systems to develop learning models in the same way 

the humans think and perform actions. They emulate hierarchical structure of the nervous 

systems with layers and layers of neurons connected to each other to enable lightning fast 

transmission of signals. The layers of processing units learn new features and remember 

them just like the human brain. This helps in identifying complex patterns and instances 
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and transforms them into outputs. They are used in various fields like healthcare, credit 

and risk management or any information retrieval systems like cellphone speech 

recognition systems.  

Although the artificial neural network is not as complex as the human nervous system, it 

processes the input features just like the human brain. These input features are multiplied 

by a weight based on different algorithms. They are then sent to the processing units 

which transform the features to develop relationships and pass them to the next layer of 

units. The final output will have the processed and transformed result based on the model 

developed by the neural network based on certain hidden relationships. The most simple 

neural network model adds up the values of the input features and passes them as output 

values. Complex neural networks are further built on this basic ideology.  

The drawback of the neural network system lies within the structure. There is no set 

methodology to determine the number of layers between the inputs and the output and 

also the number of processing elements in each layer. So, this is based on a trial and error 

algorithm.  

Constructing a neural network involves setting up the layers and elements and deciding 

the weights of the interconnections between the layers for the model to learn. Just like the 

human brain learns from experience, neural networks fine tune the weights on the 

elements through learning from the errors occurring on the output. This is called training. 
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Chapter 5 - Experimental Results and Analysis 

In this chapter, the implementation of the methodology described in the previous chapter 

along with the experimental results is explained. The data that was obtained was at the 

driver - week level from May 2013 to December 2013 from one of the centers of a food 

distribution company.  

5.1 Linear Regression 

The simplest type of regression, linear regression, was used to develop a model with 

MPG as the dependent variable. Among all the variables listed earlier, weight, backhaul, 

stop time, idle time, stop count, idle fuel, age, and experience of drivers in food service 

and in the company under discussion can be controlled and are truly independent. Hence, 

only these variables were used as the independent variables to build the model and 

predict the dependent variable, which is MPG. 

The linear regression method provided the following output: 

>?@ = 0.304 ∗ C�� + 0.0528 ∗ F2GHIJKL�M −  0.0014 ∗ F2GNIIOPQRS3HQ −  1.82
∗ ���G5���� −  0.913 ∗ ���G��U� + 0.0029 ∗ V�����U� +  0.0032
∗ V���;��� − 0.0031 ∗ W���ℎ� − 0.0029 ∗ Y�5Zℎ���   

            + 2.391                                                                                                                (5-1) 
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The model was validated using the data from January 2014 - March 2014 (first two 

weeks). The histogram represents the percentage of data within the error groups. 

 

Figure 5.1 Percentage of data in different error groups for linear regression 

The R-squared (adjusted) value was 61.3 %. This means that only 61.3% of the variation 

in the MPG can be explained by the current model. Also, Expfoodserivce, idle time, and idle 

fuel had a p-value greater than 0.05. This means that these three variables are 

insignificant in terms of having an influence on the MPG. Statistically speaking, null 

hypothesis that the co-efficients are zero for the above three variables is not rejected. The 

lack of fit p-value of 0.001 (less than 0.05) indicates that the linear predictors are not 

sufficient for predicting the MPG accurately. The mean absolute percentage error was 

15.52%. All the above results indicated the current linear model performs poorly in 

predicting the MPG values and the error values would be high. 
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5.2 Stepwise Linear Regression 

The next method to be used is the stepwise linear regression. Forward stepwise regression 

was used with an alpha_to_enter and alpha_to_remove value of 0.05. Weight, backhaul, 

stop time, idle time, stop count, idle fuel, age, and experience of drivers in food service 

and in the company under discussion are the variables that go into the model. 

>?@ =  3.421 ∗  C�� +  0.0924 ∗  F2GHIJKL�M  
            − 1.562 ∗  ���G5���� −  1.014 ∗  ���G��U� −  0.093 ∗  W���ℎ� 

            − 0.051 ∗  Y�5Zℎ��� +  4.824                                                                         (5-2) 

This method automatically includes only the most significant variables, which means it 

includes those variables with a p-value < 0.05 (Bendel and Afifi, 1977). The R-squared 

value obtained for this data was 64%. This was not good enough when the threshold is 

considered as 90%. The mean absolute percentage error is 14.43%. This is slightly better 

than the linear regression model. The lack of fit p-value was 0.0023. This clearly showed 

that there was no linear relationship between the independent and the dependent 

variables. It also clearly showed that more information was needed in terms of the 

independent variables. 

5.3 Best Subset 

An alternate method to the stepwise regression, which is best subset method, was 

implemented to identify a better performing model. Weight, backhaul, stop time, idle 
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time, stop count, idle fuel, age, and experience of drivers in food service and in the 

company under discussion were the variables that went into the model. Various 

combinations of the predictor (independent) variables were used to find the model with 

the highest R-squared (adjusted) value. The method starts with one variable and finishes 

when all the variables are used. Table 5.1 provides the R-squared (adjusted) value. 

 

Table 5.1 R-squared (adjusted) values for best subset 

This table shows that the model with 6 variables, which must be the one that was 

obtained from the stepwise regression method, was the best model with the highest R-

squared (adjusted) value. 

>?@ =  3.421 ∗  C�� +  0.0924 ∗  F2GHIJKL�M  
            − 1.562 ∗  ���G5���� −  1.014 ∗  ���G��U� −  0.093 ∗  W���ℎ� 

            − 0.051 ∗  Y�5Zℎ��� +  4.824                                                                         (5-3) 

 This model also had the least overall error. From this it can be confirmed that the best 

subset method is redundant if the stepwise method is already performed. 
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5.4 K-means Clustering 

In all the methods of regression explained earlier, it was clear that the R-squared 

(adjusted) values very low. It can be inferred that the models that were developed do not 

capture the majority of variations in the MPG. The models required more information to 

detect these variations. The need for more information also leads to the fact that the 

division of data into smaller chunks would capture small variations which would not be 

the case when the model is built on a larger data. Cluster analysis was used to divide the 

data. This was done using a combination of K-means cluster analysis and linear 

regression. Weight, backhaul, stop time, idle time, stop count, idle fuel, age, and 

experience of drivers in food service and in the company under discussion are the 

variables that go into the model. The process started with a K-value of 2, which is the 

smallest possible number of clusters. The highest K-values used was 4 since any value 

greater than that produced with very small sized clusters with rows of value below 100 

out of  2018, which is not feasible. When there were 9 clusters a stepwise linear model 

was built on each one of them. Table 4.2 represents the R-squared (adjusted) values for 

all the clusters.  

 

Table 5.2 R-squared (adjusted) values for K-means clustering 
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It can be clearly seen that the R-squared (adjusted) values are low compared to the 90% 

threshold value. This tells us that the linear models built on these clusters do not perform 

better or in other words, do not capture complete variation in the MPG. The model with 

the highest R-squared value (71.23%) had an overall error of about 14.12%. As we can 

see, it has slightly improved compared to the linear and stepwise models, but is still 

producing predictions with high error percentages. 

5.5 Implementation of Modifications 

There were some modifications that were performed on the trucks, which were lesser tire 

rolling resistance and a smaller gap between the truck trailer and the cabin. Tire rolling 

resistance is the amount of force that resists the movement of the truck in the forward 

direction. It exerts an opposite force in the reverse direction. So, higher the rolling 

resistance, greater is the amount of energy utilized by the engine to drive the truck 

forward. This brings down the fuel efficiency of the truck. The next modification which 

was lessening the gap between the truck trailer and the cabin resulted in a decrease in the 

aerodynamic drag due to the wind flowing in the gap. High gap length decreases the fuel 

efficiency. Both these modifications tend to improve the performance of the truck in 

terms of fuel efficiency, and were tested statistically. These modifications were 

performed during July 2013. In the Figure 4.2, there are two simultaneous trends 

depicted. The blue line represents the MPG performance for 2012. Since the Dallas 

center was started during April 2012, the data points start from week 16. The red line 
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represents the MPG performance for 2013. It can be clearly seen that the MPG 

performance in 2012 was much better than it was in 2013 up until week 33. This is 

around the same time when the modifications were introduced for the trucks.  

 

Figure 5.2 YoY comparison of truck MPG 

It was necessary to test for the statistical significance of these modifications on the MPG 

performance. A hypothesis test was performed to find any significant difference in the 

variables including the MPG between dataset of June-July 2013 and the dataset of 

August-September 2013. There was a statistical difference in the MPG, but no such 

difference in the other variables. This suggested that the modifications might have had an 

influence on the MPG.  
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This was included in the dataset in the form of an encoded variable. If the MPG was for 

any week after week 33, then to denote the inclusion of modifications, the value of the 

encoded variable was 1 and zero otherwise. 

 

Table 5.3 Sample illustration of the encoded variable 

After the inclusion of the encoded variable, a regression model had to be built to examine 

its effect. This was done in four ways, which were i) A general linear regression model 

(since it includes a binary variable), ii) Stepwise linear regression, iii) Best subset 

method, iv) A combination of K-means cluster analysis and stepwise linear regression. 

The results for all the methods are shown below. 
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General linear regression model: 

  

>?@ = 0.197 ∗ C�� + 0.0318 ∗ F2GHIJKL�M −  0.0028 ∗ F2GNIIOPQRS3HQ 

     − 0.41 ∗ ���G5���� −  0.584 ∗ ���G��U� + 0.001 ∗ V�����U� 

          + 0.00193 ∗ V���;��� − 0.323 ∗ W���ℎ� − 0.0145 ∗ Y�5Zℎ���   
           − 0.081 ∗  F�5����_^������� +  4.98                                                             (5-4) 

This model gave a R-squared (adjusted) value of 64.8%. The p-value for Expbccdefghijf, 

Expcompany, idle time, idle fuel, backhaul, and encoded variable are greater than 0.05. 

Also, the lack of fit p-value was 0.0021. This suggested that the current linear 

combination of variables do not perform well in predicting the MPG. 

Stepwise regression model:    

>?@ =  2.391 ∗  C��  −  1.562 ∗  ���G5���� −  1.014 ∗  ���G��U�  
                           − 0.093 ∗   W���ℎ� +  4.824                                                              (5-5) 

 

The R-squared (adjusted) value was 64.1%, which was not much different from the linear 

model built in the previous method. Another important take away from this model was 

that the encoded variable, which was thought to be influential on the MPG, was not as 

statistically significant as it was thought before. 
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K-means clustering: Table 5.4 shows the R-squared (adjusted) values for the models on 

all 9 clusters. 

 

 

Table 5.4 K-means cluster analysis with R-squared (adjusted values) for model with 
encoded variable 

                     

This also showed that the encoded variable does not improve the performance of the 

model. This problem suggested that the variations in the data were not completely being 

captured, which was why the R-squared values were low. In other words, it meant that 

the model did not account for the complete behavior of the data. All these issues 

indicated the need for the data at a more granular level. The daily level data was more 

granular than the weekly level data and hence, it was extracted in the same way as the 

weekly level data.  

5.6 Anomalies in the Daily Level Data 

The daily level data was obtained from May to December 2013. While examining the 

data, there were some anomalies that were found, as shown in Table 5.5. 
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Table 5.5 Depiction of erroneous MPGs at daily level 

The MPGs for some of the drivers were unreasonably high. Normally, the MPGs were 

found to hover between 5 and 7.5. Anything beyond this boundary suggests that the 

numbers were incorrect. When this issue was investigated, the following results were 

obtained. In Table 5.6, the daily MPGs are very high compared to the MPG for the trips. 

This is because when the truck is returning, it is almost empty because the goods have 

already been delivered. This increases the MPG values drastically. Sometimes the 

returning process will happen on a single day and hence, the daily MPG for that day will 

be very high. 
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Table 5.6 High daily MPGs 

Similarly, there were low MPGs < 5 found in the data. The reason is that when the trip 

had just started, for example at 11:42 pm, as shown in Table 5.7, the truck is fully loaded. 

If the goods are not delivered before midnight, the weight will be very high, and so the 

MPGs will be very low. 

 

Table 5.7 Low daily MPGs 

Both these cases suggested that the data needed to be at the trip level and not the daily 

level to have the correct picture of the MPG performance. As a result of this realization, 

trip level data was extracted. The trip level data was taken from May 2013 to December 

2013. Weight, backhaul, stop time, idle time, stop count, idle fuel, age, and experience of 
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drivers in food service and in the company under discussion are the variables that go into 

the model. 

General linear regression model: 

>?@ =  0.146 ∗ C�� + 0.0121 ∗ F2GHIJKL�M −  0.0004 ∗ F2GNIIOPQRS3HQ 

     − 0.932 ∗ ���G5���� −  0.414 ∗ ���G��U� −  0.143 ∗ V�����U� 

          −  0.258 ∗ V���;��� − 0.051 ∗ W���ℎ� − 0.0097 ∗ Y�5Zℎ���   
                         − 0.025 ∗  F�5����_^������� +  2.507                                              (5-6) 

This model gave a R-squared (adjusted) value of 74.35%. The p-value for Expbccdefghijf, 

Expcompany and encoded_variable were greater than 0.05. Also, the lack of fit p-value was 

0.0013. The R-squared (adjusted) value had certainty increased from 64% to 74.35%. 

This showed the effect of changing the level of data to the trip level. 

Stepwise regression model:    

>?@ = 3.491 ∗  C��  −  1.389 ∗  ���G5���� −  2.352 ∗  ���G��U�  
                            − 0.097 ∗   W���ℎ� − 0.006 ∗  Y�5Zℎ��� − 0.194 ∗  V�����U�  

                                −0.002 ∗  V���;���    +  9.42                                                         (5-7) 

The R-squared (adjusted) value is 76.89%. The model is certainly performing better. 

However, the lack of fit value is 0.004, which is less than 0.05. This again shows that a 

linear combination of the variables does not capture the complete variation of the MPG. 
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K-means clustering: The following figure shows the R-squared (adjusted) values for the 

models on all 9 clusters. It can be seen that the R-squared values have improved, but are 

still below the 90% threshold.  

 

 Table 5.8 R-squared (adjusted) values for K-means cluster analysis at trip level                

It can be clearly seen that the R-squared (adjusted) values are low. This means that the 

predictions obtained were not very close to the actual values.  

5.7 Polynomial and Nonlinear Regression 

As observed earlier, any method that involves a linear model for the data does not 

provide a good fit and a good performing model. The next step was to look at the 

nonlinear relationships and polynomial relationships between the variables.  

The different combinations of variables tried were: 

         1. Quadratic terms 

         2. Cubic terms 

         3. Cross terms 
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         4. Inverse terms 

         5. Log-log transformations 

There were 1083 variations of models for all the above possible methods. The R-squared 

adjusted value is not the appropriate performance measure for nonlinear models. 

Histograms were built for all the models, which depicted the percentage of data in each 

error groups (0-5%, 5-10%, and >10%). The following model had the highest percentage 

of data in the 0-10% error group, and thus had the least errors and was the best model. 

 

kl(>?@) =  1
m(2.13� + 17 ∗  ���G5����)  +  (1.04� + 17 ∗  ���G��U�)− (5.12� + 17 ∗  W���ℎ�) no   

+  4.926                                                                                                                         (5-8) 

This shows that stop count, stop time, and weight had the highest impact on the MPG and 

were the most influential factors on the MPG. The histogram for the percentage of data in 

the error groups is shown below. 
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Figure 5.3 Percentage of data in the error groups for nonlinear model 

The histogram shows that for the data from May 2013 through December 2013, on which 

the model was built, around 84% of the data is within the 0-5% error group. When the 

model was validated for the data from Jan 2014 through March 2014 (first two weeks), 

the histogram appears as follows. 
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 Figure 5.4 Percentage of data in the error groups for nonlinear related to validation data 

It can be observed that a high percentage of the data is present in the least error band and 

hence the model had performed better.   

The error charts were developed and compared with the results from clustering. It can be 

clearly seen that the performance of the model was improved by using a nonlinear 

method as opposed to clustering. The percentage of data within the 0-5% error group is 

around 34% for clustering, whereas it is around 84% for the nonlinear model. This 

indicates nonlinearity in the interaction between the independent variables and the MPG. 

The major improvement took place in the overall error, which is as low as 10.05%, much 

lower than the 14% for the clustering method. 
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Figure 5.5 Comparison of histograms of clustering and nonlinear model 

5.8 Sensitivity Analysis 

Once the model is obtained, it must be validated. Hence, sensitivity analysis techniques 

were used to test the robustness of the model in extreme conditions. The two main 

techniques used were percentage sensitivity and maximum to minimum variation.   

 



61 

 

 

Figure 5.6 Percentage sensitivity analysis 

 

Figure 5.7 Maximum to minimum variation 

The above figures represent the variation of the MPG when a particular variable is varied 

from the lowest to the highest values. The figure suggests that in both the methods, 
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weight has the highest influence on the MPG. In other words, the MPG is more sensitive 

to the weight. It also suggests an inverse relationship between the MPG and the 

independent factors.  

5.9 Most Consistent Model 

Consistency is necessary so that a model that is the most generic can be used for 

predictions. The data was collected from five centers - Dallas, Darden, Westborough, 

Farmingdale and Corporate. The timeline was from May 2013 to Dec 2013. Five 

different models were built using the data from the five centers. These models were 

tested across the different centers, to obtain the most consistent model. After comparing 

the five models, it was observed that the Corporate model, as shown in Table 4.9 was the 

most consistent one.  

 

 

Table 5.9 Percentage of data within 10% error 
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Table 5.10 Average percentage errors for all five centers and models 

The analysis showed that stop time, stop count, and weight were the most significant 

factors that affected the MPG. These factors can be controlled and can be used to study 

predictions of the MPG. There was an 88.4% accuracy for the predictions when 

compared with the actual MPG values, which means that 88.4% of the data was within 

the 10% error band.  

kl(>?@) =  1
m(1.76� + 17 ∗  ���G5����)  +  (1.24� + 17 ∗  ���G��U�)− (4.67� + 17 ∗  W���ℎ�) no                      

+      5.237                                                                                                                      (5-9) 

 It was also seen that the Corporate model produced similar errors at the trip level for all 

the centers as shown in Table 5.10. Hypothesis tests were conducted between the error 

sets of all the centers and it was found that there was no difference in the errors 

statistically. This proved that the Corporate model was indeed the most consistent. The 

individual errors at the trip level were calculated for the Corporate model on the datasets 
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of all five centers. The overall average error was around 10%. It was found that the 

maximum error at the trip level was 18.57%. 

5.10 Neural Network 

The neural network training was done using MATLAB Neural Network Toolbox. The 

training process is the most sensitive and time consuming part of the algorithm. A well 

trained network gives good results given any input. A not well trained network on the 

other hand will give erratic results if the inputs given are different from the input used to 

train. Because the datasets have a significant size and because the network also needs 

inputs to validate and test the network, the proper division of the data set would have to 

be made. Ideally, the bigger the training dataset, the more accurate the network is. In 

practice a network with a too big training dataset will predict very well the relation 

between the output and trained input but will give erroneous values for inputs not 

included in the training dataset. This process is called over fitting and it occurs when the 

network is too trained.  

The independent variables – weight, stop time and stop count from the best nonlinear 

model for Corporate center were included as inputs to the neural network. The next task 

was to find out the number of hidden layers in the neural network and the number of 

activation units in each layer. The training data was taken from the Corporate center 

because the most consistent nonlinear model was built on this data between May 2013 

and Dec 2013. The testing data was from Jan 2014 to March 2014 (first two weeks). 
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5.10.1 Number of activation units in a layer 

For the purpose of this experiment, there was one hidden layer included with number of 

activation units increasing from 2 until the root mean squared error for the training data 

or the testing data increased beyond the errors obtained from the nonlinear model. 

Number of Activation Units 2 3 4 5 6 

MAPE values for training 

data 8.53% 8.46% 8.41% 8.38% 8.38% 

MAPE values  for testing 

data 9.43% 9.46% 9.97% 10.07% 10.07% 

 

Table 5.11 MAPE values for training and testing data with different number of activation 

units 

It can be seen from Table 5.11 that as the number of activation units increased, the 

MAPE values for the training data decreases but the same for testing data increases and 

goes beyond 10% at 5 activation units .This is because of overfitting explained earlier 

which causes variance and does not provide accurate outputs for the testing data. So, 

from the above experiment, it was decided that the number of activation units in one 

hidden layer would be 4. 

5.10.2 Number of hidden layers 

This experiment included 4 activation units in each layer whose number was varied from 

1 until the MAPE values increased beyond 10%. 
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Number of Hidden Layers 1 2 3 

MAPE values for training 

data 8.41% 8.40% 8.35% 

MAPE values  for testing 

data 9.97% 9.97% 10.04% 

 

Table 5.12 MAPE values for training and testing data with different number of hidden 

layers 

It can be clearly seen from Table 5.12 that the MAPE values for training data decreases 

with the number of hidden layers but it clearly overfits the data at 3 layers where the 

MAPE values goes beyond 10%.  

So, with the results of the above experiments, it was decided that the neural network 

architecture would include 3 input units (3 features), 2 hidden layers (4 activation units in 

each layer) and one output unit. This architecture gave the best predictions for the MPG 

and can be used to improve fuel economy. 
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5.10.3 Nonlinear Model versus Neural Network 

Data Mining Method 

Nonlinear 

Model 

Neural 

Network 

MAPE values for training 

data   (May 2013 - Dec 

2013) 10.09% 8.40% 

MAPE values for testing 

data 

(Jan 2014 to March 2014 
(first two weeks)) 14.35% 9.97% 

 

Table 5.13 MAPE values comparison between nonlinear model and neural network 

 

To depict this pictorially, a random set of 100 samples were picked from the testing data 

i.e. data from Jan 2014 to March 2014. The chart below shows a comparison of 

predictions from both neural network and nonlinear models. It can be clearly seen that the 

predictions from the nonlinear model are farther from the actual data compared to the 

neural network predictions. 
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Figure 5.8 Error comparison between nonlinear model and neural network 

5.11 Chapter Summary 

This chapter explains the implementation of the methodology in detail with descriptions 

of the experiments and a discussion of results. The experimental results show that stop 

time, weight, and stop count are the most significant factors to affect the MPG. It is also 

established that there exists a nonlinear relationship between these variables and the 

MPG. The linear model, stepwise linear, best subset, clustering, and nonlinear regressions 

were the different types of methods used to build the model. It was found that the a linear 

model with clustering provided a model with an overall error of about 14%, while the 

nonlinear model provided with an overall error of around 10%. This suggests that the 

nonlinear model performs better than the linear models. Also, the percentage of data 

within the 0-5% error band is about 84%, while for clustering it was about 34%. All these 

results show that there exists a nonlinear relationship between the variables and the MPG. 
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The sensitivity analysis tests also suggest that MPG is most sensitive towards the 

aforementioned variables. The most consistent model across all the five centers was 

developed. It was found that the Corporate model was the most consistent one across all 

the five centers. This was found by testing for the statistical difference between the 

average errors of the predictions from the models on the data from all the five centers. 

Finally, neural network architecture was built to improve the accuracy of the nonlinear 

relationship which gave better performance while predicting the MPGs.  
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Chapter 6 - Conclusions and Future Work 

6.1 Conclusions 

Weight, backhaul, stop time, idle time, stop count, idle fuel, age, and experience of 

drivers in food service and in the company under discussion were the variables put into 

the model. The initial approach focused on building a linear model with linear regression, 

stepwise, best subset, and cluster with linear regression. The models obtained from all 

these approaches provided a least overall error value of 14%. In the best model, which 

was obtained from the results of the methodology in the previous chapter, it seems that 

weight, stop count, and stop time are the most significant factors to affect the MPG, or 

the fuel efficiency of the trucks. A consistent model that could provide relatively accurate 

predictions across five distribution centers - Dallas, Darden, Westborough, Farmingdale 

and Corporate, had to be developed. It was found that the model built using the data from 

the Corporate center was the most consistent one. The timeline of the data used to build 

the model was from May 2013 through December 2013. The predictive model provided 

predictions of which about 88% of the data that was used, was within the 0-10% error 

group. This was an improvement on the lesser 43% obtained for the linear regression and 

K-means clustering models. The model was also validated on the data for January 2014 

through the first two weeks of March 2014 and it provided an accuracy of 81% of the 

data that was within the 0-10 % error group. The average overall error was around 10%, 

which was the least for the approaches explored in this research as shown in Table 6.1 
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  Linear approaches Nonlinear 

  Linear regression Stepwise linear Best subset Clustering   

Overall error 15.56% 14.43% 14.43% 14.12% 10.08% 

Table 6.1 Comparison of overall errors for different approaches 

 It is also clear from the sensitivity analysis performed that the greater the value of these 

variables, the lesser is the MPG. The main objective of this research was to identify the 

key factors that influence the MPG. The other objective was to develop a predictive 

model to predict the future MPG during instances of re-routing. Based on the model 

under discussion, if a re-routing is performed on a particular region, it is possible to 

estimate the change in MPG by changing the values of these variables accordingly. The 

model can be used to predict the average change in MPG for a set of trips whenever a re-

route is performed. Since, the aim of re-routing is to reduce the miles and trips; extra load 

will be added to the remaining trips. Although, the MPG would decrease because of this 

extra load, it would be offset by the savings due to the drop in miles and trips. The net 

savings in the fuel can now be translated into the amount of money saved. 

Since the three controllable variables which have significant impact on MPG are known, 

it is possible to vary their values to study the effect on MPG. This can lead to the 

development of setting up boundaries for the values of these variables in order to 

maintain the fuel efficiency at the desired level. Every year, the competition in the 

distribution industry increases. Companies yearn for more satisfied customers in order to 

increase revenue and profits. This pressurizes them to push the load capacity of the trucks 
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to the extreme which can lead to safety issues. Thus, with the variables identified in this 

research, boundaries can be set up to restrict the companies from compromising on safety 

issues due to load capacity. An optimal solution needs to be found in order to balance 

fuel efficiency, profits, load capacity and safety issues. There is some discussion in the 

United States in relation to the surface transportation authorization bill about possibly 

increasing the load limits for trucks where the current mass limit is 80 000 lbs (36.3 

tonnes). 

6.2 Future Work 

The best model that was obtained from this research had about 81% of the data within the 

0-10 % error group. Ideally, this number should be close to 100%. However, a value 

above 90% would provide us with a better performing model. Since this area of research 

involves human interactions and weather conditions, many uncertainties that cannot be 

controlled are included (Feng and Figliozzi, 2013). However, if more controllable factors 

related to the engine performance of the trucks and truck specifications are available, a 

better performing model could be developed because a higher percentage of variations in 

MPG could be captured. Other variables that might be helpful are the values for the gap 

between the cabin and trailer, tire pressure, and tire rolling resistance (Sharpe and Roeth, 

2014). 

In the future, there are different kinds of data mining techniques that can be used to build 

a better performing model. Association rule mining can be used to study the interactions 
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between the independent variables themselves (Aggarwal and Phillip, 1999). Once these 

interactions are accounted for, then the model that is obtained will provide better 

predictions with lower error percentages.  

Decision tree method can be used to divide the dataset into different groups based on 

certain relationships, which are learned by the method automatically (Quinlan, 1990). 

Since there is no prior knowledge on how the data points are related, this would be a very 

appropriate method for building the model. A step ahead would be the random forest 

method, which is a group of decision trees that can be used to produce relationships 

between the variables (Yand and Gu, 2014).  

Support vector machines can be used along with association rule mining to detect 

patterns in the dataset. It divides the dataset into clear groups with defined boundaries 

(Subhasi, 2013). This could help in developing different regression models in order to 

obtain better predicitions for the MPG. 
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