
Binghamton University Binghamton University 

The Open Repository @ Binghamton (The ORB) The Open Repository @ Binghamton (The ORB) 

Graduate Dissertations and Theses Dissertations, Theses and Capstones 

4-2014 

Robustness of complex networks to global perturbations Robustness of complex networks to global perturbations 

Samuel Heiserman 
Binghamton University--SUNY, sheiser1@binghamton.edu 

Follow this and additional works at: https://orb.binghamton.edu/dissertation_and_theses 

 Part of the Systems Engineering Commons 

Recommended Citation Recommended Citation 
Heiserman, Samuel, "Robustness of complex networks to global perturbations" (2014). Graduate 
Dissertations and Theses. 19. 
https://orb.binghamton.edu/dissertation_and_theses/19 

This Thesis is brought to you for free and open access by the Dissertations, Theses and Capstones at The Open 
Repository @ Binghamton (The ORB). It has been accepted for inclusion in Graduate Dissertations and Theses by 
an authorized administrator of The Open Repository @ Binghamton (The ORB). For more information, please 
contact ORB@binghamton.edu. 

https://orb.binghamton.edu/
https://orb.binghamton.edu/dissertation_and_theses
https://orb.binghamton.edu/etds
https://orb.binghamton.edu/dissertation_and_theses?utm_source=orb.binghamton.edu%2Fdissertation_and_theses%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/309?utm_source=orb.binghamton.edu%2Fdissertation_and_theses%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
https://orb.binghamton.edu/dissertation_and_theses/19?utm_source=orb.binghamton.edu%2Fdissertation_and_theses%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ORB@binghamton.edu


 

 

 

ROBUSTNESS OF COMPLEX NETWORKS TO GLOBAL PERTURBATIONS 

 

 

 

 

BY 

 

SAMUEL HEISERMAN 

 

BA, Binghamton University 2012 

MS, Binghamton University 2014 

 

 

 

 

Submitted in partial fulfillment of the requirements for  

the degree of Master of Science in Systems Science  

in the Graduate School of  

Binghamton University  

State University of New York  

2014 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by Samuel Heiserman 2014  

All Rights Reserved 



iii 
 

 

 

 

 

 

 

 

Accepted in partial fulfillment of the requirements for  

the degree of Master of Science in Systems Science  

in the Graduate School of  

Binghamton University  

State University of New York  

2014  

 

April 23, 2014  

  

Dr. Hiroki Sayama, Committee Chair  

Departments of Bioengineering & Systems Science and Industrial Engineering, 

Binghamton University  

  

Dr. Harold Lewis, Committee Member  

Department of Systems Science and Industrial Engineering, Binghamton University  

  

Dr. Mohammad Khasawneh, Committee Member  

Department of Systems Science and Industrial Engineering, Binghamton University  

 

 

 



iv 
 

 

Abstract 

This thesis studies the robustness of complex dynamical networks with non-trivial 

topologies against global perturbations, following Robert May’s seminal work on 

network stability, in order to find critical stability thresholds of global perturbations and 

to determine if their impact varies across different network topologies. Numerical 

analysis is used as the primary research method. Dynamical networks are randomly 

generated in the form of a coefficient matrix of stable linear differential equations. The 

networks are then inflicted with global perturbation (i.e., addition of another random 

matrix with varying magnitudes) and their stabilities are tested for each perturbation 

magnitude, to determine at what scale of global perturbation they are jarred to instability.  

The results show a monotonic decrease of the instability threshold over increasing 

link density for all network topologies. For a given link density, random regular networks 

show highest robustness against global perturbation, closely followed by Watts-Strogatz 

small-world networks and Erdos-Renyi random graphs, and then Barabasi-Albert scale-

free networks are least robust among the four topologies tested. Fully connected networks 

used in May’s original work are found to be consistently unstable in the presence of 

global perturbation of any magnitude. These findings offer useful implications for the 

robustness and sustainability/vulnerability of real-world complex networks with 

nontrivial topologies. 
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Chapter 1: Introduction 

The objective of this project is to expand the known set of methods for testing 

network robustness by introducing a new type of perturbation, one designed to affect 

systems globally. This global perturbation (GP) is defined by its simultaneous effect on 

all network links, and is tested for its effect on network stability across a range of link 

strength a values, over a set of network models whose structure is observed in real world 

networks.  This model set consists of: Barabasi-Albert (BA) scale-free, Watts-Strogatz 

(WS) small-world, Erdos-Renyi (ER) random, and random regular (RR) network models.  

The general motivation of this research is to derive potential implications for real world 

networks which have demonstrated themselves vulnerable to these sorts of sudden, 

system-wide changes to their environments.   

 

1.1 Domain Contexts 

Two leading domain contexts relevant to the topic of network stability are 

ecological community webs and financial transaction networks, due to the necessity of 

their robust functioning for the health and stability of our human societies.  Both of these 

systems have exhibited volatility in the face of certain environmental changes, including 

global changes which affect each network as a whole.  In the ecological context, changes 

to key factors such as temperature and resource availability have the potential to 

destabilize local food webs, as they interfere with the connections between 

interdependent species and trophic levels (Allesina et al., 2012).   
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In the financial context, changes to factors that affect these networks globally, 

such as central banks’ interest rates and the federal governments’ tax policies, can have 

significant effects on the stability of national economies overall.  This became greatly 

significant for much of the US population when the sub-prime housing bubble burst in 

2008, a situation due at least in part to the de-regulation of banks’ lending policies and of 

the derivatives markets during the 1990’s (Squartini et al., 2013).  Although the global 

perturbations within the model studied in this thesis are highly abstract compared to these 

real-world networks, there may be some significant patterns to find within the range of 

global perturbation magnitudes and/or across the network models.    

 

1.2 May’s Model                                

This investigation of network stability is conceptually built upon a model 

proposed by mathematician and theoretical biologist Robert May in his seminal paper 

“Will a Large Complex Network Be Stable” (May, 1972). May’s purpose was to explore 

possible relationships between networks’ stability and their complexity, by testing the 

stability of randomly generated networks across a range of network sizes n, connectivities 

C and link strengths a.  Network size n is the number of nodes a network is composed of, 

connectivity C is the number of its links, and link strength a is the average magnitude of 

the weights of those links.  May found that stability was much more likely in networks 

which maintained certain balances between connectivity C and connection weight a, 

concluding these precise points to be critical stability thresholds, below which a network 

will likely remain stable and above which it will likely collapse.   
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1.3 The Proposed Model 

Though the model proposed in this thesis is similar to May’s in its methods of 

network generation and stability testing, it diverges from it and expands upon it in several 

key ways: the first is the introduction of the global perturbation (GP).  While May studied 

his set of networks by varying their network traits {N,C,a}, he did not consider any 

external perturbations added to them.  In this thesis, a set of stable networks will be 

disrupted by introducing system-wide tremors in the form of global perturbations (GP’s) 

to the networks’ link strengths a.  For each network, the magnitude of the perturbations 

administered is increased with each stable result, until a destabilizing magnitude (critical 

 value) is found.  The second way the proposed model differs from May’s is the range of 

network types it performs these tests on.  While his model generates and tests only 

random graphs, the proposed model incorporates a set of non-trivial network models: 

Barabasi-Albert scale-free networks and Watts-Strogatz small-world networks, as well as 

Erdos-Renyi random graphs and random regular graphs.  Complete graphs (in which all 

nodes are linked to each other) are also tested in the preliminary stability testing, but were 

found unstable at such a high rate that the model was excluded from the main 

experiment.  The final way the proposed model differs from May’s is the size of the 

networks it tests, i.e., n = 1000 each. In his 1972 work published in Nature, he referred to 

the network sizes used by his predecessors, Gardner and Ashby, of n = {4,6,8}, 

distinguishing the networks he would be testing as ‘larger’, n > 10 (May 1972).  This 

thesis studies significantly larger networks than those studied in their papers.       

The goal for this numerical analysis is to discover which network models are most 

volatile to which levels of perturbation magnitude, and how this robustness performance 
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varies over a range of link strengths a.  The future purpose of this model could be to 

serve as theoretical bases for forming hypotheses about which real world networks are 

safe to change in this sudden, global way and which should be changed more gradually or 

piece by piece.  The lack of understanding about the depth and nature of robustness in our 

social and ecological networks has left us vulnerable to major collapses in these systems, 

and it seems that unless our set of measures and forecasts of robustness becomes itself 

more robust, we are bound to get hit by more unforeseen failures, and at greater costs.  
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Chapter 2: Background and Related Work 

2.1 Graph Theory and Network Science 

This section introduces the field of Network Science, which forms the basis of 

this thesis.  A network, or ‘graph’ in mathematical terms, is in essence a collection of 

entities connected to each other.  These entities, whether they represent people, ideas, 

computers, cells, nations or any form of interacting component are referred to generally 

as ‘nodes’ (or ‘vertices’) and connected to each other by sets of ‘links’ (or ‘edges’).      

Network Science is a new interdisciplinary field which has evolved rapidly in the 

last two decades around the pursuit of modeling the complex webs of connection that 

compose our natural, technical and social environments.  The field has been defined by 

the United States National Research Council as “the study of network representations of 

physical, biological, and social phenomena leading to predictive models of these 

phenomena" (National Research Council, 2006), and as this description implies it has a 

very broad impact-scope, with applications ranging across industrial sectors, government 

services and academic fields alike (Strogatz, 2001).  The subject of investigation may be 

a power or telecommunications grid, a neuron or species interaction web, a social 

advocacy group or political faction, or any other system whose aggregate behavior is 

based on the interactions of its component parts.  These real world systems in all of their 

complexity cannot be fully characterized even by the most sophisticated models 

available, as there is always more going on than is understood.  Inescapable as that is, 

within the vast and mostly uncharted field of complex systems science this network 
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approach has proven itself highly effective, especially in systems whose key factors are 

better understood and thus more fit for mathematical abstraction (Strogatz, 2001).   

One organization, or taxonomy of many networks explored within Network 

Science, is given below (Dodds, 2014): 

1. Physical Networks (whose structures are physically embedded in the external 

world)  

1. Types: 

1. Distribution (branching) 

2. Re-distribution (cyclical)    

2. Examples: 

1. Riverways 

2. Neural Pathways 

3. Trees and Leaves 

4. Blood Pathways 

5. Power Grids 

6. Roadways 

7. The Internet 

2. Interaction Networks (maps of interactions between organisms of different scale) 

1. Examples: 

1. The Blogosphere 

2. Biochemical Networks 
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3. Gene-Protein Networks 

4. Food Webs 

5. WWW Hyperlinks 

6. Phone Calls  

7. Airline Routes 

8. The Media 

9. Sexual Relationships 

10. Friendships & Acquaintances  

11. Boards & Directions 

12. Social Media (facebook, twitter, etc) 

13. Creative Networks (webs of artistic collaboration)  

3. Relational Networks (webs of concepts, or human interaction with resource 

supplies) 

1. Examples: 

1. Consumer Purchases  

2. Thesauri (words connected by similarity of meaning) 

3. Knowledge/Databases and Ideas 

4. Metadata - Tagging (such as on flickr) 

5. Search of Scientific Materials (webs of clicks between subjects 

online) 
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The study of real world networks conducted in this new field of Network Science 

has mathematical roots dating back to the ‘7 Bridges of Konigsberg’ problem, proposed 

by mathematician Leonhard Euler in 1735.  The problem was as follows: The city of 

Konigsberg, Prussia lay on either side of the Pregel river and included two islands, 

connected to each other and to the mainland by seven bridges (as shown in Figure 

1).  The problem was to find a route that crossed each bridge exactly once, without 

crossing the water by any other means (Briggs, 1986).  Euler proved that there was in fact 

no possible solution, as each of the four land masses was touched by an odd number of 

bridges when an even number would be needed for all land masses (possibly except for 

two of them).  Along with this finding, Euler also critically observed that to approach this 

problem required knowledge only of the connections between the land masses (the nodes 

and links) and nothing else, allowing him to abstract the original detailed map of the city 

to a simple diagram of dots and lines, an object which became mathematically referred to 

as a graph, as shown on the right in Figure 1.   

  

Figure 1. Emergence of Graph Theory (Briggs, 1986) 

This valid formalization of the bridges and islands as ‘edges’ and ‘vertices’ laid 

the groundwork for a new branch of mathematics now known as Graph Theory, which 

models pairwise relationships between given entities by representing them graphically as 
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collections of nodes connected by sets of links (Briggs, 1986).  These sets of nodes and 

their links (mathematically referred to as vertices and their edges) together form the 

mathematical objects known as ‘graphs’, formalized as G = [V,E], where V is a set of 

vertices and E as a set of edges. 

Graph Theory has been interdisciplinary since its inception with Euler, as several 

of its foremost early applications were conducted in different fields.  The term ‘graph’ 

itself was coined by a mathematician named James Joyce Sylvester in an analogy he 

posed between "quantic invariants" and "co-variants" of algebraic and molecular 

diagrams (Briggs, 1986).  One of today’s biggest applications of Network Science, social 

network analysis, originated with psychologist James Monroe and his introduction of the 

‘sociogram’, a graph based depiction of the social structure of boys and girls in an 

elementary school.  This new approach to studying social ties was renowned at the time, 

and was published in the New York Times in 1933 (Briggs, 1986).    

 

2.2_Network Models 

The modern renaissance of graph theory began with its evolution from a tool for 

static relational mappings to one for state of the art dynamical network models when it 

was brought together with probability theory by mathematicians Paul Erdos and Alfred 

Renyi to form the Erdos-Renyi random graph model in 1959 (Briggs, 1986).  Within this 

model, network links are formed at random, as each potential link is given an equal 

probability of being formed (Costa et al, 2007).   
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This method of generating networks is known as the Erdos-Renyi model.  It 

produces what are also called ‘random’ networks, which constitute one of an established 

set of network models, mechanisms by which networks of different structure are 

generated (Costa et al, 2007).  The discovery of network models which take on the 

structures observed in real world networks, such as Watts’s and Strogatz’s ‘Small-World’ 

and Barabasi’s and Albert’s ‘Scale-Free’ networks, has been greatly responsible for 

validating network modeling as a critical new approach to designing, maintaining and 

generally understanding networks of all types. The scale-free property for example, 

which was discovered by Barabasi and Albert in 1999 in the distribution of hyperlinks on 

the World Wide Web, indicates when identified in a network that the network will be 

much more vulnerable to targeted attacks on its hubs than to random failure of its nodes 

(Albert et al, 2000).     

This development in the field has also put Network Science on the map in the 

public discourse, with network terms such as ‘degrees of separation’, ‘viral’ content and 

system ‘hubs’ commonly understood due to their sheer ubiquity and universally intuitive 

nature (Albert et al, 2000). 

 

2.3_Network Properties 

In this section I’ll introduce some terminology used to characterize network 

traits.  One main advantage of networks is its broad accessibility to newcomers, as its 

vocabulary can be interpreted by each person in whatever context is most comfortable to 

them.  The measurement of network size, for example, can be interpreted as how many 

people are at a party, cars are on a highway, school are in a city or proteins are at work in 
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a metabolic process.  The simple question is: how many nodes are there in the 

system.  The network density is a measurement of how many links exist between the 

nodes compared to the maximum number possible if each node were linked to each other 

(Costa et al., 2007).  This could be interpreted as the density of close friendships held 

between students in a class, predator/prey ties held between species in a community food 

web, or collaborations forged between members of Congress.   

The directedness of a network’s links indicates which way(s) the links connect, 

whether a given link will only transmit from node A to node B but not back from B to 

A.  This can be easily interpreted in the context of roadway networks, as many roads can 

only go one way.  Likewise the weight of a network’s links indicates how strong or dense 

a connection is.  In the same context, this could represent how much traffic there is on a 

given road, or what the speed limit is.  The average degree of a network simply measures 

the average number of links (the degree) held by each node (Costa et al., 2007).  This is 

closely related to network density, though it differs in that it does not consider the number 

of possible links.  The average path length of a network measures how many steps 

compose the shortest path between one node and another on average, found simply by 

averaging the number of steps (also known as the ‘degree of separation’ in laymen’s 

terms) it takes to connect every combination of two nodes in a network (Costa et al., 

2007).  The network diameter is the longest among all of these shortest paths (Costa et 

al., 2007).   

A node’s clustering coefficient is a measurement of how connected its neighbors 

are.  In other words, how many of your friends are friends with each other.  This is 

calculated as a ratio of existing ties between neighbors to the maximum possible number 
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of ties.  The clustering coefficient of a network is found by taking the average of those of 

all its nodes (Costa et al., 2007).   

Another key tool used to analyze networks is node centrality, which yields levels 

of influence that individual nodes have on the network.  This study of centrality is largely 

comprised of a set of four main measures: degree centrality, which tracks how many 

connections each node has; closeness centrality, which tracks the distance in space each 

node is from all others on average; betweenness centrality, which tracks what proportion 

of all shortest paths each given node is part of; and eigenvector centrality, which tracks 

how well connected a node’s connections are by measuring the average degree of its 

neighbors.  These centrality measures are used, for example, to identify which members 

of a dangerous group should be monitored, captured or executed in order to gain the most 

relevant information or optimally disrupt the network’s functioning (Barabasi, 

2009).  Figure 2 summarizes some of this discussion of network models and properties. 
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Figure 2. Network Models 
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A more exhaustive list of network properties is given below (Costa et al., 2007): 

 Degree Distribution  

 Assortativity/Homophily (disproportionate connectivity between nodes with 

similar degree) 

 Motifs (recurring substructures within networks) 

 Modularity (subgrouping or ‘community’ structure formation within a network) 

 Concurrency (simultaneity of connections between nodes over time) 

 Hierarchical Scaling (hierarchical structure of nodes over multiple scales) 

 State-Topology Coevolution (the interdependence of a network’s structure and the 

activity taking place on it)  

 Robustness (the ability of a network to maintain stability despite failures or 

perturbations) 

 

2.4 Dynamical Systems and Stability  

 In order to fully grasp the essence of network stability one must first have a firm 

grasp on May’s original model. This calls for a basic understanding of Dynamical 

Systems Theory, a branch of mathematics which deals with systems’ autonomous change 

over time.  Autonomous change implies that each of the system’s updates is based only 

on its own properties, deemed ‘autonomous’ as it is not affected by any external 

factors.  The field was conceived within the development of Newtonian mechanics and 

carries up through modern theories of nonlinear dynamics, focusing on systems’ 

underlying dynamical mechanisms, rather than just properties of static observations.   
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A dynamical system is a system whose state is entirely described by a finite set of 

variables, and whose behavior is entirely determined by predetermined rules.  So what 

happens on Day 2 depends completely on a defined set of traits and what their values 

were on Day 1.  Examples include: motion of celestial bodies, simple pendulum 

swinging, population growth, and behavior of two agents in a negotiation such as the 

Prisoner’s Dilemma.    

One basic trait of dynamical systems is how they are formulated mathematically, 

whether in discrete or continuous time.  Both May’s model and the model studied in this 

thesis are built to operate in continuous time.  This means that the equations composing 

the models are differential equations, in the general form of dx/dt = F(x,t) where F is 

some function determining the rule that the system’s behavior will follow.  This is 

distinct from discrete time models, in which time is broken into discrete steps, the 

comprising equations of which are difference equations and take the general form xt = 

F(xt-1,t) where xt  is the variable describing the state of the system at time step t. 

Another fundamental trait of these systems’ mathematical formulation is whether 

they are linear or nonlinear.  Linear equations are desired across all areas of applied 

mathematics because they are familiar and well behaved.  Linear dynamical systems are 

sure to be analytically solvable and to show either convergence to an equilibrium point 

(exponential decay), divergence from an equilibrium point (exponential growth), periodic 

oscillation, or some combination thereof.  Nonlinear systems on the other hand are not so 

kind, and our understanding of them is less well defined in many cases.  These systems 

are often not analytically solvable, and tend to show much more complex and mysterious 

behaviors than their linear counterparts.      



16 
 

The network trait which is focused on in both May’s work and the proposed 

model is their stability.  According to May, the collection of interactions between 

ecosystem species, which his networks were meant to model, generally follow a set of 

‘quite’ non-linear first order differential equations (May, 1972).  Despite this nonlinear 

structure, there is a linear method which can be used to carry out stability testing, known 

as Linear Stability Analysis.  This is done by examining the behavior of the system just 

around its equilibrium points, such that the stability of the equilibrium point is 

characterized by the equation: dx/dt = Ax (May, 1972).  This means that the change in x 

(the set of disturbed populations) can be represented by a matrix A, wherein the 

interactions between each species near equilibrium are linearly approximated, multiplied 

by a vector x.   

This process is carried out as follows: First the function is linearized at this 

equilibrium point to produce a matrix (called a Jacobian matrix), and then the matrix’s 

eigenvalues are checked to see if any have values greater than zero for their real 

parts.  The reason the system’s eigenvalues around these steady points are referred to is 

that they indicate whether the system, after impact from some perturbation, is gravitating 

back towards the equilibrium point and stability or moving further away and towards 

instability.  For the eigenvalues’ real parts the distance of the system’s state from 

equilibrium is increasing (destabilizing) when the real part is greater than 0, and 

decreasing (stabilizing) when it is less than 0.  If all eigenvalue’s real parts have negative 

values, the system is moving back toward equilibrium and can be considered stable. This 

criterion of linear stability is used in both May’s work and the proposed model, though it 
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is just one of a set of methods used to analyze stability in networks (Ellens and Kooji, 

2013). 

 

2.5 May’s Model in Depth 

The model on which this thesis is based was designed by theoretical biologist and 

ecologist Robert May in the early 1970’s, to test the relationship between network 

complexity and stability for larger networks than had been investigated by his 

predecessors, M.R. Gardner and W.R. Ashby.  May aimed to find out whether the key 

finding of their work, the sharp transition from stability to instability observed at certain 

critical thresholds of complexity, scaled to networks of greater size.  The model was 

conceived in the domain context of ecological food webs with many interacting species, 

and the variables comprising the system were: number of species n, average density of 

links between species C, and link strength a, representing how heavily dependent species 

were on each other (May, 1972).  This is summarized in figure 3.     

 

Figure 3. May’s Model 
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This information of which species interact with which others can be drawn directly 

from a diagram of a food web (or ‘trophic’ web), though for the sake of mathematical 

generalizability May chose to computationally generate this data, making several 

simplifying assumptions in constructing the model: 

 

1. Each individual species on its own will maintain a stable population over time. 

2. Each matrix element (encoding an interaction between species) is assigned from a 

distribution of random numbers between -1 and 1 of mean value 0, making each 

interaction equally likely to be positive or negative.  

3. Link strength a is uniformly scaled for all interactions. 

 

The model is formalized as follows: 

       

The matrix A represents an n × n matrix of interactions between species.  It is 

composed of the matrix E (an n × n random matrix whose elements are sampled from a 

uniform distribution [-1,1])  times link strength a, minus the n × n identity matrix I. The 

topological structure of May’s networks followed the random graph model.    

 Once the matrix has been generated, the stability of the system is tested.  A 

system is declared stable if and only if all of the eigenvalues of matrix A have negative 

real parts.  For each value of n, C and a, a probability is found that a matrix with those 

traits will correspond to a stable system, denoted by: P(n, C, a).  This is also done for 

each combination of a and n, denoted by P(n, a).  This analysis uncovered critical 
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stability thresholds, where stability was overwhelmingly likely in matrices with:   

     

 
 and equally unlikely in matrices with:  

 
 
 
 

 
 . This transition was very sharp and 

consistent due to the statistical fact that “although individual matrix elements are liable to 

have any value, by the time one has an n × n matrix with n2 such statistical elements, the 

total system has relatively well defined properties” (May, 1972).  A nearly identical 

stability threshold is found when network density C is introduced, measured as a ratio of 

actual links to topologically possible links within a network.  Matrices with          

were surely stable, while those with          were surely not.   

In uncovering sharp transitions to instability beyond these critical thresholds, 

May’s results did indeed concur with Gardner and Ashby’s, showing that their finding of 

sharp transition to instability did indeed scale to larger networks.  These results suggest 

that too large of a density or link strength (C or a) is detrimental to a network’s stability, 

and this effect is more pronounced with larger n.  This is a balance that is observed in 

many real world ecosystems (Allesina et al., 2012).  The other noteworthy result of his 

model was that webs were much more likely to be stable if they were arranged in 

“blocks”, as a web of 12 species had a much higher stability rate when organized into 

three separate 4-species communities.  This trait of modularity is also observed in many 

real world ecosystems, and is believed to contribute significantly to networks’ robustness 

in general (May et al., 2008).   

 

2.6 Network Robustness 

Our lives are composed of series of networks; from the infrastructural networks 

that provide us with water, electricity, communications and transportation to our 
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institutional networks that govern the creation and flow of money and laws, to our 

interpersonal social networks describing who we work and spend time with, to the 

ecosystems which continually generate the natural resources we need to survive.  As 

crucial as this web of webs is, its consistent performance can lead many to take it for 

granted, especially among the fortunate few in the first world who have reaped its 

benefits throughout our lives nearly without interruption.  It is when interruptions do 

occur, as has happened in recent years in the forms of power blackouts, financial crashes, 

and ecosystem biodiversity loss and resource depletion due to over-consumption and 

pollution, that we are forced to step back and reexamine the integrity of the systems we 

have created and their effect on the natural systems which created us.  It is for this 

process of reexamination that one can see the greatest real world implication of the field 

of network stability and robustness.   

Robustness is the “ability of a network to continue performing well when it is 

subject to failures or attacks” (Ellens and Kooji, 2013).  There are general network traits 

which have been found to foster robustness across networks of diverse 

domains.  Another, much more recent work of May’s entitled “Ecology for Bankers”, 

suggests that ecological food webs of interacting species and financial networks of 

interacting banks are both more robust when they are structurally more modular, 

redundant, and disassortative (May et al., 2008).  Modularity is the “degree to which the 

nodes of a system can be decoupled into relatively discrete components” (May et al., 

2008).  This quality is expressed by the presence of community structures, clusters within 

networks characterized by high connectivity between their internal nodes and sparse 

connectivity to those outside the community.  This principle is applied in the context of 
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forest fire management, in which forests are preventatively divided into distinct modules 

in order to limit fires’ potential to spread (May et al., 2008).         

Redundancy is equivalent to the availability of alternative pathways between 

nodes.  This concept is key to the structural function of the Internet.  The messages sent 

over the web reach their destinations with such high reliability not because every router is 

impregnable, but because of the algorithms’ ability to find alternate routes when 

encountering defective ones.  It is because of this, along with the Internet’s scale-free 

structure, that a random failure of 80% of all web sites would still not crash the system 

completely (Albert et al., 2000).   

Dissortativity has to do with the connectivity between highly connected ‘large’ 

nodes and much lesser connected ‘small’ nodes.  In dissortative networks, large nodes 

have their connections “disproportionately with small nodes”, while the small nodes 

“connect with disproportionately few large ones” (May et al., 2008).  This is observed in 

the ecological network structures of plants and pollinators and both marine and 

freshwater food webs, as well as in the Fedwire interbank payment network, as “large 

banks were disproportionately connected to small banks and vice versa” (May et al., 

2008).   

The success of these three traits to produce more robust network structures within 

social, natural, and technological domains seems to provide solid grounds for their 

prioritization as characteristics to be built into the design of networks of all types in the 

future.  The research question addressed in this project, of the effect of global 

perturbations on network stability, will also yield broadly applicable knowledge about 
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network robustness that will be useful to the design and security of future networks of all 

types. 
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Chapter 3: Methods 

This section lays out in detail the design of the numerical experiment conducted 

in this thesis, along with the algorithm by which it was conducted.  To set the stage for 

this the model’s basic objective and assumptions will be re-overviewed briefly: 

 

The objective of the model is to test the robustness of four network models by 

tracking their stability under the influence of global perturbations: 

1. Barabasi-Albert scale-free networks 

2. Watts-Strogatz small-world networks 

3. Erdos-Renyi random graphs 

4. Random regular graphs      

 

Some simplifying assumptions were made in the formulation of both May’s 

model and the proposed model, as follows:  

1. The nodes comprising the networks affect each other linearly by the equation 

dx/dt = Ax, as characteristic to the method of linear stability analysis.   

2. Each node would return to stable equilibrium if not influenced by other nodes.   

3. Each link strength takes an initial value between -1 and 1, which is generated 

from a random n × n matrix of mean 0 and multiplied by a.   

4. Each link’s value is equally likely to be positive (+) or negative (-)  



24 
 

5. The global perturbations affect only links existing within the networks, as the 

matrices’ 0-values (representing no connection between nodes) remain 0 after 

perturbation.    

  

The algorithm for numerical analysis is implemented in the Python 2.7 

environment.  The first step is to generate the matrix A, which is done by taking the 

adjacency matrix of a randomly generated graph of a given network model from within 

the NetworkX library (Hagberg et al., 2008).  This adjacency matrix consists only of 1’s 

and 0’s, so the next step is to replace all the 1’s with randomly generated values between 

-1 and 1, to capture the equal likelihood of negative and positive influence between nodes 

as is in May’s model.  The identity matrix is then subtracted to form the matrix A.  Next 

this matrix A is tested for its stability, by checking if all of its eigenvalues are negative in 

their real parts.  If it is found to be stable, it is passed into the next loop to form a 

perturbed matrix B, or if it is found unstable the ‘while’ loop repeats until a stable A-

matrix is found.   

With a stable A found, the next matrix B is constructed as the sum of the stable A 

and a perturbation matrix P (a random real n × n matrix whose components are random 

numbers sampled from the range [-1, 1]) multiplied by a perturbation coefficient  This 

product, within the equation B = A + P constitutes a global perturbation because it is 

being inflicted to the entire A matrix.  The role of  is to set the magnitude of this global 

perturbation.  B matrices are then iteratively formed and tested for stability across ranges 

of  for the purpose of identifying a critical valuethe minimal level of perturbation 

force to destabilize each matrix.  These  ranges are applied and averaged over 30 repeats 
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for each B matrix in order to counterbalance the model’s stochastic nature.  The 

maximum eigenvalue’s real part is stored for each B and plotted over each  value, to 

reveal at which point the network is jarred to instability, as measured by the lowest level 

of  to destabilize each given network.   

This process is carried out over three ranges of , first stepping logarithmically in 

base 2 from 0.01 to 2.56, to reveal approximately what  magnitude first brings about 

instability. Once this critical  vicinity is identified, a finer search is conducted by 

applying a linear range to the area on the log scale around which instability first arose, 

stepping in increments of 0.1. For example, if the logarithmic range revealed instability 

first arising between the values of 0.32 and 0.64, the new linear range over which the B 

matrices would be re-tested would be all  values between 0.16 and 0.64 in steps of 0.1. 

This would yield a range of {0.16, 0.26, 0.36, 0.46, 0.56}. The final  range is made up of 

a finer run over the same linear range, by stepping in increments of 0.01. This is 

obviously done to increase precision.   

Once this data has been generated for each network model, it is presented on a 2D 

plot for the more refined linear  range, in which the x-axis is the link strength a and the 

y-axis is the minimum  value associated with each unstable B matrix (critical ) over the 

30 repeats. The initial exponential range is not included in the final results because it 

shows only an extremely broad range of  values, and thus produces nearly identical plots 

each containing just a single point. This process is depicted in its entirety in pseudo-code 

in Figure 4. 
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Phase 1: Preliminary experiment test 

For each network model Do 

 For each n-value Do 

 For each a-value Do 

unstable_count = 0 

Repeat × 10  

generate adjacency matrix A of given network model 

replace 1’s with random values from -1 to 1 

subtract I from A 

calculate A’s eigenvalues 

If maximum eigenvalue real parts > 0 then 

network is unstable, unstable_count +=1 

Output a, unstable_count 

 Output n, a, unstable_count 

Plot network model, n, a, unstable_count 

 

Phase 2: Main experiment 

n = 1000 

set a to a specific value 

For each network model Do 

While network is unstable Do 

generate adjacency matrix A of given network model 

replace 1’s with random values from -1 to 1 

subtract I from A 

calculate A’s eigenvalues 

If maximum eigenvalue real part <= 0 then 

  network is stable, exit loop 

Initialize critical_ _list 

Repeat ×30 

 set log  range 

 Repeat ×3 (for log, linear and linear2 ranges):   

  For  in  range: 

create P matrix as a random real n×n matrix  

create B-matrix as A +  P, changing only A’s non-zero 

values 

If maximum eigenvalue real part of B > 0 then 

network just got destabilized; configure the next  

range and then exit loop 

Append  to critical__list  

 

Figure 4. Algorithm Pseudo-Code 
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The preliminary experiment was conducted to test how stable networks are in 

general for given network models and parameter values. After the relevant network 

models and parameter values were determined, the main experiment was conducted to 

find critical global perturbation magnitudes (referred to as the critical ) for each network 

model.  

The preliminary experiment was carried out by generating A matrices and testing 

their stability over a linear range of a values between 0.1 and 1 and n values between 200 

and 2000, and tracking how often for each set of a network model and parameter values 

(n, a) the generated A’s were found to be unstable.  Unlike in May’s model, here the link 

density C is held constant, because sparse connectivity (low C) is characteristic of scale-

free network models.  May was not limited in this way because he was working with 

dense random graphs C. Because the scale-free model is structurally limited in its set of 

possible C values, and the models should be evaluated with equal parameter values (a, 

C), C was set to 2 for all models in this thesis. This signifies that two links exist in a 

network for every node, on average. This did not apply to the complete graph (CG) 

model. 

Within the main experiment, the value of a was set to range from 0 to 0.5 in steps 

of 0.1 and the n was set to 1000, as it was the greatest n value to fall within the desired 

computational time, as projected by the preliminary experiment results.  The final results, 

which this process produced, are discussed in the next section.          
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Chapter 4: Results and Discussions 

 This section contains the results yielded from running the network models for 

both the preliminary and main experiments. The complete graph (CG) model was not run 

for the overall main experiment because of the consistent instability found from its 

preliminary experiment runs.   

 

4.1 Preliminary Experiment 

 The preliminary experiment was conducted for each of the five network models, 

and revealed that the WS, BA, ER and RR models transition from virtually all stable at a 

= 0.4 to virtually all unstable by a = 0.6, while the CG model was found almost always 

unstable across the whole a range.  The n range, conversely, made no significant 

difference to the proportion of generated A matrices found to be unstable.  This is shown 

in Figures 6, 8, 10, 12 and 14. 

 Figures 5, 7, 9, 11, 13 and 15 show the rates of instability over a linear range of a 

values from 0.1 to 1.0 with step size 0.1, one figure for each of the five network models 

at n = 1000. Figures 6, 8, 10, 12 and 14 show these same rates over linear ranges of both 

a and n, with the same a range and an n range of 200 to 2000 with step size 200.   
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 Scale-Free Networks (BA)         

 

 

 

 

 

Small-World Networks (WS) 

 

 

 

 

 

 

 

 

Figure 5. Instability rate of 

Barabasi-Albert scale-free 

networks for varying a values, 

plotted in 2D. n = 1000, C = 2. 

 

Figure 6. Instability rate of 

Barabasi-Albert scale-free 

networks for varying a and n 

values, plotted in 3D. C = 2. 

 

Figure 7. Instability rate of 

Watts-Strogatz small-world 

networks for varying a values, 

plotted in 2D. n = 1000, C = 2. 

 

Figure 8. Instability rate of 

Watts-Strogatz small-world 

networks for varying a and n 

values, plotted in 3D. C = 2. 
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Random Regular Graphs (RR) 

  

 

 

 

Complete Graphs (CG) 

 

 

 

 

 

 

 

 

Figure 9. Instability rate of 

random regular networks for 

varying a values, plotted in 2D. 

n = 1000, C = 2. 

 

Figure 10. Instability rate of 

random regular networks for 

varying a and n values, plotted 

in 3D. C = 2. 

 

Figure 11. Instability rate of 

complete networks for varying a 

values, plotted in 2D. n = 1000, 

C = 2. 

 

Figure 12. Instability rate of 

complete networks for varying a 

and n values, plotted in 3D. C = 2. 
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Erdos-Renyi Random Graphs (ER) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Instability rate of 

Erdos-Renyi random networks 

for varying a values, plotted in 

2D. n = 1000, C = 2. 

 

Figure 14. Instability rate of 

Erdos-Renyi random networks for 

varying a and n values, plotted in 

3D. C = 2. 
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4.2 Main Experiment 

Figure 15 shows the robustness performance (critical  value) of each model over 

a range of a values from 0.1 to 0.5.    

 

 

 

 

 

 

 

 

 

 

 

 

Network Models 

 RR 

 WS 

 BA 

 ER 

Figure 15. Robustness performance of RR, WS, BA and ER 

graphs for varying a values, plotted in 2D. n = 1000, C = 2. 
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In Figure 16, a slight horizontal shift was used to illustrate the models’ 

performance more clearly.    

 

 

 

 

 

 

 

 

 

 

 

 

Network Models 

 RR 

 WS 

 BA 

 ER 

Figure 16. Shifted robustness performance of RR, WS, BA and 

ER graphs for varying a values, plotted in 2D. n = 1000, C = 2. 
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Figure 17 shows the curves that were fit to each network model along with their 

corresponding R
2 

values. 

 

       

  

Network Models 

 RR 

 WS 

 BA 

 ER 

R2 Values 

 0.918 

 0.978 

 0.980 

 0.979 

Figure 17. Curve fitting of robustness performance of RR, WS, BA 

and ER graphs for varying a values, plotted in 2D. n = 1000, C = 2. 
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Figure 18 shows the variances observed in critical  value for each model, across 

the range of a.

 

 

 

 

 

 

 

 

 

 

 

 

 

Network Models 

 RR 

 WS 

 BA 

 ER 

Figure 18. Variance of robustness performance of RR, WS, BA and 

ER graphs for varying a values, plotted in 2D. n = 1000, C = 2. 

 



36 
 

 

Figures 19-28 show results of ANOVA and Tukey post-test values for the 

network models’ robustness performance, measured by critical , at each value of a.    

 DF Sum of Sq. Mean Sq. F-ratio P-value 

Model 3 0.106 0.035 468.007 1.29*10
-64 

Error 116 0.009 0.00007 -- -- 

Total 119 0.115 -- -- -- 

Figure 19. ANOVA, a = 0.1 

Models                                  

Figure 20. Tukey Post-Test, a = 0.1 

For figure 20, a Tukey post-test was performed generating sets of models shown 

above. These sets of models are those whose means have be found to be statistically 

different from each other.  This indicates that there is significant difference between: BA 

and RR, BA and WS, RR and WS, BA and ER and RR and ER. The exception found at 

this value of a is between the WS and ER models.    

 

 DF Sum of Sq. Mean Sq. F-ratio P-value 

Model 3       0.032 201.988 6.987*10
-46 

Error 116 0.018 .0001 -- -- 

Total 119 0.114 -- -- -- 

Figure 21. ANOVA, a = 0.2 
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Models                                  

Figure 22. Tukey Post-Test, a = 0.2 

For Figure 22, a Tukey post-test was performed generating sets of models shown 

above. These sets of models are those whose means have be found to be statistically 

different from each other.  The results for this a value are identical to prior a, as 

significant differences are found between: BA and RR, BA and WS, RR and WS, BA and 

RR and ER, (etc). The exception found is once again between the WS and ER models. 

 DF Sum of Sq. Mean Sq. F-ratio P-value 

Model 3 0.099 0.033 69.745 7.49*10
-26 

Error 116 0.095 0.0004 -- -- 

Total 119 0.154 -- -- -- 

Figure 23. ANOVA, a = 0.3 

Models                      

Figure 24. Tukey Post-Test, a = 0.3 

For Figure 24, a Tukey post-test was performed generating sets of models shown 

above. These sets of models are those whose means have be found to be statistically 

different from each other.  This indicates that there is significant difference between just 

three pairs of models: BA and RR, BA and WS, and BA and ER.  
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 DF Sum of Sq. Mean Sq. F-ratio P-value 

Model 3                     2.22*10
-17 

Error 116             -- -- 

Total 119 0.298 -- -- -- 

Figure 25. ANOVA, a = 0.4 

Models                    

Figure 26. Tukey Post-Test, a = 0.4 

For Figure 26, a Tukey post-test was performed generating sets of models shown 

above. These sets of models are those whose means have be found to be statistically 

different from each other.  The results for this a value are identical to prior a, as 

significant differences are found between just three pairs of models: BA and RR, BA and 

WS, and BA and ER.  

 DF Sum of Sq. Mean Sq. F-ratio P-value 

Model  0.004 0.0001 1.38 0.252 

Error  0.102 0.0008 -- -- 

Total  0.105 -- -- -- 

Figure 27. ANOVA, a = 0.5 

Models  {none} 

Figure 28. Tukey Post-Test, a = 0.5 

For Figure 28, a Tukey post-test was performed generating sets of models shown 

above. These sets of models are those whose means have be found to be statistically 
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different from each other.  At this largest a value there are no longer any statistical 

differences between any pairs of models, indicating that these models become more 

uniform as well as less robust as a increases.   
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 Chapter 5: Conclusions 

5.1 Main Findings 

There are several findings which seem clearly inferable from these results.  The 

first is the sharp transition to instability found for four of the five network models in the 

middle a range, around 0.4 to 0.6, and that this transition remains virtually unaffected 

over a range of network sizes n.  This does not hold, however, for the complete graph CG 

model, since it produced consistently unstable networks across all a values.  This is the 

reason that the CG model is not included in the final results, because its unstable nature 

would have disallowed it from completing the main experiment within any reasonable 

computation time. The BA scale-free graph also is distinguished, for its greater fragility 

in comparison to the WS, ER and RR models.  This is evident, as the instability rate for 

BA rises more gradually than the others and beginning earlier in the a range, as shown in 

Figures 5 and 6.         

 From the main experiment results for the remaining four models, there appears to 

be a monotonic decrease for all network models as link strength a increases.  Variance of 

critical  values also grows until a = 0.4, spiking from 0.2 to 0.3 for the BA model and 

from 0.3 to 0.4 for ER, RR and WS.  This increasing variance creates the dissolved 

looking clusters most visible at a = 0.4 in Figure 16.  There are statistically significant 

differences in robustness performance shown between the models.  The ANOVA analysis 

shows that the statistical difference between the models diminishes as a increases. This is 
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evident as the number of models which are found different from each other decreases 

from 5 out of 6 possible pairs at a = 0.1 and 0.2, to 3 out of 6 at a  = 0.3 and 0.4, to 0 at a 

= 0.5. There also were statistically significant trends in robustness performance between 

network models. The RR model has the highest critical  values overall and is therefore 

most robust, followed closely by the WS and ER models, which behave nearly identically 

throughout.  Along with showing the greatest fragility during the preliminary experiment, 

the BA model is also found least robust and most variant in the Main experiment, 

distinguished from the others by a much wider gap in both respects.     

These large variances in robustness performance, observed within network 

models and within a values, shows that performance is being significantly influenced by 

network traits which are not being controlled in this model. The structure of links in these 

networks is subject to change with the inherent randomness. This is most pronounced 

within the BA model, as shown in Figure 18, indicating that network link structure 

matters for robustness performance.  

 

5.2 Future Directions 

This wide variance in performance observed within the current parameters 

presents an opportunity for future work, to investigate what unknown network 

connectivity properties are most associated with robustness performance. This would 

involve tracking robustness across ranges of other network parameters, such as 

connectivity and clustering coefficient. This knowledge could potentially be used to 

enhance network design by optimizing for robustness to global perturbations. If it were 
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observed, for example, that BA networks with smaller clustering coefficients (fewer, 

more powerful hubs) were less robust, that may have implications for designed systems 

following the BA model (such as the airport network in the United States).  This finding 

could imply that the airport network is maximally stable to global perturbations within a 

certain range of clustering coefficient, and could account for this in its design process. 

The broader question being introduced is: What specific, unknown structural differences 

are causing the variance in performance observed between and within network models?  

The connection between this abstract model and the real world systems it was 

inspired by could also be strengthened by applying it to networks which are more 

qualitatively and quantitatively similar to real world networks.  This could mean testing 

networks which are topologically dynamic and interdependent with nonlinear 

relationships between nodes. Furthermore, linear stability analysis using eigenvalues is 

just one means of measuring network stability. This criterion could be expanded to 

include other forms of stability tests.  

Finally, it may be practical to implement some form of evolutionary computation 

to scan the vast search space of possible networks and evolve maximally robust networks 

of each model, tracking fitness across numerous network parameters along with the 

global perturbation robustness (critical ) measurement.               

 

5.3 Limitations 

It is difficult to determine from these results, how exactly scale-free, small-world, 

random and random regular graphs should be designed or otherwise treated differently in 
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real world contexts to maintain maximal stability.  Given the abstract nature of these 

networks and of the stability testing itself, it can only be determined at this point that 

networks of any model are made more fragile and variant in their response to global 

perturbations with the greater their link density a, and that there is a clear relationship in 

critical stability thresholds to this perturbation between the four models, with: RR as the 

most robust, followed by WS and ER close behind, and then BA most fragile by a wider 

margin.     

This modeling approach has many pros, such as its speed, simplicity and flexibility, 

though its simple and abstract mathematical nature saddles it with limitations – those of 

its traits which do not match up with real world domain contexts.  The proposed model 

contains many such limitations, which will be approximated with the following list: 

 

1) The nature of linear stability analysis defines the relationships between 

each node to be linear.  This is of course not the case in many real world 

systems.  

2) As in May’s model the magnitude of the links’ densities is uniformly 

scaled by a.  This ensures that all the links’ densities are on the same order 

of magnitude on average, which often is not the case in real world 

contexts.   

3) As in May’s model each node of each network is set to return to stability 

by default if left unaffected.  This is a trait held by neither financial firms 

nor ecosystem species, as these organisms would not survive without 

ecological interaction.     



44 
 

4) As in May’s model each link is equally likely to be positive or negative, 

another simplification not observed in real world contexts.   

5) The global perturbation inflicted to destabilize the A matrices only comes 

in the form of addition.  In real world contexts global perturbations do not 

only have additive effects, but rather can take numerous and unknown 

forms.   

6) The global perturbation affects only the previously existing links of each 

network, meaning that no new connections are formed from these 

perturbations.  This is not the case within either ecology or finance, as 

environmental changes often create new links among firms and species.          

7) All stability tests performed within the model are done on static networks 

which have been generated by Python’s NetworkX library, whereas the 

real world systems whose stability is crucial for societal function (whether 

financial, ecological, infrastructural or any other) are obviously neither 

static nor computationally generated. 

 

There are surely many more limitations inherent to this modeling approach.  The 

hopeful assumption in carrying out this project was that the results it yields may still have 

some practical relevance to the real world systems it was inspired by.     

 

 

 

 

 



45 
 

 

Works Cited 

Allesina, Stefano, and Si Tang. "Stability criteria for complex ecosystems." Nature 483 

(2012):6 205-208. Print. 

 

Squartini, Tiziano, Iman Van Lelyveld, and Diego Garlaschelli. "Early-warning signals 

of topological collapse in interbank networks." Scientific Reports 3 (2013): 1-8. Print. 

 

May, Robert "Will a Large Complex System be Stable?." Nature 238.5364 (1972): 413-

414. Print. 

 

Committee on Network Science for Future Army Applications (2006). Network Science. 

National Research Council.  

 

Strogatz, Steven H.. "Exploring complex networks." Nature 410.6825 (2001): 268-276. 

Print. 

 

Dodds, Peter. "More Introductioneering to Complex Networks." Complex Networks. 

University of Vermont. College of Engineering and Mathematical Sciences, Burlington. 

16 Jan. 2014. Class lecture. 

 

Biggs, N., E. Lloyd, and R. Wilson. "250 Years of graph theory 1736–1986." Journal of 

Graph Theory 10.3 (1986): iv-vi. Print. 

 

Costa, L. Da F., F. A. Rodrigues, G. Travieso, and P. R. Villas Boas. "Characterization of 

complex networks: A survey of measurements." Advances In Physics 56.1 (2007): 167-

242. Print. 

 

Albert, Reka, Jeong Hawoong, and Albert-Laszlo Barabasi. "Error and attack tolerance of 

complex networks." Nature 406 (2000): 378-381. Print. 

 

http://www.nap.edu/catalog/11516.html


46 
 

Barabasi, A.-L.. "Scale-Free Networks: A Decade and Beyond." Science 325.5939 

(2009): 412-413. Print. 

 

Ellens, W., and R. E. Kooij. "Graph measures and network robustness." arXiv preprint 

arXiv:1311.5064 (2013). 

 

May, Robert M., Simon A. Levin, and George Sugihara. "Complex systems: Ecology for 

bankers." Nature 451.7181 (2008): 893-895. Print. 

 

Hagberg, Aric, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, 

and function using NetworkX. No. LA-UR-08-05495; LA-UR-08-5495. Los Alamos 

National Laboratory (LANL), 2008. 

 

 

 


	Robustness of complex networks to global perturbations
	Recommended Citation

	tmp.1500055044.pdf.1wlXd

