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ABSTRACT 

 

Part 1: High-Sensitivity Amplifiers for Detecting Fluorescence 

Monitoring electrical activity and Ca௜
ଶାtransients in biological tissues and individual cells 

increasingly utilizes optical sensors based on voltage-dependent and Ca௜
ଶା-dependent fluorescent 

dyes. However, achieving satisfactory signal-to-noise ratios (SNR) often requires increased 

illumination intensities and/or dye concentrations, which results in photo-toxicity, photo-

bleaching and other adverse effects limiting the utility of optical recordings. The most 

challenging are the recordings from individual cardiac myocytes and neurons. Here we 

demonstrate that by optimizing a conventional transimpedance topology one can achieve a 10-20 

fold increase of sensitivity with photodiode-based recording systems (dependent on application). 

We provide a detailed comparative analysis of the dynamic and noise characteristics of different 

transimpedance amplifier topologies as well as the example(s) of their practical implementation. 

 

Part 2: Light-Scattering Models for Interpretation of Fluorescence Data 

Current interest in understanding light transport in cardiac tissue has been motivated in 

part by increased use of voltage-sensitive and Ca୧
ଶା-sensitive fluorescent probes to map electrical 

impulse propagation and Ca௜
ଶା-transients in the heart. The fluorescent signals are recorded using 

such probes represent contributions from different layers of myocardial tissue and are greatly 

affected by light scattering. The interpretation of these signals thus requires deconvolution which 

would not be possible without detailed models of light transport in the respective tissue. Which 

involves the experimental measurements of  the absorption, scattering, and anisotropy 

coefficients, ߤ௔, ߤ௦,and ݃ respectively.  

The aim of the second part of our thesis was to derive a new method for deriving these 

parameters from high spatial resolution measurements of forward-directed flux (FDF). To this 
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end, we carried out high spatial resolution measurements of forward-directed flux (FDF) in intact 

and homogenized cardiac tissue, as well as in intralipid-based tissue phantoms. We demonstrated 

that in the vicinity of the illuminated surface, the FDF consistently manifested a fast decaying 

exponent with a space constant comparable to the decay rate of ballistic photons. Using a Monte 

Carlo model we obtained a simple empirical formula linking the rate of the fast exponent to the 

scattering coefficient, the anisotropy parameter g, and the numerical aperture of the probe. The 

estimates of scattering coefficient based on this formula were validated in tissue phantoms. The 

advantages of the new method are its simplicity and low-cost. 
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Part 1 Detection of Low-
Intensity Optical Signals 
from Biological Tissue 
 

During the past two decades there have been dramatic methodological changes in 

monitoring electrical activity and ion concentrations in biological systems linked to the 

development of effective intracellular and membrane-bound optical probes. This led to the 

gradual replacement of conventional intracellular electrical recordings with non-destructive 

optical recordings, which revolutionized neurophysiology and cardiac electrophysiology. 

Instead of impaling individual cells with a conventional or ion-sensitive microelectrode, 

the cells are stained with a voltage-sensitive or ion-sensitive dye. The dye reacts to changes in 

membrane potential or ion concentration by changing its fluorescence or absorption spectrum, 

with changes being recorded optically using photodiode arrays, CCD, or CMOS cameras.  

Achieving satisfactory signal-to-noise ratios (SNR) often requires increased illumination 

intensities and/or dye concentrations, which results in photo-toxicity, photo-bleaching and other 

adverse effects limiting the utility of optical recordings. The most challenging are the recordings 

from individual cardiac myocytes and neurons. Thus the goal of our study is to improve the 

sensitivity of optical recording circuits. While there are many approaches to detecting weak 

optical signals, here we will focus on transimpedance amplifiers with PIN photodiodes. The 

reason for this is the low-cost and wide variety of possible applications for these circuits.  
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Here we demonstrate that by optimizing a conventional transimpedance topology one can 

achieve a 10-20 fold increase of sensitivity with photodiode-based recording systems (dependent 

on application). We provide a detailed comparative analysis of the dynamic and noise 

characteristics of different transimpedance amplifier topologies as well as the example(s) of their 

practical implementation. 

Section 1.1 will describe voltage- and ion-sensitive dyes, their signal characteristics, and 

systems for excitation and detection of these signals. This will include some variations of the 

systems, for example how Ca௜
ଶା-sensitive dyes react differently than voltage sensitive dyes, and 

how absorptive dyes react to changes in voltage and how this change can be recorded. We will 

also discuss typical Δܨ/ܨ for different fluorescent dyes and Δܫ/ܫ for absorptive dyes and how 

these may vary with the types of cells under study. We will then discuss sources of noise and 

where they may appear within the system and how they limit the efficacy of optical recording. 

In this work, we will focus primarily on monitoring the transmembrane potential and 

changes of intracellular calcium ions (Ca௜
ଶା-transients) which play a major role in the regulation 

of multiple intracellular processes. 

One of the major challenges of the optical monitoring of electrical activity is the fact that 

the voltage-sensitive component represents only a small fraction of the total signal. The ratio for 

the best fluorescent dyes ሺΔܨ/ܨሻ usually does not exceed 5% - 15% [1]. The magnitude of the 

optical signal is particularly small in measurements of post-synaptic potentials which are usually 

about an order of magnitude smaller than the amplitude of the action potential. 

While Ca௜ଶା-dependent signals, often called calcium transients, have smaller offset than 

voltage sensitive signals (Δܨ/ܨ is usually about 50-250%) [2, 3], the use of these Ca-sensitive 

probes brings up different challenges: they bleach, which requires limiting the light exposure and 

thus higher gains of the optical signal amplifiers. The need for high-gain low-noise amplifiers is 
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particularly acute for low-affinity Ca௜ଶା probes, which interfere less with intracellular processes 

but produce much weaker signals. This limitation becomes particularly important for optrodes 

[4], where recordings are taken at low illumination intensities and require high amplification. 

In section 1.3 we will conduct an overview of electrical noise. We will discuss the types, 

the sources, and the models. This will enable us to identify the dominant sources of noise in our 

amplifier design and limit it as much as possible. In section 1.4 we will discuss the types of 

photodetectors and their noise models. We will cover light detection with PIN photodiodes, 

avalanche photodiodes, photomultiplier tubes and CCD/CMOS cameras. This section will also 

cover light sources as well, such as arc lamps, halogen lamps, LEDs and lasers.  

The goal of this work was to develop a photodiode amplifier optimized for detecting 

voltage and calcium transients in low-light applications, which include optical monitoring of 

voltage and Ca௜ଶା transients in heart cell cultures, neuronal cells, and optogenetic applications.  

In Chapter 2 we analyze the required bandwidths for different applications. Using a 

realistic ionic model of cardiac action potential and Ca௜
ଶା transients we demonstrate that for the 

majority of applications of optical mapping, one can reduce the bandwidth to as low as 250-

300Hz and often to 100Hz. Eliminating excess bandwidth lowers the noise level and allows 

further increase of the gain of the TIA thereby boosting the sensitivity of fluorescence recordings. 

In Chapter 3, we will analyze and compare several photodiode amplifier topologies. In 

section 3.1we will analyze the noise of the single-resistor topology and in section 3.2 we will 

analyze the noise of the amplifier with the T-bridge feedback network. We will also look at a 

variety of AC-coupled amplifiers in 3.3 with the intention of removing the background 

fluorescence in the 1st stage. One may think that removing the offset in the 1st stage will allow for 

higher-gain in that stage and therefore higher SNR. We will show, however, that this is not true 

for TIAs because whatever circuit element is used to draw away the offset current will add noise 
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of its own. Thus no matter how the offset is removed, the SNR of AC- and DC-coupled 

topologies is essentially the same.  

In Chapter 5 we determine the maximum possible SNR that can be achieved with current 

technology. The estimates were obtained based on modeling the inherent noise of operational 

amplifiers, resistors, and photodiodes. We also model the parasitic capacitances in each circuit to 

determine the limitations on bandwidth, which becomes critical at high gains.   

3.4 will contain a fairly extensive survey of photodiode amplifier components. 

Specifically, an extensive survey of photodiodes and their noise model parameters and various 

types of low-noise op-amps and their noise model parameters. 

In Chapter 6, we describe a physical implementation of a TIA with a gain as high as 10GΩ, 

which is more than 100 times higher of the conventional TIAs utilized for biological applications   

[2, 5, 6, 7, 8, 9, 10, 11, 12, 13].  To achieve a required bandwidth we use a field-shunting ground 

trace, a technique borrowed from high-frequency circuit design.  

The prototype amplifier allows the detection of photocurrents as low as 1pA peak (500fA 

RMS for an action potential). The SNR of the recordings is 10-20 times higher (depending on 

application) than the SNR achievable with a conventional 100MΩ gain TIAs. 

We describe a custom-built device form emulating biological fluorescence which is used not 

only to generate artificial optical action potentials, but is also used to measure the frequency 

response of our circuits to ensure that the bandwidth specification is met. In this chapter, we show 

that the major obstacle to increasing gain is losing bandwidth. We discuss some of the traditional 

methods for increasing bandwidth by reducing stray capacitance. We then suggest the use of a 

technique adapted from high-frequency design called field shunting. This technique proves to 

considerably extend the TIA bandwidth which allows us to achieve even more than the minimum 

bandwidth required for our application (see Chapter 2). 
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Chapter 1 Background and Significance 
 

1.1 Optical Monitoring of Voltage and Calcium 
Transients in Biological Tissues 
 

The procedure optically monitoring voltage and ion transients in tissue involves staining 

perfused tissue with a voltage-sensitive or ion-sensitive dye, and exciting that dye with a light 

source. In response to electrophysiological changes, the dye changes its fluorescence and/or 

absorbance proportionally.  

A diagram of a system for recording changes in fluorescence produced by voltage-sensitive 

dyes and some of the relevant waveforms are shown in Figure 1-1. Here we see that exciting the 

dye with a light source with narrow spectral width and centered at wavelength ߣா௫ produces a 

fluorescence spectrum of longer wavelengths centered at ߣா௠. The dichroic mirror is used to 

separate the excitation and emission light while allowing them to travel on the same path. Notice 

how it reflects the shorter excitation wavelength while passing the longer fluorescent wavelength. 

In order to do this, its cutoff wavelength is usually chosen to be about half way between ߣா௫ and 

 ா௠ [14, p. 240]. The fluorescence spectrum will shift by an amount proportional to the change inߣ

௠ܸ depending on the dye. This spectral shift is then effectively converted to a changing amplitude 

by an emission filter which is centered at either the positive or negative (shown in figure) slope of 

the fluorescence spectra. The light is then captured with a photodetector array, usually some type 

of high-speed camera. The detected signal consists of changes in fluorescence proportional to ௠ܸ 

labeled in the figure as Δܨ and a large offset caused by background fluorescence.  
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Figure 1-1: Diagram depicting a typical system for detecting voltage-fluorescence signals (top). The spectra 
of the excitation light source and the corresponding fluorescence are shown in the bottom left corner and 
the signal after the light has passed through the emission filter is shown in the bottom right corner.  

 

A diagram of a system for monitoring transmittance is shown in Figure 1-2. Similar to 

fluorescent dyes, absorptive dyes produce a small change in light intensity by shifting spectral 

absorbance ߤ௔ሺߣሻ. The difference is that with an absorptive dye, the light passes through the 

preparation, usually a cell culture, and changing transmembrane potential causes the dye to 

absorb more or less light. Thus the excitation wavelength is the same as the wavelength detected 

by the sensor. The change in detected light intensity corresponding to a change in ௠ܸ is termed Δܫ 

and the ratio of changing intensity to total intensity is Δܫ/ܫ.  

Absorptive dyes are an older technology, so there use began to decrease when fluorescent 

dyes became available. The problem with these dyes is that Δܫ/ܫ for absorptive dyes tends to be 

much less than Δܨ/ܨ for voltage-fluorescent dye (see Table 1-1). There is an advantage to 

absorptive dyes, however, which is that the light collected will undergo less scattering, thus 

allowing for clearer images. 
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Figure 1-2: Example of a system for monitoring changes in absorbance (top). The changing absorbance 
spectra is shown in the bottom left corner and the detected signal is shown in the bottom right corner.  

 

Figure 1-3 shows a diagram of a setup for monitoring calcium transients. The difference 

is that rather than shifting the fluorescence spectrum, Ca௜
ଶା-sensitive dyes change the spectral 

peak amplitude with changing calcium concentration. An emission filter is now center at the peak 

which experiences the most fluctuation.  
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Figure 1-3: Diagram depicting a typical system detecting calcium-fluorescence signals (top). The spectra of 
the excitation light source and the corresponding fluorescence are shown in the bottom left corner and the 
signal after the light has passed through the emission filter is shown in the bottom right corner.  

 

Looking at the signal chain of the above 3 systems we can see that the detection limit is 

set primarily by the noise of the light source, light detection circuit, and acquisition system. As 

we will show in the following chapters, the noise of the light source and the detection system is 

small compared to the detection circuit. Hence we will focus our efforts on optimizing that part of 

the system.  

The signals collected by the above 3 systems are characterized by Δܨ/ܨ which is the ratio of 

changing fluorescence to total fluorescence. The best Δܨ/ܨ for voltage-sensitive dyes is around 

15% while the best for calcium-sensitive dyes is around 200%. Table 1-1 shows  Δܨ/ܨ for several 

applications of voltage-fluorescent and calcium-fluorescent dyes.  
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Table 1-1: Δܨ/ܨ and Δܫ/ܫ for voltage- and calcium-sensitive dyes in different applications. 

Dye Type 
ઢࡲ/ࡲ or 
ઢࡵ/ࡵ 

Tissue Type Species Dye Name ࢞ࡱࣅ	ሺܕܖሻ ࢓ࡱࣅ ሺܕܖሻ Source 

Voltage-
Fluorescent 

15.0% Heart Cells Rat RH437 550 800 [14] 

1.90% Brain Turtle Di-4-ANEPPS - - [1] 

1% 
SCG Neuron 

Cells 
Rat RH423 520-550 >610nm [15] 

15.2% 

Whole Heart 

Pig 

Di-4-
ANBDQPQ 

630-670 >720 

[16] 

11.1% Rat 

9.10% Mouse 

15.0% Pig 

Di-4-
ANBDQBS 

13.9% Rat 

10.5% Mouse 

8.90% Pig 
Di-4-ANEPPS 480-560 590-690 

6.80% Rat 

2-8.3% Heart Cells Rat DI-8-ANEPPS >600 <500 [11] 

4.5% Heart Cells Rat RH237 488-513 >650 [2] 

Calcium-
Fluorescent 

2.50% Brain Turtle 
Ca-Crimson 

Dextran 
- - [1] 

26.0% Whole Heart Rabbit Rhod-2 AM 532 >600 [17] 

205% Heart Cells Rat FLUO-3AM 488-513 533-588 [2] 

Absorptive 

0.10% Axon Squid 
Merocyanine 

Dye 
- 

N/A 

[1] 

~0.1% Brain Stem Chick NK2761 688-718 [18] 

~0.01% 
Hippocampus 
Neuron Cells 

Rat RH482 670-730 [19] 
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Notice that Δܨ/ܨ is heavily dependent on the type of tissue and the type of dye. It is also 

important to note that for a given application, calcium-fluorescent dye will have a larger Δܨ/ܨ 

than voltage-sensitive dye. For any type of fluorescence imaging, the Δܨ/ܨ also depends on the 

emission filter. The cut-off wavelength of which must be carefully chosen to achieve the 

maximum possible Δܨ/ܨ. 
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1.2 Devices and Circuits for Monitoring 
Fluorescence 
 

1.2.1 Devices for Photon Detection 
 

As of the writing of this work, there are 4 types of devices commonly used for optical 

monitoring of fluorescent signals. These are PIN (p-type-intrinsic-n-type) photodiodes, avalanche 

photodiodes, photomultiplier tubes, and CCD/CMOS cameras. In this section we will discuss 

some aspects of each and select the one that is best for optical monitoring of voltage and calcium 

transients. 

PIN photodiodes are the simplest, most robust, and most cost-effective way to detect 

photons. Their name derives from their structure which consists of a layer of positive-doped 

semiconductor (p-type), a layer of intrinsic semiconductor, and a layer of negative-doped 

semiconductor (n-type). They have been used extensively for fluorescence detection applications 

both in single-chip arrays and individual photodiode and amplifier combinations [2, 5, 6, 7, 8, 9, 

10, 11, 12, 13].  

Avalanche photodiodes (APDs) have been used for fluorescence detection, though not as 

frequently as PIN photodiodes [3]. These devices have an internal gain that is dependent upon 

their bias voltage. The bias voltage required to produce high gain in the APDs is on the order of 

100V, near the edge of where reverse breakdown will occur. Because of this, the APD’s 

temperature and/or bias voltage must be carefully controlled to prevent component failure. The 

avalanche gain enables APDs to produce higher photocurrents and thus have higher SNR than 

PIN photodiodes, at least theoretically. However, we will show in section 4.1.2 that in practice it 

may be difficult to create an APD and amplifier circuit that will offer significant advantages over 

PIN photodiodes. 
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The photomultiplier tube (PMT) is one of the oldest electronic photodetectors. It is also 

one of the few types of vacuum tubes to survive the rapid proliferation of solid state devices. This 

is likely due to its unparalleled speed and photon-counting capabilities. At the time of the writing 

of this work, the photomultiplier tube is still in wide use and available in a wide variety of types 

optimized for different applications. In the study of electrophysiology by means of fluorescent 

dye, the PMT has been used with various optrodes to detect the weak fluorescent signal produced 

by calcium-sensitive dyes [20, 21]. 

Unlike PIN or avalanche photodiodes, the PMT is rather delicate and difficult to work 

with. Since the gain of photomultiplier tubes is extremely high, they are very susceptible to 

variations in the high-voltage power supply. If the output stability of a photomultiplier must be 

maintained within 1%, the power supply stability must be held within 0.1% [22, p. 24]. If 

exposed to sunlight or extremely intense light (10,000 lux or higher), this may cause 

unrecoverable damage and must therefore be avoided [22, p. 68]. They are also sensitive to 

magnetic fields and exhibit some hysteresis under certain operating conditions. 

By far the most convenient way to detect small changes in either fluorescence or 

transmittance in biological applications is by using a scientific camera. These cameras are 

typically designed to output a high frame rate (~1kHz), sample with high resolution (12-16 bits) 

and are very sensitive to low light levels. The cameras most commonly used for recording 

absorbance or fluorescence can be divided into 2 types: CCD and CMOS. The CCD (charge-

coupled device) cameras are very sensitive to low light levels and have very good spatial 

resolution. The CMOS (complementary metal-oxide-semiconductor) cameras use simple 

amplifiers, usually a single transistor, to amplify the signal before it is sent to the A/D converter. 
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1.2.2 Amplifiers for Light Detection 
 

There exist in the current body of knowledge many different topologies of 

transimpedance amplifier. When detecting weak optical signals, these topologies must be 

designed with very high gain. In this section we will give a brief overview of the different 

amplifier topologies we intend to analyze in this work. 

 Figure 1-4 shows 2 different TIA topologies, the single-resistor topology (A) and the T-

bridge topology (B). While the single-resistor photodiode amplifier topology is the most widely 

used for detecting low-intensity optical signals from stained tissue [7, 2, 11, 12, 6, 18], it is worth 

analyzing the performance of the T-bridge topology. Both topologies can achieve high-gain, but 

because the topology in panel (A) must do so with 1 resistor, its gain is limited to commercially 

available resistor sizes, which for resistances ൐ 100MΩ are seldom available in the standard E96, 

E24 or even E12 series. The T-bridge offers a possible solution to this problem by using 3 

resistors, each with a value less than the total gain, to determine its gain. It also has the advantage 

of distributing the resistor’s parasitic capacitance.  
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Figure 1-4: TIA with 1 feedback resistor (A) and TIA with T-bridge feedback network (B). 



Chapter 1 

14 
 

Due to the fact that optical markers used in electrophysiological monitoring applications 

typically have a large offset, we investigated several topologies designed for offset removal. 

Figure 1-5 shows 4 such topologies, each with its own method for removing the offset.  
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Figure 1-5: AC-coupled transimpedance amplifier topologies. Active current feedback topology for offset 
cancellation with a resistor (A) and a transconductor (B), offset voltage subtraction topology (C) and 2nd stage 
offset removal (D). The nodes labeled “HF Out” (high-frequency out) are where the output voltage will be 
measured after removal of the offset and the nodes labeled “LF Out” (low-frequency out) are where the portion of 
the removed signal can be measured. Thus no component of the signal is lost (ideally) and the entire collected 
signal can be reconstructed. 
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Panels (A) and (B) use a method called active current feedback. This involves isolating 

the low-frequency component of the signal, converting it to a current, and injecting that current 

back into the input which causes it to cancel the low-frequency component of the input signal. 

The topology in panel (A) uses a resistor to convert the voltage output of the low-pass filter (LPF) 

to a current. Panel (B) uses a transconductor, e.g. a transistor, to accomplish the same thing. Both 

of these topologies have the advantage of being able to remove an offset of any size independent 

of supply voltage (within reason). However, the additional circuit elements will add additional 

noise. 

Panel (C) uses a method called offset voltage subtraction. This involves feeding the low-

frequency component of the signal back to the noninverting input of an op-amp, which subtracts 

it from the input signal. The advantage of this topology is that it can remove the offset without 

adding a significant amount of additional noise (see section 3.3.3); however the size of the offset 

that it can remove is dependent on the op-amp supply voltage. 

Panel (D) is the simplest AC-coupled topology. Unlike the others, the offset is removed 

in the 2nd stage instead of in the 1st stage using a feedback loop, which makes it unconditionally 

stable. This topology is also commonly cited in the literature [8, 11, 13]. 

The topology in Figure 1-6 is called a charge amplifier. It is a type of transimpedance 

amplifier like the others discussed thus far, except a capacitor rather than a resistor is responsible 

for the current-to-voltage conversion. The capacitive element in the feedback path is used to 

accumulate charge. The gain of the circuit is inversely proportional to the feedback capacitance 

-ி. The particular configuration of the charge amplifier shown here is essentially a continuousܥ

time CCD cell. The forward path contains an integrator and the feedback path provides a 

continuous current that prevents it from reaching saturation. The 2nd stage is a differentiator to 

produce a “flat” frequency response in the pass-band.  
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The charge amp is more commonly used in integrated circuits because it does not require 

a large feedback resistor ሺ൐ 100MΩሻ, but rather a small feedback capacitor ሺ൏ 100pFሻ which 

makes it more area-efficient. The removal of the feedback resistor may provide an improvement 

in noise performance and thus sensitivity, so we will investigate this topology to find out. 

 

The topology shown in Figure 1-7 is 

an avalanche photodiode amplifier circuit. The 

topology is the same as the one in Figure 1-4A, 

but a different photosensitive element is used 

and it is biased at a high voltage. Though we 

could also connect APDs to any of the circuit 

topologies discussed thus far, we will only 

consider the single-resistor topology because 

as the analysis in Chapter 3 will show, this topology produces the least amount of circuit noise. 
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Figure 1-6: Charge amplifier. The forward path of the circuit is an integrator and the feedback 
path provides offset removal to prevent the integrator from saturating. 
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Figure 1-7: Avalanche photodiode amplifier. 
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1.3 Modeling of Inherent Noise in Devices for 
optical recordings of voltage and Ca transients 
 

Electrical noise can be subdivided into 2 categories: external noise or as inherent noise. 

External noise is generated by an outside source and then somehow couples into the circuit of 

interest. This coupling may take the form of capacitive coupling which occurs when two circuits 

are in close proximity of each other, or of electromagnetic interference (EMI) where magnetic 

fields generated in one circuit induce current in another. Inherent noise results from the random 

movement of electrons within a conductor [23, p. 213]. Noise of this type can be subdivided into 

categories such as flicker noise, thermal noise, shot noise, etc. based on its specific cause, 

frequency content, and statistical nature.  

Noise is a purely random signal, the instantaneous value and/or phase cannot be predicted 

at any time. Because of this, it can only be described in terms of a probability density function. 

The most common probability density function is Gaussian [24, p. 123]. Figure 1-8 below shows 

an example of Gaussian noise [25]. Here, the average value of the noise signal corresponds to the 

center of the bell curve.  The root-mean-square (RMS) value of the noise signal corresponds to 1 

standard deviation ߪ from the mean value. The instantaneous noise amplitude is within േ168% ߪ 

of the time and within േ399.7% ߪ of the time [24, p. 124].  
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When all inputs are turned off (voltage sources replaced by short circuits and current 

sources replaced by open circuits), the level of noise in the circuit is called the noise floor, which 

determines the smallest signal for which the circuit is useful [24, p. 125].  

The signal-to-noise ratio SNR is the ratio of the RMS signal to the RMS noise [24, p. 

125]: 

ܴܵܰ ൌ
݁݃ܽݐ݈݋ݒ	݈ܽ݊݃݅ݏ	ܵܯܴ
݁݃ܽݐ݈݋ݒ	݁ݏ݅݋݊	ܵܯܴ

																																															 ሺ1 െ 1ሻ	 

If there are multiple sources of noise in a circuit, then the total RMS noise signal is the square 

root of the sum of the average mean-square values of the individual sources [24, p. 125]. 

௡,்௢௧௔௟,ோெௌݒ ൌ ටݒ௡,ଵ,ோெௌ
ଶ ൅ ௡,ଶ,ோெௌݒ

ଶ ൅ ⋯൅ ௡,ே,ோெௌݒ
ଶ 																											ሺ1 െ 2ሻ	 

This relationship means that the worst noise source in the system will tend to dominate the total 

noise [24, p. 125]. Note that while we regularly sum mean-squared voltages while performing 

noise analysis, we never sum RMS voltages [23, p. 215]. 

Figure 1-8: Example of white Gaussian noise. 
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Noise is typically specified as amplitude spectral density (ASD), also called voltage or 

current spectral density or noise spectral density having units of V/√Hz  or A/√Hz or as power 

spectral density (PSD) having units of Vଶ/Hz or Aଶ/Hz [23, p. 217] [24, p. 126] [26, p. 1] [27, p. 

17]. To convert PSD to RMS noise voltage or current, we need to integrate over the part of the 

spectrum where the noise is present [23, p. 219]: 

௡,ோெௌݒ ൌ ඨන |߰ሺ݂ሻ|ଶ݂݀
ஶ

଴
																																																		 ሺ1 െ 3ሻ	 

݅௡,ோெௌ ൌ ඨන ሺ݂ሻ|ଶ݂݀ߦ|
ஶ

଴
																																																			 ሺ1 െ 4ሻ	 

where |߰ሺ݂ሻ|ଶ is the PSD of a band-limited voltage noise source and |ߦሺ݂ሻ|ଶ is the PSD of a 

band-limited current noise source. 

 

1.3.1 Noise Equivalent Bandwidth 
 

When performing noise analysis in the later sections of this work, we will frequently 

need to calculate integrals like those in equations ሺ1 െ 3ሻ and ሺ1 െ 4ሻ. In order to make this task 

more efficient, we will first calculate the noise equivalent bandwidth (NEB) [23, pp. 220-222]. 

This simply means that we will calculate in advance the integrals for commonly encountered 

transfer function and noise spectra combinations.   

 For the NEB calculations in this section, we will use either flat spectra or spectra 

inversely proportional to frequency ሺ1/݂ሻ like that of flicker noise. Shown below are 3 examples 

of the integration. 

௡ଶݒ ൌ න ߰௢ଶ|ܩሺ݂ሻ|ଶ݂݀
ஶ

଴
ൌ ߰௢ଶ ௘݂௤																																													ሺ1 െ 5ሻ 



Chapter 1 

20 
 

݅௡ଶ ൌ න ሺ݂ሻ|ଶ݂݀ܩ|௢ଶߦ
ஶ

଴
ൌ ௢ଶߦ ௘݂௤																																															ሺ1 െ 6ሻ 

௡ଶݒ ൌ න
ଶܰܰܨ

݂
ሺ݂ሻ|ଶ݂݀ܩ|

ஶ

଴
ൌ ଶܰܰܨ

௘݂௤																																						ሺ1 െ 7ሻ 

Where |ܩሺ݂ሻ| is the magnitude of the system frequency response, ߰௢ and ߦ௢ are the voltage and 

current noise densities of flat spectra, and ܰܰܨ is the flicker noise numerator (see section 1.3.3.3 

for more detail). In order to avoid having to repeat our equations for voltage and current, the 

coefficients ߰௢ and ߦ௢ will be set to 1 for this analysis as will ܰܰܨ. 

We will begin with a simple 1st-order low-pass system, the transfer function of which is 

shown below. 

௅௉ଵሺ݂ሻܩ ൌ
1

1 ൅ ݆݂/ ௅݂
																																																						 ሺ1 െ 8ሻ	 

Integration of the magnitude square of the above transfer function yields 

௘݂௤,௅௉ଵ
ଶ ൌ න ௅௉ଵሺ݂ሻ|ଶ݂݀ܩ|

ஶ

଴
ൌ න

1
1 ൅ ሺ݂/ ௅݂ሻଶ

݂݀
ஶ

଴
ൌ
ߨ
2 ௅݂																							ሺ1 െ 9ሻ 

Figure 1-9 (modified from [23]) shows 

the noise density seen at the output of 

the 1st –order system for an input that 

is spectrally flat. From the figure, we 

can see that the 2 shaded areas are the 

same. Equation ሺ1 െ 9ሻ shows that 

total area under the curve is 
గ

ଶ ௅݂. Thus 

the result of the integral would be the 

same if the curve were simply a 

f3dB f

NEB = π/2 f3dB

ψn

Same Area

ψo( f )

 

Figure 1-9: NEB for first-order filter frequency response. 
Notice that the 2 shaded areas are equal. Therefore 
integrating a flat spectrum up to NEB is equivalent to 
integrating the transfer function from 0 to ∞. 
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rectangle from 0 to 
గ

ଶ ௅݂.  

The equation below is for a band-pass circuit. The parameter ௅݂ is the low-pass cut-off 

frequency and the parameter ு݂ is the high-pass cut-off frequency. 

௘݂௤,஻௉
ଶ ൌ න

ሺ݂/ ு݂ሻଶ

൫1 െ ݂ଶ/ሺ ு݂ ௅݂ሻ൯
ଶ
൅ ݂ଶሺ1/ ு݂ ൅ 1/ ௅݂ሻଶ

݂݀
ஶ

଴
ൌ
ߨ
2

௅݂
ଶ

௅݂ ൅ ு݂
								ሺ1 െ 10ሻ 

The integral of a 1st-order high-pass transfer function is   

௘݂௤,ு௉
ଶ ൌ න

݂ଶ/ ு݂
ଶ

1 ൅ ݂ଶ/ ு݂
ଶ ݂݀

௙೎೚

଴
ൌ ቀ1 െ

ߨ
4
ቁ ௖݂௢																																		ሺ1 െ 11ሻ 

where ௖݂௢ is the cutoff frequency. Obviously, we cannot integrate to ݂ ൌ ∞ with a high-pass filter 

because the result would be infinite.  

In many cases, the circuit under analysis may be followed by a 2nd stage consisting of a high-

order low-pass filter. If the order of the filter is sufficiently high, it can be approximated by a unit 

step function in the frequency domain, as shown below.  

௅௉ிሺ݂ሻܩ ൌ ݑ ቀ݂ െ
ߨ
2 ௅݂ቁ																																																		 ሺ1 െ 12ሻ 

Here we have chosen the cutoff of this filter to be 
గ

ଶ ௅݂ because it will simplify the final NEB 

expression. For example, if we repeat the integral for the first order low-pass filter with ܩ௅௉ிሺ݂ሻ 

in the 2nd stage, we get 

௘݂௤,௅௉ଵ,௅௉ி ൌ න ଵ௅௉ሺ݂ሻ|ଶ݂݀ܩ|௅௉ிሺ݂ሻ|ଶܩ|
ஶ

଴
ൌ න ଶݑ ቀ݂ െ

ߨ
2 ௅݂ቁ

1
1 ൅ ሺ݂/ ௅݂ሻଶ

݂݀
ஶ

଴
 

௘݂௤,௅௉ଵ,௅௉ி ൌ න
1

1 ൅ ሺ݂/ ௅݂ሻଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ௅݂																																			ሺ1 െ 13ሻ	 
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 For a high-pass filter with zero in the transfer function not located at ݂ ൌ 0Hz, a sort of modified 

high-pass filter, the transfer function is defined below. This type of transfer function is commonly 

associated with noise gain as we will show later on. 

௡௚ଶܩ ሺ݂ሻ ൌ
1 ൅ ݂ଶ/ ௭݂

ଶ

1 ൅ ݂ଶ/ ௣݂
ଶ 																																																				 ሺ1 െ 14ሻ 

where ௭݂ is the frequency of the zero and ௣݂ is the frequency of the pole. 

Multiplying ሺ1 െ 14ሻ by the high-order low-pass filter ܩ௅௉ிሺ݂ሻ yields 

௘݂௤,௡௚
ଶ ൌ න ேீሺ݂ሻ|ଶ݂݀ܩ|௅௉ிሺ݂ሻ|ଶܩ|

ஶ

଴
ൌ න ଶݑ ቀ݂ െ

ߨ
2 ௖݂௢ቁ

1 ൅ ݂ଶ/ ௭݂
ଶ

1 ൅ ݂ଶ/ ௣݂
ଶ ݂݀

ஶ

଴
ൌ න

1 ൅ ݂ଶ/ ௭݂
ଶ

1 ൅ ݂ଶ/ ௣݂
ଶ ݂݀

గ
ଶ௙ಽ

଴
 

௘݂௤,௡௚
ଶ ൌ ௣݂

௭݂
ଶ ൭
ߨ
2 ௅݂ ௣݂ ൅ tanିଵ ቆ

ߨ
2

௅݂

௣݂
ቇ ൫ ௭݂

ଶ െ ௣݂
ଶ൯൱																											ሺ1 െ 15ሻ 

If ௣݂ ൌ ௅݂, then 

௘݂௤,௡௚
ଶ ൌ ௅݂ ൭ቀ

ߨ
2
െ 1ቁ ௅݂

ଶ

௭݂
ଶ ൅ 1൱																																												ሺ1 െ 16ሻ 

Considering the transfer function in equation ሺ1 െ 14ሻ with a frequency-dependent noise signal, 

such as flicker noise 

௘݂௤,௡௚,ଵ/௙
ଶ ൌ න |ேீሺ݂ሻܩ||௅௉ிሺ݂ሻܩ|

1
݂
݂݀

ஶ

௙బ

ൌ න ଶݑ ቀ݂ െ
ߨ
2 ௅݂ቁ

1 ൅ ݂ଶ/ ௭݂
ଶ

1 ൅ ݂ଶ/ ௣݂
ଶ

1
݂
݂݀

ஶ

௙బ

ൌ න
1 ൅ ݂ଶ/ ௭݂

ଶ

1 ൅ ݂ଶ/ ௣݂
ଶ

1
݂
݂݀

గ
ଶ௙ಽ

௙బ

 

௘݂௤,௡௚,ଵ/௙
ଶ ൌ ln ൬

ߨ
2

௅݂

଴݂
൰ ൅

1
2
ቆ ௣݂

ଶ

௭݂
ଶ െ 1ቇ lnቌ

ቀ2ߨ ௅݂ቁ
ଶ
൅ ௣݂

ଶ

଴݂
ଶ ൅ ௣݂

ଶ ቍ																				ሺ1 െ 17ሻ	 
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where ଴݂ is the lower limit of the integral and not 0Hz. This is because of the 1/f term, hence we 

must choose ଴݂ to be a very small number such as 10ିଵ଴Hz as was done in [23]. 

If ௣݂
ଶ ≫ ଴݂

ଶ 

௘݂௤,௡௚,ଵ/௙
ଶ ൌ ln ൬

ߨ
2

௅݂

଴݂
൰ ൅

1
2
ቆ ௣݂

ଶ

௭݂
ଶ െ 1ቇ lnቌ1 ൅

ቀ2ߨ ௅݂ቁ
ଶ

௣݂
ଶ ቍ																					ሺ1 െ 18ሻ	 

If ௅݂ ൌ ௣݂ 

௘݂௤,௡௚,ଵ/௙
ଶ ൌ ln ൬

ߨ
2

௅݂

଴݂
൰ ൅

ln ൬1 ൅
ଶߨ
4 ൰

2
ቆ ௅݂

ଶ

௭݂
ଶ െ 1ቇ																													ሺ1 െ 19ሻ 

 

1.3.2 Types of Noise and Their Sources 
 

Electrical noise comes in a variety of shapes and colors. This may seem like a strange 

thing to say, but as we will show in this section, this statement is completely true. Noise sources 

can have different “shapes” or spectral content in the frequency domain. Most are flat, but some, 

such as flicker noise, are mostly concentrated at lower frequencies. Physicists and engineers 

studying electrical noise have also assigned noise sources different “colors.”  For example, noise 

that is spectrally flat is called white noise, and noise concentrated at lower frequencies is called 

pink or red noise depending on the function which best models its spectral content. 

The main types of noise are shot noise, thermal noise, flicker noise, burst noise, and 

avalanche noise. In this section we will briefly discuss the different types, where the come from, 

and other important characteristics. 
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1.3.2.1 Shot Noise 
 

When an electron encounters a barrier, such as a pn junction, potential energy begins to build 

up until it has enough energy to cross that barrier. When an electron has enough potential energy, 

it is abruptly transformed into kinetic energy as the electron crosses the barrier. As each electron 

randomly crosses a potential barrier, energy is stored and released as the electrons encounter and 

then shoot across the barriers. Each electron contributes a little pop as its stored energy is released 

when it crosses the barrier [24, p. 127]. Here are some important facts about shot noise. 

 Alternate Names: Schottky Noise or Quantum Noise [24, p. 127] 

 Spectral Distribution: Flat [24, p. 128] 

 Probability Distribution: Gaussian [24, p. 124] 

 Temperature Dependence: None [24, p. 127] 

 Current Flow Dependence:  √ܫ. When current goes to zero, so does shot noise [24, p. 

127]. 

 Color: White [24, p. 133] 

The RMS shot noise current and voltage are  

݅௡,௦௛௢௧ ൌ ට2ݍ ௘݂௤ሺܫ஽஼ ൅ ሺ1																																														଴ሻܫ2 െ 20ሻ 

௡,௦௛௢௧ݒ ൌ ݇ܶඨ
2 ௘݂௤

஽஼ܫݍ
																																																						ሺ1 െ 21ሻ 

Where ݍ is the charge of an electron ሺ1.6 ൈ 10ିଵଽ	Cሻ, ௘݂௤ is the noise-equivalent bandwidth of 

the circuit under consideration (Hz),	݇ is Boltzmann’s constant ሺ1.38 ൈ 10ିଶଷ	J/Kሻ, 	ܫ஽஼  is the 

average forward current (A), and ܫ଴ is the reverse saturation current (A). Note that if the junction 

is forward biased then ܫ଴ ൌ 0. 
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1.3.2.2 Thermal Noise 
 

Thermal noise is caused by thermal agitation of electrons in a conductor [24, p. 129]. It is present 

in all electronic devices both passive and active. Here are some important facts about thermal 

noise: 

 Alternate Names: Johnson Noise [24, p. 129] 

 Spectral Distribution: Flat [24, p. 128] 

 Probability Distribution: Gaussian [24, p. 124] 

 Temperature Dependence: √ܶ 

 Current Flow Dependence: None 

 Color: White 

The RMS thermal noise voltage and current (below 100MHz) are defined below [24, p. 129]. 

்,௡ݒ ൌ ට4ܴ݇ܶ ௘݂௤																																																								ሺ1 െ 22ሻ 

݅௡,் ൌ ඨ
4݇ܶ
ܴ ௘݂௤																																																									ሺ1 െ 23ሻ 

Where ܴ is the resistance of the device ሺΩሻ. 

 

1.3.2.3 Flicker Noise 
 

Flicker noise is not as well understood as some of the other types of noise. It may be related 

to imperfections in crystalline structure of semiconductors as better processing can reduce it [24, 
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p. 130]. It is concentrated at low frequencies. Unlike thermal and shot noise, its probability 

distribution is not Gaussian [24]. Some important facts about flicker noise are listed below. 

 

 Alternate Names: 1/݂ noise, excess noise [24, pp. 130-131] 

 Spectral Distribution: ∝ 1/݂ [24, p. 130] 

 Current Flow Dependence: Proportional to current [24, p. 131] [28, p. 7] 

 Color: Pink 

 

The RMS voltage and current flicker noise are defined below. 

௡,ଵ/௙ݒ ൌ ௩ඨLnܭ ൬
௠݂௔௫

௠݂௜௡
൰																																																		 ሺ1 െ 24ሻ 

݅௡,ଵ/௙ ൌ ௜ඨLnܭ ൬
௠݂௔௫

௠݂௜௡
൰																																																			 ሺ1 െ 25ሻ 

Where ܭ௩ and ܭ௜ are proportionality constants equal to ߰ଵ/௙ሺ݂ ൌ 1Hzሻ and ߦଵ/௙ሺ݂ ൌ 1Hzሻ 

respectively, ௠݂௔௫ is the maximum frequency (Hz) which is the upper limit of the integral and 

௠݂௜௡ us the minimum frequency (Hz) which is the lower limit of the integral (see section 1.3.1). 

 

1.3.2.4 Burst Noise 
 

Burst noise is related to imperfections in semiconductor material and heavy ion implants. 

Modern processing techniques at Texas Instruments has all but eliminated its occurrence [24, p. 
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131]. It is characterized by high-frequency pulses several times greater than the thermal noise 

amplitude [24, p. 131]. Below is a list of facts about burst noise. 

 Alternate Names: Popcorn noise [24, p. 131] or random telegraph signal (RTS) noise [23, 

p. 252] 

 Spectral Distribution: ∝ 1/݂ଶ [24, p. 133] 

 Color: Red/Brown [24, p. 133] at high frequencies but white at low frequencies [23, p. 

252] 

Power spectral density of burst noise current A/√Hz  is defined below [23, p. 252]. 

݅௡,௕௨௥௦௧ ൌ ඩ
஽஼ܫ௕௨௥௦௧ܭ

1 ൅ ൬
݂
ଷ݂ௗ஻

൰
ଶ 																																																		 ሺ1 െ 26ሻ 

Where ܭ௕௨௥௦௧ is a scaling factor (A/Hz), and ଷ݂ௗ஻ is the point where the noise starts to roll off 

and is related to the number of pops per second (typically 100Hz). 

 

1.3.2.5 Avalanche Noise 
 

Avalanche noise is created when a pn junction is operated in the reverse breakdown mode. 

Under the influence of a strong reverse electric field within the junction’s depletion region, 

electrons have enough kinetic energy that, when they collide with atoms of the crystal lattice, 

additional electron-hole pairs are formed. These collisions produce random current pulses similar 

to shot noise, but much more intense [24, p. 131]. The magnitude of noise spikes caused by the 

avalanche effect is difficult to predict due to its dependence on the materials. Zener diodes 

operating in reverse breakdown exhibit avalanche noise [24, p. 132]. The spectral distribution of 

avalanche noise is proportional to 1/݂ଶ and its color is Red/Brown. 
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1.3.3 Device Noise Models 
 

1.3.3.1  Resistor Noise Models 
 

The dominant noise source in 

most resistors is thermal noise, though 

some types do exhibit flicker noise as 

well. The amount of flicker noise that a 

resistor generates is dependent upon its 

construction. Wire wound resistors have 

the least amount of flicker noise [24, p. 

131].  

Figure 1-10 shows the most commonly used type of resistor noise model. Here a noisy 

resistor can be modeled as either a current noise source in parallel with an ideal resistor or a 

voltage noise source in series with an ideal resistor.  The equations for resistor thermal noise 

density are defined below. 

߰ோ ൌ √4ܴ݇ܶ																																																												ሺ1 െ 27ሻ 

ோߦ ൌ ඨ
4݇ܶ
ܴ

																																																														 ሺ1 െ 28ሻ 

 

1.3.3.2  Op-Amp Noise Model 
 

Though the noise spectral density of an op-amp is formed by the contribution of many 

smaller devices, it can be modeled with reasonable accuracy using 2 sources of noise voltage and 

2 sources of noise current as shown in Figure 1-11 (modified from [24, p. 137]). Input voltage 



RψR

R

ξR

R

Noisy 
Resistor

Ideal 
Resistors

 

Figure 1-10: Resistor noise models. The noise from 
a resistor can be modeled as either a current noise 
source in parallel with an ideal resistor (top) or a 
voltage noise source in series with an ideal resistor 
(bottom). 
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noise is always represented by a voltage source in 

series with the non-inverting input [24, p. 137]. It 

is usually comprised of a thermal noise 

component and a flicker noise component. Here 

we have drawn the flicker and thermal noise as 2 

separate sources, but they could just as easily be 

made into 1. The input current noise is always 

represented by current sources from each input to 

ground [24, p. 137]. 

In order to create a noise model of a 

particular op-amp, one must first extract certain 

parameters from the device’s datasheet. The specific parameters for modeling op-amp noise are 

seldom stated in the datasheet, though it is possible to extract the required information from a plot 

of input voltage noise which usually is included.  

 

1.3.3.3  Extracting Op-Amp Noise Model Parameters from a Datasheet 
 

The plot in Figure 1-12 was taken from the OPA140 datasheet. As we can see from 

Figure 1-12, at lower frequencies flicker noise is dominant and the higher frequencies thermal 

noise is dominant. The noise corner frequency ௡݂௖ is defined as the frequency where thermal 

noise and flicker noise are equal [24, p. 135]. We can determine this ௡݂௖ using a graphical 

technique like the one described in [24, pp. 134-136]. This technique involves tracing a line over 

the flat portion of the curve where thermal noise is dominant and continuing the line back to the 

lowest frequency shown (horizontal, red, dashed line shown in Figure 1-12). Then then tracing a 

line over the slope of the curve where flicker noise is dominant and continuing the line to 







ψ1/f ψT

ξs+

ξs-

Noiseless 
Op-Amp

-

+

 

Figure 1-11: Circuit model of noisy op-
amp. The model contains 2 current noise 
sources and 2 voltage noise sources. The 
sources represent the input-referred noise 
density. 
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estimate the flicker noise at higher frequencies (sloping, red, dashed line shown in Figure 1-12). 

The intersection of these 2 lines indicates ௡݂௖. Now, 2 data points must be read from the plot, one 

where the flicker noise is dominant (low frequency) and one where the thermal noise is dominant 

(high frequency). Therefore, the 2 points chosen should meet the following criteria: 

Low	Frequency	Point: ห߰௢൫ ௙݂௟௜௖௞൯ห	where		 ௙݂௟௜௖௞ ≪ ௡݂௖ 

High	Frequency	Point: |߰௢ሺ ௧݂௛௘௥௠ሻ|	where	 ௧݂௛௘௥௠ ≫ ௡݂௖ 

By reading the values at the indicated points we can determine the flicker and thermal noise of 

the device. The general equation for the flicker noise numerator is  

ܰܰܨ ൌ ටቀห߰௢൫ ௙݂௟௜௖௞൯ห
ଶ
െ |߰௢ሺ ௧݂௛௘௥௠ሻ|ଶቁ ௙݂௟௜௖௞																												ሺ1 െ 29ሻ 

For our example, this equation becomes 

ܰܰܨ ൌ ඥሾ|߰௢ሺ0.1ሻ|ଶ െ |߰௢ሺ1000ሻ|ଶሿሺ0.1ሻ ൌ 14.5nV 

The thermal noise is simply 

்߰ ൎ |߰௢ሺ ௧݂௛௘௥௠ሻ|																																																							ሺ1 െ 30ሻ 

்߰ ൌ 5.1nV 

Here we ௧݂௛௘௥௠ ൌ 1kHz, simply because the value of noise density was specified in the datasheet 

at 1kHz. In practice, any part of the noise density plot that is spectrally flat will work just as well. 

The noise voltage |߰௢ሺ݂ ൌ 0.1Hzሻ| could also have been read at a different frequency, so long as 

it was significantly lower than the noise corner frequency ௡݂௖.  
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OPA140 Input Voltage Noise Density

vn,o(f=0.1Hz)

vn,o(f=1kHz)

fnc = 8Hz

 

Figure 1-12: Plot of voltage noise density vs. frequency from OPA140 datasheet. 

 

Now we can define our total op-amp noise voltage as 

|߰௢ሺ݂ሻ| ൌ ඨ
ଶܰܰܨ

݂
൅ ்߰

ଶ																																																	ሺ1 െ 31ሻ 

 Current noise in op-amps can vary much more widely than voltage noise, depending on 

the input stage. It ranges from around 0.1fA/√Hz  (in JFET electrometer op-amps) to several 

pA/√Hz (in high-speed bipolar op-amps) [26, p. 2]. Though the current noise is not always 

specified in datasheets, it can be calculated for op-amps with simple BJT or JFET input stages as 

the shot noise generated by the input bias current [26, pp. 2-3]. The current noise spectral density 

can therefore be estimated to be 

௦ߦ ൌ ඥ2ܫݍ஻																																																														ሺ1 െ 32ሻ 

Note that this approximation will not work for bias-compensated or current-feedback op-amps 

[26, pp. 2-3]. It should also be mentioned that the noise corner frequency ௡݂௖ may be different for 

an op-amp’s voltage noise and current noise [25, p. 5]. 
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A comparison between equation ሺ1 െ 32ሻ, the PSPICE model provided by Texas 

Instruments, and the measured noise density given in the datasheet (digitized using PlotDigitizer 

software) is shown in Figure 1-13A. The OPA140 PSPICE model was downloaded from 

http://www.ti.com/product/OPA140/toolssoftware. The circuit used to extract the noise density 

curve is shown in Figure 1-13B.  

 

A B
 

Figure 1-13: Comparison of noise models (A) and schematic of test circuit for the OPA140 PSPICE model 
(B).  

 

From Figure 1-13A we can see that all of the models are in close agreement. It should be noted 

that the only difference between the TI PSPICE model and the model based on the parameters 

from the datasheet is that the TI PSPICE model uses ܰܰܨ ൌ 17.7nV.  

 If a PSPICE model is not available for download from the manufacturer, one can be 

created using simple building blocks. Figure 1-14B shows a schematic of a noisy op-amp created 

with PSPICE that can be used to simulate op-amp flicker, thermal, and input current shot noise. 

The flicker noise source consists of a resistor and a frequency response table, the latter produces 

the -10dB/dec (-3dB/octave) slope that corresponds to the spectral content of flicker noise. The 

thermal noise source is simply a resistor, the noise from which is added to the flicker noise. The 
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total noise is then added to the non-inverting input of a noiseless op-amp. The resistances 

required to produce the desired effect can be calculated as 

ܴଵ/௙ ൌ
ଶܰܰܨ

4݇ܶ
																																																											 ሺ1 െ 33ሻ 

்ܴ ൌ
்߰
ଶ

4݇ܶ
																																																															 ሺ1 െ 34ሻ 

ܴ௦ା ൌ
௦ାଶߦ

4݇ܶ
																																																														 ሺ1 െ 35ሻ 

ܴ௦ି ൌ
௦ିଶߦ

4݇ܶ
																																																														 ሺ1 െ 36ሻ 

Figure 1-14A shows a comparison of the calculated noise using equation ሺ1 െ 32ሻ and the noise 

from the simulation done in PSPICE. 

 

Noiseless Op-Amp

Thermal Noise 
Source

Flicker Noise 
Source

Current Noise Sources

A B

R1/f

RT

RS-

RS+

 

Figure 1-14: Comparison of simulated and calculated op-amp noise  (A) and schematic of noisy op-amp 
(B).  
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1.4 Noise of Photodetectors and Light-Sources 
  

1.4.1 Noise Considerations for Biasing Photodiodes 
 

There are two ways to bias a photodiode: photovoltaic mode and photoconductive mode. 

When the bias voltage is 0V, the photodiode is said to be in photovoltaic mode. When there is a 

non-zero bias voltage, it is in photoconductive mode. Figure 1-15 shows an example a photodiode 

biased in photovoltaic mode (left) and one biased in photoconductive mode (right).  

 





CF

RF

vout





CF

RF

vout

VB

Photovoltaic Mode Photoconductive Mode

 

Figure 1-15: Simple op-amp-based photodiode amplifiers with photodiodes biased in photovoltaic mode 
(left) and photoconductive mode (right). 

 

Which biasing scheme is chosen for a design is determined by the applications. 

Typically, photovoltaic mode is used when low noise is more important than speed and 

photoconductive mode is chosen when speed is more important [28]. The reasons for this are 

discussed in the next section. 
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1.4.2 Photodiode Models 
 

Photodiodes are in general non-linear devices. They can, however, be modeled as linear 

over a small range of signals. This is the so-called small signal model also used to model 

transistors and other nonlinear devices as linear circuit models valid over a small range of 

currents and/or voltages. Figure 1-16 shows a commonly used photodiode model [29, 28, 30]. 

The dependent current source ݅௣ represents photocurrent and is proportional to the amount of 

incident light. ܦଵ is an ideal diode, ݎ௦௛ is the shunt resistance of the diode and ௝ܿ is its junction 

capacitance. The series resistance ܴ௦ arises from the resistance of the contacts and the resistance 

of the undepleted silicon and is typically and is typically on the order of 10 to 1kΩ [29].  

 

rsh

Rs

cjD1≡ 
ip

K

A

K

A
 

Figure 1-16: Photodiode (left) and equivalent circuit model (right). 

 

 The shunt resistance is of critical importance because it is used to calculate the 

photodiode’s thermal noise. It is defined as the slope of the current-voltage curve of the 

photodiode at the origin, i.e. ܸ ൌ 0 in darkness. Experimentally it is measured by applying 

േ10mV, measuring the current and calculating the resistance [29]. This range is chosen because 

the dark current is approximately linear from െ10mV to ൅10mV [30]. The equation for shunt 

resistance is shown below. 

௦௛ݎ ൌ
10mV
஽ܫ

																																																												 ሺ1 െ 37ሻ 
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where ܫ஽ is the dark current at 10mV. The value of ݎ௦௛ is reported to range from ~10MΩ to 

~1GΩ [29], but as we will show in 3.4, the upper limit is closer to 100GΩ.  

 The junction capacitance ௝ܿ is also a nonlinear function of voltage. It will decrease 

exponentially with increasing bias voltage. The bias voltage is typically high for applications 

where speed is more important than SNR. 

 

1.4.3 Photodiode Spectral Response 
 

Photodiodes respond to incident light differently depending on their composition. Silicon 

(Si) photodiodes are optimal over the range of visible light and near infrared. Diodes made from 

Indium Gallium Arsenide (InGaAs) and those made from Germanium are better suited for longer 

wavelengths, i.e. above 1000nm. The photodiode’s response to incident light as a function of 

wavelength is called the responsivity ܴሺߣሻ and is typically given in units of A/W. It is related to 

the quantum efficiency ߟ of the device by the equation shown below. 

ߟ ൌ 10ଽ
݄ܴܿሺߣሻ

ߣݍ
ൌ
1240	ܴሺߣሻ

ߣ
																																												ሺ1 െ 38ሻ 

where ݄ ൌ 6.63 ൈ 10ିଷସJs  is Planck’s constant, ܿ ൌ 3 ൈ 10଼m/s is the speed of light, ܴሺߣሻ is 

given in A/W and ߣ is in nm [29]. 

 

1.4.4 PIN Photodiode Noise Sources and Performance Metrics 
 

The dominant noise source in a photodiode depends on the method of biasing. In 

photovoltaic mode, the thermal noise generated by the shunt resistance is the dominant source. In 
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photoconductive mode, the shot noise from dark current is the dominant source. The noise current 

generated by the shunt resistance is defined below in A/√Hz. 

௥௦௛ߦ ൌ ඨ
4݇ܶ
௦௛ݎ

																																																												 ሺ1 െ 39ሻ 

Notice that this is the same equation to determine thermal noise generated by a resistor. To 

determine the noise at the output of a transimpedance amplifier, this current is multiplied by the 

feedback resistance.  

 It is important to note that the approximation of shunt resistance only holds if the 

photodiode amplifier is biased in photovoltaic mode, where the bias voltage across the diode is 

0V. Increasing the bias voltage will cause the resistance of the diode to change as a nonlinear 

function of voltage. In the case of non-zero bias voltage, the shot noise from the leakage current 

will typically become dominant over the thermal noise of the device. The shot noise is defined 

below in units of ݖܪ√/ܣ. 

௟௘௔௞ߦ ൌ ඥ2ܫݍ஽																																																											ሺ1 െ 40ሻ 

The lower limit of light detection for a photodiode is expressed as the intensity of 

incident light required to generate a current equal to the noise current, ߦ௘௤. Essentially this is the 

amount of input power for which the noise-to-signal ratio is 1. This limit is referred to as noise 

equivalent power, and is defined as [28, p. 7] [29, p. 2] 

ܲܧܰ ൌ ሺ1																																																				௣௘௔௞൯ߣ௘௤/ܴ൫ߦ െ 41ሻ 

where ܴ൫ߣ௣௘௔௞൯ is the peak responsivity. Values of ܰܲܧ range from ~1fW/√	Hz  for small-area, 

low-noise silicon photodiodes to ~1pW/√Hz  for large area photodiodes. The NEP is commonly 

provided in photodiode datasheets, usually at some bias voltage, and can be used to calculate the 
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noise current simply by rearranging the above equation. This is very useful when the shunt 

resistance is not specified or when the photodiode is to be operated in photoconductive mode. 

Occasionally the NEP is specified at 0V bias, in which case the corresponding current noise 

should be about the same as the thermal noise current generated by the shunt resistance. Such is 

the case for the S2281 series and the S2386 series photodiodes from Hamamatsu. Any difference 

in the two noise currents (only when the bias voltage is 0) is likely due to the presence of flicker 

noise or shot noise from leakage current.  

 Another metric of photodiode noise performance is the detection capability or detectivity, 

  or ,ܲܧܰ Detectivity is the inverse of the .ܦ

ܦ ൌ
1

ܲܧܰ
ൌ
ܴ൫ߣ௣௘௔௞൯

௘௤ߦ
																																																			 ሺ1 െ 42ሻ 

where the resulting units of ܦ are √Hz/W [28]. This is essentially the amount of input power for 

which the signal-to-noise ratio is 1. Since noise is proportional to the square root of the 

photosensitive area, the smaller the photosensitive area ܣ஽, the better the apparent ܰܲܧ and 

detectivity. The specific detectivity ܦ∗ takes account of this factor and produces a figure of merit 

which is area-independent. By definition: 

∗ܦ ൌ ሺ1																																																													஽ܣඥܦ െ 43ሻ 

where ܦ∗ has units of cm√Hz/W. Values of ܦ∗ range from 10ଵଵcm√Hz/W to 10ଵଷcm√Hz/W. 
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1.4.5 Avalanche Photodiodes 
 

Avalanche photodiodes APDs have an internal gain that multiplies the inherent 

photocurrent. This is achieved by biasing the diode near its breakdown voltage. It can be 

described by the equation below. 

݅௣,஺௉஽ ൌ ሺ1																																																											௣଴݅ܯ െ 44ሻ 

where ݅௣଴ is the inherent photocurrent with no bias, ܯ is the avalanche gain, and ݅௣,஺௉஽ is the 

resulting photocurrent produced by the avalanche photodiode. Internally, the multiplication of 

photocurrent occurs by way of a chain reaction. When a photon strikes the diode surface and 

generates an electron-hole pair, the freed carriers are accelerated by the high bias voltage and 

collide with atoms in the lattice. This collision frees more carriers which are also accelerated by 

the bias voltage, and so on. The value of ܯ ranges from 50 to 1000 for silicon APDS and is 

limited to 10 to 40 for germanium and InGaAs APDs [31]. 

 

 The noise in an APD is typically dominated by shot noise, either from dark leakage 

current or photocurrent. The leakage current in an APD has 2 components: the surface leakage 

current ܫ஽ௌ and the bulk leakage current ܫ஽஻ which is multiplied by the avalanche gain. Thus the 

total leakage current can be defined as [32] 

஽ܫ ൌ ஽ௌܫ ൅ ሺ1																																																								஽஻ܫܯ െ 45ሻ 

The total dark current shot noise density is then 

ௗ௖௦ߦ ൌ ඥ2ݍሺܫ஽ௌ ൅ ሺ1																																														஽஻ሻܫܨଶܯ െ 46ሻ 
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where ܨ is the excess noise factor. In many cases ܫ஽ௌ and ܫ஽஻ are not specified separately in the 

APD’s datasheet. In these situations, the total dark current ܫ஽ at a particular gain ܯ is given 

instead. The above equation then becomes 

ௗ௖௦ߦ ൌ ඥ2ܫݍ஽ܨ																																																										ሺ1 െ 47ሻ 

The noise density in illuminated conditions is 

௦௛௢௧ߦ ൌ ට2ݍ ቀܫ஽ௌ ൅ ஽஻ܫ൫ܨଶܯ ൅ ଓ௣,஺௉஽തതതതതതതത൯ቁ																																	ሺ1 െ 48ሻ 

or alternatively, 

௦௛௢௧ߦ ൌ ට2ݍ൫ܫ஽ ൅ ሺ1																																												ܨଶଓ௣,஺௉஽തതതതതതതത൯ܯ െ 49ሻ 

where ଓ௣,஺௉஽തതതതതതതത is the average photocurrent. All avalanche photodiodes generate excess noise due to 

the statistical nature of the avalanche process. It can be defined as 

ܨ ൌ ሺ1																																																																	௫ܯ െ 50ሻ 

where ݔ is an empirically derived parameter often given in datasheets [32]. 

 

1.4.6 Photomultiplier Tubes 
 

Like the avalanche photodiode, the photomultiplier tube has an internal amplification. 

The gain of PMTs is typically higher than that of APDs ሺ~10଺ሻ though the quantum efficiency is 

typically lower (<50%) [22]. Light enters the PMT through the photocathode where the incident 

photons are converted to electrons. Then the number of electrons is multiplied by internal 

secondary emission electrodes called dynodes. Finally, the increased flow of electrons strikes the 

anode where it exits the device as an output current. 
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Figure 1-17 shows a quasi-schematic view of a PMT with ܰ dynode stages (݀ଵ through 

݀ே). When an electron strikes the first dynode stage ݀ଵ multiple electrons are released through 

secondary emission. The ratio of secondary electrons to incident electrons is the secondary 

emission ratio ߜ [22, p. 17]. Each interdynode space characterized by a collection efficiency ߙ. 

The secondary emission coefficient ߜ௜ of the ith dynode and the collection coefficient ߙ௜ିଵ of the 

space that precedes it are both increasing functions of the voltage ௜ܸିଵ െ ௜ܸ between the dynodes 

݀௜ and ݀௜ିଵ (the rate increase being faster for ߜ௜ than for ߙ௜ିଵ [33, pp. 1-12]. The product of ߙ௜ିଵ 

and ߜ௜ varies as a power of the applied voltage: 

௜ߜ௜ିଵߙ ൌ ܽ௜ሺ ௜ܸିଵ െ ௜ܸሻ௞ 

Where ܽ is a constant and ݇ is determined by the structure and material of the dynode and has a 

value of 0.65-0.75 [33, pp. 1-12]. 
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Figure 1-17: Quasi-schematic view of a photomultiplier tube containing N dynode stages. 

 

The gain of each stage is then 

݃௜ ൌ  ௜ߜ௜ߙ
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Making the total gain ߤ of the multiplier 

ߤ ൌෑ݃௜

ே

௜ୀଵ

 

Where N is the total number of stages [33, pp. 1-12].  

The noise figure F is the noise that is produced in the multiplication process. The F 

indicates how much SNR degrades from input to output [22, p. 73]. The F is defined as 

ܨ ൌ
ሺܵ/ܰሻ௜௡

ଶ

ሺܵ/ܰሻ௢௨௧
ଶ  

Where ሺܵ/ܰሻ௜௡ is the SNR of the input and ሺܵ/ܰሻ௢௨௧ is the SNR at the output. For a 

photomultiplier tube having N dynode stages, F from the cascade multiplication process is given 

by [22, p. 73] 

ܨ ൌ 1 ൅
1
ଵߜ
൅

1
ଶߜଵߜ

൅ ⋯൅
1

ଶߜଵߜ ேߜ…
 

Where ߜଵ, ,ଶߜ … ,  ே are the secondary emission ratios of each dynode stage. If the secondaryߜ

emission ratio of each stage is the same, i.e. ߜଵ, ,ଶߜ … , ேߜ ൌ  then ,ߜ

ܨ ൎ
ߜ

ߜ െ 1
 

The shot noise produced by signal current is then 

ℓ௦ߦ ൌ  ܨߙଓ௣,௄തതതതതݍට2ߤ

Where ߤ is the gain, ݍ is the charge of an electron, ଓ௣,௄തതതതത is the cathode current, and ߙ is the 

collection efficiency. The signal current is defined as 
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݅௣,஺ ൌ  ௣,௄݅ߙߤ

The shot noise produced by dark current can be described in terms of the anode current or the 

cathode current. The shot noise produced by the cathode-equivalent dark current ܫ௄஽ is 

௄஽ߦ ൌ  ܨߙ௄஽ܫݍඥ2ߤ

and anode-equivalent dark current ܫ஺஽ is 

஺஽ߦ ൌ ඥ2ܫݍ஺஽ܨߙ 

In terms of cathode-equivalent dark current, the SNR is 

ܴܵܰ ൌ
ଓ௣,௄෦ߙ

ට2ݍ൫ଓ௣,௄തതതതത ൅ ܨߙ௄஽൯ܫ ௘݂௤

 

and in terms of the anode-equivalent dark current it is 

ܴܵܰ ൌ
ଓ௣,௄෦ߙߤ

ට2ݍ൫ߤଶଓ௣,௄തതതതത ൅ ܨߙ஺஽൯ܫ ௘݂௤

 

where ௘݂௤ is the noise equivalent bandwidth (Hz). To make the above equations a little easier to 

manage, certain assumptions can be made. For example, in most cases it can be assumed that 

ߙ ൌ 1. It may also be assumed that ߜ ൌ 6 which is a typical secondary emission ratio, making 

ܨ ൎ 1.2 [22, p. 74]. 

 Even though their quantum efficiency is low, PMTs are actually pretty good at detecting 

weak optical signals. Parasitic capacitance around the feedback resistor is a major limiting factor 

for the bandwidth of photodiode amplifiers. Yet there is no alternative because the photodiode 

cannot drive a significant load on its own. The PMT, however, produces so much current that it 

can drive low-resistance loads without an amplifier.  
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1.4.7 Cameras for Fluorescence Detection 
 

As stated in section 1.2.1, cameras used for detecting fluorescence can be divided into 2 

types: CCD and CMOS. To illustrate the difference between CMOS and CCD cameras a 

simplified schematic of the pixels and read circuitry is shown in Figure 1-18, taken from [34, p. 

91]. Here we can see that the chief difference is that CMOS cameras have an in-pixel amplifier 

whereas CCD cameras do not. Thus CMOS sensors are also called active pixel sensors (APS) and 

CCD sensors are called passive pixel sensors (PPS). 

 

In recent decades the CCD camera has become efficient enough to capture fluorescent 

signals tissues stained with voltage- or calcium-fluorescent dye [16, 17, 35]. This is due to 

improvements in both speed and sensitivity. As with all electronic devices, however, there are 

several sources of noise in CCD cameras that limit their performance. These sources include the 

shot noise from the photocurrent, the shot noise from the dark current, and the read noise. A 

commonly used equation for the SNR of a CCD camera incorporates these as shown below [36]. 

 

Figure 1-18: Simplified schematic of a CCD pixel (A) and a CMOS pixel (B).  
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ܴܵܰ஼஼஽ ൌ
௜௡௧ݐߟܲ

ඥሺܲ ൅ ௜௡௧ݐߟሻܤ ൅ ௜௡௧ݐܦ ൅ ௥ܰ
ଶ
 

where ܲ is the optical power in photons/pixel/s, ߟ is the quantum efficiency of the pixel, ݐ௜௡௧ is 

the integration time, ܤ is the background light in photons/pixel/s, ܦ is the dark noise in 

electrons/pixel/s or ݁ି/pixel/s, and ௥ܰ is the read noise in ݁ି/pixel/s. Note that aside from the 

read noise, all other sources of noise or signal must be multiplied by ݐ௜௡௧. This is because the 

current generated from the photoelectric effect initiated by  light hitting the pixel, charges a 

capacitor thus integrating the input signal over time ݐ௜௡௧. The amount of charge that this capacitor 

can hold is called the well size and is typically given in electrons.  

 

1.4.8 Light Source Noise 
 

The light source used to illuminate the tissue under study may prove a significant factor in 

determining the lower limit of signal detection. Some of the most commonly used light sources 

for optical mapping are tungsten-halogen lamps, arc lamps such as xenon lamps, mercury lamps, 

or mercury/xenon lamps, LEDs, and lasers.  

Tungsten-halogen lamps have been very popular in the past because they are cheap, produce 

little noise, and are spectrally flat over the visible range. This spectral flatness allows the user to 

change the excitation wavelength by simply changing the excitation filter [14]. The noise 

produced by a tungsten halogen lamp relative to the total output intensity, Δܫ/ܫ, is in the range of 

0.01-0.04% [37].  

Arc lamps are typically used when higher light intensity is required. The price of the 

increased light intensity is increased noise. Part of this comes from arc wander, where the path of 

current through the medium may change. Mercury arc lamps have been reported to fluctuate by 
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anywhere from 0.1% to 3% during arc wander. Arc lamps are known to go through so called 

quiet and noisy periods. The noisy periods (periods of significant arc wander) can last for several 

minutes and tend to increase in frequency of occurrence with age. Optical feedback can help to 

minimize the fluctuation of light intensity. This is achieved by using the signal from an optical 

sensor such as a photodiode to regulate the current through the lamp. Feedback has been shown to 

reduce the fluctuation in intensity to around 0.02% [15]. 

LEDs have gained popularity in recent years as an efficient, low cost alternative to tungsten-

halogen and arc lamps [38, 39, 5]. Their higher efficiency and narrow spectrum allow more of the 

input power to be converted to light of the wavelength needed. Whereas with tungsten-halogen 

lamps most of the input power is turned into heat, then most of the light that is generated will be 

blocked by the excitation filter which will allow only a small range of wavelengths to pass 

through to the prep. The noise of LEDs is also significantly lower than that of tungsten-halogen 

lamps, specifically Δܫ/ܫ is around 0.002% [37]. 

Lasers are capable of producing a great amount of light output with a very narrow spectrum. 

Like LEDs, lasers too have gained popularity in recent years [35, 17] but are less common 

because of the associated increase in cost. Lasers tend to be very stable and there are currently 

many companies offering lasers with less than 1% variation in output power, typically measured 

over 4 hours or more and with output power of up to 20W. This is typically the way the spec is 

given by the manufacturer, but one must keep in mind that for optical mapping experiments, 

recording time will be much shorter and therefore the amount of variation captured as noise 

should be considerably less. 



47 
 

Chapter 2 Estimation of Bandwidth 
Requirements for Voltage and Calcium 
Transient Optical Signals 
 

In optical mapping applications the bandwidth range is usually between 300Hz and 3KHz [2, 

3, 15, 11]. Although using a broader bandwidth would cause less signal distortion, for low light 

applications were SNR is relatively small, one may prefer to choose the narrowest bandwidth that 

application allows. Considering that the noise floor of a circuit is proportional to the square root 

of its bandwidth ൫ݒ௡ ∝  .൯, removing the excess bandwidth could be highly beneficialܤ√

 

2.1 Computational Modeling of Voltage and 
Calcium Transients 
 

The model used for the purkinje fiber simulation was taken from [40] . The equations 

were not modified and the specified initial conditions and parameters were used. The simulation 

was for a single cell and the equations were solved using a finite difference approximation with a 

time-step of 1μs. No external stimulus was applied and the cell was allowed to beat on its own.  

The simulated action potentials and Ca௜ଶା-transients were passed through a simulated 1st–order 

low-pass filter using PSPICE circuit simulation software. The effects of filtering on the output 

were characterized in the range of cut-off frequencies from 100Hz to 10kHz for the action 

potential and 1Hz to 100Hz for the calcium transients. The changes in action potential duration 

(APD50) and the upstroke delay were evaluated at 50% of the maximum voltage level. The rise 

time was measured as the time for the upstroke to go from 10% of its maximum to 90% of its 
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maximum. The error of the peak amplitude of the calcium transient was evaluated as the 

difference between the input peak and the output peak amplitude. 

 

 

2.2 Quantifying Linear Distortion as a Function 
of Cutoff Frequency 
 

To determine what the real requirements are for recordings of cardiac action potentials 

and Ca௜ଶା transients we used a realistic computer model of the action potential in cardiac Purkinje 

fiber. The selection was motivated by the fact that the action potential of the purkinje fiber has the 

fastest upstroke and broadest plateau thus giving it the broadest frequency content. Using this 

model we estimated how much the action potential and intracellular Ca௜ଶା transients are distorted 

after passing through a 1st–order low-pass filter.  

Figure 2-1 shows the effect of linear distortion on different action potential 

characteristics. The effects of filtering on the output were characterized from cut-off frequencies 

from 100Hz to 10kHz. Panel A shows a comparison of the input and filtered output (Top) and the 

residual or difference between input and output (Bottom) for a cutoff frequency of 300Hz. One 

can see that the shape of the action potential is well preserved except for the upstroke which 

shows a noticeable residual. 
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A B C D

 

Figure 2-1: Plots showing the effects of linear distortion from a 1st-order low-pass filter on action potentials  from a 
purkinje fiber. The action potential and the filter output at 300Hz cut-off (Top A) and the residual (Bottom A). The 
percent error of the rise-time (B), the percent error in the APD measurement (C), and the activation- time delay (D).  

 

Figure 2-1B shows the error for rise time as a function of cutoff frequency. As ௅݂ 

increases the error becomes smaller.  At 300Hz the error is less than 10%. The error in APD 

(Figure 2-1C) shows a similar trend, but the errors are much smaller. At cutoff frequencies as low 

as 100Hz the error is only about 1.5% and at 300Hz it is about 0.28%. Figure 2-1D shows the 

activation time error (the parameter used for construction of so-called activation maps). At 

300Hz, the error is about 340μs.  

It is worth noting the error in the rise time and the activation time have practically no 

impact on the measurements of conduction velocity and isochronal maps.   Indeed, the conduction 

velocity as well as the distance between isochrones in isochronal maps is determined not by the 

absolute value of the activation time but by the difference between activation times in different 

locations. Upon subtraction, the systematic error in activation times cancels out even when the 

latter is not particularly small.  

The results presented above suggest that for most applications, excluding measurements 

of upstroke, a bandwidth of 300Hz is perfectly adequate, causing negligible error in APD 

measurements and activation time (delay). Measurements of conduction velocity are of course 

unaffected at any bandwidth, because each amplifier will create the same delay.  
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Using the same model and same filter, we applied our analysis to calcium transients. 

Figure 2-2 shows the results of our analysis. The Ca௜ଶା transients are much slower which 

significantly reduces the error and allows using lower cutoff frequencies. Panel A shows the input 

Ca௜
ଶା transient and the output of the filter at 100Hz cutoff (Top) and the residual of the output 

compared to the input (Bottom). Despite a very narrow bandwidth the filter does not cause 

significant distortion and fully preserves the peak. A noticeable residual (5% of the peak) is 

observed. 

Panel B shows the error in rise time. At a bandwidth as low as 100Hz the rise time can be 

measured with only 0.6% distortion. The peak error (panel C) is only 0.5%, and the error in the 

duration (CaiD) measurement, shown in part D, is also small, showing an error of only about 1% 

at 100Hz. Thus for measurement Ca௜ଶା transients the bandwidth of 100Hz is more than sufficient. 

 

Figure 2-2: Plots showing the effects of linear distortion from a 1st-order low-pass filter on calcium transients from a 
purkinje fiber. The calcium transient and the filter output at 100Hz cutoff (Top A) and the residual (Bottom A). The 
percent error of the rise-time (B), the percent error in the peak measurement (C), and the percent error of the duration 
measurement (D). 
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Chapter 3 Evaluation of the SNR and 
Frequency Response for Different 
Transimpedance Amplifier Topologies  
 

 

3.1 Single-Feedback Resistor Amplifier 
 

The basic photodiode amplifier topology is the most widely used for detecting low-

intensity optical signals from stained tissue [7, 2, 11, 12, 6, 18]. Though it is a simple topology, 

this analysis and the analysis of other topologies in the next chapter will show that it produces the 

least amount of noise.  

 

3.1.1 Noise Analysis 
 

Figure 3-1 shows the basic amplifier topology (left) and the corresponding noise model 

(right). For this analysis, we will consider each noise source individually and then use 

superposition to determine the total noise.  





 ݋߰ ൌ
݈݋ܣ

1 ൅ ݆݂/ ܽ݋,݂݌
ሺ߰൅ െ ߰െሻ

 

Figure 3-1: Basic photodiode amplifier topology (left) and corresponding noise model (right). 
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The op-amp in this circuit will be modeled as having common-mode and differential-

mode input capacitances ܿ௖௠ and ܿௗ௠ respectively. It will have input-current shot noise ߦ௦, 

thermal noise ்߰ and flicker noise ߰ଵ/௙. It will be modeled as having finite gain ܣ௢௟ and one 

internal pole located at ௣݂,௢௔. Its transfer function is shown below. 

߰௢ ൌ
௢௟ܣ

1 ൅ ݆݂/ ௣݂,௢௔
ሺ߰ା െ ߰ିሻ																																																ሺ3 െ 1ሻ 

The photodiode is modeled as having shunt-resistance-related thermal noise and photocurrent 

shot noise. It has junction capacitance ௝ܿ. The photodiode junction capacitance and op-amp input 

capacitance combine in parallel to produce ܿ௜௡ which is defined as 

ܿ௜௡ ൌ ܿ௖௠ ൅ ܿௗ௠ ൅ ௝ܿ																																																							ሺ3 െ 2ሻ 

For all calculations of RMS noise in this section, we will assume that the TIA is followed 

by a high-order low-pass filter like the one described in section 1.3.1 which can be approximated 

by equation ሺ1 െ 12ሻ. Thus the upper limit of the integrals will not be ∞ but instead 
గ

ଶ ௅݂. 

The transfer function seen by the op-amp thermal noise is defined by the equation shown below. 

߰௢,்
்߰

ൌ
஽஼ܩ ቀ1 ൅ ிܴ݂ߨ2݆ ∥ ௦௛൫ݎ ௙ܿ ൅ ܿ௜௡൯ቁ

1 ൅ ݆ሺ2݂ߨሻݔଵ െ ሺ2݂ߨሻଶݔଶ
																																			ሺ3 െ 3ሻ 

where  

஽஼ܩ ൌ
௢௟ܣ

1 ൅ ௢௟ܣ
௦௛ݎ

ܴி ൅ ௦௛ݎ

																																																					ሺ3 െ 4ሻ 

ଵݔ ൌ
ܴி ∥ ௦௛ݎ ቀሺ1 ൅ ௢௟ሻܣ ௙ܿ ൅ ܿ௜௡ቁ ൅ 1/൫2ߨ ௣݂,௢௔൯

1 ൅ ௢௟ܣ
௦௛ݎ

ܴி ൅ ௦௛ݎ
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ଶݔ ൌ
ܴி ∥ ௦௛൫ݎ ௙ܿ ൅ ܿ௜௡൯/ ௣݂,௢௔

1 ൅ ௢௟ܣ
௦௛ݎ

ܴி ൅ ௦௛ݎ

 

The magnitude of this expression gives us the noise density. 

ห߰௢,்ห ൌ
஽஼ට1ܩ ൅ ݂ଶ ቀ2ܴߨி ∥ ௦௛൫ݎ ௙ܿ ൅ ܿ௜௡൯ቁ

ଶ

ඥሺ1 െ ሺ2݂ߨሻଶݔଶሻଶ ൅ ሺ2݂ߨሻଶݔଵ
ଶ

்߰																													ሺ3 െ 5ሻ 

In order to more easily extract information from ሺ3 െ 3ሻ, we can eliminate the high-frequency 

pole created by the op-amp by assuming ܣ௢௟ ൌ ∞. Equation ሺ3 െ 3ሻ then reduces to 

߰௢,்
்߰

ൌ ൬1 ൅
ܴி
௦௛ݎ
൰
1 ൅ ிܴ݂ߨ2݆ ∥ ௦௛൫ݎ ௙ܿ ൅ ܿ௜௡൯

1 ൅ ிܴ݂ߨ2݆ ௙ܿ
																															ሺ3 െ 6ሻ	 

Now we can clearly see that there is a pole at 

௣݂ ൌ
1

ிܴߨ2 ௙ܿ
																																																															ሺ3 െ 7ሻ 

and a zero at  

௭݂ ൌ
1

ிܴߨ2 ∥ ൫	௦௛ݎ ௙ܿ ൅ ܿ௜௡൯
																																																	 ሺ3 െ 8ሻ	 

and that the pass-band gain is  

௉஻ܩ ൌ 1 ൅
ܿ௜௡
௙ܿ
																																																														ሺ3 െ 9ሻ 

Take the magnitude of ሺ3 െ 6ሻ 

ห߰௢,்ห ൌ ൬1 ൅
ܴி
௦௛ݎ
൰
ට1 ൅ ݂ଶ ቀ2ܴߨி ∥ ൫	௦௛ݎ ௙ܿ ൅ ܿ௜௡൯ቁ

ଶ

ට1 ൅ ݂൫2ܴߨி ௙ܿ൯
ଶ

்߰																					ሺ3 െ 10ሻ 
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Because the transfer function in ሺ3 െ 6ሻ has the form of the filter described in section 1.3.1 

equation ሺ1 െ 14ሻ, we can use equation ሺ1 െ 16ሻ. 

்,௡ݒ ൌ ඨන ห߰௢,்ห
ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ൬1 ൅

ܴி
௦௛ݎ
൰்߰ඨ ௅݂ ൭ቀ

ߨ
2
െ 1ቁ ௅݂

ଶ

௭݂
ଶ ൅ 1൱													ሺ3 െ 11ሻ 

If ቀ
గ

ଶ
െ 1ቁ

௙ಽ
మ

௙೥
మ ≫ 1, then  

்,௡ݒ ൌ ൬1 ൅
ܴி
௦௛ݎ
൰்߰

௅݂

௭݂
ටቀ
ߨ
2
െ 1ቁ ௅݂																																								ሺ3 െ 12ሻ 

Substitute ሺ3 െ 8ሻ into ሺ3 െ 12ሻ 

்,௡ݒ ൌ ி൫ܿ௜௡ܴߨ2 ൅ ௙ܿ൯ ௅்݂߰ටቀ
ߨ
2
െ 1ቁ ௅݂																																	ሺ3 െ 13ሻ 

For high-gain applications, we can assume that ܿ௜௡ ≫ ௙ܿ. Therefore  

்,௡ݒ ൌ ிܿ௜௡ܴߨ2 ௅்݂߰ටቀ
ߨ
2
െ 1ቁ ௅݂																																										ሺ3 െ 14ሻ 

The flicker noise of this circuit sees the same transfer function. 

߰௢,ଵ/௙
߰ଵ/௙

ൌ ஽஼ܩ
1 ൅ ிܴ݂ߨ2݆ ∥ ௦௛൫ݎ ௙ܿ ൅ ܿ௜௡൯
1 ൅ ݆ሺ2݂ߨሻݔଵ െ ሺ2݂ߨሻଶݔଶ

																																	ሺ3 െ 15ሻ 

Take the magnitude of ሺ3 െ 15ሻ to get the noise density 

ห߰௢,ଵ/௙ห ൌ
஽஼ට1ܩ ൅ ݂ଶ ቀ2ܴߨி ∥ ௦௛൫ݎ ௙ܿ ൅ ܿ௜௡൯ቁ

ଶ

ඥሺ1 െ ሺ2݂ߨሻଶݔଶሻଶ ൅ ሺ2݂ߨሻଶݔଵ
ଶ

ܰܰܨ

ඥ݂
																					ሺ3 െ 16ሻ 

If ܣ௢௟ ൌ ∞ in ሺ3 െ 15ሻ 
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߰௢,ଵ/௙
߰ଵ/௙

ൌ ൬1 ൅
ܴி
௦௛ݎ
൰
1 ൅ ிܴ݂ߨ2݆ ∥ ௦௛൫ݎ ௙ܿ ൅ ܿ௜௡൯

1 ൅ ிܴ݂ߨ2݆ ௙ܿ
																												ሺ3 െ 17ሻ 

Take the magnitude of ሺ3 െ 17ሻ to get the noise density. 

ห߰௢,ଵ/௙ห ൌ ൬1 ൅
ܴி
௦௛ݎ
൰
ට1 ൅ ݂ଶ ቀ2ܴߨி ∥ ௦௛൫ݎ ௙ܿ ൅ ܿ௜௡൯ቁ

ଶ

ට1 ൅ ݂ଶ൫2ܴߨி ௙ܿ൯
ଶ

ܰܰܨ

ඥ݂
																ሺ3 െ 18ሻ 

Squaring ሺ3 െ 18ሻ, integrating over ݂, and taking the square root yields the RMS noise voltage. 

Because the transfer function in ሺ3 െ 17ሻ has the same form as that in ሺ1 െ 14ሻ, we can use 

equation ሺ1 െ 19ሻ as the result of the integration. 

௡,ଵ/௙ݒ ൌ ඨන ห߰௢,ଵ/௙ห
ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ൬1 ൅

ܴி
௦௛ݎ
൰ ඩlnܰܰܨ ൬

ߨ
2

௅݂

଴݂
൰ ൅

ln ൬1 ൅
ଶߨ
4 ൰

2
ቆ ௅݂

ଶ

௭݂
ଶ െ 1ቇ						ሺ3 െ 19ሻ 

It is safe to say that ௅݂
ଶ/ ௭݂

ଶ ≫ 1, hence the above expression reduces to 

௡,ଵ/௙ݒ ൌ ൬1 ൅
ܴி
௦௛ݎ
൰ ඩlnܰܰܨ ൬

ߨ
2

௅݂

଴݂
൰ ൅

ln ൬1 ൅
ଶߨ
4 ൰

2
௅݂
ଶ

௭݂
ଶ 																							ሺ3 െ 20ሻ 

The frequency ଴݂ is typically chosen to be a very small number. If ଴݂ ൌ 1mHz, then for high-gain 

applications we can assume that 
୪୬൬ଵା

ഏమ

ర
൰

ଶ

௙ಽ
మ

௙೥
మ ≫ ln ቀ

గ

ଶ

௙ಽ
௙బ
ቁ. Therefore the above expression becomes 

௡,ଵ/௙ݒ ൌ ൬1 ൅
ܴி
௦௛ݎ
൰ ܰܰܨ ௅݂

௭݂

ඩln ൬1 ൅
ଶߨ
4 ൰

2
																																		ሺ3 െ 21ሻ 

Substitute ሺ3 െ 8ሻ into ሺ3 െ 21ሻ 



Chapter 3 

56 
 

௡,ଵ/௙ݒ ൌ ி൫ܿ௜௡ܴߨ2 ൅ ௙ܿ൯ ௅݂ܰܰܨ
ඩln ൬1 ൅

ଶߨ
4 ൰

2
																														ሺ3 െ 22ሻ 

For high-gain applications we can assume that ܿ௜௡ ≫ ௙ܿ. Therefore equation ሺ3 െ 22ሻ reduces to 

௡,ଵ/௙ݒ ൌ ிܿ௜௡ܴߨ2 ௅݂ܰܰܨ
ඩln ൬1 ൅

ଶߨ
4 ൰

2
																																				ሺ3 െ 23ሻ 

The resistor thermal noise transfer function is defined as 

߰௢,ோி
ோிߦ

ൌ െܩ஽஼
ሺܴி ∥ ௦௛ሻݎ

1 ൅ ݆ሺ2݂ߨሻݔଵ െ ሺ2݂ߨሻଶݔଶ
																																	ሺ3 െ 24ሻ 

Taking the magnitude of ሺ3 െ 24ሻ gives us the noise density as a function of frequency 

ห߰௢,ோிห ൌ
஽஼ሺܴிܩ ∥ ௦௛ሻඥ4݇ܶ/ܴிݎ

ඥሺ1 െ ሺ2݂ߨሻଶݔଶሻଶ ൅ ሺ2݂ߨሻଶݔଵ
ଶ
																																	ሺ3 െ 25ሻ 

If ܣ௢௟ ൌ ∞, ሺ3 െ 24ሻ becomes 

߰௢,ோி
ோிߦ

ൌ െ
ܴி

1 ൅ ிܴ݂ߨ2݆ ௙ܿ
																																																	 ሺ3 െ 26ሻ 

The magnitude of ሺ3 െ 26ሻ is 

ห߰௢,ோிห ൌ
ඥ4ܴ݇ܶி

ට1 ൅ ݂ଶ൫2ܴߨி ௙ܿ൯
ଶ
																																												ሺ3 െ 27ሻ 

The RMS voltage noise at the circuit’s output contributed by ܴி can be found by taking the 

square root of the integral of the noise density as shown below. Because the transfer function in 

ሺ3 െ 26ሻ is the same form as that in ሺ1 െ 8ሻ, we can use equation ሺ1 െ 13ሻ as the result of the 

integral. We then have 
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௡,ோிݒ ൌ ඨන ห߰௢,ோிห
ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ඥ4ܴ݇ܶி ௅݂																																			ሺ3 െ 28ሻ 

The op-amp current noise density has the transfer function shown below 

߰௢,௦
௦ߦ

ൌ
െܩ஽஼ሺܴி ∥ ௦௛ሻݎ

1 ൅ ݆ሺ2݂ߨሻݔଵ െ ሺ2݂ߨሻଶݔଶ
																																									ሺ3 െ 29ሻ 

The magnitude of ሺ3 െ 29ሻ to get the noise density as a function of frequency 

ห߰௢,௦ห ൌ
஽஼ሺܴிܩ ∥ ௦ߦ௦௛ሻݎ

ඥሺ1 െ ሺ2݂ߨሻଶݔଶሻଶ ൅ ሺ2݂ߨሻଶݔଵ
ଶ
																																		ሺ3 െ 30ሻ 

If ܣ௢௟ ൌ ∞ in ሺ3 െ 29ሻ then 

߰௢,௦
௦ߦ

ൌ
ܴி

1 ൅ ிܴ݂ߨ2݆ ௙ܿ
																																																				 ሺ3 െ 31ሻ 

Take the magnitude of ሺ3 െ 31ሻ to get the voltage noise density as a function of frequency 

ห߰௢,௦ห ൌ
ܴிߦ௦

ට1 ൅ ݂ଶ൫2ܴߨி ௙ܿ൯
ଶ
																																													ሺ3 െ 32ሻ 

The RMS voltage noise at the circuit’s output contributed by ߦ௦ can be found by taking the square 

root of the integral of the noise density as shown below. Because the transfer function in ሺ3 െ

31ሻ is the same form as that in ሺ1 െ 8ሻ, we can use equation ሺ1 െ 13ሻ as the result of the 

integral. We then have 

௡,௦ݒ ൌ ඨන ห߰௢,௦ห
ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ܴிߦ௦ඥ ௅݂																																								ሺ3 െ 33ሻ 

The photodiode thermal noise sees the same transfer function as the op-amp current noise 
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߰௢,௥௦௛
௥௦௛ߦ

ൌ
െܩ஽஼ሺܴி ∥ ௦௛ሻݎ

1 ൅ ݆ሺ2݂ߨሻݔଵ െ ሺ2݂ߨሻଶݔଶ
																																							ሺ3 െ 34ሻ 

The magnitude of ሺ3 െ 34ሻ gives the noise density 

ห߰௢,௥௦௛ห ൌ
஽஼ሺܴிܩ ∥ ௦௛ሻݎ

ඥሺ1 െ ሺ2݂ߨሻଶݔଶሻଶ ൅ ሺ2݂ߨሻଶݔଵ
ଶ
ඨ
4݇ܶ
௦௛ݎ

																										ሺ3 െ 35ሻ 

If ܣ௢௟ ൌ ∞ in ሺ3 െ 34ሻ then 

߰௢,௥௦௛
௥௦௛ߦ

ൌ
ܴி

1 ൅ ிܴ݂ߨ2݆ ௙ܿ
																																																		 ሺ3 െ 36ሻ 

Take the magnitude of ሺ3 െ 36ሻ to get the voltage noise density as a function of frequency 

ห߰௢,௥௦௛ห ൌ
ܴி	ට

4݇ܶ
௦௛ݎ

ට1 ൅ ݂ଶ൫2ܴߨி ௙ܿ൯
ଶ
																																												ሺ3 െ 37ሻ 

The RMS voltage noise at the circuit’s output contributed by ߦ௦ can be found by taking the square 

root of the integral of the noise density as shown below. Because the transfer function in ሺ3 െ

37ሻ is the same form as that in ሺ1 െ 8ሻ, we can use equation ሺ1 െ 13ሻ as the result of the 

integral. We then have 

௡,௥௦௛ݒ ൌ ඨන ห߰௢,௥௦௛ห
ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ܴிඨ

4݇ܶ
௦௛ݎ

௅݂																																	ሺ3 െ 38ሻ 

The photocurrent shot noise sees the same transfer function as the op-amp current noise 

߰௢,ℓ௦
ℓ௦ߦ

ൌ
െܩ஽஼ሺܴி ∥ ௦௛ሻݎ

1 ൅ ݆ሺ2݂ߨሻݔଵ െ ሺ2݂ߨሻଶݔଶ
																																								ሺ3 െ 39ሻ 

The magnitude of ሺ3 െ 39ሻ to get the noise density. 
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ห߰௢,ℓ௦ห ൌ
஽஼ሺܴிܩ ∥ ଓ௣ഥݍ௦௛ሻඥ2ݎ

ඥሺ1 െ ሺ2݂ߨሻଶݔଶሻଶ ൅ ሺ2݂ߨሻଶݔଵ
ଶ
																																	ሺ3 െ 40ሻ 

If ܣ௢௟ ൌ ∞ in ሺ3 െ 39ሻ then 

߰௢,ℓ௦
ℓ௦ߦ

ൌ
ܴி

1 ൅ ிܴ݂ߨ2݆ ௙ܿ
																																																				 ሺ3 െ 41ሻ 

Take the magnitude of ሺ3 െ 41ሻ to get the voltage noise density as a function of frequency 

ห߰௢,ℓ௦ห ൌ
ܴிඥ2ݍଓ௣ഥ

ට1 ൅ ݂ଶ൫2ܴߨி ௙ܿ൯
ଶ
																																													ሺ3 െ 42ሻ 

The RMS voltage noise at the circuit’s output contributed by ߦ௦ can be found by taking the square 

root of the integral of the magnitude of the noise density squared as shown below. Because the 

transfer function in ሺ3 െ 37ሻ is the same form as that in ሺ1 െ 8ሻ, we can use equation ሺ1 െ 13ሻ 

as the result of the integral. We then have 

௡,௟௜௚௛௧ݒ ൌ ඨන ห߰௢,ℓ௦ห
ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ܴிට2ݍଓ௣ഥ ௅݂																																		ሺ3 െ 43ሻ 

The total dark noise is then the quadratic sum of all the noise sources inherent to the amplifier 

௡,ௗ௔௥௞ݒ ൌ ටݒ௡,்
ଶ ൅ ௡,ଵ/௙ݒ

ଶ ൅ ௡,ோிݒ
ଶ ൅ ௡,௦ଶݒ ൅ ௡,௥௦௛ݒ

ଶ 																											ሺ3 െ 44ሻ 

The total noise is then the quadratic sum of the dark and light noise 

௡,௧௢௧௔௟ݒ ൌ ටݒ௡,ௗ௔௥௞
ଶ ൅ ௡,௟௜௚௛௧ݒ

ଶ 																																														ሺ3 െ 45ሻ 

Substituting equations ሺ3 െ 14ሻ, ሺ3 െ 23ሻ, ሺ3 െ 28ሻ, ሺ3 െ 33ሻ, ሺ3 െ 38ሻ into ሺ3 െ 44ሻ 



Chapter 3 

60 
 

௡,ௗ௔௥௞ݒ ൌ ටሺߦ௦ଶ ൅ ௦௛ݎ/4݇ܶ ൅ ሺ2ܿߨ௜௡ሻଶߛ ௅݂ሻ ௅݂ܴி
ଶ ൅ ߚ ௅݂ܴி																				ሺ3 െ 46ሻ 

ߚ ൌ 4݇ܶ																																																																	ሺ3 െ 47ሻ 

ߛ ൌ ்߰
ଶ ቀ
ߨ
2
െ 1ቁ ௅݂ ൅ ଶܰܰܨ

ln ൬1 ൅
ଶߨ
4 ൰

2
																																		ሺ3 െ 48ሻ 

Substitute ሺ3 െ 43ሻ and ሺ3 െ 46ሻ into ሺ3 െ 45ሻ 

௡,௧௢௧௔௟ݒ ൌ ටߙ ௅݂ܴி
ଶ ൅ ߚ ௅݂ܴி																																															ሺ3 െ 49ሻ 

ߙ ൌ ௦ଶߦ ൅ ௦௛ݎ/4݇ܶ ൅ ଓ௣ഥݍ2 ൅ ሺ2ܿߨ௜௡ሻଶߛ ௅݂																																		ሺ3 െ 50ሻ 

The total noise density, using the equations with the finite-gain single-pole op-amp model, 

specifically equations ൫3 െ 5൯, ሺ3 െ 16ሻ, ሺ3 െ 30ሻ, ሺ3 െ 25ሻ, and ሺ3 െ 35ሻ ሺ3 െ 35ሻ, is defined 

below.  

ห߰௢,ௗ௔௥௞ห ൌ ට߰௢,்
ଶ ൅ ߰௢,ଵ/௙

ଶ ൅ ߰௢,௦ଶ ൅ ߰௢,ோி
ଶ ൅ ߰௢,௥௦௛

ଶ 																								ሺ3 െ 51ሻ 

The above equation will be compared with experimental noise density data. 

 

 

3.1.2 Noise Density 
 

To test the theory of the previous section and to show the advantage of increasing the gain of 

the TIA from the commonly used 100MΩ to 10GΩ, we built 2 transimpedance amplifiers and 

measured their noise density. 
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The TIA output was connected to the E5061B network analyzer. The resolution bandwidth was 

set to 1Hz and frequencies from 5Hz to 100kHz were captured. The result was averaged 10 times. 

To eliminate interference from external noise or power supply coupling, the PCB with was placed 

in a closed metal box and powered by four 9V batteries for േ18V supply. 

According to the theory, using a single-stage, 10GΩ-TIA versus a conventional two-stage 

amplifier with 100MΩ first-stage gain and the same total gain should reduce the noise by an order 

of magnitude. Our experiments show that this is the case (see Figure 3-2). Indeed, at low 

frequencies the noise density of a 10GΩ is about 16.5	μV/√Hz  versus 128	μV/√Hz at 100MΩ. 

 

The experimentally measured noise spectra are consistent with the theoretically derived 

spectra (black and green solid lines). The theoretical spectra were obtained by using the 

parameters from the OPA140 datasheet and in the case of the TIA with 10GΩ in the 1st stage, the 

 

Figure 3-2: Noise density spectra for amplifier with single 100MΩ resistor, second stage with voltage 
gain of 100, and no photodiode (blue), its theoretical noise density (green) and single 10GΩ feedback 
resistor with field-shunting ground trace and SFH229 photodiode (red) along with its theoretical noise 
density (black), both amplifiers use the OPA140 in an SOT-23-5 package both with a 300Hz low-pass 
cutoff frequency. The purple line shows the theoretical model of the amplification of the op-amp 
voltage noise by noise gain peaking. 
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௝ܿ given in the SFH229 datasheet and the assumption that the diode has ݎ௦௛ ൌ 100GΩ. These 

parameters were then plugged into formula ሺ3 െ 51ሻ, which is  derived in the previous section.  

Note that the noise density roll off of the 10GΩ-TIA slows down at frequencies beyond 2kHz. 

This is the result of noise gain peaking, the amplification of flicker and thermal noise of the op-

amp. The purple line shows the theoretical op-amp voltage noise density calculated using only the 

op-amp thermal and flicker noise components of equations ሺ3 െ 5ሻ and ሺ3 െ 16ሻ. 

 

3.1.3 Signal-to-Noise Ratio 
 

The signal to noise ratio is defined as the RMS value of the signal to be detected to the RMS 

value of the noise in the detector circuit. In our case, this is 

ܴܵܰ ൌ
ܴிଓ௣෥
௡,௧௢௧௔௟ݒ

																																																										 ሺ3 െ 52ሻ 

where ଓ௣෥  is the RMS photocurrent corresponding to the detected signal. We then substitute 

ሺ3 െ 45ሻ into ሺ3 െ 52ሻ to get the equation below. 

ܴܵܰ ൌ
ܴிଓ௣෥

ඥߙ ௅݂ܴி
ଶ ൅ ߚ ௅݂ܴி

																																																 ሺ3 െ 53ሻ 

Recall that the term ߙ in equation contains the shot noise which is proportional to ඥଓ௣ഥ , the 

average photocurrent. If we choose the input signal to be a sinusoid with peak-to-peak amplitude 

ଓ௣ෝ , then the RMS and DC current are defined as 

ଓ௣෥ ൌ
√6
4
ଓ௣ෝ 																																																														ሺ3 െ 54ሻ	 

and 
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ଓ௣ഥ ൌ
1
2
ଓ௣ෝ 																																																																	ሺ3 െ 55ሻ 

Taking the limit of equation ሺ3 െ 53ሻ as ܴி approaches infinity gives us the maximum 

possible SNR for a given op-amp and photodiode.  

ܴܵܰஶ ൌ lim
ோಷ→ஶ

ܴܵܰ ൌ
ଓ௣෥

ඥα ௅݂

																																													ሺ3 െ 56ሻ 

While the ܴܵܰஶ represents the theoretical ceiling, a “practical” target for ܴி can be 

ܴி,ଽ଴, the feedback resistance corresponding to 90% of ܴܵܰஶ. Increasing ܴி beyond ܴி,ଽ଴ 

would no longer result in significant improvement of SNR. The value of  ܴி,ଽ଴ can be 

approximated using the following simple formula: 

ܴி,ଽ଴ ൌ 4.26
ߚ
ߙ
																																																										ሺ3 െ 57ሻ	 

 

We can see from equation ሺ3 െ 57ሻ	that ܴி,ଽ଴ is inversely proportional to ߙ which is dependent 

on the average photocurrent ଓ௣ഥ . Thus ܴி,ଽ଴ will reach its maximum when ଓ௣ഥ  goes to 0. We will 

call this condition ෠ܴி,ଽ଴ and define it as 

෠ܴி,ଽ଴ ൌ lim
ప೛തതത→଴

ܴி,ଽ଴ ൌ 4.26
ߚ
ᇱߙ
																																													ሺ3 െ 58ሻ 

where  

ᇱߙ ൌ ௦ଶߦ ൅ ௦௛ݎ/4݇ܶ ൅ ሺ2ܿߨ௜௡ሻଶߛ ௅݂ 

In later sections we will use equation ሺ3 െ 56ሻ and ሺ3 െ 58ሻ to show the optimal performance 

that can be obtained for this topology with the current technology. 
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3.2 T-Bridge Feedback Network Topology 
 

The T-bridge network is an alternative to the single feedback resistor with the aim of 

achieving very high transimpedance gain. The 3 feedback resistors combine to produce a gain of 

ܴி,௘௤ ൌ ܴ஺ ൅ ܴ஼ ൅
ܴ஺ܴ஼
ܴ஻

																																																	 ሺ3 െ 59ሻ 

In this chapter, we will first analyze the noise produced by the T-bridge. Then, we will model the 

bandwidth to determine if there is any advantage to be gained over the single-resistor amplifier. 

 

3.2.1 Noise Analysis 
 

The figure below shows the T-bridge TIA and the corresponding noise model that we will 

be using. Note that for this portion of the analysis we will be neglecting the resistor parasitic 

capacitance because these will only take effect beyond the cutoff frequency and thus not have a 

large impact on the noise. For this analysis we will consider each noise source independently and 

then use superposition to determine the total noise.  

The op-amp in this circuit will be modeled as having common-mode and differential-

mode input capacitances, ܿ௖௠ and ܿௗ௠ respectively. It will have input-current shot noise ߦ௦, 

thermal noise ்߰ and flicker noise ߰ଵ/௙. It will be modeled as having infinite gain. 

The photodiode is modeled as having shunt-resistance-related thermal noise and 

photocurrent shot noise. It has junction capacitance ௝ܿ. The photodiode junction capacitance and 

op-amp input capacitance combine in parallel to produce ܿ௜௡ which is defined in the previous 

section in equation ሺ3 െ 2ሻ. 
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For all calculations of RMS noise in this section, we will assume that the TIA is followed 

by a high-order low-pass filter like the one described in section 1.3.1 which can be approximated 

by equation ሺ1 െ 12ሻ. Thus the upper limit of the integrals will not be ∞ but instead 
గ

ଶ ௅݂. 
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Figure 3-3: Transimpedance amplifier with T-bridge feedback network (left) and corresponding noise model (right). 

 

The transfer function seen by the op-amp thermal noise is   

்,௡ܩ ൌ
߰௢,்
்߰

ൌ
1 ൅ ி,௘௤൫ܴ݂ߨ2݆ ௙ܿ ൅ ܿ௜௡൯்ߚ
൫1்ߚ ൅ ி,௘௤ܴ݂ߨ2݆ ௙ܿ൯

																																	ሺ3 െ 60ሻ 

where 

்ߚ ൌ
1

1 ൅
ܴ஺
ܴ஻

൅
ܴி,௘௤
௦௛ݎ

																																																					 ሺ3 െ 61ሻ 

and where the zero and pole frequencies are  

௭݂ ൌ
1

ி,௘௤൫ܴߨ2 ௙ܿ ൅ ܿ௜௡൯்ߚ
																																																 ሺ3 െ 62ሻ 
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௣݂ ൌ
1

ி,௘௤ܴߨ2 ௙ܿ
																																																										 ሺ3 െ 63ሻ 

and the mid-band gain is  

ெ஻ܩ ൌ
௣݂

௭݂
ൌ

1 ൅
ܿ௜௡
௙ܿ

1 ൅
ܴ஺
ܴ஻

൅
ܴி,௘௤
௦௛ݎ

																																														ሺ3 െ 64ሻ 

The contribution of op amp thermal noise density ்߰ to the output noise density can be found by 

taking the magnitude of the transfer function ሺ3 െ 60ሻ and multiplying it by the op-amp thermal 

noise. Taking the magnitude of ሺ3 െ 60ሻ yields the noise density as a function of frequency 

without high-frequency poles 

ห߰௢,்ห ൌ ൬1 ൅
ܴ஺
ܴ஻

൅
ܴி,௘௤
௦௛ݎ

൰

ඪ1 ൅ ݂ଶ ൮2ߨ
ܴி,௘௤൫ ௙ܿ ൅ ܿ௜௡൯

1 ൅ ܴ஺
ܴ஻

൅
ܴி,௘௤
௦௛ݎ

൲

ଶ

ට1 ൅ ݂ଶ൫2ܴߨி,௘௤ ௙ܿ൯
ଶ

்߰															ሺ3 െ 65ሻ 

 

The total noise can then be found by squaring ሺ3 െ 65ሻ, integrating over ݂ and 

taking the square root 

்,௡ݒ ൌ ඨන หܩ௡,்ห
ଶ
்߰
ଶ݂݀

గ
ଶ௙ಽ

଴
ൌ ඨන

1
்ߚ
ଶ

1 ൅ ݂ଶ/ ௭݂
ଶ

1 ൅ ݂ଶ/ ௅݂
ଶ ்߰

ଶ݂݀

గ
ଶ௙ಽ

଴
																		ሺ3 െ 66ሻ 

Because the transfer function in ሺ3 െ 60ሻ has the form of the filter described in section 1.3.1 

equation ሺ1 െ 14ሻ, we can use equation ሺ1 െ 16ሻ. The above integral becomes 

்,௡ݒ ൌ
்߰

்ߚ
ඨ ௅݂ ൭ቀ

ߨ
2
െ 1ቁ ௅݂

ଶ

௭݂
ଶ ൅ 1൱																																									ሺ3 െ 67ሻ 
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If ቀ
గ

ଶ
െ 1ቁ

௙ಽ
మ

௙೥
మ ≫ 1, equation ሺ3 െ 67ሻ reduces to 

்,௡ݒ ൌ
்߰

்ߚ
௅݂

௭݂
ටቀ
ߨ
2
െ 1ቁ ௅݂																																																	ሺ3 െ 68ሻ 

Substitute ሺ3 െ 62ሻ into ሺ3 െ 68ሻ 

்,௡ݒ ൌ ி,௘௤൫ܴߨ2 ௙ܿ ൅ ܿ௜௡൯ ௅்݂߰ටቀ
ߨ
2
െ 1ቁ ௅݂																																	ሺ3 െ 69ሻ 

For high-gain applications ܿ௜௡ ≫ ௙ܿ, therefore equation ሺ3 െ 69ሻ becomes 

்,௡ݒ ൌ ி,௘௤ܿ௜௡ܴߨ2 ௅்݂߰ටቀ
ߨ
2
െ 1ቁ ௅݂																																							ሺ3 െ 70ሻ 

The flicker noise transfer function is the same as the thermal noise transfer function given in 

ሺ3 െ 60ሻ, thus 

௡,ଵ/௙ܩ ൌ
߰௢,ଵ/௙
߰ଵ/௙

ൌ
1 ൅ ி,௘௤൫ܴ݂ߨ2݆ ௙ܿ ൅ ܿ௜௡൯்ߚ
൫1்ߚ ൅ ி,௘௤ܴ݂ߨ2݆ ௙ܿ൯

																														ሺ3 െ 71ሻ 

Similarly, the noise density is defined as 

ห߰௢,ଵ/௙ห ൌ ൬1 ൅
ܴ஺
ܴ஻

൅
ܴி,௘௤
௦௛ݎ

൰

ඪ1 ൅ ݂ଶ ൮2ߨ
ܴி,௘௤൫ ௙ܿ ൅ ܿ௜௡൯

1 ൅ ܴ஺
ܴ஻

൅
ܴி,௘௤
௦௛ݎ

൲

ଶ

ට1 ൅ ݂ଶ൫2ܴߨி,௘௤ ௙ܿ൯
ଶ

ܰܰܨ

ඥ݂
										ሺ3 െ 72ሻ 

The RMS flicker noise voltage at the circuit output is then 

௡,ଵ/௙ݒ ൌ ඨන
1
்ߚ
ଶ

1 ൅ ݂ଶ/ ௭݂
ଶ

1 ൅ ݂ଶ/ ௅݂
ଶ

ଶܰܰܨ

݂
݂݀

గ
ଶ௙ಽ

௙బ

																																			ሺ3 െ 73ሻ 
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Because the transfer function in ሺ3 െ 71ሻ has the form of the filter described in section 1.3.1 

equation ሺ1 െ 14ሻ, we can use equation ሺ1 െ 19ሻ as long as we choose ଴݂ such that ௅݂ ≫ ଴݂. The 

above integral becomes 

௡,ଵ/௙ݒ ൌ
ܰܰܨ
்ߚ

ඩln ൬
ߨ
2

௅݂

଴݂
൰ ൅

ln ൬1 ൅
ଶߨ
4 ൰

2
ቆ ௅݂

ଶ

௭݂
ଶ െ 1ቇ																									ሺ3 െ 74ሻ 

If ௅݂
ଶ/ ௭݂

ଶ ≫ 1, then ሺ3 െ 74ሻ becomes 

௡,ଵ/௙ݒ ൌ
ܰܰܨ
்ߚ

ඩln ൬
ߨ
2

௅݂

଴݂
൰ ൅

ln ൬1 ൅
ଶߨ
4 ൰

2
௅݂
ଶ

௭݂
ଶ 																																ሺ3 െ 75ሻ 

The frequency ଴݂ is typically chosen to be a very small number. If ଴݂ ൌ 1mHz, then for high-gain 

applications we can assume that 
୪୬൬ଵା

ഏమ

ర
൰

ଶ

௙ಽ
మ

௙೥
మ ≫ ln ቀ

గ

ଶ

௙ಽ
௙బ
ቁ. Therefore the above expression becomes 

௡,ଵ/௙ݒ ൌ
ܰܰܨ
்ߚ

௅݂

௭݂

ඩln ൬1 ൅
ଶߨ
4 ൰

2
																																											ሺ3 െ 76ሻ 

Substitute ሺ3 െ 62ሻ into ሺ3 െ 76ሻ 

௡,ଵ/௙ݒ ൌ ி,௘௤൫ܴߨ2 ௙ܿ ൅ ܿ௜௡൯ ௅݂ܰܰܨ
ඩln ൬1 ൅

ଶߨ
4 ൰

2
																											ሺ3 െ 77ሻ 

For high gain applications ܿ௜௡ ≫ ௙ܿ, therefore equation ሺ3 െ 77ሻ becomes 

௡,ଵ/௙ݒ ൌ ி,௘௤ܿ௜௡ܴߨ2 ௅݂ܰܰܨ
ඩln ൬1 ൅

ଶߨ
4 ൰

2
																																		ሺ3 െ 78ሻ 
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The transfer function for the op-amp current noise source is 

௡,௦ܩ ൌ
߰௢,௦
௦ߦ

ൌ
ܴி,௘௤

1 ൅ ி,௘௤ܴ݂ߨ2݆ ௙ܿ
																																											ሺ3 െ 79ሻ 

where ߦ௦ can be extracted from the op-amp’s datasheet. The noise density due to op-amp current 

noise observed at the output is then 

ห߰௢,௦ห ൌ
ܴி,௘௤ߦ௦

ට1 ൅ ݂ଶ൫2ܴߨி,௘௤ ௙ܿ൯
ଶ
																																											ሺ3 െ 80ሻ 

The RMS noise at the output is then 

௡,௦ݒ ൌ ඨන ห߰௢,௦ห
ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ܴி,௘௤ߦ௦ඥ ௅݂																																					ሺ3 െ 81ሻ 

The transfer function for the ܴ஺ noise source is 

௡,ோ஺ܩ ൌ
߰௢,ோ஺
߰ோ஺

ൌ
1

1 ൅ ி,௘௤ܴ݂ߨ2݆ ௙ܿ
																																								ሺ3 െ 82ሻ 

Where  

߰ோ஺ ൌ ඥ4ܴ݇ܶ஺																																																									ሺ3 െ 83ሻ 

The noise density due to ܴ஺ observed at the output is then 

ห߰௢,ோ஺ห ൌ
ඥ4ܴ݇ܶ஺

ට1 ൅ ݂ଶ൫2ܴߨி,௘௤ ௙ܿ൯
ଶ
																																										ሺ3 െ 84ሻ 

The RMS noise at the output is then 
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௡,ோ஺ݒ ൌ ඨන ห߰௢,ோ஺ห
ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ඥ4ܴ݇ܶ஺ ௅݂																																			ሺ3 െ 85ሻ 

The transfer function for the ܴ஻ noise source is 

௡,ோ஻ܩ ൌ
ܴ஺/ܴ஻

1 ൅ ி,௘௤ܴ݂ߨ2݆ ௙ܿ
																																																	 ሺ3 െ 86ሻ 

Where  

߰ோ஻ ൌ ඥ4ܴ݇ܶ஻																																																									ሺ3 െ 87ሻ 

The noise density due to ܴ஻ observed at the output is then 

ห߰௢,ோ஻ห ൌ
ܴ஺/ܴ஻ඥ4ܴ݇ܶ஻

ට1 ൅ ݂ଶ൫2ܴߨி,௘௤ ௙ܿ൯
ଶ
																																										ሺ3 െ 88ሻ 

The RMS noise at the output is then 

௡,ோ஻ݒ ൌ ඨන ห߰௢,ோ஻ห
ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ
ܴ஺
ܴ஻

ඥ4ܴ݇ܶ஻ ௅݂																																ሺ3 െ 89ሻ 

The transfer function for the ܴ஼ noise source is 

௡,ோ஼ܩ ൌ ൬1 ൅
ܴ஺
ܴ஻
൰	

1
1 ൅ ி,௘௤ܴ݂ߨ2݆ ௙ܿ

																																							ሺ3 െ 90ሻ 

Where  

߰ோ஼ ൌ ඥ4ܴ݇ܶ஼																																																										ሺ3 െ 91ሻ 

The noise density corresponding to ܴ஼ observed at the circuit’s output is 
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ห߰௢,ோ஼ห ൌ 	
ቀ1 ൅

ܴ஺
ܴ஻
ቁඥ4ܴ݇ܶ஼

ට1 ൅ ݂ଶ൫2ܴߨி,௘௤ ௙ܿ൯
ଶ
																																									ሺ3 െ 92ሻ 

The RMS noise corresponding to ܴ஼ observed at the output is 

௡,ோ஼ݒ ൌ ඨන ห߰௢,ோ஼ห
ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ඥ4ܴ݇ܶ஼ ௅݂																																			ሺ3 െ 93ሻ 

We can combine the 3 expressions for resistor noise to produce a single equation for RMS noise 

and noise density observed at the output. For the noise density, we will combine equations 

ሺ3 െ 84ሻ, ሺ3 െ 88ሻ, and ሺ3 െ 92ሻ by summing them in quadrature. The result is shown below. 

ห߰௢,ோி௘௤ห ൌ
ට4݇ܶ ቀ1 ൅

ܴ஺
ܴ஻
ቁܴி,௘௤

ට1 ൅ ݂ଶ൫2ܴߨி,௘௤ ௙ܿ൯
ଶ
																																								ሺ3 െ 94ሻ 

We can then determine the total noise contribution of all resistors. 

௡,ோி௘௤ݒ ൌ ඨන ห߰௢,ோி௘௤ห
ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ඨ4݇ܶ ൬1 ൅

ܴ஺
ܴ஻
൰ܴி,௘௤ ௅݂																				ሺ3 െ 95ሻ 

The photodiode thermal noise (shunt resistance ݎ௦௛ thermal noise) has the same transfer function 

as the op-amp current noise defined in ሺ3 െ 79ሻ.  

௡,௦௛ܩ ൌ
߰௢,௥௦௛
௥௦௛ߦ

ൌ
ܴி,௘௤

1 ൅ ி,௘௤ܴ݂ߨ2݆ ௙ܿ
																																								ሺ3 െ 96ሻ 

The noise density due to photocurrent shot noise is then 

ห߰௢,௦௛ห ൌ
ܴி,௘௤ඥ4݇ܶ/ݎ௦௛

ට1 ൅ ݂ଶ൫2ܴߨி,௘௤ ௙ܿ൯
ଶ
																																										ሺ3 െ 97ሻ 
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The RMS noise at the output is then 

௡,௦௛ݒ ൌ ඨන ห߰௢,௥௦௛ห
ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ܴி,௘௤ඨ

4݇ܶ
௦௛ݎ

௅݂																															ሺ3 െ 98ሻ	 

The photocurrent shot noise has the same transfer function as the op-amp current noise defined in 

ሺ3 െ 79ሻ.  

௡,ℓ௦ܩ ൌ
߰௢,ℓ௦
ℓ௦ߦ

ൌ
ܴி,௘௤

1 ൅ ி,௘௤ܴ݂ߨ2݆ ௙ܿ
																																									ሺ3 െ 99ሻ 

where ߰ℓ௦ ൌ ඥ2ݍଓ௣ഥ . The noise density due to photocurrent shot noise is then 

ห߰௢,ℓ௦ห ൌ
ܴி,௘௤ඥ2ݍଓ௣ഥ

ට1 ൅ ݂ଶ൫2ܴߨி,௘௤ ௙ܿ൯
ଶ
																																								ሺ3 െ 100ሻ 

The RMS noise at the output is then 

௡,௟௜௚௛௧ݒ ൌ ඨන ห߰௢,ℓ௦ห
ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ܴி,௘௤ට2ݍଓ௣ഥ ௅݂																													ሺ3 െ 101ሻ 

Now we will assess the noise density of our amplifier without illumination. For this we must 

combine equations ሺ3 െ 65ሻ, ሺ3 െ 72ሻ, ሺ3 െ 80ሻ, ሺ3 െ 94ሻ, and ሺ3 െ 97ሻ in quadrature. The 

general form is 

߰௢,ௗ௔௥௞ ൌ ට߰௢,்
ଶ ൅ ߰௢,ଵ/௙

ଶ ൅ ߰௢,௦ଶ ൅ ߰௢,ோி௘௤
ଶ ൅ ߰௢,௦௛

ଶ 																														ሺ3 െ 102ሻ 

The total RMS dark noise observed at the output is then the quadrature sum of ሺ3 െ 70ሻ, 

ሺ3 െ 78ሻ, ሺ3 െ 81ሻ, ሺ3 െ 95ሻሺ3 െ 81ሻ, and ሺ3 െ 98ሻ	.  

௡,ௗ௔௥௞ݒ ൌ ටݒ௡,்
ଶ ൅ ௡,ଵ/௙ݒ

ଶ ൅ ௡,௦ଶݒ ൅ ௡,ோி௘௤ݒ
ଶ ൅ ௡,௦௛ݒ

ଶ 																								ሺ3 െ 103ሻ 
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The total noise is the combination of light and dark noise.  

௡,௧௢௧௔௟ݒ ൌ ටݒ௡,ௗ௔௥௞
ଶ ൅ ௡,௟௜௚௛௧ݒ

ଶ 																																											ሺ3 െ 104ሻ 

Substitute equations ሺ3 െ 103ሻ and ሺ3 െ 101ሻ into ሺ3 െ 104ሻ. 

௡,௧௢௧௔௟ݒ ൌ ටߙ ௅݂ܴி,௘௤
ଶ ൅ ߚ ௅݂ܴி,௘௤																																								ሺ3 െ 105ሻ 

where 

ߙ ൌ ௦ଶߦ ൅ ௦௛ݎ/4݇ܶ ൅ ଓ௣ഥݍ2 ൅ ሺ2ܿߨ௜௡ሻଶ ௅݂ߛ																																ሺ3 െ 106ሻ 

ߚ ൌ 4݇ܶ ൬1 ൅
ܴ஺
ܴ஻
൰																																																				ሺ3 െ 107ሻ 

and 

ߛ ൌ ்߰
ଶ ቀ
ߨ
2
െ 1	ቁ ௅݂ ൅ ଶlnܰܰܨ ቆ

ଶߨ

4
൅ 1ቇ																															ሺ3 െ 108ሻ 

3.2.2 Signal-to-Noise Ratio 
 

From section 3.1.3 we know that the SNR is define by equation ሺ3 െ 52ሻ. The same applies to 

the amplifier with the T-bridge network. If we substitute equation ሺ3 െ 104ሻ into ሺ3 െ 52ሻ, we 

get 

ܴܵܰ ൌ
ܴி,௘௤ଓ௣෥

ටߙ ௅݂ܴி,௘௤
ଶ ൅ ߚ ௅݂ܴி,௘௤

																																															ሺ3 െ 109ሻ 

Equation ሺ3 െ 109ሻ and equation ሺ3 െ 52ሻ may look similar, but keep in mind that the ߚ in 

ሺ3 െ 109ሻ will always be greater than that in ሺ3 െ 53ሻ by a factor of 1 ൅ ܴ஺/ܴ஻. 
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3.2.3 Frequency Response 
 

In this section we will analyze the frequency response of a TIA with a T-bridge feedback 

network. The model used in this section is shown below. Note that in this section we did not 

include the photodiode shunt resistance ݎ௦௛ because it does not have a significant impact on the 

bandwidth. We will be using the single-pole op-amp model and include the op-amp common 

mode and differential mode input capacitance . As in the previous section, ܿ௖௠ and ܿௗ௠ combine 

in parallel with the photodiode’s junction capacitance ௝ܿ (see equation ሺ3 െ 2ሻ). 

The op-amp is modeled as having finite gain of ܣ௢௟ and an internal pole at ௣݂,௢௔. The op-

amp’s transfer function is shown below. 

௢௨௧ݒ ൌ
௢௟ܣ

1 ൅ ݆݂/ ௣݂,௢௔
ሺݒା െ  ሻିݒ





ݐݑ݋ݒ ൌ
݈݋ܣ

1 ൅ ݆݂/ ݂݌
ሺݒ൅ െ  െሻݒ

 

Figure 3-4: T-bridge circuit (left) and corresponding circuit model (right) 

 

Circuit analysis yields the amplifier’s frequency response 
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்ܩ ൌ
௢௨௧ݒ
݅௜௡

ൌ
஽஼൫1ܩ ൅ ݆݂݇௡,௜௠൯

1 െ ݂ଶ݇ௗ,௥௘ ൅ ݆݂݇ௗ,௜௠ଵ െ ݆݂ଷ݇ௗ,௜௠ଶ
																																			ሺ3 െ 110ሻ 

Where 

஽஼ܩ ൌ
௢௟ܴி,௘௤ܣ

௢௟ܣ ൅ ቀ1 ൅
ܴ஺
ܴ஻
ቁ
																																																											ሺ3 െ 111ሻ 

݇௡,௜௠ ൌ ߨ2
3ܴ஺ܴ஼ܿ௣,ோ
ܴி,௘௤

																																																											ሺ3 െ 112ሻ 

݇ௗ,௥௘ ൌ

ଶܴ஺ܴ஼ܿ௣,ோߨ4 ቀ൫ܿ௣,ோ ൅ 3 ௙ܿ൯ܣ௢௟ ൅ 3൫ܿ௜௡ ൅ ܿ௣,ோ൯ቁ

൅2ߨ൫ܴி,௘௤൫ܿ௜௡ ൅ ௙ܿ ൅ ܿ௣,ோ൯ ൅ ܴ஺ܿ௣,ோ൯/ ௣݂,௢௔

௢௟ܣ ൅ ቀ1 ൅
ܴ஺
ܴ஻
ቁ

																	ሺ3 െ 113ሻ 

݇ௗ,௜௠ଵ ൌ

௢௟ሺܴ஺ܣሺߨ2 ൅ ܴ஼ሻ ൅ ܴ஺ሻܿ௣,ோ

൅2ܴߨி,௘௤ ቀሺܣ௢௟ ൅ 1ሻ ௙ܿ ൅ ܿ௜௡ ൅ ܿ௣,ோቁ ൅ ቀ1 ൅
ܴ஺
ܴ஻
ቁ / ௣݂,௢௔

௢௟ܣ ൅ ቀ1 ൅
ܴ஺
ܴ஻
ቁ

									ሺ3 െ 114ሻ 

݇ௗ,௜௠ଶ ൌ ଶߨ4
3ܴ஺ܴ஼ܿ௣൫ܿ௜௡ ൅ ܿ௣,ோ൯/ ௣݂,௢௔

௢௟ܣ ൅ ቀ1 ൅
ܴ஺
ܴ஻
ቁ

																															ሺ3 െ 115ሻ 

The magnitude of the frequency response is then 

|்ܩ| ൌ
஽஼ට1ܩ ൅ ݂ଶ݇௡,௜௠

ଶ

ට൫1 െ ݂ଶ݇ௗ,௥௘൯
ଶ
൅ ൫݂݇ௗ,௜௠ଵ െ ݆݂ଷ݇ௗ,௜௠ଶ൯

ଶ
																						ሺ3 െ 116ሻ 

One can solve for the cutoff frequency by substituting ௅݂ for ݂ and ܩଷௗ஻, the gain in the pass 

band reduced by 3dB, for |்ܩ|. Rearranging the above equation then results in the 6th-order 

polynomial shown below. 
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݇଺ ௅݂
଺ ൅ ݇ସ ௅݂

ସ ൅ ݇ଶ ௅݂
ଶ ൅ ݇଴ ൌ 0																																									ሺ3 െ 117ሻ 

݇଴ ൌ
ଷୢ୆ܩ
ଶ

஽஼ܩ
ଶ െ 1																																																								ሺ3 െ 118ሻ 

݇ଶ ൌ
ଷୢ୆ܩ
ଶ

஽஼ܩ
ଶ ൫݇ௗ,௜௠ଵ

ଶ െ 2݇ௗ,௥௘൯ െ ݇௡,௜௠
ଶ 																																				ሺ3 െ 119ሻ 

݇ସ ൌ
ଷୢ୆ܩ
ଶ

஽஼ܩ
ଶ ൫݇ௗ,௥௘

ଶ െ 2݇ௗ,௜௠ଵ݇ௗ,௜௠ଶ൯																																						ሺ3 െ 120ሻ 

݇଺ ൌ
ଷୢ୆ܩ
ଶ

஽஼ܩ
ଶ ݇ௗ,௜௠ଶ

ଶ 																																																						ሺ3 െ 121ሻ 

The cutoff frequency can be approximated however using a simpler method. In equation ሺ3 െ

110ሻ set ܣ௢௟ ൌ ∞ and ௙ܿ ൌ 0. This leaves only the poles corresponding to the parasitic 

capacitance of the resistors. The resulting equation is written below. 

்ܩ ൌ
ܴி,௘௤ ൬1 ൅ ݆߱

3ܴ஺ܴ஼ܿ௣,ோ
ܴி,௘௤

൰

൫1 ൅ ݆ܴ߱஺ܿ௣,ோ൯൫1 ൅ ݆ܴ߱஼ܿ௣,ோ൯
																																			ሺ3 െ 122ሻ 

From the above equation we can see that there are 2 poles and 1 zero. These are 

௣݂ଵ ൌ
1

஺ܿ௣,ோܴߨ2
 

௣݂ଶ ൌ
1

஼ܿ௣,ோܴߨ2
 

௭݂ ൌ
ܴி,௘௤

஺ܴ஼ܿ௣,ோܴߨ6
 

If ܣ௢௟ ൌ ∞ and ܿ௣,ோ ൌ 0 in equation ሺ3 െ 110ሻ, then the transfer function reduces to 
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்ܩ ൌ
ܴி,௘௤

1 ൅ ி,௘௤ܴ݂ߨ2݆ ௙ܿ
 

From the above expression we can see there is one pole at 

௣݂ଷ ൌ
1

ி,௘௤ܴߨ2 ௙ܿ
 

There is another pole, though its derivation is not as simple as those described above [31]. This 

one is related to the op-amp’s gain-bandwidth product, the transimpedance gain, and the input 

capacitance. It is defined as 

௣݂ସ ൌ ඨ
ܹܤܩ

ி,௘௤ܿ௜௡ܴߨ2
 

Of poles ௣݂ଵ, ௣݂ଶ, ௣݂ଷ, and ௣݂ସ, the one which is the smallest will be the best approximation of the 

amplifier’s cutoff frequency.
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3.3 AC-Coupled Amplifier Topologies 
 

To determine if there is any advantage to AC-coupling in the first stage, we will analyze 

the inherent noise produced by each topology to create an equation for its SNR. Then compare 

the SNR of each of the topologies in Figure 3-5. It seems logical that if the offset is removed in 

the first stage, the gain can be increased and therefore circuits with AC-coupling in the 1st stage 

should have a higher SNR than those with DC-coupling in the 1st stage. The following sections 

will show, however, that this is not the case. 

For the analysis, we will model all op-amps as having infinite gain. The reason for this 

being that the op-amp’s internal poles will only have an effect at higher frequencies beyond the 

low-pass cutoff ௅݂. These effects will be further attenuated by a 2nd stage high-order filter (not 

shown in the figure) described in section 1.3.1 equation ሺ1 െ 12ሻ. The op-amp in the forward 

path of the circuits will be modeled as having common mode and differential mode input 

capacitance, ܿ௖௠ and ܿௗ௠ respectively, which will combine in parallel with the photodiode’s 

junction capacitance ௝ܿ to produce ܿ௜௡ (see equation ሺ3 െ 2ሻ). The op-amp in the forward path of 

each circuit will be modeled as having input current shot noise, thermal noise, and flicker noise 

whereas the op-amp in the feedback path will be modeled as having only thermal and flicker 

noise. This is because the input current noise for the feedback op-amps will not be connected to a 

high impedance like those in the forward path.  

The figure below shows a generic low-pass filter in the feedback path to cancel the low-

frequency input. It is possible to implement these circuits with a variety of different low-pass 

filters so long as the feedback loop is properly stabilized. Our analysis, however, will replace the 

LPF with an integrator for simplicity.  
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In most bio-signal detection applications, the high-pass cutoff frequency ு݂ is typically 

very low ~50mHz [14], while the low-pass cutoff frequency can be anywhere from 300-2kHz 

[15, 7, 3, 11, 2]. Thus it is safe to say that ௅݂ ≫ ு݂ which will greatly simplify the integration of 

the noise density. 

 

















 

Figure 3-5: AC-coupled photodiode amplifier topologies. 

 

3.3.1 Active Current Feedback Using a Resistor 
 

The topology in Figure 3-5A uses active current feedback to remove the DC component 

of the signal. The low-pass filter isolates the DC component of the output and then subtracts it by 

injecting a current back into the input. The voltage output of the LPF is converted to a current by 

the resistor ܴ஼ி஻. This sets the high-pass cutoff frequency at 

ு݂ ൌ
ܴி
ܴ஼ி஻

௅݂																																																										ሺ3 െ 123ሻ 

where ௅݂ is the cutoff frequency of the low-pass filter. The low-pass cutoff of the amplifier is then 

determined by 

௅݂ ൌ
1

ிܥிܴߨ2
																																																									ሺ3 െ 124ሻ 
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The resistor ܴ஼ி஻ also determines the maximum amount of current offset that can be removed. 

This limit is defined as  

ଓ௣ഥ ൑ ஼ܸ஼

ܴ஼ி஻
																																																												ሺ3 െ 125ሻ 

Where ஼ܸ஼  is the supply rail voltage.  

Figure 3-6 shows the noise model for the amplifier and photodiode. For this analysis we 

will use an op-amp model with infinite gain for the forward-path and feedback-path op-amps. 














  

 

Figure 3-6: Photodiode amplifier with active current feedback (left) and corresponding noise model (right). 

 

Performing circuit analysis for each individual noise source yields an expression for each. The 

feedback resistor thermal noise transfer function is shown below. 

߰௢,ோி
ோிߦ

ൌ ܴி
ூே்ܥூே்ܴ݂ߨ2݆

ܴ஼ி஻
ܴி

1 ൅ ூே்ܥூே்ܴ݂ߨ2݆
ܴ஼ி஻
ܴி

൫1 ൅ ிܴ݂ߨ2݆ ௙ܿ൯
																					ሺ3 െ 126ሻ 

The noise density is then 
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ห߰௢,ோிห ൌ
ቚ2ܴ݂ߨூே்ܥூே்

ܴ஼ி஻
ܴி

ቚඥ4ܴ݇ܶி

ඨ൫1 െ ሺ2݂ߨሻଶܴூே்ܥூே்ܴ஼ி஻ ௙ܿ൯
ଶ
൅ ݂ଶ ቀ2ܴߨூே்ܥூே்

ܴ஼ி஻
ܴி

ቁ
ଶ
						ሺ3 െ 127ሻ 

Assuming that ௅݂ ≫ ு݂, the transfer function in ሺ3 െ 126ሻ is the same form as that in ሺ1 െ 8ሻ, we 

can use equation ሺ1 െ 13ሻ as the result of the integral. We then have 

௡,ோிݒ ൌ ඨන ௅௉ி|ଶห߰௢,ோிหܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,ோிห

ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ඥ4ܴ݇ܶி ௅݂								ሺ3 െ 128ሻ 

The transfer function seen by the ܴ஼ி஻ thermal noise is 

߰௢,ோ஼ி஻
߰ோ஼ி஻

ൌ െ
ܴி
ܴ஼ி஻

ூே்ܥூே்ܴ݂ߨ2݆
ܴ஼ி஻
ܴி

1 ൅ ூே்ܥூே்ܴ݂ߨ2݆
ܴ஼ி஻
ܴி

൫1 ൅ ிܴ݂ߨ2݆ ௙ܿ൯
														ሺ3 െ 129ሻ 

The noise density is then 

ห߰௢,ோ஼ி஻ห ൌ
ܴி
ܴ஼ி஻

ቚ2ܴ݂ߨூே்ܥூே்
ܴ஼ி஻
ܴி

ቚඥ4ܴ݇ܶ஼ி஻

ඨሺ1 െ ሺ2݂ߨሻଶܥூே்ܴூே்ܴ஼ி஻ܥிሻଶ ൅ ݂ଶ ቀ2ܥߨூே்ܴூே்
ܴ஼ி஻
ܴி

ቁ
ଶ
			ሺ3 െ 130ሻ 

Assuming that ௅݂ ≫ ு݂, the RMS noise voltage is 

௡,ோ஼ி஻ݒ ൌ ඨන ௅௉ி|ଶห߰௢,ோ஼ி஻หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,ோ஼ி஻ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
 

ൌ
ܴி
ܴ஼ி஻

ඥ4ܴ݇ܶ஼ி஻ ௅݂																																																			ሺ3 െ 131ሻ 

The forward-path op-amp thermal noise sees the transfer function shown below 
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߰௢,்,௙௙
்߰,௙௙

ൌ ൬1 ൅
ܴி

ܴ஼ி஻ ∥ ௦௛ݎ
൰

݆݂/ ு݂ሺ1 ൅ ݆݂/ ௭݂ሻ

1 ൅ ݆݂/ ு݂ሺ1 ൅ ݆݂/ ௅݂ሻ
																							ሺ3 െ 132ሻ 

where 

ு݂ ൌ
ܴி

ூே்ܴ஼ி஻ܥூே்ܴߨ2
																																																ሺ3 െ 133ሻ 

௭݂ ൌ
1

ிܴߨ2 ∥ ௦௛ݎ ∥ ܴ஼ி஻൫ ௙ܿ ൅ ܿ௜௡൯
																																						ሺ3 െ 134ሻ 

௣݂ ൌ ௅݂ ൌ
1

ிܴߨ2 ௙ܿ
																																																					ሺ3 െ 135ሻ 

The noise density is then 

ห߰௢,்,௙௙ห ൌ ൬1 ൅
ܴி

ܴ஼ி஻ ∥ ௦௛ݎ
൰

|݂/ ு݂|ඥ1 ൅ ݂ଶ/ ௭݂
ଶ

ට൫1 െ ݂ଶ/ሺ ு݂ ௅݂ሻ൯
ଶ
൅ ݂ଶ/ ு݂

ଶ

்߰,௙௙										ሺ3 െ 136ሻ 

Assuming that ௅݂ ≫ ு݂, the RMS noise at the output is then 

௡,்,௙௙ݒ ൌ ඨන ௅௉ி|ଶห߰௢,்,௙௙หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,்,௙௕ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
 

ൌ ൬1 ൅
ܴி

ܴ஼ி஻ ∥ ௦௛ݎ
൰்߰,௙௙

ඨන
1 ൅ ݂ଶ/ ௭݂

ଶ

1 ൅ ݂ଶ/ ௅݂
݂݀

గ
ଶ௙ಽ

଴
 

௡,்,௙௙ݒ ൌ ൬1 ൅
ܴி

ܴ஼ி஻ ∥ ௦௛ݎ
൰்߰,௙௙ඨ൭ቀ

ߨ
2
െ 1ቁ ௅݂

ଶ

௭݂
ଶ ൅ 1൱ ௅݂																			ሺ3 െ 137ሻ 

Assuming that ሺ2/ߨ െ 1ሻሺ ௅݂/ ௭݂ሻଶ ≫ 1 

௡,்,௙௙ݒ ൌ ൬1 ൅
ܴி

ܴ஼ி஻ ∥ ௦௛ݎ
൰்߰,௙௙

௅݂

௭݂
ටቀ
ߨ
2
െ 1ቁ ௅݂																									ሺ3 െ 138ሻ 
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Substitute ሺ3 െ 134ሻ into ሺ3 െ 138ሻ 

௡,்,௙௙ݒ ൌ ி൫ܴߨ2 ௙ܿ ൅ ܿ௜௡൯ ௅்݂߰,௙௙ටቀ
ߨ
2
െ 1ቁ ௅݂																												ሺ3 െ 139ሻ 

For high-gain applications ܿ௜௡ ≫ ௙ܿ, the above equation then becomes 

௡,்,௙௙ݒ ൌ ிܿ௜௡ܴߨ2 ௅்݂߰,௙௙ටቀ
ߨ
2
െ 1ቁ ௅݂																																		ሺ3 െ 140ሻ 

The forward-path op-amp flicker noise sees the same transfer function as the thermal noise. Using 

equation ሺ3 െ 132ሻ, we get 

߰௢,ଵ/௙,௙௙
߰ଵ/௙,௙௙

ൌ ൬1 ൅
ܴி

ܴ஼ி஻ ∥ ௦௛ݎ
൰

݆݂/ ு݂ሺ1 ൅ ݆݂/ ௭݂ሻ

1 ൅ ݆݂/ ு݂ሺ1 ൅ ݆݂/ ௅݂ሻ
																					ሺ3 െ 141ሻ 

The noise density is then 

ห߰௢,ଵ/௙,௙௙ห ൌ ൬1 ൅
ܴி

ܴ஼ி஻ ∥ ௦௛ݎ
൰

|݂/ ு݂|ඥ1 ൅ ݂ଶ/ ௭݂
ଶ

ට൫1 െ ݂ଶ/ሺ ு݂ ௅݂ሻ൯
ଶ
൅ ݂ଶ/ ு݂

ଶ

ܰܨ ௙ܰ௙

ඥ݂
							ሺ3 െ 142ሻ 

The RMS noise voltage is then 

௡,ଵ/௙,௙௙ݒ ൌ ඨන ௅௉ி|ଶห߰௢,ଵ/௙,௙௙หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,ଵ/௙,௙௙ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
 

ൌ ൬1 ൅
ܴி

ܴ஼ி஻ ∥ ௦௛ݎ
൰ ܰܨ ௙ܰ௙ඨන

1 ൅ ݂ଶ/ ௭݂
ଶ

1 ൅ ݂ଶ/ ௅݂

1
݂
݂݀

గ
ଶ௙ಽ

௙బ

 

௡,ଵ/௙,௙௙ݒ ൌ ൬1 ൅
ܴி

ܴ஼ி஻ ∥ ௦௛ݎ
൰ , ܰܨ ௙ܰ௙ඩln ൬

ߨ
2

௅݂

଴݂
൰ ൅

1
2
ቆ ௅݂

ଶ

௭݂
ଶ െ 1ቇ lnቌ

ቀ
ߨ
2 ௅݂ቁ

ଶ
൅ ௅݂

ଶ

଴݂
ଶ ൅ ௅݂

ଶ ቍ							ሺ3 െ 143ሻ 

If ௅݂
ଶ ≫ ଴݂

ଶ 
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௡,ଵ/௙,௙௙ݒ ൌ ൬1 ൅
ܴி

ܴ஼ி஻ ∥ ௦௛ݎ
൰ ܰܨ ௙ܰ௙

ඩln ൬
ߨ
2

௅݂

଴݂
൰ ൅

ln ൬1 ൅
ଶߨ
4 ൰

2
ቆ ௅݂

ଶ

௭݂
ଶ െ 1ቇ									ሺ3 െ 144ሻ 

If ଴݂ ൌ 1mHz,  ௅݂ ≫ ௭݂ and ௅݂ ≫ 1Hz 

௡,ଵ/௙,௙௙ݒ ൌ ൬1 ൅
ܴி

ܴ஼ி஻ ∥ ௦௛ݎ
൰ ܰܨ ௙ܰ௙

௅݂

௭݂

ඩln ൬1 ൅
ଶߨ
4 ൰

2
																					ሺ3 െ 145ሻ 

Substitute ሺ3 െ 134ሻ into ሺ3 െ 145ሻ 

௡,ଵ/௙,௙௙ݒ ൌ ி൫ܴߨ2 ௙ܿ ൅ ܿ௜௡൯ ௅݂ܰܨ ௙ܰ௙
ඩln ൬1 ൅

ଶߨ
4 ൰

2
																							ሺ3 െ 146ሻ 

For high-gain applications ܿ௜௡ ≫ ௙ܿ 

௡,ଵ/௙,௙௙ݒ ൌ ிܿ௜௡ܴߨ2 ௅݂ܰܨ ௙ܰ௙
ඩln ൬1 ൅

ଶߨ
4 ൰

2
																															ሺ3 െ 147ሻ 

The transfer function of the forward-path op-amp current noise is 

߰௢,௦,௙௙
௦,௙௙ߦ

ൌ ܴி
ூே்ܥூே்ܴ݂ߨ2݆

ܴ஼ி஻
ܴி

1 ൅ ூே்ܥூே்ܴ݂ߨ2݆
ܴ஼ி஻
ܴி

൫1 ൅ ிܴ݂ߨ2݆ ௙ܿ൯
																			ሺ3 െ 148ሻ 

The noise density is then 

ห߰௢,௦,௙௙ห ൌ
ܴிߦ௦ ቚ2ܴ݂ߨூே்ܥூே்

ܴ஼ி஻
ܴி

ቚ

ඨ൫1 െ ሺ2݂ߨሻଶܴூே்ܥூே்ܴ஼ி஻ ௙ܿ൯
ଶ
൅ ݂ଶ ቀ2ܴߨூே்ܥூே்

ܴ஼ி஻
ܴி

ቁ
ଶ
								ሺ3 െ 149ሻ 

Assuming that ௅݂ ≫ ு݂, the RMS noise voltage is 
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௡,௦,௙௙ݒ ൌ ඨන ௅௉ி|ଶห߰௢,௦,௙௙หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,௦,௙௙ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ܴிߦ௦ඥ ௅݂							ሺ3 െ 150ሻ 

The photodiode thermal noise current sees the same transfer function as the op-amp input current 

shot noise. Using equation ሺ3 െ 148ሻ we have 

߰௢,௥௦௛
௥௦௛ߦ

ൌ ܴி
ூே்ܥூே்ܴ݂ߨ2݆

ܴ஼ி஻
ܴி

1 ൅ ூே்ܥூே்ܴ݂ߨ2݆
ܴ஼ி஻
ܴி

൫1 ൅ ிܴ݂ߨ2݆ ௙ܿ൯
																			ሺ3 െ 151ሻ 

The noise density is then 

ห߰௢,௥௦௛ห ൌ
ܴி ቚ2ܴ݂ߨூே்ܥூே்

ܴ஼ி஻
ܴி

ቚට4݇ܶݎ௦௛

ඨ൫1 െ ሺ2݂ߨሻଶܴூே்ܥூே்ܴ஼ி஻ ௙ܿ൯
ଶ
൅ ݂ଶ ቀ2ܴߨூே்ܥூே்

ܴ஼ி஻
ܴி

ቁ
ଶ
								ሺ3 െ 152ሻ 

Assuming that ௅݂ ≫ ு݂, the RMS noise voltage is 

௡,௥௦௛ݒ ൌ ඨන ௅௉ி|ଶห߰௢,௥௦௛หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,௥௦௛ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ܴிඨ

4݇ܶ
݄ݏݎ ௅݂										ሺ3 െ 153ሻ 

 

The transfer function seen by thermal noise from the op-amp in the feedback path is 

߰௢,்,௙௕
்߰,௙௕

ൌ െ
1 ൅ ூே்ܥூே்ܴ݂ߨ2݆

1 ൅ ூே்ܥூே்ܴ݂ߨ2݆
ܴ஼ி஻
ܴி

൫1 ൅ ிܴ݂ߨ2݆ ௙ܿ൯
																			ሺ3 െ 154ሻ	 

From the above transfer function we can see that	there is one zero 

௭݂ ൌ
1

ூே்ܥூே்ܴߨ2
																																																						ሺ3 െ 155ሻ 
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and 2 poles 

௣݂ଵ ൌ ு݂ ൌ
ܴி

ூே்ܴ஼ி஻ܥூே்ܴߨ2
																																										ሺ3 െ 156ሻ 

௣݂ଶ ൌ ௅݂ ൌ
1

ிܴߨ2 ௙ܿ
																																																			ሺ3 െ 157ሻ 

The noise density is then 

ห߰௢,்,௙௕ห ൌ
ඥ1 ൅ ݂ଶሺ2ܥߨூே்ܴூே்ሻଶ

ඨ൫1 െ ሺ2݂ߨሻଶܥூே்ܴூே்ܴ஼ி஻ ௙ܿ൯
ଶ
൅ ݂ଶ ቀ2ܴߨூே்ܥூே்

ܴ஼ி஻
ܴி

ቁ
ଶ
்߰,௙௕							ሺ3 െ 158ሻ 

The RMS noise at the output is then 

௡,்,௙௕ݒ ൌ ඨන ௅௉ி|ଶห߰௢,்,௙௕หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,்,௙௕ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
																ሺ3 െ 159ሻ 

௡,்,௙௕ݒ ൌ ்߰,௙௕ඨන
1 ൅ ݂ଶ/ ௭݂

ଶ

1 ൅ ݂ଶ/ ௣݂ଵ
݂݀

గ
ଶ௙ಽ

଴
																																		ሺ3 െ 160ሻ	 

௡,்,௙௕ݒ ൌ ்߰,௙௕ඪ
௣݂ଵ

௭݂
ଶ ൮

ߨ
2 ௅݂ ௣݂ଵ ൅ tanିଵ ቌ

ߨ
2 ௅݂

௣݂ଵ
ቍ ൫ ௭݂

ଶ െ ௣݂ଵ
ଶ ൯൲														ሺ3 െ 161ሻ 

If ௅݂ ≫ ௣݂ଵ 

௡,்,௙௕ݒ ൌ ்߰,௙௕ඨ
ߨ
2
ቆ ௣݂ଵ

ଶ

௭݂
ଶ ሺ ௅݂ െ 1ሻ ൅ ௣݂ଵቇ																																ሺ3 െ 162ሻ 

If ௅݂ ≫ 1 and 
௙೛భ
మ

௙೥
మ ௅݂ ≫ ௣݂ଵ 
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௡,்,௙௕ݒ ൌ ்߰,௙௕
௣݂ଵ

௭݂
ට
ߨ
2 ௅݂																																															ሺ3 െ 163ሻ 

Substitute ሺ3 െ 155ሻ and ሺ3 െ 156ሻ into ሺ3 െ 163ሻ 

௡,்,௙௕ݒ ൌ ்߰,௙௕
ܴி
ܴ஼ி஻

ට
ߨ
2 ௅݂																																													ሺ3 െ 164ሻ 

The feedback op-amp flicker noise sees the same transfer function as the thermal noise. Hence we 

can use equation ሺ3 െ 154ሻ	 to write 

߰௢,ଵ/௙,௙௕
߰ଵ/௙,௙௕

ൌ െ
1 ൅ ூே்ܥூே்ܴ݂ߨ2݆

1 ൅ ூே்ܥூே்ܴ݂ߨ2݆
ܴ஼ி஻
ܴி

൫1 ൅ ிܴ݂ߨ2݆ ௙ܿ൯
																		ሺ3 െ 165ሻ 

Similarly, the noise density at the output due to op-amp flicker noise is 

ห߰௢,ଵ/௙,௙௕ห ൌ
ඥ1 ൅ ݂ଶሺ2ܥߨூே்ܴூே்ሻଶ

ඨ൫1 െ ሺ2݂ߨሻଶܥூே்ܴூே்ܴ஼ி஻ ௙ܿ൯
ଶ
൅ ݂ଶ ቀ2ܴߨூே்ܥூே்

ܴ஼ி஻
ܴி

ቁ
ଶ

ܰܨ ௙ܰ௕

ඥ݂
					ሺ3 െ 166ሻ 

The RMS noise at the output is then 

௡,ଵ/௙,௙௕ݒ ൌ ඨන ௅௉ி|ଶห߰௢,ଵ/௙,௙௕หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,ଵ/௙,௙௕ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
										ሺ3 െ 167ሻ 

௡,ଵ/௙,௙௕ݒ ൌ ܰܨ ௙ܰ௕ඨන
1 ൅ ݂ଶ/ ௭݂

ଶ

1 ൅ ݂ଶ/ ௣݂ଵ

1
݂
݂݀

గ
ଶ௙ಽ

଴
																															ሺ3 െ 168ሻ 

௡,ଵ/௙,௙௕ݒ ൌ ܰܨ ௙ܰ௕ඩln ൬
ߨ
2

௅݂

଴݂
൰ ൅

1
2
ቆ ௣݂ଵ

ଶ

௭݂
ଶ െ 1ቇ lnቌ

ቀ2ߨ ௅݂ቁ
ଶ
൅ ௣݂ଵ

ଶ

଴݂
ଶ ൅ ௣݂ଵ

ଶ ቍ										ሺ3 െ 169ሻ 

If ௣݂ଵ
ଶ ≫ ଴݂

ଶ 
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௡,ଵ/௙,௙௕ݒ ൌ ܰܨ ௙ܰ௕ඩln ൬
ߨ
2

௅݂

଴݂
൰ ൅

1
2
ቆ ௣݂ଵ

ଶ

௭݂
ଶ െ 1ቇ lnቌ1 ൅

ቀ2ߨ ௅݂ቁ
ଶ

௣݂ଵ
ଶ ቍ												ሺ3 െ 170ሻ 

Insert ሺ3 െ 155ሻ and ሺ3 െ 156ሻ into ሺ3 െ 170ሻ 

௡,ଵ/௙,௙௕ݒ ൌ ܰܨ ௙ܰ௕ඨln ൬
ߨ
2

௅݂

଴݂
൰ ൅

1
2
ቆ൬

ܴி
ܴ஼ி஻

൰
ଶ

െ 1ቇ ln ቆ1 ൅ ൬
ߨ
2

௅݂

ு݂
൰
ଶ

ቇ						ሺ3 െ 171ሻ 

If ቀ
గ

ଶ

௙ಽ
௙ಹ
ቁ
ଶ
≫ 1, then 

௡,ଵ/௙,௙௕ݒ ൌ ܰܨ ௙ܰ௕ඨln ൬
ߨ
2

௅݂

଴݂
൰ ൅ ቆ൬

ܴி
ܴ஼ி஻

൰
ଶ

െ 1ቇ ln ൬
ߨ
2

௅݂

ு݂
൰																ሺ3 െ 172ሻ 

If ܴி
ଶ/ܴ஼ி஻

ଶ ≫ 1, then 

௡௢,ଵ/௙,௙௕ݒ ൌ ܰܨ ௙ܰ௕ඨln ൬
ߨ
2

௅݂

଴݂
൰ ൅ ൬

ܴி
ܴ஼ி஻

൰
ଶ

ln ൬
ߨ
2

௅݂

ு݂
൰																					ሺ3 െ 173ሻ 

If  ቀ
ோಷ
ோ಴ಷಳ

ቁ
ଶ
ln ቀ

గ

ଶ

௙ಽ
௙ಹ
ቁ ≫ ln ቀ

గ

ଶ

௙ಽ
௙బ
ቁ, then 

௡,ଵ/௙,௙௕ݒ ൌ
ܴி
ܴ஼ி஻

ܰܨ ௙ܰ௕ඨln ൬
ߨ
2

௅݂

ு݂
൰																																				ሺ3 െ 174ሻ 

The transfer function seen by the integrator resistor thermal noise is shown below. 

߰௢,ோூே்
߰ோூே்

ൌ െ
1

1 ൅ ூே்ܥூே்ܴ݂ߨ2݆
ܴ஼ி஻
ܴி

൫1 ൅ ிܴ݂ߨ2݆ ௙ܿ൯
																			ሺ3 െ 175ሻ 

From the above transfer function we can see 2 poles 

௣݂ଵ ൌ ு݂ ൌ
ܴி

ூே்ܴ஼ி஻ܥூே்ܴߨ2
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௣݂ଶ ൌ ௅݂ ൌ
1

ிܴߨ2 ௙ܿ
 

ห߰௢,ோூே்ห ൌ
ඥ4ܴ݇ܶூே்

ඨ൫1 െ ሺ2݂ߨሻଶܥூே்ܴூே்ܴ஼ி஻ ௙ܿ൯
ଶ
൅ ݂ଶ ቀ2ܴߨூே்ܥூே்

ܴ஼ி஻
ܴி

ቁ
ଶ
						ሺ3 െ 176ሻ 

The RMS noise at the output is then 

௡,ோூே்ݒ ൌ ඨන ௅௉ி|ଶห߰௢,ோூே்หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,ோூே்ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
 

If ௅݂ ≫ ு݂, we can use the noise equivalent bandwidth of a first order low-pass system with 

cutoff frequency ு݂ 

௡,ோூே்ݒ ൌ ඥ2ܴܶ݇ߨூே் ு݂																																															ሺ3 െ 177ሻ 

The noise transfer function, noise density and RMS noise voltage is the same for both resistors. 

The photocurrent shot noise sees the same transfer function as the photodiode thermal noise 

current. Using equation ሺ3 െ 151ሻ, we can write 

߰௢,ℓ௦
ℓ௦ߦ

ൌ ܴி
ூே்ܥூே்ܴ݂ߨ2݆

ܴ஼ி஻
ܴி

1 ൅ ூே்ܥூே்ܴ݂ߨ2݆
ܴ஼ி஻
ܴி

൫1 ൅ ிܴ݂ߨ2݆ ௙ܿ൯
																					ሺ3 െ 178ሻ 

The noise density is then 

ห߰௢,ℓ௦ห ൌ
ܴி ቚ2ܴ݂ߨூே்ܥூே்

ܴ஼ி஻
ܴி

ቚඥ2ݍଓ௣ഥ

ඨ൫1 െ ሺ2݂ߨሻଶܴூே்ܥூே்ܴ஼ி஻ ௙ܿ൯
ଶ
൅ ݂ଶ ቀ2ܴߨூே்ܥூே்

ܴ஼ி஻
ܴி

ቁ
ଶ
				ሺ3 െ 179ሻ 

Assuming that ௅݂ ≫ ு݂, the RMS noise voltage is 
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௡௢,௟௜௚௛௧ݒ ൌ ඨන ௅௉ி|ଶห߰௢,ℓ௦หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,ℓ௦ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ܴிට2ݍଓ௣ഥ ௅݂					ሺ3 െ 180ሻ 

 

The total dark noise is the quadratic sum of all the noise sources inherent to the amplifier when no 

illumination is present. 

௡,ௗ௔௥௞ݒ ൌ ඨ
௡,்,௙௙ݒ
ଶ ൅ ௡,ଵ/௙,௙௙ݒ

ଶ ൅ ௡,௦,௙௙ݒ
ଶ ൅ ௡,ோிݒ

ଶ

൅ݒ௡,ோ஼ி஻
ଶ ൅ ௡,௥௦௛ݒ

ଶ ൅ ௡,்,௙௕ݒ
ଶ ൅ ௡,ଵ/௙,௙௕ݒ

ଶ ൅ ௡,ோூே்ݒ2
ଶ 												ሺ3 െ 181ሻ 

Substitute ሺ3 െ 140ሻ, ሺ3 െ 147ሻ, ሺ3 െ 150ሻ, ሺ3 െ 128ሻ, ሺ3 െ 131ሻ, ሺ3 െ 153ሻ, ሺ3 െ 164ሻ, 

ሺ3 െ 174ሻ and ሺ3 െ 177ሻ into ሺ3 െ 181ሻ 

௡,ௗ௔௥௞ݒ ൌ ඨܴி
ଶ ൬ߦ௦ଶ ൅

4݇ܶ
݄ݏݎ

൅
4݇ܶ
ܴ஼ி஻

൅ ሺ2ܿߨ௜௡ሻଶߛ ௅݂൰ ௅݂ ൅ ܴிߚ ௅݂ ൅ ሺ3						ூே்ߢ െ 182ሻ 

ߚ ൌ 4݇ܶ																																																														ሺ3 െ 183ሻ 

ߛ ൌ ்߰,௙௙
ଶ ቀ

ߨ
2
െ 1ቁ ௅݂ ൅ ܰܨ ௙ܰ௙

ଶ
ln ൬1 ൅

ଶߨ
4 ൰

2
																														ሺ3 െ 184ሻ 

ூே்ߢ ൌ ൬
ܴி
ܴ஼ி஻

൰
ଶ

൬்߰,௙௕
ଶ ߨ

2 ௅݂ ൅ ܰܨ ௙ܰ௕
ଶ ln ൬

ߨ
2

௅݂

ு݂
൰൰ ൅ ூே்ܴܶ݇ߨ4 ு݂											ሺ3 െ 185ሻ 

The total noise is the quadratic sum of the light and dark noise components. 

௡,௧௢௧௔௟ݒ ൌ ටݒ௡,ௗ௔௥௞
ଶ ൅ ௡,௟௜௚௛௧ݒ

ଶ 																																											ሺ3 െ 186ሻ 

௡,௧௢௧௔௟ݒ ൌ ඨܴி
ଶߙᇱ ௅݂ ൅ ܴி

ଶ ൬
4݇ܶ
ܴ஼ி஻

൅ ଓ௣ഥ൰ݍ2 ௅݂ ൅ ܴிߚ ௅݂ ൅ ሺ3														ூே்ߢ െ 187ሻ 
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ᇱߙ ൌ ௦ଶߦ ൅
4݇ܶ
݄ݏݎ

൅ ሺ2ܿߨ௜௡ሻଶߛ ௅݂																																										ሺ3 െ 188ሻ 

The input signal is 

݅௣ ൌ ݅௣,௦௜௚ ൅ ଓ௣ഥ  

Where ݅௣,௦௜௚ represents the signal current amplitude and is related to the RMS signal current by a 

scaling factor. The SNR is then 

ܴܵܰ ൌ
ܴிଓ௣෥

ටܴி
ଶߙᇱ ௅݂ ൅ ܴி

ଶ ቀ 4ܴ݇ܶ஼ி஻
൅ ଓ௣ഥቁݍ2 ௅݂ ൅ ܴிߚ ௅݂ ൅ ூே்ߢ

																ሺ3 െ 189ሻ 

ܴܵܰ ൌ
ܴிଓ௣෥

ඨܴி
ଶߙᇱ ௅݂ ൅ 4ܴ݇ܶி ቆቀ

1
ܴ஼ி஻

൅
1
2
ݍ
݇ܶ ଓ௣ഥቁܴி ൅ 1ቇ ௅݂ ൅ ூே்ߢ

									ሺ3 െ 190ሻ 

The noise produced by ܴ஼ி஻ is inversely proportional to the size of the resistor, ܴ஼ி஻ should 

therefore be made as large as possible. Hence 

ܴ஼ி஻ ൌ
஼ܸ஼

ଓ௣ഥ
																																																											ሺ3 െ 191ሻ 

Substitute ሺ3 െ 191ሻ into ሺ3 െ 190ሻ 

ܴܵܰ ൌ
ܴிଓ௣෥

ටܴி
ଶߙᇱ ௅݂ ൅ 4ܴ݇ܶி ൬1 ൅ ቀ1 ൅ 1

2
ݍ
݇ܶ ஼ܸ஼ቁ

ଓ௣ഥ
஼ܸ஼
ܴி൰ ௅݂ ൅ ூே்ߢ

								ሺ3 െ 192ሻ 

The maximum value of ܴி is 

ܴி ൌ
஼ܸ஼

݅௣,௦௜௚
																																																											ሺ3 െ 193ሻ 

Substitute ሺ3 െ 193ሻ into ሺ3 െ 192ሻ 
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ܴܵܰ ൌ
஼ܸ஼

ଓ௣෥
݅௣,௦௜௚

ඨ൬ ஼ܸ஼
݅௣,௦௜௚

൰
ଶ
ᇱߙ ௅݂ ൅ 4݇ܶ ൬ ஼ܸ஼

݅௣,௦௜௚
൰ ൬1 ൅ ቀ1 ൅

1
2
ݍ
݇ܶ ஼ܸ஼ቁ

ଓ௣ഥ
݅௣,௦௜௚

൰ ௅݂ ൅ ூே்ߢ

						ሺ3 െ 194ሻ 

 

 

3.3.2 Active Current Feedback Using a Transconductor  
 

The topology in Figure 3-5B also uses active current feedback. However, in this case it is 

implemented with a transconductor instead of a resistor. This circuit has theoretically no limit on 

the current offset that it can remove. Though in practice, it is limited by the parameters of the 

transconductor and the supply voltage. For this analysis, however, we will assume that no such 

limit exists. 












  

 

Figure 3-7: Schematic of amplifier using a transconductor for offset removal (left) and the corresponding noise model 
(right). 
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The transfer function seen by the feedback resistor current noise is 

߰௢,ோி
ோிߦ

ൌ ܴி
݂ߨ2݆

ܴூே்ܥூே்
ܴி݃௠

1 ൅ ݂ߨ2݆
ܴூே்ܥூே்
ܴி݃௠

൫1 ൅ ிܴ݂ߨ2݆ ௙ܿ൯
																									ሺ3 െ 195ሻ 

The noise density is then 

ห߰௢,ோிห ൌ
ฬ2݂ߨ

ܴூே்ܥூே்
ܴி݃௠

ฬඥ4ܴ݇ܶி

ඨ൬1 െ ሺ2݂ߨሻଶ
ܴூே்ܥூே் ௙ܿ

݃௠
൰
ଶ

൅ ݂ଶ ൬2ߨ ܴூே்ܥூே்ܴி݃௠
൰
ଶ

													ሺ3 െ 196ሻ 

Assuming that ௅݂ ≫ ு݂, the RMS noise at the output is then 

௡௢,ோிݒ ൌ ඨන ௅௉ி|ଶห߰௢,ோிหܩ|
ଶ
݂݀

ஶ

଴
 

ൌ ඨන ห߰௢,ோிห
ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ඥ4ܴ݇ܶி ௅݂																																						ሺ3 െ 197ሻ 

The shot noise produced by the transconductor sees the transfer function shown below. 

߰௢,௫௖
௫௖ߦ

ൌ ܴி
݂ߨ2݆

ܴூே்ܥூே்
ܴி݃௠

1 ൅ ݂ߨ2݆
ܴூே்ܥூே்
ܴி݃௠

൫1 ൅ ிܴ݂ߨ2݆ ௙ܿ൯
																									ሺ3 െ 198ሻ 

The noise density is then 

ห߰௢,௫௖ห ൌ ܴி
ฬ2݂ߨ

ܴூே்ܥூே்
ܴி݃௠

ฬඥ2ݍଓ௣ഥ

ඨ൬1 െ ሺ2݂ߨሻଶ
ܴூே்ܥூே் ௙ܿ

݃௠
൰
ଶ

൅ ݂ଶ ൬2ߨ ܴூே்ܥூே்ܴி݃௠
൰
ଶ

										ሺ3 െ 199ሻ 

Assuming that ௅݂ ≫ ு݂, the RMS noise at the output is then 
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௡,௫௖ݒ ൌ ඨන ௅௉ி|ଶห߰௢,௫௖หܩ|
ଶ
݂݀

ஶ

଴
 

ൌ ඨන ห߰௢,௫௖ห
ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ܴிට2ݍଓ௣ഥ ௅݂																																						ሺ3 െ 200ሻ 

The forward-path op-amp thermal noise sees the transfer function below. 

߰௢,்,௙௙
்߰,௙௙

ൌ ൬1 ൅
ܴி
௦௛ݎ
൰
݂ߨ2݆

ܴூே்ܥூே்
ܴி݃௠

ቀ1 ൅ ிܴ݂ߨ2݆ ∥ ௦௛൫ܿ௜௡ݎ ൅ ௙ܿ൯ቁ

1 ൅ ݂ߨ2݆
ܴூே்ܥூே்
ܴி݃௠

൫1 ൅ ிܴ݂ߨ2݆ ௙ܿ൯
								ሺ3 െ 201ሻ 

From the above transfer function we can see that there are 2 zeros 

௭݂ଵ ൌ ு݂ ൌ
ܴி݃௠

ூே்ܥூே்ܴߨ2
																																														ሺ3 െ 202ሻ	 

and 

௭݂ଶ ൌ
1

ிܴߨ2 ∥ ௦௛൫ܿ௜௡ݎ ൅ ௙ܿ൯
																																												ሺ3 െ 203ሻ 

and 2 poles 

௣݂ଵ ൌ ு݂ ൌ
ܴி݃௠

ூே்ܥூே்ܴߨ2
																																																ሺ3 െ 204ሻ 

and 

௣݂ଶ ൌ
1

ிܴߨ2 ௙ܿ
																																																									ሺ3 െ 205ሻ 

The noise density is then 
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ห߰௢,்,௙௙ห ൌ ൬1 ൅
ܴி
௦௛ݎ
൰
ฬ2݂ߨ

ܴூே்ܥூே்
ܴி݃௠

ฬට1 ൅ ݂ଶ ቀ2ܴߨி ∥ ௦௛൫ܿ௜௡ݎ ൅ ௙ܿ൯ቁ
ଶ

ඨ൬1 െ ሺ2݂ߨሻଶ
ܴூே்ܥூே் ௙ܿ

݃௠
൰
ଶ

൅ ݂ଶ ൬2ߨ ܴூே்ܥூே்ܴி݃௠
൰
ଶ

்߰,௙௙							ሺ3 െ 206ሻ 

Assuming that ௅݂ ≫ ு݂, the RMS noise at the output is then 

௡,்,௙௙ݒ ൌ ඨන ௅௉ி|ଶห߰௢,்,௙௙หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,்,௙௙ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
 

ൌ ൬1 ൅
ܴி
௦௛ݎ
൰்߰,௙௙

ඨන
1 ൅ ݂ଶ/ ௭݂ଶ

ଶ

1 ൅ ݂ଶ/ ௅݂
݂݀

గ
ଶ௙ಽ

଴
 

௡,்,௙௙ݒ ൌ ൬1 ൅
ܴி
௦௛ݎ
൰்߰,௙௙ඨ൭ቀ

ߨ
2
െ 1ቁ ௅݂

ଶ

௭݂ଶ
ଶ ൅ 1൱ ௅݂																									ሺ3 െ 207ሻ 

Assuming that ሺ2/ߨ െ 1ሻሺ ௅݂/ ௭݂ଶሻଶ ≫ 1 

௡,்,௙௙ݒ ൌ ൬1 ൅
ܴி
௦௛ݎ
൰்߰,௙௙

௅݂

௭݂ଶ
ටቀ
ߨ
2
െ 1ቁ ௅݂																															ሺ3 െ 208ሻ 

Substitute ሺ3 െ 203ሻ into ሺ3 െ 208ሻ 

௡,்,௙௙ݒ ൌ ி൫ܿ௜௡ܴߨ2 ൅ ௙ܿ൯ ௅்݂߰,௙௙ටቀ
ߨ
2
െ 1ቁ ௅݂																												ሺ3 െ 209ሻ 

For high-gain applications ܿ௜௡ ≫ ௙ܿ, therefore the above expression becomes 

௡,்,௙௙ݒ ൌ ிܿ௜௡ܴߨ2 ௅்݂߰,௙௙ටቀ
ߨ
2
െ 1ቁ ௅݂																																			ሺ3 െ 210ሻ 

The op-amp flicker noise sees the same transfer function as the op-amp thermal noise. Using 

equation ሺ3 െ 201ሻ we have 
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߰௢,ଵ/௙,௙௙
߰ଵ/௙,௙௙

ൌ ൬1 ൅
ܴி
௦௛ݎ
൰
݂ߨ2݆

ܴூே்ܥூே்
ܴி݃௠

ቀ1 ൅ ிܴ݂ߨ2݆ ∥ ௦௛൫ܿ௜௡ݎ ൅ ௙ܿ൯ቁ

1 ൅ ݂ߨ2݆
ܴூே்ܥூே்
ܴி݃௠

൫1 ൅ ிܴ݂ߨ2݆ ௙ܿ൯
							ሺ3 െ 211ሻ 

The noise density is then 

ห߰௢,ଵ/௙,௙௙ห ൌ ൬1 ൅
ܴி
௦௛ݎ
൰
ฬ2݂ߨ

ܴூே்ܥூே்
ܴி݃௠

ฬට1 ൅ ݂ଶ ቀ2ܴߨி ∥ ௦௛൫ܿ௜௡ݎ ൅ ௙ܿ൯ቁ
ଶ

ඨ൬1 െ ሺ2݂ߨሻଶ
ܴூே்ܥூே் ௙ܿ

݃௠
൰
ଶ

൅ ݂ଶ ൬2ߨ ܴூே்ܥூே்ܴி݃௠
൰
ଶ

ܰܨ ௙ܰ௙

ඥ݂
					ሺ3 െ 212ሻ 

Assuming that ௅݂ ≫ ு݂, the RMS noise at the output is then 

௡,ଵ/௙,௙௙ݒ ൌ ඨන ௅௉ி|ଶห߰௢,ଵ/௙,௙௙หܩ|
ଶ
݂݀

ஶ

௙బ

ൌ ඨන ห߰௢,ଵ/௙,௙௙ห
ଶ
݂݀

గ
ଶ௙ಽ

௙బ

 

௡,ଵ/௙,௙௙ݒ ൌ ൬1 ൅
ܴி
௦௛ݎ
൰ ܰܨ ௙ܰ௙ඨන

1 ൅ ݂ଶ/ ௭݂ଶ
ଶ

1 ൅ ݂ଶ/ ௅݂

1
݂
݂݀

గ
ଶ௙ಽ

௙బ

																					ሺ3 െ 213ሻ 

௡,ଵ/௙,௙௙ݒ ൌ ൬1 ൅
ܴி
௦௛ݎ
൰ ܰܨ ௙ܰ௙ඩln ൬

ߨ
2

௅݂

଴݂
൰ ൅

1
2
ቆ ௅݂

ଶ

௭݂ଶ
ଶ െ 1ቇ lnቌ

ቀ2ߨ ௅݂ቁ
ଶ
൅ ௅݂

ଶ

଴݂
ଶ ൅ ௅݂

ଶ ቍ							ሺ3 െ 214ሻ 

If ௅݂
ଶ ≫ ଴݂

ଶ 

௡,ଵ/௙,௙௙ݒ ൌ ൬1 ൅
ܴி
௦௛ݎ
൰ ܰܨ ௙ܰ௙

ඩln ൬
ߨ
2

௅݂

଴݂
൰ ൅

ln ൬1 ൅
ଶߨ
4 ൰

2
ቆ ௅݂

ଶ

௭݂ଶ
ଶ െ 1ቇ									ሺ3 െ 215ሻ 

If ଴݂ ൌ 1mHz,  ௅݂ ≫ ௭݂ and ௅݂ ≫ 1Hz 

௡,ଵ/௙,௙௙ݒ ൌ ൬1 ൅
ܴி
௦௛ݎ
൰ ܰܨ ௙ܰ௙

௅݂

௭݂ଶ

ඩln ൬1 ൅
ଶߨ
4 ൰

2
																											ሺ3 െ 216ሻ 
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Substitute ሺ3 െ 203ሻ into ሺ3 െ 216ሻ 

௡,ଵ/௙,௙௙ݒ ൌ ி൫ܿ௜௡ܴߨ2 ൅ ௙ܿ൯ ௅݂ܰܨ ௙ܰ௙
ඩln ൬1 ൅

ଶߨ
4 ൰

2
																							ሺ3 െ 217ሻ 

For high-gain applications ܿ௜௡ ≫ ௙ܿ, therefore the above expression becomes 

௡,ଵ/௙,௙௙ݒ ൌ ிܿ௜௡ܴߨ2 ௅݂ܰܨ ௙ܰ௙
ඩln ൬1 ൅

ଶߨ
4 ൰

2
																														ሺ3 െ 218ሻ 

The op-amp input current shot noise density sees the transfer function  

߰௢,௦,௙௙
௦,௙௙ߦ

ൌ ܴி
݂ߨ2݆

ܴூே்ܥூே்
ܴி݃௠

1 ൅ ݂ߨ2݆
ܴூே்ܥூே்
ܴி݃௠

൫1 ൅ ிܴ݂ߨ2݆ ௙ܿ൯
																								ሺ3 െ 219ሻ 

The noise density is then 

ห߰௢,௦,௙௙ห ൌ
ܴிߦ௦,௙௙ ฬ2݂ߨ

ܴூே்ܥூே்
ܴி݃௠

ฬ

ඨ൬1 െ ሺ2݂ߨሻଶ
ܴூே்ܥூே் ௙ܿ

݃௠
൰
ଶ

൅ ݂ଶ ൬2ߨ ܴூே்ܥூே்ܴி݃௠
൰
ଶ

												ሺ3 െ 220ሻ 

Assuming that ௅݂ ≫ ு݂, the RMS noise at the output is then 

௡௢,௦,௙௙ݒ ൌ ඨන ௅௉ி|ଶห߰௢,௦,௙௙หܩ|
ଶ
݂݀

ஶ

଴
 

ൌ ඨන ห߰௢,௦,௙௙ห
ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ܴிߦ௦,௙௙ඥ ௅݂																																					ሺ3 െ 221ሻ 
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The photodiode thermal noise sees the same transfer function as the op-amp input current shot 

noise. Using equation ሺ3 െ 219ሻ we have 

߰௢,௥௦௛
௥௦௛ߦ

ൌ ܴி
݂ߨ2݆

ܴூே்ܥூே்
ܴி݃௠

1 ൅ ݂ߨ2݆
ܴூே்ܥூே்
ܴி݃௠

൫1 ൅ ிܴ݂ߨ2݆ ௙ܿ൯
																								ሺ3 െ 222ሻ 

The noise density is then 

ห߰௢,௥௦௛ห ൌ ܴி
ฬ2݂ߨ

ܴூே்ܥூே்
ܴி݃௠

ฬට4݇ܶݎ௦௛

ඨ൬1 െ ሺ2݂ߨሻଶ
ܴூே்ܥூே் ௙ܿ

݃௠
൰
ଶ

൅ ݂ଶ ൬2ߨ ܴூே்ܥூே்ܴி݃௠
൰
ଶ

									ሺ3 െ 223ሻ 

Assuming that ௅݂ ≫ ு݂, the RMS noise at the output is then 

௡,௥௦௛ݒ ൌ ඨන ௅௉ி|ଶห߰௢,௥௦௛หܩ|
ଶ
݂݀

ஶ

଴
 

ൌ ඨන ห߰௢,௥௦௛ห
ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ܴிඨ

4݇ܶ
௦௛ݎ

௅݂																														ሺ3 െ 224ሻ 

The feedback op-amp thermal noise sees the transfer function below. 

߰௢,்,௙௕
்߰,௙௕

ൌ െ
1 ൅ ூே்ܥூே்ܴ݂ߨ2݆

1 ൅ ݂ߨ2݆
ܴூே்ܥூே்
ܴி݃௠

൫1 ൅ ிܴ݂ߨ2݆ ௙ܿ൯
																									ሺ3 െ 225ሻ 

From the transfer function above, we can see that the system has 1 zero 

௭݂ ൌ
1

ூே்ܥூே்ܴߨ2
																																																					ሺ3 െ 226ሻ 

and 2 poles 
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௣݂ଵ ൌ ு݂ ൌ
ܴி݃௠

ூே்ܥூே்ܴߨ2
																																															ሺ3 െ 227ሻ 

and 

௣݂ଶ ൌ ௅݂ ൌ
1

ிܴߨ2 ௙ܿ
																																																			ሺ3 െ 228ሻ 

The noise density is then 

ห߰௢,்,௙௕ห ൌ
ඥ1 ൅ ݂ଶሺ2ܴߨூே்ܥூே்ሻଶ

ඨ൬1 െ ሺ2݂ߨሻଶ
ܴூே்ܥூே் ௙ܿ

݃௠
൰
ଶ

൅ ݂ଶ ൬2ߨ ܴூே்ܥூே்ܴி݃௠
൰
ଶ

்߰,௙௕							ሺ3 െ 229ሻ 

The RMS noise at the output is then 

௡,்,௙௕ݒ ൌ ඨන ௅௉ி|ଶห߰௢,்,௙௕หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,்,௙௕ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
															ሺ3 െ 230ሻ 

௡,்,௙௕ݒ ൌ ்߰,௙௕ඨන
1 ൅ ݂ଶ/ ௭݂

ଶ

1 ൅ ݂ଶ/ ௣݂ଵ
݂݀

గ
ଶ௙ಽ

଴
																																		ሺ3 െ 231ሻ 

௡,்,௙௕ݒ ൌ ்߰,௙௕ඪ
௣݂ଵ

௭݂
ଶ ൮

ߨ
2 ௅݂ ௣݂ଵ െ tanିଵ ቌെ

ߨ
2 ௅݂

௣݂ଵ
ቍ ൫ ௭݂

ଶ െ ௣݂ଵ
ଶ ൯൲												ሺ3 െ 232ሻ 

If ௅݂ ≫ ௣݂ଵ 

௡,்,௙௕ݒ ൌ ்߰,௙௕ඨ
ߨ
2
ቆ ௣݂ଵ

ଶ

௭݂
ଶ ሺ ௅݂ െ 1ሻ ൅ ௣݂ଵቇ																																ሺ3 െ 233ሻ 

If ௅݂ ≫ 1 and 
௙೛భ
మ

௙೥
మ ௅݂ ≫ ௣݂ଵ 
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௡,்,௙௕ݒ ൌ ்߰,௙௕
௣݂ଵ

௭݂
ට
ߨ
2 ௅݂																																															ሺ3 െ 234ሻ 

Substitute ሺ3 െ 226ሻ and ሺ3 െ 227ሻ into ሺ3 െ 234ሻ 

௡,்,௙௕ݒ ൌ ்߰,௙௕ܴி݃௠ට
ߨ
2 ௅݂																																													ሺ3 െ 235ሻ 

The feedback op-amp flicker noise sees the same transfer function as the op-amp thermal noise. 

Using equation ሺ3 െ 225ሻ we can write 

߰௢,ଵ/௙,௙௕
߰ଵ/௙,௙௕

ൌ െ
1 ൅ ூே்ܥூே்ܴ݂ߨ2݆

1 ൅ ݂ߨ2݆
ܴூே்ܥூே்
ܴி݃௠

൫1 ൅ ிܴ݂ߨ2݆ ௙ܿ൯
																						ሺ3 െ 236ሻ 

The noise density is then 

ห߰௢,்,௙௕ห ൌ
ඥ1 ൅ ݂ଶሺ2ܴߨூே்ܥூே்ሻଶ

ඨ൬1 െ ሺ2݂ߨሻଶ
ܴூே்ܥூே் ௙ܿ

݃௠
൰
ଶ

൅ ݂ଶ ൬2ߨ ܴூே்ܥூே்ܴி݃௠
൰
ଶ

ܰܨ ௙ܰ௕

ඥ݂
					ሺ3 െ 237ሻ 

The RMS noise at the output is then 

௡,ଵ/௙,௙௕ݒ ൌ ඨන ௅௉ி|ଶห߰௢,ଵ/௙,௙௕หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,ଵ/௙,௙௕ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
											ሺ3 െ 238ሻ 

௡,ଵ/௙,௙௕ݒ ൌ ܰܨ ௙ܰ௕ඨන
1 ൅ ݂ଶ/ ௭݂

ଶ

1 ൅ ݂ଶ/ ௣݂ଵ

1
݂
݂݀

గ
ଶ௙ಽ

଴
																														ሺ3 െ 239ሻ 

௡,ଵ/௙,௙௕ݒ ൌ ܰܨ ௙ܰ௕ඩln ൬
ߨ
2

௅݂

଴݂
൰ ൅

1
2
ቆ ௣݂ଵ

ଶ

௭݂
ଶ െ 1ቇ lnቌ

ቀ2ߨ ௅݂ቁ
ଶ
൅ ௣݂ଵ

ଶ

଴݂
ଶ ൅ ௣݂ଵ

ଶ ቍ										ሺ3 െ 240ሻ 

If ௣݂ଵ
ଶ ≫ ଴݂

ଶ 
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௡௢,ଵ/௙,௙௕ݒ ൌ ܰܨ ௙ܰ௕ඩln ൬
ߨ
2

௅݂

଴݂
൰ ൅

1
2
ቆ ௣݂ଵ

ଶ

௭݂
ଶ െ 1ቇ lnቌ1 ൅

ቀ2ߨ ௅݂ቁ
ଶ

௣݂ଵ
ଶ ቍ											ሺ3 െ 241ሻ 

Insert ሺ3 െ 226ሻ and ሺ3 െ 227ሻ into ሺ3 െ 241ሻ 

௡,ଵ/௙,௙௕ݒ ൌ ܰܨ ௙ܰ௕ඨln ൬
ߨ
2

௅݂

଴݂
൰ ൅

1
2
ሺሺܴி݃௠ሻଶ െ 1ሻ ln ቆ1 ൅ ൬

ߨ
2

௅݂

ு݂
൰
ଶ

ቇ							ሺ3 െ 242ሻ 

If ቀ
గ

ଶ

௙ಽ
௙ಹ
ቁ
ଶ
≫ 1, then 

௡,ଵ/௙,௙௕ݒ ൌ ܰܨ ௙ܰ௕ඨln ൬
ߨ
2

௅݂

଴݂
൰ ൅ ሺሺܴி݃௠ሻଶ െ 1ሻ ln ൬

ߨ
2

௅݂

ு݂
൰																ሺ3 െ 243ሻ 

If ሺܴி݃௠ሻଶ ≫ 1, then 

௡,ଵ/௙,௙௕ݒ ൌ ܰܨ ௙ܰ௕ඨln ൬
ߨ
2

௅݂

଴݂
൰ ൅ ሺܴி݃௠ሻଶ ln ൬

ߨ
2

௅݂

ு݂
൰																						ሺ3 െ 244ሻ 

If  ሺܴி݃௠ሻଶ ln ቀ
గ

ଶ

௙ಽ
௙ಹ
ቁ ≫ ln ቀ

గ

ଶ

௙ಽ
௙బ
ቁ, then 

௡,ଵ/௙,௙௕ݒ ൌ ܴி݃௠ܰܨ ௙ܰ௕ඨln ൬
ߨ
2

௅݂

ு݂
൰																																				ሺ3 െ 245ሻ 

The integrator resistor thermal noise ߰ோூே் sees the transfer function below. 

߰௢,ோூே்
߰ோூே்

ൌ െ
1

1 ൅ ݂ߨ2݆
ܴூே்ܥூே்
ܴி݃௠

൫1 ൅ ிܴ݂ߨ2݆ ௙ܿ൯
																								ሺ3 െ 246ሻ 

The noise density is then 
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ห߰௢,ோூே்ห ൌ
ඥ4ܴ݇ܶூே்

ඨ൬1 െ ሺ2݂ߨሻଶ
ܴூே்ܥூே் ௙ܿ

݃௠
൰
ଶ

൅ ݂ଶ ൬2ߨ ܴூே்ܥூே்ܴி݃௠
൰
ଶ

											ሺ3 െ 247ሻ 

The RMS noise at the output is then 

௡,ோூே்ݒ ൌ ඨන ௅௉ி|ଶห߰௢,ோூே்หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,ோூே்ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
														ሺ3 െ 248ሻ 

If ௅݂ ≫ ு݂, we can use the noise equivalent bandwidth of a first order system with cutoff 

frequency ு݂ 

௡,ோூே்ݒ ൌ ඥ2ܴܶ݇ߨூே் ு݂																																															ሺ3 െ 249ሻ 

Both of the integrator’s resistors see the same transfer function and therefore produce the same 

RMS noise voltage. 

The photocurrent shot noise sees the same transfer function as the photodiode thermal noise 

current. Using equation ሺ3 െ 222ሻ, we can write 

߰௢,ℓ௦
ℓ௦ߦ

ൌ ܴி
݂ߨ2݆

ܴூே்ܥூே்
ܴி݃௠

1 ൅ ݂ߨ2݆
ܴூே்ܥூே்
ܴி݃௠

൫1 ൅ ிܴ݂ߨ2݆ ௙ܿ൯
																									ሺ3 െ 250ሻ 

The noise density is then 

ห߰௢,ℓ௦ห ൌ ܴி
ฬ2݂ߨ

ܴூே்ܥூே்
ܴி݃௠

ฬඥ2ݍଓ௣ഥ

ඨ൬1 െ ሺ2݂ߨሻଶ
ܴூே்ܥூே் ௙ܿ

݃௠
൰
ଶ

൅ ݂ଶ ൬2ߨ ܴூே்ܥூே்ܴி݃௠
൰
ଶ

										ሺ3 െ 251ሻ 

Assuming that ௅݂ ≫ ு݂, the RMS noise at the output is then 
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௡,௟௜௚௛௧ݒ ൌ ඨන ௅௉ி|ଶห߰௢,ℓ௦หܩ|
ଶ
݂݀

ஶ

଴
 

ൌ ඨන ห߰௢,ℓ௦ห
ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ܴிට2ݍଓ௣ഥ ௅݂																																					ሺ3 െ 252ሻ 

The RMS dark noise is 

௡,ௗ௔௥௞ݒ ൌ ඨ
௡,்,௙௙ݒ
ଶ ൅ ௡,ଵ/௙,௙௙ݒ

ଶ ൅ ௡,௦,௙௙ݒ
ଶ ൅ ௡,ோிݒ

ଶ

൅ݒ௡,௫௖ଶ ൅ ௡,௥௦௛ݒ
ଶ ൅ ௡,்,௙௕ݒ

ଶ ൅ ௡,ଵ/௙,௙௕ݒ
ଶ ൅ ௡,ோூே்ݒ2

ଶ 														ሺ3 െ 253ሻ 

Insert ሺ3 െ 210ሻ, ሺ3 െ 218ሻ, ሺ3 െ 221ሻ, ሺ3 െ 197ሻ, ሺ3 െ 200ሻ, ሺ3 െ 224ሻ, ሺ3 െ 235ሻ, ሺ3 െ

245ሻ, and ሺ3 െ 249ሻ into ሺ3 െ 253ሻ 

௡,ௗ௔௥௞ݒ ൌ ඨܴி
ଶ ൬ߦௌ,௙௙

ଶ ൅ ଓ௣ഥݍ2 ൅
4݇ܶ
௦௛ݎ

൅ ሺ2ܿߨ௜௡ሻଶߛ ௅݂൰ ௅݂ ൅ 4ܴ݇ܶி ௅݂ ൅ ሺ3								ூே்ߢ െ 254ሻ 

ߛ ൌ ்߰,௙௙
ଶ ቀ

ߨ
2
െ 1ቁ ௅݂ ൅ ܰܨ ௙ܰ௙

ଶ
ln ൬1 ൅

ଶߨ
4 ൰

2
																													ሺ3 െ 255ሻ 

ூே்ߢ ൌ ሺܴி݃௠ሻଶ ൬்߰,௙௕
ଶ ߨ

2 ௅݂ ൅ ܰܨ ௙ܰ௕
ଶ ln ൬

ߨ
2

௅݂

ு݂
൰൰ ൅ ூே்ܴܶ݇ߨ4 ு݂										ሺ3 െ 256ሻ 

The total noise is 

௡,௧௢௧௔௟ݒ ൌ ටݒ௡,ௗ௔௥௞
ଶ ൅ ௡,௟௜௚௛௧ݒ

ଶ 																																											ሺ3 െ 257ሻ 

௡,௧௢௧௔௟ݒ ൌ ඨܴி
ଶ ൬ߦௌ,௙௙

ଶ ൅
4݇ܶ
௦௛ݎ

൅ ሺ2ܿߨ௜௡ሻଶߛ ௅݂൰ ௅݂ ൅ ܴி
ଶ൫4ݍଓ௣ഥ൯ ௅݂ ൅ 4ܴ݇ܶி ௅݂ ൅  ூே்ߢ

௡,௧௢௧௔௟ݒ ൌ ටܴி
ଶߙᇱ ௅݂ ൅ ܴி

ଶ൫4ݍଓ௣ഥ൯ ௅݂ ൅ 4ܴ݇ܶி ௅݂ ൅ ሺ3																				ூே்ߢ െ 258ሻ 
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ᇱߙ ൌ ௌ,௙௙ߦ
ଶ ൅

4݇ܶ
௦௛ݎ

൅ ሺ2ܿߨ௜௡ሻଶߛ ௅݂																																								ሺ3 െ 259ሻ 

The SNR is then 

ܴܵܰ ൌ
ܴிଓ௣෥
௡,௧௢௧௔௟ݒ

ൌ
ܴிଓ௣෥

ටܴி
ଶߙᇱ ௅݂ ൅ ܴி ቀ൫4ݍଓ௣ഥ൯ܴி ൅ 4݇ܶቁ ௅݂ ൅ ூே்ߢ

											ሺ3 െ 260ሻ 

 

ܴܵܰ ൌ
ܴிଓ௣෥

ටܴி
ଶߙᇱ ௅݂ ൅ 4ܴ݇ܶி ቀ1 ൅

ݍ
݇ܶ ଓ௣ഥܴிቁ ௅݂ ൅ ூே்ߢ

																					ሺ3 െ 261ሻ 

The input signal is 

݅௣ ൌ ݅௣,௦௜௚ ൅ ଓ௣ഥ  

Where ݅௣,௦௜௚ represents the signal current amplitude. 

 

The maximum value of ܴி is 

ܴி ൌ
஼ܸ஼

݅௣,௦௜௚
																																																											ሺ3 െ 262ሻ 

Substitute ሺ3 െ 262ሻ into ሺ3 െ 261ሻ 

ܴܵܰ ൌ
஼ܸ஼

ଓ௣෥
݅௣,௦௜௚

ඨ൬ ஼ܸ஼
݅௣,௦௜௚

൰
ଶ
ᇱߙ ௅݂ ൅ 4݇ܶ ஼ܸ஼

݅௣,௦௜௚
൬1 ൅

ݍ
݇ܶ ஼ܸ஼

ଓ௣ഥ
݅௣,௦௜௚

൰ ௅݂ ൅ ூே்ߢ

									ሺ3 െ 263ሻ 
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3.3.3 Offset Voltage Subtraction 
 

The topology in Figure 3-5C uses feedback to subtract the offset voltage at the non-

inverting input of the op-amp in the forward path. While this method avoids the additional noise 

caused by the resistor or semiconductor element in the active current feedback circuits, it cannot 

remove very large offsets. Indeed, the maximum DC offset current that can be removed is defined 

as 

ଓ௣ഥ ൑ ஼ܸ஼

ܴி
																																																														ሺ3 െ 264ሻ 

In this section, we will analyze the noise inherent to this topology. The schematic of which is 

shown in Figure 3-8 on the left and the corresponding noise model on the right. Here we will 

implement an integrator for the low-pass filter circuit. 













 

Figure 3-8: Circuit with voltage-offset subtraction (left) and corresponding noise model (right). 
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Transfer function seen by the feedback resistor thermal noise 

߰௢,ோி
ோிߦ

ൌ ܴி
݆݂/ ு݂

ሺ1 ൅ ݆݂/ ு݂ሻሺ1 ൅ ݆݂/ ௅݂ሻ
																																				ሺ3 െ 265ሻ 

Where the thermal noise current from the feedback resistor is  

ோிߦ ൌ ඨ
4݇ܶ
ܴி

																																																										ሺ3 െ 266ሻ 

the high-pass cutoff frequency is 

ு݂ ൌ
1

ூே்ܥூே்ܴߨ2
																																																					ሺ3 െ 267ሻ 

and the low-pass cutoff frequency is 

௅݂ ൌ ௣݂ ൌ
1

ிܴߨ2 ௙ܿ
																																																					ሺ3 െ 268ሻ 

The noise density in V/√Hz  is then 

ห߰௢,ோிห ൌ ܴி
|݂/ ு݂|ඥ4݇ܶ/ܴி

ට൫1 െ ݂ଶ/ሺ ு݂ ௅݂ሻ൯
ଶ
൅ ሺ݂/ ு݂ ൅ ݂/ ௅݂ሻଶ

																						ሺ3 െ 269ሻ 

Assuming that ௅݂ ≫ ு݂, the RMS noise at the output is then 

௡,ோிݒ ൌ ඨන ௅௉ி|ଶห߰௢,ோிหܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,ோிห

ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ඥ4ܴ݇ܶி ௅݂								ሺ3 െ 270ሻ 

The transfer function seen by the forward path op-amp’s thermal noise is 

߰௢,்,௙௙
்߰,௙௙

ൌ ௅ிܩ
݆݂/ ு݂ሺ1 ൅ ݆݂/ ௭݂ሻ

ሺ1 ൅ ݆݂/ ௅݂ሻሺ1 ൅ ݆݂/ ு݂ሻ
																																		ሺ3 െ 271ሻ 
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Where the zero frequency is 

௭݂ ൌ
1

ிܴߨ2 ∥ ௦௛൫ݎ ௙ܿ ൅ ܿ௜௡൯
																																													ሺ3 െ 272ሻ 

the low-frequency gain is 

௅ிܩ ൌ 1 ൅
ܴி
௦௛ݎ

																																																									ሺ3 െ 273ሻ 

and the mid-band gain is 

ெ஻ܩ ൌ
௭݂

௅݂
ൌ 1 ൅

ܿ௜௡
௙ܿ
																																																			ሺ3 െ 274ሻ 

The noise density in V/√Hz  at the output is then 

ห߰௢,்,௙௙ห ൌ ൬1 ൅
ܴி
௦௛ݎ
൰

|݂/ ு݂|ඥ1 ൅ ݂ଶ/ ௭݂
ଶ

ට൫1 െ ݂ଶ/ሺ ு݂ ௅݂ሻ൯
ଶ
൅ ሺ݂/ ௅݂ ൅ ݂/ ு݂ሻଶ

்߰,௙௙									ሺ3 െ 275ሻ 

Assuming that ௅݂ ≫ ு݂ and that ௣݂ ൌ ௅݂, the RMS noise at the output is then 

௡,்,௙௙ݒ ൌ ඨන ௅௉ி|ଶห߰௢,்,௙௙หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,்,௙௙ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
																ሺ3 െ 276ሻ 

௡,்,௙௙ݒ ൌ ൬1 ൅
ܴி
௦௛ݎ
൰்߰,௙௙

ඨන
1 ൅ ݂ଶ/ ௭݂

ଶ

1 ൅ ݂ଶ/ ௅݂
ଶ ݂݀

గ
ଶ௙ಽ

଴
																										ሺ3 െ 277ሻ 

௡,்,௙௙ݒ ൌ ൬1 ൅
ܴி
௦௛ݎ
൰்߰,௙௙ඨ൭ቀ

ߨ
2
െ 1ቁ ௅݂

ଶ

௭݂
ଶ ൅ 1൱ ௅݂																										ሺ3 െ 278ሻ 

Assuming that ሺ2/ߨ െ 1ሻሺ ௅݂/ ௭݂ሻଶ ≫ 1 
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௡,்,௙௙ݒ ൌ ൬1 ൅
ܴி
௦௛ݎ
൰்߰,௙௙

௅݂

௭݂
ටቀ
ߨ
2
െ 1ቁ ௅݂																																ሺ3 െ 279ሻ 

Substitute ሺ3 െ 272ሻ into ሺ3 െ 279ሻ 

௡,்,௙௙ݒ ൌ ்߰,௙௙2ܴߨி൫ ௙ܿ ൅ ܿ௜௡൯ ௅݂ටቀ
ߨ
2
െ 1ቁ ௅݂																												ሺ3 െ 280ሻ 

For high-gain applications we can assume that ܿ௜௡ ≫ ௙ܿ. Equation ሺ3 െ 280ሻ then becomes 

௡,்,௙௙ݒ ൌ ்߰,௙௙2ܴߨிܿ௜௡ ௅݂ටቀ
ߨ
2
െ 1ቁ ௅݂																																			ሺ3 െ 281ሻ 

The op-amp flicker noise sees the same transfer function as the op-amp thermal noise. Using 

ሺ3 െ 271ሻ we have 

߰௢,ଵ/௙,௙௙
߰ଵ/௙,௙௙

ൌ ௅ிܩ
݆݂/ ு݂ሺ1 ൅ ݆݂/ ௭݂ሻ

ሺ1 ൅ ݆݂/ ௅݂ሻሺ1 ൅ ݆݂/ ு݂ሻ
																																ሺ3 െ 282ሻ 

The noise density is then 

ห߰௢,ଵ/௙,௙௙ห ൌ ௅ிܩ
|݂/ ு݂|ඥ1 ൅ ݂ଶ/ ௭݂

ଶ

ට൫1 െ ݂ଶ/ሺ ு݂ ௅݂ሻ൯
ଶ
൅ ሺ݂/ ௅݂ ൅ ݂/ ு݂ሻଶ

ܰܨ ௙ܰ௙

ඥ݂
											ሺ3 െ 283ሻ 

Assuming that ௅݂ ≫ ு݂ the RMS noise at the output is then 

௡,ଵ/௙,௙௙ݒ ൌ ඨන ௅௉ி|ଶห߰௢,ଵ/௙,௙௙หܩ|
ଶ
݂݀

ஶ

௙బ

ൌ ඨන ห߰௢,ଵ/௙,௙௙ห
ଶ
݂݀

గ
ଶ௙ಽ

௙బ

											ሺ3 െ 284ሻ 

௡,ଵ/௙,௙௙ݒ ൌ ൬1 ൅
ܴி
௦௛ݎ
൰ඨන

1 ൅ ݂ଶ/ ௭݂
ଶ

1 ൅ ݂ଶ/ ௅݂
ଶ

ܰܨ ௙ܰ௙

݂
݂݀

గ
ଶ௙ಽ

௙బ

																							ሺ3 െ 285ሻ 
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௡,ଵ/௙,௙௙ݒ ൌ ൬1 ൅
ܴி
௦௛ݎ
൰ ܰܨ ௙ܰ௙ඩln ൬

ߨ
2

௅݂

଴݂
൰ ൅

1
2
ቆ ௅݂

ଶ

௭݂
ଶ െ 1ቇ lnቌ

ቀ2ߨ ௅݂ቁ
ଶ
൅ ௅݂

ଶ

଴݂
ଶ ൅ ௅݂

ଶ ቍ									ሺ3 െ 286ሻ 

If ௅݂
ଶ ≫ ଴݂

ଶ 

௡,ଵ/௙,௙௙ݒ ൌ ൬1 ൅
ܴி
௦௛ݎ
൰ ඩlnܰܰܨ ൬

ߨ
2

௅݂

଴݂
൰ ൅

ln ൬1 ൅
ଶߨ
4 ൰

2
ቆ ௅݂

ଶ

௭݂
ଶ െ 1ቇ												ሺ3 െ 287ሻ 

If ଴݂ ൌ 1mHz,  ௅݂ ≫ ௭݂ and ௣݂ ≫ 1Hz 

௡,ଵ/௙,௙௙ݒ ൌ ൬1 ൅
ܴி
௦௛ݎ
൰ ܰܨ ௙ܰ௙

௅݂

௭݂

ඩln ൬1 ൅
ଶߨ
4 ൰

2
																												ሺ3 െ 288ሻ 

Substitute ሺ3 െ 272ሻ into ሺ3 െ 288ሻ 

௡,ଵ/௙,௙௙ݒ ൌ ܰܨ ௙ܰ௙2ܴߨி൫ ௙ܿ ൅ ܿ௜௡൯ ௅݂
ඩln ൬1 ൅

ଶߨ
4 ൰

2
																							ሺ3 െ 289ሻ 

For high-gain applications we can assume that ܿ௜௡ ≫ ௙ܿ. Equation ሺ3 െ 289ሻ then becomes 

௡,ଵ/௙,௙௙ݒ ൌ ܰܨ ௙ܰ௙2ܴߨிܿ௜௡ ௅݂
ඩln ൬1 ൅

ଶߨ
4 ൰

2
																														ሺ3 െ 290ሻ 

The transfer function seen by the forward-path op-amp current noise is 

߰௢,௦,௙௙
௦ߦ

ൌ ܴி
݆݂/ ு݂

ሺ1 ൅ ݆݂/ ு݂ሻሺ1 ൅ ݆݂/ ௅݂ሻ
																																			ሺ3 െ 291ሻ 
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From the transfer function ሺ3 െ 291ሻ, we can get the equation for the noise density 

ห߰௢,௦,௙௙ห ൌ ܴி
|݂/ ு݂|

ට൫1 െ ݂ଶ/ሺ ு݂ ௅݂ሻ൯
ଶ
൅ ሺ݂/ ு݂ ൅ ݂/ ௅݂ሻଶ

ሺ3																			௦ߦ െ 292ሻ 

Assuming that ௅݂ ≫ ு݂, the RMS noise at the output is then 

௡,௦,௙௙ݒ ൌ ඨන ௅௉ி|ଶห߰௢,௦,௙௙หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,௦,௙௙ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ܴிߦ௦ඥ ௅݂						ሺ3 െ 293ሻ 

The thermal noise from the photodiode sees the same transfer function as the op-amp input 

current shot noise. Using ሺ3 െ 291ሻ we have 

߰௢,௥௦௛
௥௦௛ߦ

ൌ ܴி
݆݂/ ு݂

ሺ1 ൅ ݆݂/ ு݂ሻሺ1 ൅ ݆݂/ ௅݂ሻ
																																			ሺ3 െ 294ሻ 

The noise density is then 

ห߰௢,௥௦௛ห ൌ
ܴி|݂/ ு݂|

ට൫1 െ ݂ଶ/ሺ ு݂ ௅݂ሻ൯
ଶ
൅ ሺ݂/ ு݂ ൅ ݂/ ௅݂ሻଶ

ඨ
4݇ܶ
௦௛ݎ

																		ሺ3 െ 295ሻ 

Assuming that ௅݂ ≫ ு݂, the RMS noise at the output is then 

௡,௥௦௛ݒ ൌ ඨන ௅௉ி|ଶห߰௢,௥௦௛หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,௥௦௛ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ܴிඨ

4݇ܶ
௦௛ݎ

௅݂										ሺ3 െ 296ሻ 

Now we will analyze the elements of the feedback integrator. The integrator op-amp noise sees a 

gain of unity, hence the transfer function is 

߰௢,்,௙௕
்߰,௙௕

ൌ 1																																																											ሺ3 െ 297ሻ 

The noise density in V/√Hz is then 
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ห߰௢,்,௙௕ห ൌ ்߰,௙௕																																																						ሺ3 െ 298ሻ 

The RMS noise at the output is then 

௡,்,௙௕ݒ ൌ ඨන ௅௉ி|ଶห߰௢,்,௙௕หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,்,௙௕ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ்߰,௙௕ඥ ௅݂							ሺ3 െ 299ሻ 

The integrator flicker noise sees the same transfer function as the integrator thermal noise. 

Therefore  

߰௢,்,௙௕
߰ଵ/௙,௙௕

ൌ 1																																																											ሺ3 െ 300ሻ 

The noise density in V/√Hz is then 

ห߰௢,ଵ/௙,௙௕ห ൌ
ܰܨ ௙ܰ௕

ඥ݂
																																																			ሺ3 െ 301ሻ 

The RMS noise at the output is then 

௡,ଵ/௙,௙௕ݒ ൌ ඨන ௅௉ி|ଶห߰௢,ଵ/௙,௙௕หܩ|
ଶ
݂݀

ஶ

௙బ

 

ൌ ඨන ห߰௢,ଵ/௙,௙௕ห
ଶ
݂݀

గ
ଶ௙ಽ

௙బ

ൎ ܰܨ7 ௙ܰ௕																																					ሺ3 െ 302ሻ 

The integrator resistor thermal noise sees the transfer function 

߰௢,ோூே்
߰ோூே்

ൌ െ
1

1 ൅ ூே்ܥூே்ܴ݂ߨ2݆
																																								ሺ3 െ 303ሻ 

The noise density in V/√Hz  is then 
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ห߰௢,ோூே்ห ൌ
ඥ4ܴ݇ܶூே்

ඥ1 ൅ ݂ଶሺ2ܴߨூே்ܥூே்ሻଶ
																																				ሺ3 െ 304ሻ 

The RMS noise voltage is then 

௡௢ோூே்ݒ ൌ ඨන ௅௉ி|ଶห߰௢,ோூே்หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,ோூே்ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ඥ4ܴ݇ܶூே் ு݂							ሺ3 െ 305ሻ 

The photocurrent shot noise from the photodiode sees the same transfer function as the op-amp 

input current shot noise. Using ሺ3 െ 291ሻ we have 

߰௢,ℓ௦
ℓ௦ߦ

ൌ ܴி
݆݂/ ு݂

ሺ1 ൅ ݆݂/ ு݂ሻሺ1 ൅ ݆݂/ ௅݂ሻ
																															ሺ3 െ 306ሻ 

The noise density is then  

ห߰௢,ℓ௦ห ൌ ܴி
|݂/ ு݂|ඥ2ݍଓ௣ഥ

ට൫1 െ ݂ଶ/ሺ ு݂ ௅݂ሻ൯
ଶ
൅ ሺ݂/ ு݂ ൅ ݂/ ௅݂ሻଶ

																						ሺ3 െ 307ሻ 

The RMS noise voltage is 

௡,௟௜௚௛௧ݒ ൌ ඨන ௅௉ி|ଶห߰௢,ℓ௦หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,ℓ௦ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ܴிට2ݍଓ௣ഥ ௅݂												ሺ3 െ 308ሻ 

The dark noise is the quadratic sum of all the noise sources in the system except the photocurrent-

related noise. 

௡,ௗ௔௥௞ݒ ൌ ඨ
௡,்,௙௙ݒ
ଶ ൅ ௡,ଵ/௙,௙௙ݒ

ଶ ൅ ௡,௦,௙௙ݒ
ଶ ൅ ௡,ோிݒ

ଶ

൅ݒ௡,௥௦௛
ଶ ൅ ௡,்,௙௕ݒ

ଶ ൅ ௡,ଵ/௙,௙௕ݒ
ଶ ൅ ௡,ோூே்ݒ

ଶ 																							ሺ3 െ 309ሻ 

Substituting equations ሺ3 െ 281ሻ, ሺ3 െ 290ሻ, ሺ3 െ 293ሻ, ሺ3 െ 270ሻ, ሺ3 െ 296ሻ, ሺ3 െ 299ሻ, 

ሺ3 െ 302ሻ, and ሺ3 െ 305ሻ into ሺ3 െ 309ሻ. 
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௡,ௗ௔௥௞ݒ ൌ ඩ
ܴி
ଶ ൬ߦ௦ଶ ൅

4݇ܶ
௦௛ݎ

൅ ሺ2ܿߨ௜௡ሻଶ ௅݂ߛ൰ ௅݂ ൅ 4ܴ݇ܶி ௅݂

൅்߰,௙௕
ଶ

௅݂ ൅ ൫7ܰܨ ௙ܰ௕൯
ଶ
൅ 4ܴ݇ܶூே் ு݂

																	ሺ3 െ 310ሻ 

ߛ ൌ ்߰,௙௙
ଶ ቀ

ߨ
2
െ 1ቁ ௅݂ ൅ ܰܨ ௙ܰ௙

ଶ
ln ൬1 ൅

ଶߨ
4 ൰

2
																														ሺ3 െ 311ሻ 

The total noise is then 

௡,௧௢௧௔௟ݒ ൌ ටݒ௡,ௗ௔௥௞
ଶ ൅ ௡,௟௜௚௛௧ݒ

ଶ 																																											ሺ3 െ 312ሻ 

Substitute ሺ3 െ 308ሻ and ሺ3 െ 310ሻ into ሺ3 െ 312ሻ 

௡,௧௢௧௔௟ݒ ൌ ඩ
ܴி
ଶ ൬ߦ௦ଶ ൅

4݇ܶ
௦௛ݎ

൅ ଓ௣ഥݍ2 ൅ ሺ2ܿߨ௜௡ሻଶ ௅݂ߛ൰ ௅݂ ൅ 4ܴ݇ܶி ௅݂

൅்߰,௙௕
ଶ

௅݂ ൅ ൫7ܰܨ ௙ܰ௕൯
ଶ
൅ 4ܴ݇ܶூே் ு݂

 

௡,௧௢௧௔௟ݒ ൌ ටܴி
ଶߙᇱ ௅݂ ൅ ܴி

ଶ൫2ݍଓ௣ഥ൯ ௅݂ ൅ ிܴߚ ௅݂ ൅ ሺ3																							ூே்ߢ െ 313ሻ 

ᇱߙ ൌ ௦ଶߦ ൅
4݇ܶ
௦௛ݎ

൅ ሺ2ܿߨ௜௡ሻଶ ௅݂ߛ																																										ሺ3 െ 314ሻ 

ߚ ൌ 4݇ܶ																																																													ሺ3 െ 315ሻ 

ூே்ߢ ൌ ்߰,௙௕
ଶ

௅݂ ൅ ൫7ܰܨ ௙ܰ௕൯
ଶ
൅ 4ܴ݇ܶூே் ு݂																													ሺ3 െ 316ሻ 

The SNR is then 

ܴܵܰ ൌ
ܴிଓ௣෥

ටܴி
ଶߙᇱ ௅݂ ൅ ܴி

ଶ൫2ݍଓ௣ഥ൯ ௅݂ ൅ ிܴߚ ௅݂ ൅ ூே்ߢ

																								ሺ3 െ 317ሻ 

Rearrange ሺ3 െ 317ሻ 
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ܴܵܰ ൌ
ܴிଓ௣෥

ටߙᇱܴி
ଶ
௅݂ ൅ ܴி4݇ܶ ቀ1 ൅

1
2
ݍ
݇ܶ ଓ௣ഥܴிቁ ௅݂ ൅ ூே்ߢ

																				ሺ3 െ 318ሻ 

The maximum possible signal is ݅௣,௦௜௚ ൅ ଓ௣ഥ ൌ
௏಴಴
ோಷ

 

ܴி ൌ
஼ܸ஼

݅௣,௦௜௚ ൅ ଓ௣ഥ
																																																						ሺ3 െ 319ሻ 

Substitute ሺ3 െ 319ሻ into ሺ3 െ 318ሻ 

ܴܵܰ ൌ
஼ܸ஼

ଓ௣෥
݅௣,௦௜௚

ඪ
ᇱߙ ௅݂ ൬

஼ܸ஼
݅௣,௦௜௚

൰
ଶ
൅ ߚ ௅݂ ൬1 ൅ ቀ1 ൅

1
2
ݍ
݇ܶ ஼ܸ஼ቁ

ଓ௣ഥ
݅௣,௦௜௚

൰ ஼ܸ஼
݅௣,௦௜௚

൅ ൬1 ൅
ଓ௣ഥ

݅௣,௦௜௚
൰
ଶ

ூே்ߢ

										ሺ3 െ 320ሻ 

Where 

ߚ ൌ 4݇ܶ 

 

3.3.4 Removing Offset in the 2nd Stage 
 

The topology in Figure 3-5D removes the offset in the 2nd stage. This circuit will serve as 

a sort of control when we compare the topologies in the next section. This topology is essentially 

the same as that in section 3.1 with the exception that a small portion of the bandwidth is 

removed at low frequencies. That said, there is no need to repeat the noise analysis of section 3.1. 

We will however modify the equation for the SNR, we will start by stating that the maximum 

current that this topology can amplify without clipping is 
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ଓ௣ഥ ൅ ݅௣,௦௜௚ ൑
஼ܸ஼

ܴி
																																																						ሺ3 െ 321ሻ 

We can re-write equation ሺ3 െ 53ሻ which describes the SNR of the single-resistor topology in 

terms of its maximum dynamic range. Begin by pulling the shot noise term out of ߙ. 

ܴܵܰ ൌ
ܴிଓ௣෥

ටߙᇱ ௅݂ܴி
ଶ ൅ 4݇ܶ ቀ1 ൅ 1

2
ݍ
݇ܶ ଓ௣ഥܴிቁܴி ௅݂

																											ሺ3 െ 322ሻ 

Rearranging equation ሺ3 െ 321ሻ, we find that the maximum value of ܴி is 

ܴி ൌ
஼ܸ஼

݅௣,௦௜௚ ൅ ଓ௣ഥ
																																																						ሺ3 െ 323ሻ 

Substitute ሺ3 െ 323ሻ into ሺ3 െ 322ሻ 

ܴܵܰ ൌ
஼ܸ஼

ଓ௣෥
݅௣,௦௜௚

ඨߙᇱ ௅݂ ൬
஼ܸ஼

݅௣,௦௜௚
൰
ଶ
൅ ߚ ௅݂ ൬1 ൅ ቀ1 ൅

1
2
ݍ
݇ܶ ஼ܸ஼ቁ

ଓ௣ഥ
݅௣,௦௜௚

൰ ஼ܸ஼
݅௣,௦௜௚

											ሺ3 െ 324ሻ 

Where 

ᇱߙ ൌ ௦ଶߦ ൅
4݇ܶ
݄ݏݎ

൅ ሺ2ܿߨ௜௡ሻଶߛ ௅݂ 

ߚ ൌ 4݇ܶ 

and 

ߛ ൌ ்߰
ଶ ቀ
ߨ
2
െ 1ቁ ௅݂ ൅ ଶܰܰܨ

ln ൬1 ൅
ଶߨ
4 ൰

2
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3.3.5 Comparison of AC-Coupled Topologies’ SNR 
 

From the analysis of the previous sections we can see that there is no significant 

advantage to AC-coupling. Comparison of equations ሺ3 െ 194ሻ, ሺ3 െ 263ሻ, ሺ3 െ 320ሻ, and 

ሺ3 െ 322ሻ shows that no matter how the offset is removed the resulting SNR is about the same. 

The only discrepancy is the term ߢூே் which is the feedback integrator noise. While ߢூே் is the 

same for the two active-current-feedback topologies, it is different for the offset-voltage-

subtraction topology and not present for the topology which removes the offset in the 2nd stage. In 

any case, ߢூே் can be made very small with proper component selection and careful design. It is 

therefore reasonable to neglect this term when comparing the SNR of the different AC-coupled 

topologies. 
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3.4 Charge Amplifier Topology 
 

A charge amplifier uses a capacitive element to accumulate charge. The gain of the 

circuit is inversely proportional to the feedback capacitance ܥி. The particular configuration of 

the charge amplifier that we will present in this section is essentially a continuous-time CCD cell. 

The forward path contains an integrator and the feedback path provides a continuous current that 

prevents it from reaching saturation. The 2nd  stage is a differentiator used to produce a “flat” 

frequency response in the pass-band. 

 

3.4.1 Noise Analysis 
 

In this section we will analyze the noise produced by the charge amplifier. The schematic 

of the charge amplifier and the corresponding noise model is shown in Figure 3-9. For simplicity, 

we will analyze the noise above the high-pass cutoff. Notice that the feedback structure in the 

noise model has been replaced with an AC ground. This is because at high frequencies this node 

will be at a fixed potential. We have also shown in previous sections that a well-designed 

feedback structure will produce a negligible amount of noise. Our choice is further justified by 

the fact that the high-pass cutoff for systems designed to detect biological signals is typically very 

low  ~50mHz [14]. 
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We will conduct the analysis the same as we did in previous sections. Each noise source 

shall be analyzed independently and then the total noise will be the vector magnitude of the 

individual sources. The transfer functions of all the noise sources in the first stage will be 

multiplied by that of the differentiator before reaching the final output . The transfer function of 

the differentiator is shown below. 

߰௢,ௗ
߰௢,௜

ൌ െ
஽ூிிܥ஽ூிிܴ݂ߨ2݆
1 ൅ ிଶܥ஽ூிிܴ݂ߨ2݆

																																											ሺ3 െ 325ሻ 

Notice that the above transfer function has 1 pole and 1 zero: 

௣݂,ௗ௜௙௙ ൌ
1

ிଶܥ஽ூிிܴߨ2
																																																	ሺ3 െ 326ሻ 

௭݂,ௗ௜௙௙ ൌ
1

஽ூிிܥ஽ூிிܴߨ2
																																															ሺ3 െ 327ሻ 


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
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


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
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ξRDIFF

OUT

Op-Amp  Model

 

Figure 3-9: Charge amplifier schematic (top) and corresponding high-frequency noise model (bottom). 
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The zero obviously produces the differentiator action, the pole is there to roll off the 

differentiator action at higher frequencies where it is no longer needed. This helps reduce high-

frequency noise. For this analysis, we will choose ௣݂,ௗ௜௙௙ to be the same as the cutoff frequency 

௅݂ since there will be no need to differentiate signals beyond the cutoff frequency.  

The input capacitance of the 1st –stage amplifier is the same as that defined in ሺ3 െ 2ሻ. 

For all calculations of RMS noise in this section, we will assume that the TIA is followed by a 

high-order low-pass filter like the one described in section 1.3.1 which can be approximated by 

equation ሺ1 െ 12ሻ. Thus the upper limit of the integrals will not be ∞ but instead 
గ

ଶ ௅݂. 

We will begin the noise analysis with the transfer function seen by the thermal noise from the 

current feedback resistor ܴ஼ி஻. 

߰௢,௜,ோ஼ி஻
߰ோ஼ி஻

ൌ െ
1

ிܥ஼ி஻ܴ݂ߨ2݆
																																												ሺ3 െ 328ሻ 

Using equation ሺ3 െ 325ሻ, the transfer function after the differentiator is 

߰௢,ௗ,ோ஼ி஻
߰ோ஼ி஻

ൌ
ܴ஽ூிிܥ஽ூிி
ܴ஼ி஻ܥி

1
1 ൅ ிଶܥ஽ூிிܴ݂ߨ2݆

																													ሺ3 െ 329ሻ 

The noise density is then 

ห߰௢,ௗ,ோ஼ி஻ห ൌ
ܴ஽ூிிܥ஽ூிி
ܴ஼ி஻ܥி

ඥ4ܴ݇ܶ஼ி஻
ඥ1 ൅ ݂ଶሺ2ܴߨ஽ூிிܥிଶሻଶ

																							ሺ3 െ 330ሻ 

The RMS noise is then 

௡,ோ஼ி஻ݒ ൌ ඨන ௅௉ிሺ݂ሻ|ଶห߰௢,ௗ,ோ஼ி஻หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,ௗ,ோ஼ி஻ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
						ሺ3 െ 331ሻ	 
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௡,ோ஼ி஻ݒ ൌ
ܴ஽ூிிܥ஽ூிி
ܴ஼ி஻ܥி

ඥ4ܴ݇ܶ஼ி஻ඨන
1

1 ൅ ݂ଶ/ ௣݂,ௗ௜௙௙
ଶ ݂݀

గ
ଶ௙ಽ

଴
															ሺ3 െ 332ሻ 

Using equation ሺ1 െ 13ሻ the result of the integral is 

௡,ோ஼ி஻ݒ ൌ ܴ஽ூிி
஽ூிிܥ
ிܥ

ඨ
4݇ܶ
ܴ஼ி஻

௅݂																																								ሺ3 െ 333ሻ 

The transfer function seen by the integrator op-amp thermal noise is 

߰௢,௜,்,௙௙
்߰,௙௙

ൌ
1 ൅ ிܥሺ݂ߨ2݆ ൅ ܿ௜௡ሻ	ݎ௦௛ ∥ ܴ஼ி஻

௦௛ݎ	ிܥ݂ߨ2݆ ∥ ܴ஼ி஻
																														ሺ3 െ 334ሻ 

The using equation ሺ3 െ 325ሻ transfer function at the output of the differentiator is 

߰௢,ௗ,்,௙௙
்߰,௙௙

ൌ െ
ܴ஽ூிிܥ஽ூிி
௦௛ݎ ∥ ܴ஼ி஻	ܥி

ሺ1 ൅ ிܥሺ݂ߨ2݆ ൅ ܿ௜௡ሻ	ݎ௦௛ ∥ ܴ஼ி஻ሻ

1 ൅ ிଶܥ஽ூிிܴ݂ߨ2݆
													ሺ3 െ 335ሻ 

The above transfer function has one pole ௣݂,ௗ௜௙௙ and one zero: 

௭݂,௜௡௧ ൌ
1

௦௛ݎߨ2 ∥ ܴ஼ி஻ሺܥி ൅ ܿ௜௡ሻ
																																								ሺ3 െ 336ሻ 

The noise density is 

ห߰௢,ௗ,்,௙௙ห ൌ
ܴ஽ூிிܥ஽ூிி
௦௛ݎ ∥ ܴ஼ி஻	ܥி

ඥ1 ൅ ݂ଶሺ2ߨሺܥி ൅ ܿ௜௡ሻ	ݎ௦௛ ∥ ܴ஼ி஻ሻଶ

ඥ1 ൅ ݂ଶሺ2ܴߨ஽ூிிܥிଶሻଶ
்߰,௙௙					ሺ3 െ 337ሻ 

The RMS noise is then 

௡,்,௙௙ݒ ൌ ඨන ௅௉ிሺ݂ሻ|ଶห߰௢,ௗ,்,௙௙หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,ௗ,்,௙௙ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
									ሺ3 െ 338ሻ 
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௡,்,௙௙ݒ ൌ
ܴ஽ூிிܥ஽ூிி
௦௛ݎ ∥ ܴ஼ி஻	ܥி

்߰,௙௙ඨන
1 ൅ ݂/ ௭݂,௜௡௧

1 ൅ ݂/ ௣݂,ௗ௜௙௙
݂݀

గ
ଶ௙ಽ

଴
																			ሺ3 െ 339ሻ 

The result of the above integral, using equation ሺ1 െ 16ሻ and recalling that ௣݂,ௗ௜௙௙ ൌ ௅݂ is then 

௡,்,௙௙ݒ ൌ
ܴ஽ூிிܥ஽ூிி
௦௛ݎ ∥ ܴ஼ி஻	ܥி

்߰,௙௙ඨ൭ቀ
ߨ
2
െ 1ቁ ௅݂

ଶ

௭݂
ଶ ൅ 1൱ ௅݂																						ሺ3 െ 340ሻ 

If ቀ
గ

ଶ
െ 1ቁ

௙ಽ
మ

௙೥
మ ≫ 1 

௡,்,௙௙ݒ ൌ
ܴ஽ூிிܥ஽ூிி
௦௛ݎ ∥ ܴ஼ி஻	ܥி

௅݂

௭݂
்߰,௙௙ටቀ

ߨ
2
െ 1ቁ ௅݂																													ሺ3 െ 341ሻ 

Substitute ሺ3 െ 336ሻ into ሺ3 െ 341ሻ 

௡,்,௙௙ݒ ൌ ஽ூிிܥ஽ூிிܴߨ2 ൬1 ൅
ܿ௜௡
ிܥ
൰ ௅்݂߰,௙௙ටቀ

ߨ
2
െ 1ቁ ௅݂																			ሺ3 െ 342ሻ 

The integrator op-amp flicker noise sees the same transfer function as the thermal noise. Using 

equation ሺ3 െ 334ሻ we can write 

߰௢,௜,ଵ/௙,௙௙
߰ଵ/௙,௙௙

ൌ
1 ൅ ிܥሺ݂ߨ2݆ ൅ ܿ௜௡ሻ	ݎ௦௛ ∥ ܴ஼ி஻

௦௛ݎ	ிܥ݂ߨ2݆ ∥ ܴ஼ி஻
																												ሺ3 െ 343ሻ 

With the differentiator, the transfer function is 

߰௢,ௗ,ଵ/௙,௙௙
߰ଵ/௙,௙௙

ൌ െ
ܴ஽ூிிܥ஽ூிி
௦௛ݎ	ிܥ ∥ ܴ஼ி஻

1 ൅ ிܥሺ݂ߨ2݆ ൅ ܿ௜௡ሻ	ݎ௦௛ ∥ ܴ஼ி஻
1 ൅ ிଶܥ஽ூிிܴ݂ߨ2݆

													ሺ3 െ 344ሻ 

The noise density is then 

ห߰௢,ௗ,ଵ/௙,௙௙ห ൌ
ܴ஽ூிிܥ஽ூிி
௦௛ݎ ∥ ܴ஼ி஻	ܥி

ඥ1 ൅ ݂ଶሺ2ߨሺܥி ൅ ܿ௜௡ሻ	ݎ௦௛ ∥ ܴ஼ி஻ሻଶ

ඥ1 ൅ ݂ଶሺ2ܴߨ஽ூிிܥிଶሻଶ
ܰܨ ௙ܰ௙

ඥ݂
				ሺ3 െ 345ሻ 
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The RMS noise voltage is 

௡,ଵ/௙,௙௙ݒ ൌ ඨන ௅௉ிሺ݂ሻ|ଶห߰௢,ௗ,்,௙௙หܩ|
ଶ
݂݀

ஶ

௙బ

ൌ ඨන ห߰௢,ௗ,ଵ/௙,௙௙ห
ଶ
݂݀

గ
ଶ௙ಽ

௙బ

							ሺ3 െ 346ሻ 

௡,ଵ/௙,௙௙ݒ ൌ
ܴ஽ூிிܥ஽ூிி
௦௛ݎ ∥ ܴ஼ி஻	ܥி

ܰܨ ௙ܰ௙ඨන
1 ൅ ݂ଶ/ ௭݂,௜௡௧

ଶ

1 ൅ ݂ଶ/ ௣݂,ௗ௜௙௙
ଶ

1
݂
݂݀

గ
ଶ௙ಽ

௙బ

													ሺ3 െ 347ሻ 

Knowing that f୮,ୢ୧୤୤ൌf୐ and using equation ሺ1 െ 17ሻ the result of the above integral is 

௡,ଵ/௙,௙௙ݒ ൌ
ܴ஽ூிிܥ஽ூிி
௦௛ݎ ∥ ܴ஼ி஻	ܥி

ܰܨ ௙ܰ௙ඪln ൬
ߨ
2

௅݂

଴݂
൰ ൅

1
2
ቆ ௅݂

ଶ

௭݂
ଶ െ 1ቇ ln൮

൬ߨ
ଶ

4 ൅ 1൰ ௅݂
ଶ

଴݂
ଶ ൅ ௅݂

ଶ ൲					ሺ3 െ 348ሻ 

If f୐≫f଴ 

௡,ଵ/௙,௙௙ݒ ൌ
ܴ஽ூிிܥ஽ூிி
௦௛ݎ ∥ ܴ஼ி஻	ܥி

ܰܨ ௙ܰ௙ඨln ൬
ߨ
2

௅݂

଴݂
൰ ൅

1
2
ቆ ௅݂

ଶ

௭݂
ଶ െ 1ቇ ln ቆ

ଶߨ

4
൅ 1ቇ					ሺ3 െ 349ሻ 

If f୐
ଶ/f୸ଶ≫1 

௡,ଵ/௙,௙௙ݒ ൌ
ܴ஽ூிிܥ஽ூிி
௦௛ݎ ∥ ܴ஼ி஻	ܥி

ඨlnܰܰܨ ൬
ߨ
2

௅݂

଴݂
൰ ൅

1
2

௅݂
ଶ

௭݂
ଶ ln ቆ

ଶߨ

4
൅ 1ቇ												ሺ3 െ 350ሻ 

If we choose ଴݂ ൌ 1mHz, and 
ଵ

ଶ

௙ಽ
మ

௙೥
మ ln ቀ

గమ

ସ
൅ 1ቁ ≫ ln ቀ

గ

ଶ

௙ಽ
௙బ
ቁ then 

௡,ଵ/௙,௙௙ݒ ൌ
ܴ஽ூிிܥ஽ூிி
௦௛ݎ ∥ ܴ஼ி஻	ܥி

௅݂

௭݂
ඨܰܰܨ

1
2
ln ቆ

ଶߨ

4
൅ 1ቇ																							ሺ3 െ 351ሻ 

Substitute ሺ3 െ 336ሻ into ሺ3 െ 351ሻ 
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௡,ଵ/௙,௙௙ݒ ൌ ஽ூிிܥ஽ூிிܴߨ2 ൬1 ൅
ܿ௜௡
ிܥ
൰ ௅݂ܰܰܨඨ

1
2
ln ቆ

ଶߨ

4
൅ 1ቇ														ሺ3 െ 352ሻ 

The transfer function seen by the forward-path integrator op-amp input current shot noise at the 

output of the integrator is 

߰௢,௜,௦,௙௙
௦,௙௙ߦ

ൌ
1

ிܥ݂ߨ2݆
																																																				ሺ3 െ 353ሻ 

At the output of the differentiator, the transfer function becomes 

߰௢,ௗ,௦,௙௙
௦,௙௙ߦ

ൌ െ
ܴ஽ூிிܥ஽ூிி

ிܥ

1
1 ൅ ிଶܥ஽ூிிܴ݂ߨ2݆

																												ሺ3 െ 354ሻ 

The noise density is then 

ห߰௢,ௗ,௦,௙௙ห ൌ
ܴ஽ூிிܥ஽ூிி

ிܥ

௦,௙௙ߦ

ඥ1 ൅ ݂ଶሺ2ܴߨ஽ூிிܥிଶሻଶ
																								ሺ3 െ 355ሻ 

The RMS noise is then 

௡,௦,௙௙ݒ ൌ ඨන ௅௉ிሺ݂ሻ|ଶห߰௢,ௗ,௦,௙௙หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,ௗ,௦,௙௙ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
									ሺ3 െ 356ሻ 

௡,௦,௙௙ݒ ൌ
ܴ஽ூிிܥ஽ூிி

ிܥ
௦,௙௙ඨනߦ

1
1 ൅ ݂ଶ/ ௣݂,ௗ௜௙௙

ଶ ݂݀

గ
ଶ௙ಽ

଴
																						ሺ3 െ 357ሻ 

Using equation ሺ1 െ 13ሻ the result of the above integral is 

௡,௦,௙௙ݒ ൌ
ܴ஽ூிிܥ஽ூிி

ிܥ
௦,௙௙ඥߦ ௅݂																																											ሺ3 െ 358ሻ 

The photodiode thermal noise sees the same transfer function as the input current shot noise. 

Using equation ሺ3 െ 353ሻ we can write 
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߰௢,௜,௥௦௛
௥௦௛ߦ

ൌ
1

ிܥ݂ߨ2݆
																																																				ሺ3 െ 359ሻ 

With the differentiator, the transfer function is 

߰௢,ௗ,௥௦௛
߰௥௦௛

ൌ െ
ܴ஽ூிிܥ஽ூிி

ிܥ

1
1 ൅ ிଶܥ஽ூிிܴ݂ߨ2݆

																													ሺ3 െ 360ሻ 

The noise density is then 

ห߰௢,ௗ,௥௦௛ห ൌ
ܴ஽ூிிܥ஽ூிி

ிܥ

ට4݇ܶݎ௦௛
ඥ1 ൅ ݂ଶሺ2ܴߨ஽ூிிܥிଶሻଶ

																								ሺ3 െ 361ሻ 

The RMS voltage noise 

௡,௥௦௛ݒ ൌ ඨන ௅௉ிሺ݂ሻ|ଶห߰௢,ௗ,௥௦௛หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,ௗ,௥௦௛ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
												ሺ3 െ 362ሻ 

௡,௥௦௛ݒ ൌ
ܴ஽ூிிܥ஽ூிி

ிܥ
ඨ
4݇ܶ
௦௛ݎ

ඨන
1

1 ൅ ݂ଶ/ ௣݂,ௗ௜௙௙
ଶ ݂݀

గ
ଶ௙ಽ

଴
																					ሺ3 െ 363ሻ 

Using equation ሺ1 െ 13ሻ the result of the above integral is 

௡,௥௦௛ݒ ൌ
ܴ஽ூிிܥ஽ூிி

ிܥ
ඨ
4݇ܶ
௦௛ݎ

௅݂																																											ሺ3 െ 364ሻ 

The transfer function seen by the resistor thermal noise is 

߰௢,ௗ,ோ஽ூிி
ோ஽ூிிߦ

ൌ
ܴ஽ூிி

1 ൅ ிଶܥ஽ூிிܴ݂ߨ2݆
																																							ሺ3 െ 365ሻ 

The noise density is then 
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߰௢,ௗ,ோ஽ூிி ൌ
	ඥ4ܴ݇ܶ஽ூிி

ඥ1 ൅ ݂ଶሺ2ܴߨ஽ூிிܥிଶሻଶ
																																			ሺ3 െ 366ሻ 

The RMS voltage noise 

௡,ோ஽ூிிݒ ൌ ඨන ௅௉ிሺ݂ሻ|ଶห߰௢,ௗ,ோ஽ூிிหܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,ௗ,ோ஽ூிிห

ଶ
݂݀

గ
ଶ௙ಽ

଴
					ሺ3 െ 367ሻ 

௡,ோ஽ூிிݒ ൌ ඥ4ܴ݇ܶ஽ூிிඨන
1

1 ൅ ݂ଶ/ ௣݂,ௗ௜௙௙
ଶ ݂݀

గ
ଶ௙ಽ

଴
																								ሺ3 െ 368ሻ 

Using equation ሺ1 െ 13ሻ the result of the above integral is 

௡,ோ஽ூிிݒ ൌ ඥ4ܴ݇ܶ஽ூிி ௅݂																																															ሺ3 െ 369ሻ 

The transfer function seen by the differentiator op-amp thermal noise is 

߰௢,ௗ,்,ௗ௜௙௙
்߰,ௗ௜௙௙

ൌ
1 ൅ ிଶܥሺ݂ߨ2݆ ൅ ஽ூிிሻܴ஽ூிிܥ

1 ൅ ிଶܥ஽ூிிܴ݂ߨ2݆
																													ሺ3 െ 370ሻ 

From the transfer function, we can see that there is 1 pole ௣݂,ௗ௜௙௙ and 1 zero 

௭݂ ൌ
1

ிଶܥ஽ூிிሺܴߨ2 ൅ ஽ூிிሻܥ
																																											ሺ3 െ 371ሻ 

߰௢,ௗ,்,ௗ௜௙௙ ൌ
ට1 ൅ ݂ଶ൫2ܴߨ஽ூிிሺܥிଶ ൅ ஽ூிிሻ൯ܥ

ଶ

ඥ1 ൅ ݂ଶሺ2ܴߨ஽ூிிܥிଶሻଶ
்߰,ௗ௜௙௙																		ሺ3 െ 372ሻ 

The RMS voltage noise 

௡,்,ௗ௜௙௙ݒ ൌ ඨන ௅௉ிሺ݂ሻ|ଶห߰௢,ௗ,்,ௗ௜௙௙หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,ௗ,்,ௗ௜௙௙ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
					ሺ3 െ 373ሻ 
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௡,்,ௗ௜௙௙ݒ ൌ ்߰,ௗ௜௙௙ඨන
1 ൅ ݂ଶ/ ௭݂

ଶ

1 ൅ ݂ଶ/ ௣݂,ௗ௜௙௙
ଶ ݂݀

గ
ଶ௙ಽ

଴
																												ሺ3 െ 374ሻ 

Using equation ሺ1 െ 16ሻ and noting that f୮,ୢ୧୤୤ൌf୐, the above integral becomes 

௡,்,ௗ௜௙௙ݒ ൌ ்߰,ௗ௜௙௙ඨ ௅݂ ൭ቀ
ߨ
2
െ 1ቁ ௅݂

ଶ

௭݂
ଶ ൅ 1൱																															ሺ3 െ 375ሻ 

If ቀ
గ

ଶ
െ 1ቁ

௙ಽ
మ

௙೥
మ ≫ 1 

௡,்,ௗ௜௙௙ݒ ൌ
௅݂

௭݂,ௗ௜௙௙
்߰,ௗ௜௙௙ටቀ

ߨ
2
െ 1ቁ ௅݂																																			ሺ3 െ 376ሻ 

Substitute ሺ3 െ 371ሻ into ሺ3 െ 376ሻ 

௡,்,ௗ௜௙௙ݒ ൌ ሺ1 ൅ ஽ூிிܥ஽ூிிܴߨ2 ௅݂ሻ்߰,ௗ௜௙௙ටቀ
ߨ
2
െ 1ቁ ௅݂																				ሺ3 െ 377ሻ 

 

The transfer function seen by the differentiator op-amp flicker noise is the same as that seen by 

the thermal noise. Using equation ሺ3 െ 370ሻ we can write 

߰௢,ௗ,ଵ/௙,ௗ௜௙௙
߰ଵ/௙,ௗ௜௙௙

ൌ
1 ൅ ிଶܥ஽ூிிሺܴ݂ߨ2݆ ൅ ஽ூிிሻܥ

1 ൅ ிଶܥ஽ூிிܴ݂ߨ2݆
																												ሺ3 െ 378ሻ 

The noise density is then 

ห߰௢,ௗ,ଵ/௙,ௗ௜௙௙ห ൌ
ට1 ൅ ݂ଶ൫2ܴߨ஽ூிிሺܥிଶ ൅ ஽ூிிሻ൯ܥ

ଶ

ඥ1 ൅ ݂ଶሺ2ܴߨ஽ூிிܥிଶሻଶ
ܰܨ ௗܰ௜௙௙

ඥ݂
													ሺ3 െ 379ሻ 

The RMS noise voltage is  
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௡,ଵ/௙,ௗ௜௙௙ݒ ൌ ඨන ௅௉ிሺ݂ሻ|ଶห߰௢,ௗ,ଵ/௙,ௗ௜௙௙หܩ|
ଶ
݂݀

ஶ

௙బ

ൌ ඨන ห߰௢,ௗ,ଵ/௙,ௗ௜௙௙ห
ଶ
݂݀

గ
ଶ௙ಽ

௙బ

									ሺ3 െ 380ሻ 

௡,ଵ/௙,ௗ௜௙௙ݒ ൌ ܰܨ ௗܰ௜௙௙ඨන
1 ൅ ݂ଶ/ ௭݂

ଶ

1 ൅ ݂ଶ/ ௣݂,ௗ௜௙௙
ଶ

1
݂
݂݀

గ
ଶ௙ಽ

௙బ

																							ሺ3 െ 381ሻ 

Using equation ሺ1 െ 19ሻ and recalling that ௣݂,ௗ௜௙௙ ൌ ௅݂, the above integral becomes 

௡,ଵ/௙,ௗ௜௙௙ݒ ൌ ܰܨ ௗܰ௜௙௙ඪln ൬
ߨ
2

௅݂

଴݂
൰ ൅

1
2
ቆ ௅݂

ଶ

௭݂
ଶ െ 1ቇ ln൮

൬ߨ
ଶ

4 ൅ 1൰ ௅݂
ଶ

଴݂
ଶ ൅ ௅݂

ଶ ൲								ሺ3 െ 382ሻ 

If f଴ is chosen to be 1mHz, then  f୐≫f଴ 

௡,ଵ/௙,ௗ௜௙௙ݒ ൌ ܰܨ ௗܰ௜௙௙ඨln ൬
ߨ
2

௅݂

଴݂
൰ ൅

1
2
ቆ ௅݂

ଶ

௭݂,ௗ௜௙௙
ଶ െ 1ቇ ln ቆ

ଶߨ

4
൅ 1ቇ										ሺ3 െ 383ሻ 

If 
௙ಽ
మ

௙೥
మ ≫ 1 

௡,ଵ/௙,ௗ௜௙௙ݒ ൌ ܰܨ ௗܰ௜௙௙ඨln ൬
ߨ
2

௅݂

଴݂
൰ ൅

1
2

௅݂
ଶ

௭݂
ଶ ln ቆ

ଶߨ

4
൅ 1ቇ																					ሺ3 െ 384ሻ 

If 
ଵ

ଶ

௙ಽ
మ

௙೥
మ ln ቀ

గమ

ସ
൅ 1ቁ ≫ ln ቀ

గ

ଶ

௙ಽ
௙బ
ቁ 

௡,ଵ/௙,ௗ௜௙௙ݒ ൌ
௅݂

௭݂
ܰܨ ௗܰ௜௙௙ඨ

1
2
ln ቆ

ଶߨ

4
൅ 1ቇ																																ሺ3 െ 385ሻ 

Substitute ሺ3 െ 371ሻ into ሺ3 െ 385ሻ 

௡,ଵ/௙,ௗ௜௙௙ݒ ൌ ሺ1 ൅ ஽ூிிܥ஽ூிிܴߨ2 ௅݂ሻܰܨ ௗܰ௜௙௙ඨ
1
2
ln ቆ

ଶߨ

4
൅ 1ቇ													ሺ3 െ 386ሻ 
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The photocurrent shot noise sees the same transfer function as the photodiode shunt resistance 

current noise. Thus, using equation ሺ3 െ 359ሻ, we can write 

߰௢,௜,ℓ௦
ℓ௦ߦ

ൌ
1

ிܥ݂ߨ2݆
																																																						ሺ3 െ 387ሻ 

With the differentiator, the transfer function is 

߰௢,ௗ,ℓ௦
ℓ௦ߦ

ൌ െ
ܴ஽ூிிܥ஽ூிி

ிܥ

1
1 ൅ ிଶܥ஽ூிிܴ݂ߨ2݆

																														ሺ3 െ 388ሻ 

The noise density is then 

ห߰௢,ௗ,ℓ௦ห ൌ
ܴ஽ூிிܥ஽ூிி

ிܥ

ඥ2ݍଓ௣ഥ

ඥ1 ൅ ݂ଶሺ2ܴߨ஽ூிிܥிଶሻଶ
																										ሺ3 െ 389ሻ 

The RMS voltage noise 

௡,௟௜௚௛௧ݒ ൌ ඨන ௅௉ிሺ݂ሻ|ଶห߰௢,ௗ,ℓ௦หܩ|
ଶ
݂݀

ஶ

଴
ൌ ඨන ห߰௢,ௗ,ℓ௦ห

ଶ
݂݀

గ
ଶ௙ಽ

଴
												ሺ3 െ 390ሻ 

௡,௟௜௚௛௧ݒ ൌ
ܴ஽ூிிܥ஽ூிி

ிܥ
ට2ݍଓ௣ഥඨන

1
1 ൅ ݂ଶ/ ௣݂,ௗ௜௙௙

ଶ ݂݀

గ
ଶ௙ಽ

଴
																			ሺ3 െ 391ሻ 

Using equation ሺ1 െ 13ሻ the result of the above integral is 

௡,௟௜௚௛௧ݒ ൌ
ܴ஽ூிிܥ஽ூிி

ிܥ
ට2ݍଓ௣ഥ ௅݂																																									ሺ3 െ 392ሻ 

The dark noise density is then the quadratic sum of all the inherent noise sources when no light 

reaches the photodiode. This includes the noise densities in equations ሺ3 െ 330ሻ, ሺ3 െ 337ሻ, 

ሺ3 െ 345ሻ, ሺ3 െ 355ሻ, ሺ3 െ 361ሻ, ሺ3 െ 366ሻ, ሺ3 െ 372ሻ, and ሺ3 െ 379ሻ. 
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ห߰௢,ௗ௔௥௞ห ൌ ඩ
ห߰௢,ோ஼ி஻ห

ଶ
൅ ห߰௢,்,௙௙ห

ଶ
൅ ห߰௢,ଵ/௙,௙௙ห

ଶ
൅ ห߰௢,௦,௙௙ห

ଶ
൅ ห߰௢,௥௦௛ห

ଶ

൅ห߰௢,ோ஽ூிிห
ଶ
൅ ห߰௢,்,ௗ௜௙௙ห

ଶ
൅ ห߰௢,ଵ/௙,ௗ௜௙௙ห

ଶ 										ሺ3 െ 393ሻ 

The RMS dark noise is then the quadratic some of all the RMS noise voltages observed at the 

output of the 2nd stage.  

௡,ௗ௔௥௞ݒ ൌ ඨ
௡,ோ஼ி஻ݒ
ଶ ൅ ௡,்,௙௙ݒ

ଶ ൅ ௡,ଵ/௙,௙௙ݒ
ଶ ൅ ௡,௦,௙௙ݒ

ଶ

൅ݒ௡,௥௦௛
ଶ ൅ ௡,ோ஽ூிிݒ

ଶ ൅ ௡,்,ௗ௜௙௙ݒ
ଶ ൅ ௡,ଵ/௙,ௗ௜௙௙ݒ

ଶ 																		ሺ3 െ 394ሻ 

 

Substitute ሺ3 െ 333ሻ, ሺ3 െ 342ሻ, ሺ3 െ 352ሻ, ሺ3 െ 358ሻ, ሺ3 െ 364ሻ, ሺ3 െ 369ሻ, ሺ3 െ 377ሻ, and 

ሺ3 െ 386ሻ into ሺ3 െ 394ሻ. 

௡,ௗ௔௥௞ݒ ൌ ඩ൬
ܴ஽ூிிܥ஽ூிி

ிܥ
൰
ଶ

ᇱߙ ௅݂ ൅ ሺܴ஽ூிிܥ஽ூிிሻଶ ൬2
ܿ௜௡
ிܥ

൅ 1൰ ሺ2ߨ ௅݂ሻଶߛ௜௡௧

൅ሺ1 ൅ ஽ூிிܥ஽ூிிܴߨ2 ௅݂ሻଶߛௗ௜௙௙ ൅ ߢ
											ሺ3 െ 395ሻ 

where 

ᇱߙ ൌ ௦,௙௙ߦ
ଶ ൅

4݇ܶ
ܴ஼ி஻

൅
4݇ܶ
௦௛ݎ

൅ ଶܿ௜௡ߨ4
ଶ

௅݂ߛ௜௡௧ 

௜௡௧ߛ ൌ ்߰,௙௙
ଶ ቀ

ߨ
2
െ 1ቁ ௅݂ ൅ ܰܨ ௙ܰ௙

ଶ 1
2
ln ቆ

ଶߨ

4
൅ 1ቇ																								ሺ3 െ 396ሻ 

ௗ௜௙௙ߛ ൌ ்߰,ௗ௜௙௙
ଶ ቀ

ߨ
2
െ 1ቁ ௅݂ ൅ ܰܨ ௗܰ௜௙௙

ଶ 1
2
ln ቆ

ଶߨ

4
൅ 1ቇ																				ሺ3 െ 397ሻ 

ߢ ൌ 4ܴ݇ܶ஽ூிி ௅݂ ൅ ሺ2ܴߨ஽ூிிܥ஽ூிிሻଶ൫ߛ௜௡௧ ൅ ௗ௜௙௙൯ߛ ௅݂
ଶ																			ሺ3 െ 398ሻ 

If 2ܴߨ஽ூிிܥ஽ூிி ௅݂ ≫ 1, then equation ሺ3 െ 395ሻ becomes 
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௡,ௗ௔௥௞ݒ ൌ ඨߙᇱ ௅݂ ൬
ܴ஽ூிிܥ஽ூிி

ிܥ
൰
ଶ

൅ ߚ ௅݂ ൬
ܴ஽ூிிܥ஽ூிி

ிܥ
൰ ൅ ሺ3																	ߢ െ 399ሻ 

where  

ߚ ൌ ௜௡௧ߛ஽ூிிܥଶܿ௜௡ܴ஽ூிிߨ8 ௅݂																																										ሺ3 െ 400ሻ 

The total noise is then the quadratic sum of light and dark noise 

௡,௧௢௧௔௟ݒ ൌ ටݒ௡,ௗ௔௥௞
ଶ ൅ ௡,௟௜௚௛௧ݒ

ଶ  

Substituting ሺ3 െ 399ሻ and ሺ3 െ 392ሻ into the expression above gives us the total noise. 

௡,௧௢௧௔௟ݒ ൌ ඨߙ ௅݂ ൬
ܴ஽ூிிܥ஽ூிி

ிܥ
൰
ଶ

൅ ߚ ௅݂ ൬
ܴ஽ூிிܥ஽ூிி

ிܥ
൰ ൅ ሺ3																		ߢ െ 401ሻ 

where 

ߙ ൌ ௦,௙௙ߦ
ଶ ൅

4݇ܶ
ܴ஼ி஻

൅
4݇ܶ
௦௛ݎ

൅ ଓ௣ഥݍ2 ൅ ሺ2ܿߨ௜௡ሻଶ ௅݂ߛ௜௡௧																							ሺ3 െ 402ሻ 
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3.4.2 Signal-to-Noise Ratio 
 

The gain of the charge amplifier (integrator and differentiator combined) is  

ொܩ ൌ
ܴ஽ூிிܥ஽ூிி

ிܥ
																																																					ሺ3 െ 403ሻ 

The SNR is then the RMS signal current times ܩொ over the total RMS noise defined in equation 

ሺ3 െ 401ሻ. 

ܴܵܰ ൌ

ܴ஽ூிிܥ஽ூிி
ிܥ

ଓ௣෥

ඨߙ ௅݂ ቀ
ܴ஽ூிிܥ஽ூிி

ிܥ
ቁ
ଶ
൅ ߚ ௅݂ ቀ

ܴ஽ூிிܥ஽ூிி
ிܥ

ቁ ൅ ߢ

																			ሺ3 െ 404ሻ 

Right away we notice many differences between the equation for this topology compared to the 

ones studied in the previous sections. The coefficient ߚ in this case contains more terms than any 

of the other topologies studied. Further differences are brought to light when we take the limit of 

the SNR as the gain goes to infinity. 

ܴܵܰஶ ൌ lim
ீೂ→ஶ

ܴܵܰ ൌ
ଓ௣෥

ඥߙ ௅݂

																																										ሺ3 െ 405ሻ 

Here the coefficient ߙ contains 1 more term than that of the single-resistor topology: the thermal 

noise from ܴ஼ி஻. Even though ܴ஼ி஻ can be made very large when photocurrent is low, this shows 

that the ܴܵܰஶ of the charge amp will never be as good as that of the single-resistor topology. The 

value of ܩொ at 90% of ܴܵܰஶ, can be calculated using the equation below. 

ொ,ଽ଴ܩ ൌ
81
38

ቌ
ߚ
ߙ
൅ ඨ

ଶߚ

ଶߙ
൅
76
81

ߢ
ߙ ௅݂

ቍ																															ሺ3 െ 406ሻ 
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After obtaining ܩொ,ଽ଴, one can choose the differentiator gain 2ܴߨ஽ூிிܥ஽ூிி and use 

equation ሺ3 െ 403ሻ to calculate ܥி. Because the term ߙ contains the DC photocurrent, the 

value of ܩொ,ଽ଴ will change with ଓ௣ഥ . In order to determine the maximum value of ܩொ,ଽ଴, we 

can let the term ଓ௣ഥ  go to zero. The result is shown below. 

෠ொ,ଽ଴ܩ ൌ lim
ప೛തതത→଴

ொ,ଽ଴ܩ ൌ
81
38

ቌ
ߚ
∗ߙ

൅ ඨ൬
ߚ
∗ߙ
൰
ଶ

൅
76
81

ߢ
∗ߙ ௅݂

ቍ														ሺ3 െ 407ሻ 

where 

∗ߙ ൌ ݂݂,ݏߦ
2 ൅

4݇ܶ

ܤܨܥܴ
൅
4݇ܶ

݄ݏݎ
൅ ሺ2݊݅ܿߨሻ2݂ݐ݊݅ߛܮ 
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3.5 Avalanche Photodiode Amplifiers 
 

In this section we will investigate the performance of avalanche photodiodes and the 

associated transimpedance amplifiers. APDs have been used by some researchers for fluorescence 

detection [3]. We will see in this section how the internal gain of the APD affects the detection 

limit.  

 

3.5.1 Noise Analysis 
 

The APD and amplifier are shown below in the left panel of Figure 3-10. Here the APD 

is biased at a high voltage (around 100V) to facilitate avalanche multiplication. In the noise 

model (right side of the figure), this fixed supply can be modeled as AC ground. The op-amp in 

this circuit will be modeled as having common-mode and differential-mode input capacitances, 

ܿ௖௠ and ܿௗ௠ respectively. It will have input-current shot noise ߦ௦, thermal noise ்߰ and flicker 

noise ߰ଵ/௙. It will be modeled as having infinite gain. 

The APD is modeled as having dark current shot noise and photocurrent shot noise. It has 

junction capacitance ௝ܿ. The photodiode junction capacitance and op-amp input capacitance 

combine in parallel to produce ܿ௜௡ which is defined in the previous section in equation ሺ3 െ 2ሻ. 

For all calculations of RMS noise in this section, we will assume that the TIA is followed 

by a high-order low-pass filter like the one described in section 1.3.1 which can be approximated 

by equation ሺ1 െ 12ሻ. Thus the upper limit of the integrals will not be ∞ but instead 
గ

ଶ ௅݂. 
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For this analysis we will consider each noise source independently and then use superposition to 

determine the total noise. The thermal noise from the op-amp sees the transfer function shown 

below 

߰௢,்
்߰

ൌ
1 ൅ ி൫ܴ݂ߨ2݆ ௙ܿ ൅ ܿ௜௡൯

1 ൅ ிܴ݂ߨ2݆ ௙ܿ
																																									ሺ3 െ 408ሻ	 

Now we can clearly see that there is a pole at 

௣݂ ൌ ௅݂ ൌ
1

ிܴߨ2 ௙ܿ
																																																				ሺ3 െ 409ሻ 

and a zero at  

௭݂ ൌ
1

ி൫ܴߨ2 ௙ܿ ൅ ܿ௜௡൯
																																																	 ሺ3 െ 410ሻ	 

Solve ௅݂ for ௙ܿ in equation ሺ3 െ 409ሻ and substitute the result into ሺ3 െ 410ሻ 

௭݂ ൌ
௅݂

1 ൅ ிܿ௜௡ܴߨ2 ௅݂
																																																		ሺ3 െ 411ሻ 

Take the magnitude of ሺ3 െ 408ሻ 
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Figure 3-10: Avalanche photodiode circuit (left) and corresponding noise model (right). 
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ห߰௢,்ห ൌ
ට1 ൅ ݂ଶ ቀ2ܴߨி൫ ௙ܿ ൅ ܿ௜௡൯ቁ

ଶ

ට1 ൅ ݂൫2ܴߨி ௙ܿ൯
ଶ

்߰																																ሺ3 െ 412ሻ 

Because the transfer function in ሺ3 െ 408ሻ has the form of the filter described in section 1 

equation ሺ1 െ 14ሻ, we can use equation ሺ1 െ 16ሻ. 

்,௡ݒ ൌ ඨන ห߰௢,்ห
ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ்߰ඨ ௅݂ ൭ቀ

ߨ
2
െ 1ቁ ௅݂

ଶ

௭݂
ଶ ൅ 1൱																				ሺ3 െ 413ሻ 

Substitute ሺ3 െ 411ሻ into ሺ3 െ 413ሻ 

்,௡ݒ ൌ ்߰ඨ ௅݂ ቆቀ
ߨ
2
െ 1ቁ ሺ1 ൅ ிܿ௜௡ܴߨ2 ௅݂ሻଶ ൅ 1ቇ																								ሺ3 െ 414ሻ 

If ቀ
గ

ଶ
െ 1ቁ ሺ1 ൅ ிܿ௜௡ܴߨ2 ௅݂ሻଶ ≫ 1, then 

்,௡ݒ ൌ ሺ1 ൅ ிܿ௜௡ܴߨ2 ௅݂ሻ்߰ටቀ
ߨ
2
െ 1ቁ ௅݂																																	ሺ3 െ 415ሻ 

The op-amp flicker noise has the same transfer function as the op-amp thermal noise. Using 

equation ሺ3 െ 408ሻ we can write 

߰௢,ଵ/௙
߰ଵ/௙

ൌ
1 ൅ ி൫ܴ݂ߨ2݆ ௙ܿ ൅ ܿ௜௡൯

1 ൅ ிܴ݂ߨ2݆ ௙ܿ
																																								ሺ3 െ 416ሻ 

Take the magnitude of ሺ3 െ 416ሻ to get the noise density. 

ห߰௢,ଵ/௙ห ൌ
ට1 ൅ ݂ଶ ቀ2ܴߨி൫ ௙ܿ ൅ ܿ௜௡൯ቁ

ଶ

ට1 ൅ ݂ଶ൫2ܴߨி ௙ܿ൯
ଶ

ܰܰܨ

ඥ݂
																												ሺ3 െ 417ሻ 
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Squaring ሺ3 െ 417ሻ, integrating over ݂, and taking the square root yields the RMS noise voltage. 

Because the transfer function in ሺ3 െ 416ሻ has the same form as that in ሺ1 െ 14ሻ, we can use 

equation ሺ1 െ 19ሻ as the result of the integration. 

௡,ଵ/௙ݒ ൌ ඨන ห߰௢,ଵ/௙ห
ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ඩlnܰܰܨ ൬

ߨ
2

௅݂

଴݂
൰ ൅

ln ൬1 ൅
ଶߨ
4 ൰

2
ቆ ௅݂

ଶ

௭݂
ଶ െ 1ቇ								ሺ3 െ 418ሻ 

Substitute ሺ3 െ 411ሻ into ሺ3 െ 418ሻ ሺ3 െ 413ሻ 

௡,ଵ/௙ݒ ൌ ඩlnܰܰܨ ൬
ߨ
2

௅݂

଴݂
൰ ൅

ln ൬1 ൅
ଶߨ
4 ൰

2
ሺሺ1 ൅ ிܿ௜௡ܴߨ2 ௅݂ሻଶ െ 1ሻ										ሺ3 െ 419ሻ 

If ቀ
గ

ଶ
െ 1ቁ ሺ1 ൅ ிܿ௜௡ܴߨ2 ௅݂ሻଶ ≫ 1, then  

௡,ଵ/௙ݒ ൌ ඩlnܰܰܨ ൬
ߨ
2

௅݂

଴݂
൰ ൅

ln ൬1 ൅
ଶߨ
4 ൰

2
ሺ1 ൅ ிܴߨ2 ௅݂ܿ௜௡ሻଶ																ሺ3 െ 420ሻ 

The noise from the op-amp input current and the feedback resistor are the same for the 

APD amplifier as they are for the single-feedback resistor TIA. The RMS noise voltage 

associated with the input current shot noise and the feedback resistor thermal noise are defined in 

equations ሺ3 െ 33ሻ and ሺ3 െ 28ሻ respectively. 

The APD’s dark current shot noise sees the same transfer function as the op-amp input 

current shot noise. Using equation ሺ3 െ 31ሻ, we can write 

߰௢,ௗ௖௦
ௗ௖௦ߦ

ൌ
ܴி

1 ൅ ிܴ݂ߨ2݆ ௙ܿ
																																																ሺ3 െ 421ሻ 

The noise density is then the magnitude of the above expression. 



Chapter 3 

137 
 

ห߰௢,ௗ௖௦ห ൌ
ܴிඥ2ܫݍ஽ܨ

ට1 ൅ ݂ଶ൫2ܴߨி ௙ܿ൯
ଶ
																																									ሺ3 െ 422ሻ 

where ܨ is the excess noise factor. The RMS voltage noise at the circuit’s output contributed by 

 .ௗ௖௦ can be found by taking the square root of the integral of the noise density as shown belowߦ

Because the transfer function in ሺ3 െ 421ሻ is the same form as that in ሺ1 െ 8ሻ, we can use 

equation ሺ1 െ 13ሻ as the result of the integral. We then have 

௡,ௗ௖௦ݒ ൌ ඨන ห߰௢,ௗ௖௦ห
ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ܴிඥ2ܫݍ஽ܨ ௅݂																													ሺ3 െ 423ሻ 

Photocurrent shot noise sees the same transfer function as leakage current shot noise. Using 

equation ሺ3 െ 421ሻ 

߰௢,ℓ௦
ℓ௦ߦ

ൌ
ܴி

1 ൅ ிܴ݂ߨ2݆ ௙ܿ
																																																ሺ3 െ 424ሻ 

The noise density is then 

ห߰௢,ℓ௦ห ൌ
ܨଓ௣ഥݍிඥ2ܴܯ

ට1 ൅ ݂ଶ൫2ܴߨி ௙ܿ൯
ଶ
																																										ሺ3 െ 425ሻ 

where ܯ is the APD’s avalanche gain and ܨ is its excess noise factor (see section 1.4.5). The 

RMS voltage noise at the circuit’s output contributed by ߦℓ௦ can be found by taking the square 

root of the integral of the noise density as shown below. Because the transfer function in ሺ3 െ

424ሻ is the same form as that in ሺ1 െ 8ሻ, we can use equation ሺ1 െ 13ሻ as the result of the 

integral. We then have 

௡,௟௜௚௛௧ݒ ൌ ඨන ห߰௢,ℓ௦ห
ଶ
݂݀

గ
ଶ௙ಽ

଴
ൌ ܨଓ௣ഥݍிට2ܴܯ ௅݂																											ሺ3 െ 426ሻ 
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The total dark noise is then the quadratic sum of all the noise sources inherent to the amplifier. 

The equation is shown below. 

௡,ௗ௔௥௞ݒ ൌ ටݒ௡,்
ଶ ൅ ௡,ଵ/௙ݒ

ଶ ൅ ௡,ோிݒ
ଶ ൅ ௡,௦ଶݒ ൅ ௡,ௗ௖௦ݒ

ଶ 																								ሺ3 െ 427ሻ 

Substitute equations ሺ3 െ 415ሻ, ሺ3 െ 420ሻ, ሺ3 െ 28ሻ, ሺ3 െ 33ሻ, and ሺ3 െ 423ሻ into ሺ3 െ 427ሻ. 

The result is 

௡,ௗ௔௥௞ݒ ൌ ඨߙᇱ ௅݂ܴி
ଶ ൅ ᇱߚ ௅݂ܴி ൅ ߛ ൅ ଶܰܰܨ ln ൬

ߨ
2

௅݂

଴݂
൰																				ሺ3 െ 428ሻ 

where 

ᇱߙ ൌ ܨ஽ܫݍ2 ൅ ௦ଶߦ ൅ ሺ2ܿߨ௜௡ሻଶߛ ௅݂ 

ᇱߚ ൌ 4݇ܶ ൅  ߛ௜௡ܿߨ4

ߛ ൌ ்߰
ଶ ቀ
ߨ
2
െ 1ቁ ௅݂ ൅ ଶܰܰܨ

ln ൬1 ൅
ଶߨ
4 ൰

2
																																ሺ3 െ 429ሻ 

The total noise is then the quadratic sum of the light and dark noise voltages.  

௡,௧௢௧௔௟ݒ ൌ ටݒ௡,ௗ௔௥௞
ଶ ൅ ௡,௟௜௚௛௧ݒ

ଶ  

௡,௧௢௧௔௟ݒ ൌ ටߙ ௅݂ܴி
ଶ ൅ ிܴߚ ௅݂ ൅ ሺ3																																				஺௉஽ߢ െ 430ሻ 

ߙ ൌ ܨଶܯଓ௣ഥݍ2 ൅ ܨ஽ܫݍ2 ൅ ௦ଶߦ ൅ ሺ2ܿߨ௜௡ሻଶߛ ௅݂																													ሺ3 െ 431ሻ 

ߚ ൌ 4݇ܶ ൅ ሺ3																																																				ߛ௜௡ܿߨ4 െ 432ሻ 

஺௉஽ߢ ൌ ߛ ൅ ଶܰܰܨ ln ൬
ߨ
2

௅݂

଴݂
൰																																											ሺ3 െ 433ሻ 
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3.5.2 Signal-To-Noise Ratio 
 

The SNR is the ratio of the RMS output voltage to the total noise given in equation ሺ3 െ 430ሻ. 

ܴܵܰ ൌ
ிଓ௣෥ܴܯ

ඥߙ ௅݂ܴி
ଶ ൅ ிܴߚ ௅݂ ൅ ஺௉஽ߢ

																																						ሺ3 െ 434ሻ 

Where the terms ߚ ,ߙ, and ߢ஺௉஽ are defined in equations ሺ3 െ 431ሻ, ሺ3 െ 432ሻ, ሺ3 െ

429ሻ, and ሺ3 െ 433ሻ respectively. Taking the limit of equation ሺ3 െ 53ሻ as ܴி approaches 

infinity gives us the maximum possible SNR for a given op-amp and APD.  

ܴܵܰஶ ൌ lim
ோಷ→ஶ

ܴܵܰ ൌ
ଓ௣෥ܯ

ඥα ௅݂

																																											ሺ3 െ 435ሻ 

While the ܴܵܰஶ represents the theoretical ceiling, a “practical” target for ܴி can be 

ܴி,ଽ଴, the feedback resistance corresponding to 90% of ܴܵܰஶ. Increasing ܴி beyond ܴி,ଽ଴ 

would no longer result in significant improvement of SNR. The value of  ܴி,ଽ଴ can be 

approximated using the following simple formula: 

ܴி,ଽ଴ ൌ 4.26
ߚ
ߙ
																																																								ሺ3 െ 436ሻ 

The peak value of ܴி,ଽ଴ is then found by letting ଓ௣ഥ → 0 in the denominator term ߙ. The result is 

෠ܴி,ଽ଴ ൌ lim
ప೛തതത→଴

ܴி,ଽ଴ ൌ 4.26
ߚ
∗ߙ
																																											ሺ3 െ 437ሻ 

where 

∗ߙ ൌ ܨ஽ܫݍ2 ൅ ௦ଶߦ ൅ ሺ2ܿߨ௜௡ሻଶߛ ௅݂ 
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It is interesting to note that the value of  ܴி,ଽ଴ for APDs is much lower than that for the 

PIN photodiode transimpedance amplifier. The table in APPENDIX 2 shows this value to be 

around 1 െ 100MΩ. This means that the sensitivity of these amplifiers can be easily increased 

without the concern of losing bandwidth. 
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Chapter 4  Assessment of Commercially 
Available Components for 
Transimpedance Amplifiers Optimized 
for low-light Applications 
 

4.1 Photodiodes 

4.1.1 PIN Photodiodes 
 

There is currently an extremely large selection of photodiodes on the market today. These 

devices are offered in a range of sizes, performance levels, and compositions.  In this section we 

will present and discuss a survey of the current technology which will aid in determining the best 

possible for a photodiode amplifier.  

In this section we will discuss the range of parameters for some PIN photodiodes. We 

will be specifically focusing on shunt resistance ݎ௦௛ which determines the noise contribution of 

the diode, junction capacitance ௝ܿ which affects the noise gain and bandwidth, and quantum 

efficiency ߟ which tells us how good is the diode at converting light into electricity. Figure 4-1 

shows plots of data taken from 170 PIN photodiodes that were included in the survey. On the left, 

we show the relation between ݎ௦௛ and photosensitive area. From this plot, one can clearly see that 

 ௦௛ݎ ௦௛ is inversely proportional to area. The range of values is also important. Here we seeݎ

ranging anywhere from ~10MΩ to ~100GΩ. The literature, however, predicts this range to be 

~10M െ ~1GΩ [29]. On the right we have data showing the relation of ௝ܿ to photosensitive area. 

Again, as one would expect, the relation between ௝ܿ and area is roughly linear. One can observe 

the range of ௝ܿ to be from ~1pF to ~10nF. Unlike the shunt resistance, this range agrees with 

what is reported in the literature [41]. 
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The quantum efficiency is also an important parameter. Our survey has found a variety of 

photodiodes with quantum efficiency greater than 90%. For the complete survey including 

manufacturer names and part numbers, please see APPENDIX 1. 

 

 

Figure 4-1: Plots of 170 photodiodes included in the survey. The left plot shows the relation between photosensitive 
area and shunt resistance and the right plot shows the relation between photosensitive area and junction capacitance. 

 

4.1.2 Avalanche Photodiodes 
 

Using the noise analysis that we developed in section 3.5, we will show the performance 

of 44 different APDs manufactured by Hamamatsu Photonics. The left panel of Figure 4-2 shows 

the effect of dark current ܫ஽ on ܴܵܰஶ. Indeed, when conducting this survey, the dark noise was 

always the dominant noise source when used in conjunction with the low-noise OPA140 op-amp. 

The value of ܴܵܰஶ for each diode was calculated using equation ሺ3 െ 435ሻ with the peak 

photocurrent assumed to be 1pA (612fA RMS and 500fA average). The red dots are APDs with 

an avalanche gain ܯ or 100, the black dots have a gain of 50 and the blue dots have a gain of 
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either 40 or 60 (see table in APPENDIX 2). Surprisingly, the photodiodes with lower avalanche 

gain ܯ tend to have a higher value of ܴܵܰஶ.   

The right panel of Figure 4-2 shows the effect of increasing photosensitive area on dark 

current. As one would expect, the larger diodes have more leakage current and therefore will be 

noisier. While smaller PIN photodiodes also tend to have better performance, the APDs are 

typically much smaller by comparison. Notice that the best PIN diodes (highest shunt resistance) 

in the left panel of Figure 4-1 have area ~1mmଶ while the best APDs have area ~100ߤmଶ. This 

will make coupling the diode to an imaging system much more difficult and costly.  

 

 

A survey was conducted on APD modules made by Hamamatsu Photonics. The results 

are shown in Table 4-1. Here we took the information from the datasheet and used it to calculate 

SNR for each module. The noise performance of each module was given in the form of noise 

equivalent power (NEP) which was used to calculate the SNR. The formula for the APD noise is 

shown below. 

 

Figure 4-2: Plot of ܴܵܰஶ vs ܫ஽ (left) and ܫ஽ vs photosensitive area (right) for 44 Hamamatsu APDs. 
The dots in red have a typical avalanche gain of 100 and the ones in black have a typical gain of 50. 
The blue dots represent APDs with a gain of either 40 or 60 (see table in APPENDIX 2). 
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௡,௔௣ௗݒ ൌ ඥ	௣൯ߣ൫ܴ	ܲܧܰ	ிܴ	ܯ ௅݂																																														ሺ4 െ 1ሻ 

The SNR is then calculated using the formula below. 

ܴܵܰ ൌ
ிଓ௣෥ܴܯ

ටݍ2ܯଓ௣ഥܴி ௅݂ ൅ ௡,௔௣ௗݒ
ଶ

																																														ሺ4 െ 2ሻ 

Here we used ௅݂ ൌ 300Hz, ଓ௣෥ ൌ 612fA and ଓ௣ഥ ൌ 500fA. We have had to drop the excess noise 

factor ܨ which appears in front of the photocurrent shot noise term because it was not provided in 

the datasheet. 

An interesting anomaly was discovered when investigating the APD modules. While the 

maximum ܴܵܰஶ for the APDs in the survey was 57.5 for ଓ௣ෝ ൌ 1pA, and many diodes had ܴܵܰஶ 

around 40 (see table in APPENDIX 2), the highest SNR for the APD modules was only 3.53. One 

may think that because the value of ܴி is low for many of these modules that these devices are 

built for speed and not sensitivity. However, the value of ܴி,ଽ଴ for most APDs is around 10MΩ 

which is the same value used for the modules with the highest SNR. One may also speculate that 

it is because the avalanche gain ܯ is lower for the modules with ܴி ൌ 10MΩ, but even if it were 

increased to 100MΩ (the typical value calculated for the individual APDs) this would only raise 

the SNR by about a factor of 3. This begs the question why is the SNR of the modules  ൈ 10 

lower than that of the APDs?  

A possible explanation is that the power supply used to bias the APD may be producing a 

great deal of noise and thus lowering the SNR. Recall that power supply noise was not included 

in the analysis of the APD amplifier in section 3.5 due to lack of data. The power supplies 

typically used for these modules is the switch-mode converter type, which uses a high-frequency 

square wave as input to a transformer. The harmonics of the square wave may be creating 

additional noise.  
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4.2 Operational Amplifiers  
 

As we have shown in section 3.1.1, the op-amp contributes to the total noise of the TIA 

with its thermal noise, flicker noise and input current shot noise. In this section we will conduct a 

brief survey of commercially available op-amps and tabulate their relevant parameters.  

Figure 4-3 shows plots of 23 different op-amps and their respective noise characteristics. 

The plot on the left shows each op-amp’s current and flicker noise. An inverse proportionality is 

clearly observable, hence the fit line. The equation of the fit line is shown below. 

௦ߦ ൌ
126
ܰܰܨ

 

The plot on the right side of Figure 4-3 shows the op-amp thermal noise compared to current 

noise. Notice that the range over which the thermal noise varies is much smaller than that of the 

flicker noise. There is also no visible correlation between the two parameters. 

 

Table 4-1: Table of APD modules from Hamamatsu Photonics. The responsivity at the peak wavelength ܴ൫ߣ௣൯ is 
specified for gain ܯ ൌ 1. 

Part # 
ܴܵܰ	@	ଓ௣ෝ ൌ 1pA 

ிܴ ܯ ሺΩሻ 
ܲܧܰ ൫pW/√Hz൯ Area	 

ሺmmଶሻ 
ܴ൫ߣ௣൯ 
(A/W) Typ. Min. Typ. Max. 

C10508-01 3.53 1.77 250 10k 0.02 0.04 0.8 0.5 
C12702-03 0.24 0.12 30 9.1k 0.30 0.6 0.8 0.5 
C12702-04 0.18 0.09 30 3.0k 0.40 0.8 7.1 0.5 
C12702-11 0.17 0.08 30 3.9k 0.50 1.0 0.8 0.42 
C12702-12 0.08 0.04 30 3.0k 1.00 2.0 7.1 0.42 
C12703 0.35 0.18 30 10k 0.20 0.4 1.8 0.5 
C12703-01 3.53 1.77 30 10M 0.02 0.04 7.1 0.5 
C5658 0.16 - 100 5.5k 0.50 - 0.2 0.45 
C5460 0.35 0.18 30 10k 0.20 0.4 1.8 0.5 
C5460-01 3.53 1.77 30 10M 0.02 0.04 7.1 0.5 
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Figure 4-3: Survey of op-amps and their voltage and current noise. Flicker noise and corresponding current noise for 
op-amps with JFET input stages and fit line (left). Thermal noise and corresponding current noise for op-amps with 
JFET input stages (right).  

 

A successful physical implementation of a transimpedance amplifier with significantly 

increased sensitivity is critically dependent on optimal op-amp selection. The analysis of 

equations ሺ3 െ 56ሻ and ሺ3 െ 50ሻ 

suggests that in order to maximize the 

SNR one should minimize both the op-

amp current and voltage noise 

contributions represented by the first and 

last terms in equation ሺ3 െ 50ሻ 

respectively. Note that the voltage noise 

is multiplied by the square of input 

capacitance ܿ௜௡
ଶ . The main contributor to 

ܿ௜௡ is the junctional capacitance ௝ܿ of the 

photodiode, which can range between 

1pF and 1nF. At small ܿ௜௡ ሺܿ௜௡ ൏ 1pFሻ 

the contribution of the voltage noise is relatively small and can be ingored. For this range the best 

 

Figure 4-4: Estimated performance of 26 op-amps with the 
lowest current noise density when used with photodiodes with 
low and high junctional capacitance. Black and red symbols 
indicate ܴܵܰஶ of a given op-amp when used with 
photodiodes with zero and 100pF junctional capacitance, 
respectively. The smaller numbers indicate op-amps with the 
lower current noise density. The photodiode shunt resistance 
is 100GΩ and the bandwidth was 300Hz.  
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op-amp for our applications should be an electrometer amplifier, which are known for their low 

current noise density, ߦ௦~0.1fA/√Hz [26].  

However, this is not the case when such op-amps are used in combination with photodiodes 

having a large surface area and correspondingly large input junctional capacitance ௝ܿ. A review of 

the devices with low current noise density ൫൑ 10fA/√Hz൯ show such devices have usually higher 

thermal and flicker noise voltages. At small  ௙ܿ and large ܿ௜௡ the already high flicker and thermal 

noise voltages are amplified by the noise-gain-peaking mechanism to become significant [31].  

Figure 4-4 shows ܴܵܰஶ for 26 op-amps with low current noise calculated with equations 

ሺ3 െ 56ሻ and ሺ3 െ 50ሻ. Notice that many of the op-amps with lower current noise, the so-called 

electrometer type (open circles) suffer significantly reduced performance when used with 

photodiodes with higher junction capacitance (red symbols). The op-amps that show a robust 

performance and maintain high ܴܵܰஶ are #8, 10-12, and 14- 18. These include the OPA140 

(#14, star) which is the one used in our prototype. We also tested the LMC6035 (#4) and the 

AD8641/AD8643 (#9), which have lower current noise than the OPA140 even though they 

experience a significant decrease in ܴܵܰஶ with large ௝ܿ, they still have good performance with 

small photodiodes. 
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Chapter 5 Theoretical Maximum of SNR 
for TIAs Optimized for Low-Light 
Detection 
 

5.1 Choosing the Optimal Topology 
 

In this section we will compare all of the topologies discussed in Chapter 3. We will use 

the SNR equations developed in Chapter 3 and substitute in the optimal parameters uncovered by 

the component survey in Chapter 4 and the optimal bandwidth determined by the analysis in 

Chapter 2. We will then select the topology for the application of detecting weak optical signals 

from tissue.  

In Chapter 4, we determined that the OPA140 is one of the best op-amps for our 

application. We will therefore use the parameters from this op-amp, i.e. ்߰, ߦ ,ܰܰܨ௦, ܿ௖௠, and 

ܿௗ௠ for all the simulations in this section unless otherwise noted (see APPENDIX 3 for the 

specific parameter values). 

 

5.1.1 T-Bridge Topology vs. Single Feedback-Resistor Topology 
 

The T-bridge topology (section 3.2) allows one to set the transimpedance gain using a 

combination of 3 resistors (see equation ሺ3 െ 59ሻ). This is especially useful for very high gains 

ሺ൐ 100MΩሻ where the standard resistor sizes of the E-12, E-24 and E-96 series are not readily 

available. It also distributes the resistor parasitics which potentially offers a way to increase the 

bandwidth of the circuit. However, we will show that there are limitations to this topology which 

negate these advantages. 
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Figure 5-1 shows a plot of RMS dark noise voltage for the T-bridge using a wide range of 

resistor values for ܴ஺, ܴ஻, and ܴ஼, compared to the single feedback resistor topology. For this 

simulation the gain of both circuits has been set to 10GΩ, both used op-amp parameters ்߰, 

௦௛ݎ ௦ , ܿ௖௠, and ܿௗ௠ from the OPA140 datasheet and photodiode parametersߦ ,ܰܰܨ ൌ 100GΩ 

and ௝ܿ ൌ 140pF corresponding to the S2386-18K photodiode. The target bandwidth for both 

circuits was set to 300Hz, the shaded region of the plot shows where the T-bridge could no longer 

achieve that bandwidth. The resistor were all assumed to have 50fF of parasitic capacitance and 

the op-amp itself was assumed to have 40fF of parasitic capacitance. As we can see from the plot, 

the noise performance of the T-bridge will asymptotically approach that of the single-resistor 

topology.  

 

 

Figure 5-1: Comparison of dark noise of the T-bridge and single feedback-resistor topologies. Both circuits use the 
OPA140 op-amp and S2386-18K photodiode and have a target bandwidth of 300Hz.  The figure shows that the 
noise performance of the T-bridge will asymptotically approach that of the single-resistor topology. 
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5.1.2 AC-Coupled Topologies vs. Single Feedback-Resistor 
Topology 

 

Due to the fact that many fluorescent dyes produce large offsets, it may be worthwhile to 

investigate some AC-coupled TIA topologies. One may think that removing the offset in the first 

stage will allow that stage to have larger signal gain without clipping and therefore better SNR 

than a DC-coupled topology. However, in this section we will show that this advantage is always 

cancelled out by the added noise created by the additional components needed to remove the 

offset.  

The AC-coupled topologies described in section 3.3, i.e. the active current feedback 

(ACFB) using a resistor circuit (section 3.3.1), the active current feedback using a transconductor 

circuit (section 3.3.2), and the offset voltage subtraction circuit (section 3.3.3), are compared to 

the single-resistor DC-coupled circuit described in section 3.1. Analysis carried out in this section 

shows that there is no significant advantage to AC-coupling. Comparison of equations ሺ3 െ 194ሻ, 

ሺ3 െ 263ሻ, ሺ3 െ 320ሻ, and ሺ3 െ 322ሻ shows that no matter how the offset is removed the 

resulting SNR is about the same. The main difference in these equations is the term ߢூே் which is 

the feedback integrator noise. While ߢூே் is the same for the two active-current-feedback 

topologies, it is different for the offset-voltage-subtraction topology and not present in the 

equation of the DC-coupled topology. In any case, ߢூே் can be made very small with proper 

component selection and careful design.  

To illustrate this point further, we created plots of the SNR of the AC-coupled circuits 

and compared it to that of the single-resistor. The results are shown in Figure 5-2. For this 

simulation, we plotted equations ሺ3 െ 194ሻ, ሺ3 െ 263ሻ, ሺ3 െ 320ሻ, and ሺ3 െ 322ሻ as a function 

of peak photocurrent. All circuits used op-amp parameters ்߰, ߦ ,ܰܰܨ௦ , ܿ௖௠, and ܿௗ௠ from the 

OPA140 datasheet for the forward path and feedback path op-amps and photodiode parameters 
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௦௛ݎ ൌ 100GΩ and ௝ܿ ൌ 13pF. The circuit high-pass and low-pass cutoff frequencies were 

ு݂ ൌ 50mHz and ௅݂ ൌ 300Hz respectively and the integrator resistors were set to ܴூே் ൌ 1MΩ. 

The supply voltage ஼ܸ஼  was set to either 1V or 10V and the Δܨ/ܨ of the signal was set to 10% or 

100%. As one can see from the figures, there is negligible difference between the SNR of the 4 

topologies.  

 

Figure 5-3 shows the same simulation as Figure 5-2 except that practical limits have been 

imposed on ܴி and ܴ஼ி஻, these being 10GΩ and 100GΩ respectively. All circuits used op-amp 

parameters ்߰, ߦ ,ܰܰܨ௦ , ܿ௖௠, and ܿௗ௠ from the OPA140 datasheet for both the forward-path 

and feedback-path op-amps and photodiode parameters ݎ௦௛ ൌ 100GΩ and ௝ܿ ൌ 13pF. The circuit 

high-pass and low-pass cutoff frequencies were ு݂ ൌ 50mHz and ௅݂ ൌ 300Hz respectively ( ு݂ 

was taken from [14] and ௅݂ was determined using the analysis in Chapter 2) and the integrator 

resistors were set to ܴூே் ൌ 1MΩ. The supply voltage ஼ܸ஼  was set to either 1V or 10V and the 

 

Figure 5-2: Comparison of 3 AC-coupled topologies (active-current feedback (ACFB) with resistor ܴ஼ி஻ and 
transconductor (with conductance ݃௠) and offset subtraction) with single-resistor DC-coupled topology. Here no 
limits have been imposed on ܴி or ܴ஼ி஻. All circuits used op-amp parameters ்߰, ߦ ,ܰܰܨ௦ , ܿ௖௠, and ܿௗ௠ from 
the OPA140 datasheet for the forward path and feedback path op-amps and photodiode parameters ݎ௦௛ ൌ 100GΩ 
and ௝ܿ ൌ 13pF. The circuit high-pass and low-pass cutoff frequencies were ு݂ ൌ 50mHz and ௅݂ ൌ 300Hz 
respectively and the integrator resistors were set to ܴூே் ൌ 1MΩ. 
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Δܨ/ܨ of the signal was set to 10% or 100%. Once again, there is negligible difference between 

the SNR of the 4 topologies.  

 

 Thus we conclude that there is no point to AC-coupling for the application of detecting 

low-intensity optical signals at low bandwidth. We have shown that removing the offset, while 

allowing for the 1st –stage gain to be increased, does not offer any advantage over a DC-coupled 

topology. This is because the additional circuit elements required to remove the offset produce 

additional noise which negates any potential gain. It is worth noting, however, that this result 

applies to circuits designed to detect biological signals, where the high-pass cutoff of the AC-

coupled circuits must be set very low, in this case ு݂ ൌ 50mHz. For signals with less low-

frequency content, the removal of the excess low-frequency noise would certainly offer an 

advantage. For example, if the signals being detected had been modulated to higher frequency, 

then AC-coupling would be useful. However, this would put limits on the maximum size of ܴி 

which determines the bandwidth through its parallel combination with parasitic capacitance ௙ܿ. 

 

 

Figure 5-3: Comparison of 3 AC-coupled topologies with single-resistor DC-coupled topology. Here limits have 
been imposed on ܴி which cannot go above 10GΩ and ܴ஼ி஻ which cannot go above 100GΩ. All circuits used op-
amp parameters ்߰, ߦ ,ܰܰܨ௦ , ܿ௖௠, and ܿௗ௠ from the OPA140 datasheet for the forward path and feedback path 
op-amps and photodiode parameters ݎ௦௛ ൌ 100GΩ and ௝ܿ ൌ 13pF. The circuit high-pass and low-pass cutoff 
frequencies were ு݂ ൌ 50mHz and ௅݂ ൌ 300Hz respectively and the integrator resistors were set to ܴூே் ൌ 1MΩ. 
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5.1.3 Charge Amplifier Topology vs. Single-Resistor Topology 
 

The charge amplifier topology may offer an advantage over the other topologies in this 

work for 2 reasons: removal of ܴி means that the associated resistor thermal noise will no longer 

be a limiting factor, and the parasitic capacitance ௙ܿ is no longer a limiting factor for the 

bandwidth. In this section we will show that for this application, while the charge amplifier does 

offer some advantages over the single feedback-resistor topology, they are hardly sufficient to 

justify the circuit’s added complexity.  

Figure 5-4 shows the SNR of the charge amplifier and the single feedback-resistor 

topology (equations ሺ3 െ 404ሻ and ሺ3 െ 191ሻ respectively) vs peak photocurrent. For the 

simulation in the left panel, we set  ܴி ൌ ෠ܴி,ଽ଴ ൌ 80.4GΩ, ܥி ൌ መி,ଽ଴ܥ ൌ 36.6pF, and ܴ஼ி஻ ൌ

100GΩ and in the right panel ܴி was limited to 10GΩ while all other parameters remained the 

same. All circuits used op-amp parameters ்߰, ߦ ,ܰܰܨ௦ , ܿ௖௠, and ܿௗ௠ from the OPA140 

datasheet for the forward path and feedback path op-amps except the differentiator which used 

the parameters from the OPA209 (see APPENDIX 3). The photodiode parameters were ݎ௦௛ ൌ

100GΩ and ௝ܿ ൌ 13pF. The circuit low-pass cutoff frequencies is ௅݂ ൌ 300Hz and the Δܨ/ܨ of 

the signal was set to 10%. As we can see from the figure, if both circuits are set to their maximum 

gain ( ෠ܴி,ଽ଴ and ܥመி,ଽ଴) then the charge amplifier has slightly lower SNR than the single-resistor 

amplifier (left panel). In the right panel we see that once we limit the gain of the single-resistor 

amplifier to 10GΩ (the upper limit of what can be achieved in practice while maintaining 

௅݂ ൌ 300Hz) we see that the charge amplifier has slightly higher SNR.  
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Though the charge amplifier can outperform the single-resistor TIA due to the fact that its 

gain is not limited in the same way by parasitic capacitance, this improvement is likely not 

enough to justify the added complexity. While the charge amplifier is a good choice for integrated 

circuit design because it does not require a large linear resistor for ܴி (ܴ஼ி஻ can be replaced by a 

MOSFET pseudo resistor), for our application it represents a lot of extra work for a small 

improvement in performance. This extra work comes in the form of stabilizing the feedback loop 

that prevents the forward-path integrator from saturating. The charge amplifier is not inherently 

stable, no matter the choice of op-amps. It therefore falls upon the designer to add an error 

amplifier to the feedback loop to ensure stability.  

 

 

 

 

 

 

Figure 5-4: Simulations of charge amplifier and single feedback-resistor amplifier. In the left panel, we set  
ܴி ൌ ෠ܴி,ଽ଴ ൌ 80.4GΩ, ܥி ൌ መி,ଽ଴ܥ ൌ 36.6pF, and ܴ஼ி஻ ൌ 100GΩ. In the right panel we imposed the practical 
limit of 10GΩ on ܴி. 
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5.1.4 APD TIA Topology vs. Single Feedback-Resistor Topology 
 

The avalanche photodiode offers the advantage of an internal gain which the PIN 

photodiode does not have. This allows for higher SNR and lower feedback resistance which 

makes achieving the desired bandwidth much easier.  

Figure 5-5 shows the SNR of the APD amplifier vs that of the single-resistor PIN 

photodiode amplifier. For this simulation we plotted equations ሺ3 െ 53ሻ and ሺ3 െ 434ሻ as a 

function of peak photocurrent. We calculated ෠ܴி,ଽ଴ for each topology using equations ሺ3 െ 58ሻ 

and ሺ3 െ 437ሻ. All circuits used op-amp parameters ்߰, ߦ ,ܰܰܨ௦ , ܿ௖௠, and ܿௗ௠ from the 

OPA140 datasheet and PIN photodiode parameters ݎ௦௛ ൌ 100GΩ and ௝ܿ ൌ 13pF. The APD is the 

S12426-02 with ௝ܿ ൌ 0.5pF, ܫ஽ ൌ 1nA, ܨ ൌ 3.98, and ܯ ൌ 100 (see APPENDIX 2). The low-

pass cutoff frequency was set to 300Hz for both topologies. In the left panel we set ܴி ൌ ෠ܴி,ଽ଴ 

for both topologies. Here we see that the APD offers higher SNR than the PIN by a factor of 

about 2.5. In the right panel we limit ܴி of the PIN photodiode amplifier to 10GΩ, which is near 

the upper limit of what can be achieved in practice, and the advantage of the APD increases to 

nearly 4 times higher SNR compared to the PIN. There is no reason to limit ܴி in the APD 

amplifier, because 54.3MΩ is small enough that there is no concern of not being able to achieve 

the desired bandwidth.  
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This analysis clearly shows that the APD has an advantage over the PIN for low 

photocurrents. However, this model did not account for power-supply coupling from the supply 

used to bias the APD near its breakdown voltage. This may explain why the commercially 

available APD modules do not offer an SNR that is higher than that of the PIN photodiode 

amplifier produced in this work (see section 4.1.2). Not only does this call its performance into 

question, but the added circuit complexity required to bias the APD and regulate this bias voltage 

to prevent the device from being destroyed adds a considerable amount of additional circuitry. 

The cost of APDs is also significantly higher than that of PIN photodiodes. In summation, while 

the APD may offer some advantages, the single-resistor TIA is a much safer bet.  

 

5.2 Theoretical Limits on Transimpedance Gain 
 

In the previous section we showed that the single-feedback resistor topology is the best 

choice for detecting low-intensity optical signals. We also referred a number of times to the 

practical limits of ܴி. In this section, we will elaborate on how these limits were determined. 

 

Figure 5-5: Comparison of single-resistor TIA with PIN photodiode to that with an avalanche photodiode. Both 
circuits used the OPA140 op amp and had a bandwidth of 300Hz. 
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Equation ሺ3 െ 56ሻ is particularly useful for estimating the effect of different 

characteristics of the photodiode and op-amp on the SNR and for the selection of optimal circuit 

components. Specifically, from equations ሺ3 െ 56ሻ and ሺ3 െ 50ሻ one can see that for given ଓ௣෥  

and ௅݂, the maximum SNR will be achieved using photodiodes with the highest ݎ௦௛ and op-amps 

with the lowest current and voltage noise.  

Figure 5-6 shows the 

dependence of SNR on RF for 2 

different peak photocurrents: 

1pA and 0.1pA, which are 

10ଷ െ 10ସ times smaller than 

those that are commonly 

recorded [14, 15]. The 

bandwidth was chosen to be 

300Hz, which as we showed in 

Chapter 2, is sufficient for the 

majority of biomedical 

applications. To generate these 

curves we used a photodiode shunt resistance of ݎ௦௛ ൌ 100GΩ, which is near the upper limit of 

what current photodiode technology can achieve without thermoelectric cooling (see 3.4). 

Hamamatsu offers several photodiodes with this shunt resistance such as the S2386 (see 

APPENDIX 1). The op-amp current noise density ߦ௦, thermal noise density ்߰ and flicker noise 

numerator ܰܰܨ were taken from the OPA140 datasheet. As we show below this op-amp is 

optimal for a given class of applications. The input signal was chosen to be a sinusoid with peak 

photocurrent ଓ௣ෝ , RMS value √6/4	ଓ௣ෝ  and DC value ଓ௣ෝ/2. 

 

Figure 5-6: Plot of SNR vs ܴி for 100fA and 1pA peak photocurrent. 
The maximum value of the SNR is indicated with a dashed line. Black 
dots and empty circles show the points where the SNR has reached 
90% of the maximum, calcuated using equations (2) and (7) 
respectively. The RMS signal current is ଓ௣෥ ൌ √6/4	ଓ௣ෝ  and the DC 
photocurrent is ଓ௣ഥ ൌ ଓ௣ෝ/2. The op-amp parameters were taken from the 
OPA140 datasheet and the photodiode parameters are ݎ௦௛ ൌ 100GΩ 
and ௝ܿ ൌ 13pF.  
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One can see that despite very small photocurrents the theory predicts that at sufficiently 

high RF  the SNR can be as high as 36 at 1pA and 3.9 at 100fA. This is better than a 10 fold 

improvement in the SNR as compared to RF  of 108Ω , which is used in conventional TIAs for 

biomedical applications.  

As can be seen from Figure 5-6 the approximate value of ܴி,ଽ଴ obtained using ሺ3 െ 57ሻ	 

(empty circles) is not too far off from the exact value obtained using ሺ3 െ 50ሻ (filled circles). For 

the examples shown in Figure 5-6, ܴி,ଽ଴ is as high as 71.7 GΩ and 84GΩ for 1pA and 0.1pA, 

respectively. For very large resistances such as these, the standard resistance values of the 

commonly used E-12, E-24 and E-96 series are seldom available.  

 

5.3 Theoretical Frequency Response Limits 
 

From the noise analysis carried out in the previous section the target gains should be around 

ܴி,ଽ଴, which for photocurrents 1pA and 0.1pA constitute  70-85	GΩ, respectively. The analysis 

presented below shows, however, that in practice such gains would be difficult to reach due to a 

bandwidth limitation caused by parasitic capacitance. 

The bandwidth of photodiode amplifiers is usually limited by 2 sources: parasitic capacitance 

( ௙ܿሻ in parallel with the feedback resistor and the combination of input capacitance (ܿ௜௡) 

transimpedance gain ሺܴிሻ, and the op amp’s gain-bandwidth product (GBW). The two 

corresponding poles are shown below [31]. 

௣݂ଵ ൌ
1

ிܴߨ2 ௙ܿ
																																																														ሺ5 െ 3ሻ 

௣݂ଶ ൌ ඨ
ܹܤܩ

ிܿ௜௡ܴߨ2
																																																											ሺ5 െ 4ሻ 
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The capacitance ௙ܿ in ሺ5 െ 3ሻ is the sum of all capacitances between the op-amp’s output and 

inverting input  

௙ܿ ൌ ܿ௣,ோ ൅ ܿ௣,௢௔ ൅ ܿ௣,௦																																																					ሺ5 െ 5ሻ	 

where ܿ௣,ோ is the parasitic capacitance of the resistor, ܿ௣,௢௔ is a parasitic capacitance inherent to 

the  op-amp and its package, and ܿ௣,௦ is the parasitic stray capacitance that may be contributed by 

the layout. The capacitance ܿ௣,௢௔ is itself the sum of the capacitance interal to the op-amp chip ܿ௣௜ 

and the parasitic capacitance caused by the package containing the chip ܿ௣௣. 

The capacitance ܿ௜௡ in ሺ5 െ 4ሻ is the input capacitance, defined as 

ܿ௜௡ ൌ ܿ௖௠ ൅ ܿௗ௠ ൅ ௝ܿ																																																							ሺ5 െ 6ሻ 

where ܿ௖௠ is the op amp’s common mode input capacitance, ܿௗ௠ is the op amp’s differential 

mode input capacitance, and ௝ܿ is the photodiode’s junction capacitance.  

To evaluate ௣݂ଵ  we assumed that most surface mount resistors have ܿ௣,ோ ൎ 50fF [42, 43]. The 

ܿ௣,௢௔ was assumed to be in the range 5f-150fF. Since there is virtually no data for ܿ௣௜, the 

estimate of ܿ௣,௢௔ is based on pin-to-pin capacitance ܿ௣௣ of various op-amp packages [44]. 

Although for most packages the output and inverting input are not on adjacent pins, the pin-to-pin 

capacitance given for adjacent pins in the datasheet can serve as a worst-case estimate for ܿ௣௣. 

Adding ܿ௣,௢௔ and ܿ௣,ோ defines the range for ௙ܿ ൌ 55fF െ 150fF. Using this range of capacitance 

along with equation ሺ5 െ 3ሻ determines the range of frequencies for ௣݂ଵ.  

To evaluate ௣݂ଶ we assumed the sum of ܿ௖௠ ൅ ܿௗ௠ is typically in the range 1-10pF, ௝ܿ is 

around 10pF for small photodiodes up to 1nF for larger diodes, which puts ܿ௜௡in the range 

between 10pF and 1nF. The value of GBW was chosen to be 11MHz and ܣ௢௟ was chosen to be 
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2 ൈ 10଺ from the OPA140 datasheet. Using these parameters along with equation ሺ5 െ 4ሻ sets 

the range for ௣݂ଶ.   

Whichever of ௣݂ଵ and ௣݂ଶ is lower becomes the low-pass cutoff frequency ௅݂. Figure 5-7 shows 

the range of frequencies for ௣݂ଵ (the light grey 

band) and ௣݂ଶ (the dark grey band) as a function 

of ܴி evaluated for typical circuit characteristics. 

For ܴி ൐ 1GΩ, the ௣݂ଵ  pole determined by the 

feedback capacitance ௙ܿ becomes dominant. Thus, 

the parasitic capacitance in parallel with the 

feedback resistor sets the limit on gain for a single 

feedback resistor network. As can be seen from 

the plot at ܴி ൌ 1GΩ the predicted range of cutoff 

frequencies is between 1kHz and 3kHz. At ܴி ൌ 10GΩ the upper edge of the cutoff frequency 

band is near 300Hz, which still meets the requirements for the majority of applications (see 

Chapter 2).  

According to the theory, the parasitics-related limitation on the maximal gain should be less 

pronounced for a T-bridge amplifier topology. A T-bridge network distributes the parasitic 

capacitance of the resistors. The feedback capacitance in this case is ௙ܿ ൎ ܿ௣,௢௔ ൅ ܿ௣,௦, as opposed 

to ௙ܿ ൌ ܿ௣,௢௔ ൅ ܿ௣,ோ ൅ ܿ௣,௦ for the single-resistor amplifier as stated previously. Specifically, at 

ܴி,௘௤ ൌ 10GΩ, one should be able to achieve a 300Hz bandwidth.  

However, the higher gain does not necessarily give a T-bridge topology advantage over a single 

feedback resistance circuit (see the noise analysis in section 3.2.1). Specifically, the estimate 

obtained using these equations shows that the SNR at the same bandwidth of 300 Hz are 7.9 and 

 

Figure 5-7: The range of pole frequencies for ௣݂ଵ 

and ௣݂ଶ. The upper and lower limits of ௣݂ଵ are set by 

௙ܿ ൌ 55f െ 150fF and the upper and lower limits of 

௣݂ଶ are set by ܿ௜௡ ൌ 10p െ 1nF   and ܹܤܩ ൌ
11MHz. 
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22 for the T-bridge and single-resistor circuits, respectively with ଓ௣ෝ ൌ 1pA (ଓ௣෥ ൌ 612fA and 

ଓ௣ഥ ൌ 500fA). 
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Chapter 6  Physical Implementation 
and Testing of TIA with Maximized 
Sensitivity 
 

6.1 Reducing Parasitic Capacitance Using 
Conventional Methods 
 

According to our theoretical analysis it should be possible to increase the gain of a TIA from 

100MΩ to 1GΩ െ 10GΩ, while satisfying the cutoff-frequency requirements determined by 

application. However, as shown below achieving this goal appears to be a non-trivial task, which 

largely depends on one’s ability to minimize the parasitic capacitance ௙ܿ. We tested 3 different 

PCB designs. Each comparing ways to minimize ௙ܿ, including testing a variety of surface-mount 

packages with reportedly low pin capacitance ܿ௣௣, a field-shunting ground trace under ܴி, and a 

T-bridge. 

When testing packages, we 

compared performances of different 

high-ܴி TIAs utilizing op-amps with 

various pin-to-pin capacitances ܿ௣௣ 

and package sizes. We tested six op-

amps with ܿ௣௣ in the range between 

5-100fF.  

The measured bandwidth of 

varying op-amps and packages at 

 

Figure 6-1: Cutoff frequency of different high-ܴி TIAs utilizing 
op-amps with various pin-to-pin capacitances and package sizes. 
The lower shaded region is bound by ௙ܿ ൌ 55f െ 150fF (see 
section C for more detail). The stars represent the OPA140 in the 
SOT-23-5 package with a field-shunting ground trace under the 
feedback resistor. 
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ܴி ൌ 1, 5,	 and 10GΩ are shown in Figure 6-1. The black symbols correspond to conventional 

circuit layout with the ground plane cutout under the feedback resistor. The red symbols 

correspond to layout utilizing a field-shunting ground trace (see the next section). All points 

obtained for a conventional layout are scattered inside or below the lower ௣݂ଵ band (see section 

5.3). The highest cutoff frequencies that were achieved with a conventional layout were close to 

2kHz at 1GΩ, and around 200Hz at 10GΩ, which fall within useable bandwidth requirements. 

The experimental points falling in the area of overlap between ௣݂ଵ and ௣݂ଶ bands did not 

manifest a resonance in the frequency response suggesting that ௣݂ଵ  indeed is the dominant pole 

that determines the cutoff frequency ௅݂ . 

Notably, the bandwidth obtained with conventional layout, in all but one case was lower than 

theoretically estimated. Table 6-1 shows the measured values of cutoff frequency ௅݂  and ௙ܿ at 

ܴி ൌ 10GΩ.  The op-amps are ordered based on the estimated sum of ܿ௣௣ ൅ ܿ௣,ோ, which are 

major contributors to cf,  the other contributor being ܿ௣,௦ representing the layout-dependent stray 

parasitic capacitance  (see section 5.3). The values of ܿ௣௣ were taken from the package datasheet 

[44], which we used as an estimate 

of ܿ௣,௢௔. The ܿ௣,ோ was assumed to 

be around 50fF.  

We observed a wide range 

of ௅݂  from as low as 38Hz  (for 

LMC6035 in MSOP-8 package) to 

216Hz (for OPA140 in the same package). However, we did not find any correlation between 

ܿ௣௣ ൅ ܿ௣,ோ and the actual bandwidth of the circuit. As can be seen from Table 6-1, the circuit 

utilizing an op-amp with the lowest ܿ௣௣ ൅ ܿ௣,ோ (the first row) rather than having the largest 

bandwidth has the second lowest bandwidth (rank 5 out of 6 op-amps tested).  Similarly, the two 

Table 6-1: Cutoff frequency ௅݂ and parasitic capacitance cf  of different 
implementations of a single feedback resistor TIA at RF=10GΩ. cf  was 
calculated from BW using formula  (10) 

LMC6035 DSBGA 55 44 362 5
AD8641 SC-70 110 84 189 4
AD8643 LFCSP 120 131 121 3
OPA140 SOT-23-5 - 206 77 2
OPA140 MSOP-8 150 216 74 1
LMC6035 MSOP-8 150 38 419 6

Rank c f  (fF)Part # Package c pp + c pR (fF) f L (Hz)
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op-amps with the highest ܿ௣௣ ൅ ܿ௣,ோ   (see the last two rows) have the highest and the lowest 

bandwidths (ranks 1 and 6 respectively). 

The package type also did not have a consistent effect on the bandwidth for a given op-amp. 

The use of the OPA140 in the SOT23-5 and the MSOP-8 packages had very little effect on the 

bandwidth. However, we observed significant differences in bandwidth for the AD8641 and 

AD8643, which are the same op-amp in two different packages. The op-amp in the LFCSP 

package had higher bandwidth than the one in the SC70 package. The difference could be 

attributed to the fact that the AD8641 has bond wires, and so had additional parasitic capacitance.  

The experimentally derived values of cf  in  three out of six cases (the first two and the last row 

in Table 6-1) exceeded the sum of ܿ௣,ோ and ܿ௣௣. This finding may be caused by capacitance added 

by the op-amp itself 	ܿ௣௜, or the presence of so-called stray parasitic capacitance ܿ௣,௦, which 

according to the literature can be as high as 500fF [31].  

6.2 Reducing Parasitic Capacitance Using Field 
Shunting 

 

We demonstrate that the 

bandwidths reported in the previous 

section can be significantly 

extended by adopting a technique 

used in high-frequency circuit 

design, termed field shunting. It 

involves putting a trace under the 

resistor connected to ground, which 

shunts the fringing electric field 





 

Figure 6-2: Schematic of the modified amplifier design (A) and 
PCB layout (B). The field shunt is highlighted in white, it is made 
from top-layer copper and connected to the ground plane with 4 
vias. 
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from around the resistor and thus lowers the feedback capacitance [45]. 

Figure 6-2a shows the schematic of the modified amplifier design.  A line under the 

feedback resistor represents the field-shunting trace.  Since it is difficult to determine exactly 

what the resulting bandwidth will be, a capacitive T-network is added for tuning the bandwidth 

with 2-32fF of capacitance. Part B of the figure shows the PCB layout with schematic symbols 

imposed over the package footprints. The field-shunt is highlighted in white. It is made from top-

layer copper and connected to the ground plane with 4 vias. It is placed directly under the 

feedback resistor (10GΩ േ 5% in a 1206 package) slightly closer to the output of the amplifier so 

that any additional stray capacitance will be shifted to the output rather than the inverting input. 

The values of ܥ௑were chosen at 600fF and the trimmer cap has a range 10p-180pF to add 2-32fF 

of capacitance. The photodiode SFH229FA with the shunt resistance estimated to be about 

35.5GΩ.  

The frequency sweeps for this 

amplifier are shown in Figure 6-3. Part 

A shows that at 10GΩ this circuit can 

achieve bandwidth from 246-405Hz 

which is well beyond 216Hz limit 

which was achieved with conventional 

layout and ground plane removal. Figure 

6-3b shows the frequency response for 

the same circuit with 5GΩ of gain. 

Here we see it is possible to achieve bandwidths from 1-4kHz. However, the frequency response 

has a resonant peak around 1kHz. This causes some overshoot and ringing of the output signal 

(not shown). The overshoot and ringing can be mitigated by increasing the maximal capacitance 

of the T-bridge.  

 

Figure 6-3: Frequency sweeps of amplifiers with field-shunting 
ground trace and 10GΩ gain (a) and 5GΩ gain (b). The 
bandwidth was adjusted with a capacitive T-network. 
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6.3 Emulation of Biological Fluorescent Signals 
 

In order to provide the most realistic test for our amplifier, we designed a system to generate a 

variety of optical signals, including imitations of voltage and calcium transients. A diagram of the 

system is shown in Figure 6-4. This system uses feedback to linearize the LED (SFH 4058, 

OSRAM) thus ensuring that the light output stays proportional to the voltage input. There is a 

switch (not shown) which can vary the output light intensity by 3 orders of magnitude and is used 

for course adjustment of the light output. The variable attenuator can vary the intensity of the 

light output over about 1 order of magnitude and is used for fine adjustment. The selector switch 

allows connection to an external sine wave generator that was used for frequency sweeps to 

determine the amplifier bandwidth. In the other position, the switch connects the LED driver and 

feedback circuit to a DAC. 

 

A computer program controlled by a GUI reads a file containing simulation data, quantizes 

the data to the selected number of bits (we used 8 for our experiments) and then down-samples 

and truncates the data to match the specified sampling rate (we used 1kHz) and signal duration 

respectively. The data is then sent from the computer to the microcontroller via USB. The 

 

Figure 6-4: Optical action potential generator block diagram. 
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microcontroller is programmed in assembly to send the samples to the DAC using a standard 3-

wire communication protocol. In order to make it easier to capture the waveform on an 

oscilloscope, the signal is repeated in a loop.  

Next, the signal is amplified (or attenuated) and an offset is added to simulate background 

fluorescence. Finally the signal was converted from electricity to light where an optical fiber 

guided it to the amplifier’s photodiode. 

 

6.4 Amplifier Response to Realistic Optical 
Action Potentials 
 

Figure 6-5 compares the 10GΩ amplifier with bandwidth reduced to 300Hz, to a 

conventional 100MΩ	amplifier with a bandwidth of 1.3kHz using a realistic optical signal (action 

potential of a human Purkinje fiber) generated using our optical signal emulator (see section 6.3). 

The action potentials came from a computer simulation of a human purkinje fiber. The Δܨ/ܨ was 

set to 10%, the maximal photocurrent, shown on the right axes, was on the order of 10pA, with a 

1pA “voltage-dependent” current. Both recorded signals were well above the oscilloscope noise 

floor. The high-gain TIA produces a much cleaner recording which is consistent with the noise 

measurements reported in the previous section. The effect was achieved by a combination of 

increased gain (factor of 8 improvement) and eliminating excess bandwidth (factor of 1.9 

improvement). 
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



OPA140

RF = 10GΩ±5%

SFH229FA

600fF±50fF 600fF±50fF

10 – 180pF





OPA140Ri2 = 1kΩ±1%

Ri2 = 100kΩ±1%

Cf2 = 510pF±5%

OUT

(c)





OPA140Ri2 = 1kΩ±1%

Ri2 = 100kΩ±1%

Cf2 = 1.5nF±5%





OPA140

RF = 100MΩ±1%

CF = 1pF±0.5pF

S2386-18K

(a)

OUT

(b)

(d)

 

Figure 6-5: Schematic of circuit analogous to the typical TIA (a), the response of the amplifier in (a) to an artificial 
OAP (b), the optimized TIA (c) and its response to the same signal (d). The signal was generated by an optical 
action potential emulator (see section 6.3), the data for which came from a simulation of a human purkinje fiber. 
The Δܨ/ܨ was set to 10% and the maximal photocurrent was on the order of 10pA, with a 1pA “voltage-
dependent” current. 
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Chapter 7 Discussion and Conclusions 
 

Since the introduction of voltage-sensitive and Ca௜
ଶା-sensitive fluorescent dyes there have been 

a number of reports on the design of photodiode-based recording systems [2, 3, 15, 46, 8, 18, 11, 

6]. The most common systems utilized a multi-stage amplifier, with a 100MΩ transimpedance 

amplifier (TIA) as the first stage [7, 2, 18, 11, 8, 18, 6]. Yet, it remained unclear if there is any 

room for improvement, and if there was, then how much?  The goal of this study was to answer 

this question. Specifically, the main focus was on the selection and optimization of the 

transimpedance amplifier topology specialized for detecting voltage and calcium transients in 

low-light biological applications.  

A distinct feature of our approach is that it is not purely empirical, but is based on a thorough 

theoretical analysis of the SNR and the bandwidth of the circuit as a function of the op-amp, 

photodiode, and the feedback resistor characteristics. Our analysis shows that current technology 

allows for significant improvements of the circuit performance at low photocurrents. We 

demonstrated the feasibility of increasing the transimpedance gain from the conventional 100MΩ 

to 10GΩ while still meeting the minimal bandwidth requirement.  At low photocurrents ݅௣ ൏

10ିଵଵA such an increase allows improvement of the SNR by a factor of 10 compared to 

commonly used systems with a 100MΩ gains  [7, 2, 18, 11, 8, 18, 6].  

Another novel aspect of our work is the use of mathematical modeling to quantify bandwidth 

requirements for specific applications. Lowering the bandwidth as much as the application allows 

represents an important resource for increasing the SNR. The conventional bandwidth range 

utilized in TIAs for biomedical applications is between 300Hz and 2kHz  [15, 7, 2, 11, 3]. 

However, until recently there were no studies that would explore the signal distortion that occurs 
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in this range. Our study fills this gap by providing the information which is necessary for optimal 

selection of the bandwidth.  

Our linear distortion analysis suggests that in many applications the bandwidth can be 

significantly reduced. For example we demonstrate that for recording Ca௜
ଶା transients the cutoff 

frequency can be safely reduced to 100Hz. This alone would increase the SNR by a factor of 

three compared to the SNR of an amplifier with a 1kHz bandwidth. On top of this improvement 

one can also maximize the gain of the first stage bringing it up to 10, which will provide an 

additional ൈ 10 boost in SNR. Compared to conventional 100MΩ amplifier with a 1kHz cutoff, 

the overall improvement would be as high as ൈ 30.  

It is worth noting that a 100Hz bandwidth would be sufficient for many voltage measurements 

as well. Indeed the majority of optical recording are used to evaluate the action potential duration 

APD mapping or conduction velocity mapping (activation mapping) [5]. As can be seen from our 

analysis reduction of bandwidth to 100Hz result in reasonably small errors (around 1 %). Thus, 

an amplifier with a 100Hz bandwidth (with the exception of cases where the accurate 

measurements of the action potential upstroke are required) can be used for simultaneous voltage 

and Ca௜
ଶା recordings as well. 

While increasing the transimpedance gain produces the best results in low bandwidth 

applications (100Hz - 300Hz), it can lead to significant improvements in broader bandwidth 

applications (1-2kHz) as well [2, 3]. Our analysis suggests that in low light applications a 

2 െ 3GΩ TIA with field shunting and conventional photodiodes should have about 5 times higher 

SNR compared to both conventional 100MΩ and more recent avalanche photodiodes based 

systems [3] (see section 3.5). 

A recently reported alternative approach for detecting fluorescence in low-light biological 

applications is the use of avalanche photodiodes known for their high light sensitivity [3]. It 
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utilizes the module C5460-01 (Hamamatsu) which integrates an avalanche photodiode, amplifier 

and power supply. However, the study does not report the noise characteristics of the system, 

which makes it difficult to compare this approach with the earlier designs and our high-gain 

amplifier performance.  

To make such a comparison we used the noise equivalent power (NEP), responsivity ܴሺߣሻ, 

feedback resistance ܴி and avalanche gain M given in the C5460-01 datasheet, along with the 

bandwidth reported in [3] (2kHz). These parameters are sufficient to calculate the total noise 

contribution of the avalanche photodiode ݒ௡,௣ௗ in V using a modified form of the equation in 

[28]. 

We can now plug the result into ሺ4 െ 1ሻሺ3 െ 44ሻ which gives the total dark noise of the 

circuit and then use ሺ4 െ 2ሻ to get the SNR. Such calculation gives the SNR of an avalanche 

diode-based system at 2pA to be 0.19. Compared to the standard 100MΩ-gain amplifier with the 

same bandwidth, this system offers 30% improvement. However, the avalanche diode based 

system does not outperform amplifier proposed in this work. Using the equations in section 3.1.3 

we can calculate that a PIN photodiode with 5GΩ of gain and the same bandwidth gives an SNR 

of 1, which is roughly a factor of 5 better than the C5460-01.  

Can an increase in gain above 10GΩ result in further improvement in SNR at low 

photocurrents? The noise analysis suggests that at the current technology level SNR approaches 

saturation at about 	70GΩ (see section 5.2), which could provide some additional factor of 1.5 

(note that near saturation the SNR is no longer	∝ ඥܴி). However, in practice the additional 

improvement would be difficult to achieve. The main limiting factor at high gains is the feedback 

parasitic capacitance which lowers the bandwidth below the required range. Success in further 

increasing SNR will largely depend on one’s ability to mitigate the effect of the parasitics.  
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The major difficulty in dealing with parasitic capacitance is that at high gains it is extremely 

sensitive to the circuit layout. In our experiments, the total feedback capacitance significantly 

exceeded the sum of the parasitic capacitances of the feedback resistor and the op-amp. The 

additional capacitance can be attributed to a combination of the op-amp’s internal capacitance 

ܿ௣,௢௔ and the so-called stray capacitance, which according to the literature can be as high as 

500fF [31] and which is very difficult to control.  The standard measures for reducing the 

parasitic capacitance, such as removal of the ground plane around the op-amp and the feedback 

resistor were only able to reduce ௙ܿ to around 74fF-419fF. This is much higher than one would 

expect from the amplifier specs. 

One of the standard approaches to expanding the bandwidth at a given feedback resistance is 

using a T-bridge. Using the T-bridge reduces the feedback parasitic capacitance by distributing it 

between 3 different resistors. Our analysis shows, however, that at equal gains the SNR of a T-

bridge circuit is always lower than that of the single resistor circuit. Moreover, our experiments 

with a T-bridge TIAs suggest the actual bandwidth of a T-bridge amplifier, as compared to a 

single resistor circuit with the equivalent gain is not significantly wider due to the stray 

capacitance. This makes the T-bridge topology less attractive than a single resistor circuit for 

low-light applications where maximizing the SNR is critical.  

We found that the most efficient way of dealing with parasitic capacitance is the field 

shunting method adopted from high-frequency circuit design techniques [45]. The use of field 

shunting enabled the reduction of the total feedback capacitance to an extent that the minimum 

bandwidth specification could easily be met. Specifically, with the field shunting method, we 

were able to consistently achieve the bandwidths 400Hz at  10GΩ and close to 5KHz at  5GΩ  

(see Figure 6-3), which allowed us to stay within the frequency range usually utilized in biological 

applications. Using this approach it seems quite realistic to increase the gain to 50GΩ while still 

preserving a useful bandwidth ൒ 100Hz. Compared to a 10GΩ, 300Hz system this would 
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increase the SNR by an additional factor of 2.5, which is probably as far as one can get with the 

existing technology. 

 Notably, for the discussed range of applications the use of high-end electrometer op-

amps known for their low current noise would not likely result in a significant improvement of 

the SNR. The significant reduction in current noise in electrometer op-amps comes at a price, 

which is increased voltage noise. Our analysis shows that the noise gain mechanism [31] negates 

the advantages of this type of amplifiers for the discussed applications, in particular when the 

photodiodes with large surface area and high cin are being used (see section 4.2).  

One of the main mechanisms of improvement for amplifiers operating below the shot noise 

limit is the reduction of the dark noise contribution. At higher photocurrents the contribution of 

the dark noise becomes less prominent than the photocurrent shot noise. To illustrate this, we 

compare 2 TIAs with the same op-amp, photodiode, and bandwidth but with 2 different gains. 

Our estimates show that at ݅௣ ൐ 10ିଽA using a 10GΩ gain is only 1.5 times better than over 

conventional TIAs with 100MΩ gain (see Figure 7-1). 

 

It is interesting that one of the earliest attempts at photodiode amplifiers optimized for 

detecting biological fluorescence [15] utilized a rather high gain (5 െ 6GΩ). However, this 

system was never widely adopted. Moreover, later designed amplifiers for similar applications [6, 

8, 18] used the more common 100MΩ gain.  

This is not coincidental. The system was used to detect the signals from SCG neurons stained 

with voltage-sensitive dye RH423.Voltage-dependent changes in fluorescence in neurons stained 

with this dye usually constitute a very small portion of the total fluorescence Δܨ/ܨ is ~1%. To 

boost the signal the researchers had to work in the range of photocurrents ݅௣~10ିଽA െ	10ିଵ଴A 
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where the advantage a high –gain amplifier over the conventional amplifiers is less prominent 

(see Figure 7-1). 

We anticipate that the applications that will 

mostly benefit from our findings are the optical 

recordings from single cells and monolayers of 

cardiac myocytes and neural cells [46, 15], where 

increasing of the light intensity as a way of 

increasing the SNR is not always possible because 

of phototoxic effects. Our findings would also 

apply to optrodes [4] as well as in optogenetics 

applications, in which the ability to monitor 

electrical and Ca௜
ଶା activity at reduced light intensity is important. The maximal improvements 

should be expected in detection of Ca௜
ଶା signals, which have much less background signal than 

voltage-sensitive fluorescent signals and thus should have much higher SNR at the same 

photocurrents. 

 

 

 

Figure 7-1: Effect of photocurrent on SNR for the 
same TIA with ܴி ൌ 10GΩ and ܴி ൌ 100MΩ 
gain and 300Hz bandwidth. 
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Part 2 Characterizing 
Light Transport in 
Biological Tissue 
 

Chapter 8 Background and Significance 
 

8.1 Interpretation of Voltage- and Calcium-
Dependent Fluorescence Signals in Biological 
Systems. The Role of Light Transportation in 
Shaping Voltage and Calcium Transients 
 

The interpretation of optical mapping data often requires a detailed model of light 

scattering in tissue [47]. Some models are derived analytically by solving the radiative transfer 

equation. Others are generated from computer simulations that treat the direction of photon travel 

as a random variable, these are called monte carlo simulations. In the following sections we will 

discuss the mathematical foundations of both types of models and how the model parameters can 

be obtained through experimentation. 

In section 8.2 we will discuss the mathematics of light-scattering models, including the 

physical meaning of the model parameters. 

In Chapter 9 we will discuss the experiments we conducted in tissue phantoms and 

cardiac tissue. The interest towards investigating light transport in cardiac tissue has been 

triggered by the development of fluorescent imaging techniques, known as optical mapping, 
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utilizing voltage-sensitive and Ca୧
ଶା-sensitive fluorescent probes. These optical methods are 

increasingly utilized for monitoring the propagation of electrical impulses and intracellular Ca௜
ଶା-

transients in the heart, which play an important role in electro-mechanical coupling [48, 1, 14]. 

The optical recordings are usually taken in epifluorescence mode, where significant contributions 

from sub-surface layers are present. Quantitative interpretation of such signals as well as the 

development of three-dimensional tomographic imaging techniques requires detailed knowledge 

of light transport in the surface layers of the myocardial wall. However, experimental data 

providing such information are scarce, which was the main motivation for this work. 

 In this study, we use a thin custom-made fiber optic probe to investigate the 

forward directed flux (FDF) with a 10µm resolution. The experiments are carried out in 

pig myocardial wall, homogenized pig myocardial tissue as well as in lipid-based tissue 

phantoms.  In the vicinity of the illuminated surface we observed a rapid decay of the 

light intensity with a spatial constant in the range of one hundred microns, suggesting that 

we were likely detecting a phenomenon linked to the decay of ballistic photons. This 

effect was observed in the intact myocardial wall, homogenized cardiac tissue and 

intralipid-based tissue phantoms.  

To determine the factors affecting the rate of the fast exponent we simulated 

measurements of FDF using Monte Carlo (MC) simulations. The FDF was evaluated in 

the physiological range of absorption and scattering coefficients, variable anisotropy 

parameter g, and different numerical apertures of the probe. Based on the MC model we 

obtained a simple empirical formula linking the rate of the fast exponent to the scattering 

coefficient, the anisotropy parameter, and the numerical aperture. The predictions of the 

formula were tested experimentally in phantoms.  
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Potential applications of optical fiber-based FDF measurements for the evaluation 

of optical parameters in turbid media are discussed as a crude alternative to collimated 

transmittance measurements [49, 50] or reflectance-mode confocal microscopy and OCT 

[51, 52, 53, 54], requiring rather sophisticated equipment.  
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8.2 Mathematical Foundations of Light 
Transport Models 
 

8.2.1 Specific Intensity (or Spectral Radiance) 
 

Differential radiant energy in the frequency interval ሺߥ, ߥ ൅  ሻ transported across the surface dsߥ݀

and in the element of solid angle ݀Ω during time interval dt [55, p. 1] 

ఔܧ݀ ൌ ൫ષ෡	ఔܫ • ݐ݀	Ω݀	ߥ݀	൯ܛ݀ ൌ ఔܫ cosሺߠሻ ሺ8																										ݐ݀	Ω݀	ݏ݀	ߥ݀ െ 1ሻ 

Where ܫఔ is the specific intensity (or just intensity) in 
୛

୫మ∙ୱ୰∙ୌ୸
  or 

ୣ୰୥

ୱ∙୫మ∙ୱ୰∙ୌ୸
 is the angle between ߠ ,

the beam of radiation and the outward normal of ds, ݀ߥ is the width of the frequency interval 

being considered, ݀ݏ is the area over which the energy is transported, ݀Ω is the area of the 

differential solid angle element, ݀ݐ is the time interval, and ષ෡  is a unit vector that points along the 

direction of the radiation. The construction here defines also a pencil of radiation [56, p. 1] and is 

shown in Figure 8-1. 
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Ɵ 

ds
ෝܖ

dΩ 

ષ෡  

Example Photon
Frequency: ν 
Velocity: c
Direction: → 

Energy passing through ds:
dEν = Iν cos(θ) dν ds dΩ dt

 

Figure 8-1: Pencil of radiation. 

 

If ܫఔ is integrated over all frequencies, it is called the integrated intensity and is given by [55, p. 

2] 

ܫ ൌ න ߥ݀	ఔܫ
ஶ

଴
																																																																						ሺ8 െ 2ሻ 

 

8.2.2 Energy Density 
 

Energy density is related to specific intensity by the equation shown below [57, p. 3] 

Φ஝ሺݎ, ሻݐ ൌ
1
ܿ
න ,ݎఔሺܫ ݀Ω	ሻݐ
ସ∙గ

																																																							ሺ8 െ 3ሻ 

Note that the factor of 1/ܿ is multiplied with equation ሺ8 െ 3ሻ will yield the correct units for 

energy density. The units of ܫఔ are erg/ሺs	cmଶ	Hz	srሻ, hence multiplying by 1/ܿ gives us units of 
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ఔܫ
ܿ
⟹

erg
s	cmଶ	Hz	sr

cm/s
ൌ

erg
cmଷ	Hz	sr

 

Then integrating over the solid angle will yield units of 

erg
cmଷ	Hz

 

Thus we have the energy density for photons with frequency ߥ to ߥ ൅  .ߥ݀

 

8.2.3 Net Flux 
 

The flux ܨఔ is the amount of radiant energy transferred across a unit area in unit time in unit 

frequency interval ൫erg/ሺcmଶ	s	Hzሻ൯ [55, pp. 2-3]. It is found by integrating the intensity over all 

solid angles 

ݐ݀	ݏ݀	ߥ݀ න ఔܫ 	cosሺߠሻ 	݀Ω
ସ∙஠

 

or 

ఔܨ ൌ න ൫ષ෡		ఔܫ • ݀Ω	ෝ൯ܖ
ସ∙గ

ൌ න ఔܫ 	cosሺߠሻ 	݀Ω
ସ∙గ

																																		ሺ8 െ 4ሻ 

Integrating over all solid angles for the structure shown in Figure 8-1 gives us the total amount of 

energy that falls upon a differential surface element per second for a given frequency range. Flux 

can also be described as a vector 

۴ሺܚ, ሻݐ ൌ න ષ෡	ܫఔ	݀Ω
ସ∙గ	

																																																							ሺ8 െ 5ሻ 
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8.2.4 Extinction Coefficient: True Absorption and Scattering 
 

A pencil (beam) of radiation of intensity ܫఔ is attenuated while passing through matter of 

thickness ݀ℓ and its intensity becomes ܫఔ ൅  ఔ, where [55, p. 9]ܫ݀

ఔܫ݀ ൌ െܫఔ	ߤ௧	݀ℓ																																																												ሺ8 െ 6ሻ 

where ߤ௧ is called the mass extinction coefficient, the mass absorption coefficient, or the total 

attenuation coefficient. ߤ௧ comprises two important processes: (1) true absorption and (2) 

scattering. Therefore we can write [55, p. 9] 

௧ߤ ൌ ௔ߤ ൅ ሺ8																																																															௦ߤ െ 7ሻ 

where ߤ௔ and ߤ௦ are the absorption and scattering coefficients respectively and have units mmିଵ 

or cmିଵ. Energy removed from a pencil of radiation can be defined as 

ఔ,௦௜௡௞ܧ݀ ൌ െሺߤ௔ ൅ ,ܚఔ൫ܫ	௦ሻߤ ષ෡, ሺ8																													ݐ݀	ߥ݀	Ω݀	ݏ݀	݀ℓ	൯ݐ െ 8ሻ 

Equation ሺ8 െ 8ሻ has units of erg or J, as it represents the specific amount of energy lost in a 

differential volume that the beam passes through. The units of an energy sink/source would have 

units joules (or erg) per unit volume per unit time.  Hence we would drop the terms ݀ℓ, ݀ݏ, and 

  .ݐ݀

௦௜௡௞ܧ ൌ െන න ሺߤ௔ ൅ ,ܚఔ൫ܫ	௦ሻߤ ષ෡, Ω݀	ߥ݀	൯ݐ
ஶ

଴ସ∙గ
																																	ሺ8 െ 9ሻ 

Both scattering and absorption cause energy to be removed from a beam traveling through a 

material [55, pp. 9-10]. For the individual photons in the beam, a scattering event may change 

their direction and energy (inelastic scattering) or just their direction (elastic scattering). Below is 

a brief summary of the types of scattering a photon may experience. 
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 Elastic Scattering (kinetic energy of particles is conserved, direction is changed but not 

wavelength) 

o Thomson Scattering – Photon interacts with electrons 

o Rayleigh Scattering – A photon penetrates into a medium composed of particles 

whose sizes are much smaller than the wavelength of the incident photon. 

 Inelastic Scattering (kinetic energy is lost or gained, the wavelength and direction 

change) 

o Raman Scattering – The incident photon interacts with matter and the frequency 

of the photon is shifted toward red or blue. 

o Stokes Scattering – Part of the energy of the photon is transferred to the 

interacting matter, causing a shift toward red 

o Anti-Stokes Raman Scattering – Internal energy of the matter the photon collides 

with is transferred to that photon causing a shift toward blue. 

o Compton Scattering – When a high-energy photon collides with a free electron 

and loses energy. 

o Inverse Compton Scattering – When an electron with relativistic energy collides 

with an infrared or visible photon, the electron gives energy to the photon.  

The drawing in Figure 8-2 shows how energy can be lost from a pencil of radiation. Note that 

energy removed from the beam by scattering is not necessarily lost to the radiation field. As 

shown in Figure 8-2, a photon can be removed from the beam without losing energy. In fact, 

some of the energy lost from the incident pencil may appear in other directions as scattered 

radiation [56, p. 5]. 1/ߤ௧ gives the photon mean free path or mfp which is the distance over 

which a photon travels before it is removed from the pencil of the beam of radiation [55, p. 10]. 
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Photon Lost to 
Absorption ds

ષ෡  

Photon changes direction and energy 
after collision (inelastic scattering)Wavelength: λ 

Wavelength: λ'  

dℓ 

Photon changes direction but 
not energy (elastic scattering)

Photon is removed from pencil of 
radiation because of scattering

 

Figure 8-2:  Examples of energy being removed from a pencil of radiation. 

 

8.2.5 Emission Coefficient 
 

Let an element of mass with a volume element dV emit an amount of energy ݀ܧఔ,௦௢௨௥௖௘ into an 

element of solid angle ݀Ω centered around ષ෡  in the frequency interval ߥ to ߥ ൅  time interval t ߥ݀

to ݐ ൅  Then [55, pp. 10-11] .ݐ݀

ఔ,௦௢௨௥௖௘ܧ݀ ൌ ݆ఔ	ܸ݀	݀Ω	݀ߥ	ݐ݀																																															ሺ8 െ 10ሻ 

where ݆ఔ is called the macroscopic emission coefficient or emissivity and has units of 

ቀ ୣ୰୥

ୡ୫య∙ୱ୰∙ୌ୸∙ୱ
ቁ. As mentioned earlier, the energy sink/source must have units of Joules (or erg) per 

unit volume per unit time. Hence, we can modify equation ሺ8 െ 10ሻ to get 

௦௢௨௥௖௘ܧ ൌ න න ݆ఔ	݀ߥ	݀Ω
ஶ

଴ସ∙గ
																																															 ሺ8 െ 11ሻ 
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Emission is the combination of the reverse of physical processes that cause true absorption. 

One such process is fluorescence, where a photon is absorbed by an atom and is excited from 

bound state p to another bound state r, decays to an intermediate bound state q and then to the 

original state p. The energy of the absorbed photon is re-emitted in two photons each of different 

energy [55, p. 11]. When local thermal equilibrium (LTE) exists [55, p. 11] 

݆ఔ௔ሺܧܶܮሻ ൌ ሺ8																																																					ఔሺܶሻܤ	௔ߤ െ 12ሻ 

where ܤఔሺܶሻ is the Planck function 

ఔሺܶሻܤ ൌ
ଷߥ2݄

ܿଶ
1

݁
௛∙ఔ
௞∙் െ 1

																																																			 ሺ8 െ 13ሻ 

The equation for ݆ఔ௔  called the Kirchhoff-Planck Relation basically says that a certain percentage 

of the energy absorbed by the medium will be emitted as photons of a longer wavelength. 

dV

ષ෡Photon is absorbed, then emitted as a 
photon of a longer wavelength

Wavelength: λi 

Wavelength: λo  
(λo > λi)

݀Ω

 

Figure 8-3: Absorption and fluorescence. A photon of wavelength ߣ௜ is absorbed causing the release of a 
photon of wavelength ߣ௢, where ߣ௢ ൐  .௜, which enters a pencil of radiationߣ
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Emission of radiation can also be from scattered photons. One can write [55, p. 11] 

	݆ఔ௦൫ܚ, ષ෡൯ ൌ න න ቈන න ,ܚ௦ሺߤ ,ߥ݂൫	ሻݐ ષ෡	;	ߥᇱ, ષ෡ᇱ	; ,ܚ	 ,ܚఔ൫ܫ	൯ݐ ષ෡ᇱ, ᇱ݀Ωᇱߥ݀	൯ݐ
ஶ

଴ସ∙గ
቉

ஶ

଴
ߥ݀

ସ∙గ
݀Ω					ሺ8 െ 14ሻ 

Which represents the amount of energy added to a pencil of radiation because of scattering. More 

commonly, we will used the simplified version of ሺ8 െ 14ሻ where it is assumed that all photons 

added to pencil after scattering had experienced an elastic collision where no energy was lost and 

therefore the frequency did not change. It is also assumed that the scattering coefficient does not 

change with position or time. Equation ሺ8 െ 14ሻ then becomes 

݆ఔ௦൫ܚ, ષ෡൯ ൌ න න ቈߤ௦ න ݂൫ષ෡,ષ෡ᇱ, ,ܚ ,ܚఔ൫ܫ൯ݐ ષ෡ᇱ, ݀Ωᇱ	൯ݐ
ସ∙గ

቉ ߥ݀
ஶ

଴
	݀Ω

ସ∙గ
														ሺ8 െ 15ሻ 

The angular distribution of light intensity scattered by a particle at a given wavelength is 

called the phase function, or the scattering phase function and is here symbolized as f; it is the 

scattered intensity at a particular angle ߠ relative to the incident beam and normalized by the 

integral of the scattered intensities at all angles [58, p. 693] 

݂൫ߥ, ષ෡;	ߥᇱ, ષ෡ᇱ; ,ܚ ൯ݐ ൌ
,ܚఔ൫ܫ ષ෡, ൯ݐ

׬ ,ܚఔ൫ܫ ષ෡, ݀Ωସ∙గ	൯ݐ

 

In other words, it is the probability that a photon traveling in direction ષ෡ᇱ is scattered into 

direction ષ෡  [57, p. 4]. The phase function f  is normalized in such a way that [57, p. 4] 

න ݂൫ߥ, ષ෡;	ߥᇱ, ષ෡ᇱ; ,ܚ ݀Ωᇱ	൯ݐ
ସ∙గ

ൌ 1 
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Figure 8-4: Incident photons being scattered by a particle (left) and plot of phase function (right). 

 

Note that the assumption of a spherical particle allows removal of the azimuthal ߶ dependence of 

f  [58, p. 693]. 

z

y

x
ϕ 

ષ෡′  

ΩሬሬԦ 

,ܚ൫ߥܫ ષ෡′ , ൯ݐ

Ɵ’

ϕ' 

Particle

Photon before scattering event 
(frequency ν’)

Photon after scattering event
(frequency ν, may or may not 

be the same as ν’)

,ܚ൫ߥܫ ષ෡, ൯Unit Sphereݐ

dΩ' 

dΩ 

Original direction of 
the incident photon

 

Figure 8-5: A photon is added to the pencil of radiation due to a scattering event. 

 

The phase function works well for modeling single scattering events or even thin slices of 

turbid media where there are relatively few scattering events. In thicker slices of turbid media, 
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where a great many scattering events occur, the angular dependence of light intensity becomes an 

averaged version of the phase function. For example, if the scattering elements are oriented 

randomly, then the azimuthal dependence of the phase function is averaged and can no longer be 

observed. Over the course of many scattering events, nearly all visible traces of the phase 

function disappear. Thus the an average parameter called the anisotropy of scatter ݃ ൌ 〈cosሺߠሻ〉 

(expected value of cosሺߠሻ) is used to characterize tissue scattering in terms of the relative 

forward versus backward direction of scatter [59, p. R38].  

 Figure 8-6A shows the Henyey-Greenstein phase function for several values of ݃. The 

function itself is shown below. 

݂ሺߠሻ ൌ
1
ߨ4

ሺ1 െ ݃ଶሻ
ሺ1 ൅ ݃ଶ െ 2݃ cosሺߠሻሻଷ/ଶ

																																						ሺ8 െ 16ሻ 

Notice that the above function is not a function of ߶ and thus has azimuthal symmetry. From the 

plots of ݂ሺߠሻ we can see that ݃ ൌ 0 represents an isotropic medium where scattering at any angle 

is equally likely while as ݃ increases the scattering is directed more and more forward. In Figure 

8-6B, the upper panel shows the angular distribution of scattered light at different depths, 

0.01mm, 0.1mm and 1mm, simulated using monte carlo code [60, 61]. The parameters 

used in the simulation were ߤ௔ ൌ 0.1mmିଵ, ߤ௦ ൌ 10mmିଵ, and ݃ ൌ 0.95. In the bottom 

panel of the same figure, we the Henyey-Greenstein function for ݃ ൌ 0.95. With these 

figures we can see that at about 0.01mm from the surface (after relatively few scattering 

events) that the angular distribution  of scattered light has a shape much like the phase 

function. The deeper we go into the medium, the more distorted the angular distribution 

becomes until at 1mm it looks nothing like the phase function. Thus we have 

demonstrated the averaging effect described in the previous paragraph and justified the 

use of ݃ in place of the phase function for high-scattering environments. 



Chapter 8 

188 
 

 

Figure 8-6: Henyey-Greenstein phase function for 6 different values of ݃ as a function of angle (A) and 
distribution of intensity as a function of angle (top) taken from monte carlo simulations with parameters 
௔ߤ ൌ 0.1mmିଵ, ߤ௦ ൌ 10mmିଵ, and  ݃ ൌ 0.95 at depths 0.01mm, 0.1mm and 1mm (B, Top) and the 
Henyey-Greenstein function for ݃ ൌ 0.95 (B, Bottom).  

 

8.2.6 General Derivation of the Radiative Transfer Equation 
 

Begin with the continuity equation 

߲Φ
ݐ߲

൅ ׏ ∙ ۴ ൌ ሺ8																																																										ߪ െ 17ሻ 

Where Φ is the photon density (amount of photons per unit volume), F is the flux (amount of 

photons per unit area per unit time) and ߪ is the generation of photons per unit volume per unit 

time and represents internal sources and sinks. The term ׏ ∙ ۴ in equation ሺ8 െ 17ሻ can be 

visualized as shown in the figure below. The figure shows a differential element with surfaces 

through which photons may pass. For simplicity, we will consider the change in flux only along 

the x-direction. From the figure we can see that the term ׏ ∙ ۴ represents the difference between 

photons leaving a volume and photons entering a volume divided by the distance over which the 

change took place. 
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Figure 8-7: Simplified diagram of the divergence of photon flux in a differential volume. 

 

We assume that radiation with intensity ܫఔ൫ܚ, ષ෡,  passes in ,ߥ݀ ൯ in the frequency intervalݐ

time dt through an element of length ds and cross section ݀ߪ normal to the direction of the ray ષ෡  

into the solid angle ݀Ω [55, p. 29]. In to equation ሺ8 െ 17ሻ we substitute equations ሺ8 െ 3ሻ, 

ሺ8 െ 5ሻ, ሺ8 െ 11ሻ, and ሺ8 െ 15ሻ, which yields 

1
ܿ
	
݀
ݐ݀
න නܫఔ൫ܚ, ષ෡, Ω݀	ߥ݀	൯ݐ

ఔସ∙గᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ
஼௛௔௡௚௘	௜௡	௣௛௢௧௢௡	ௗ௘௡௦௜௧௬	

௜௡	ௗ௏	௪௜௧௛	௧௜௠௘

൅ ׏ ⋅ න නષ෡	ܫఔ൫ܚ, ષ෡, Ω݀	ߥ݀	൯ݐ
ఔସ∙గᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥ

۴ሺܚ,௧ሻᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௉௛௢௧௢௡௦	௟௘௔௩௜௡௚	ௗ௏ି௉௛௢௧௢௡௦	ா௡௧௘௥௜௡௚	ௗ௏

 

ൌ

න න ቈߤ௦ 	න ݂൫ષ෡	, ષ෡ᇱ, ,ܚ ,ܚఔ൫ܫ	൯ݐ ષ෡ᇱ, ݀Ωᇱ	൯ݐ
ସ∙గ

቉ ߥ݀
ஶ

଴
	݀Ω

ସ∙గᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௉௛௢௧௢௡௦	௔ௗௗ௘ௗ	௧௢	௧௛௘	௣௘௡௖௜௟	௔௙௧௘௥	௦௖௔௧௧௘௥௜௡௚

െන න ሺߤ௔ ൅ ,ܚఔ൫ܫ	௦ሻߤ ષ෡, Ω݀	ߥ݀	൯ݐ
ஶ

଴ସ∙గᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௉௛௢௧௢௡௦	௟௢௦௧	ௗ௨௘	௧௢	
௔௕௦௢௥௣௧௜௢௡	௔௡ௗ	

௦௖௔௧௧௘௥௜௡௚

൅ න න ݆ఔ	݀ߥ	݀Ω
ஶ

଴ସ∙గᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
௉௛௢௧௢௡௦	௚௔௜௡௘ௗ	ௗ௨௘	
௧௢	௙௟௨௢௥௘௦௖௘௡௖௘

ۙ
ۖ
ۖ
ۘ

ۖ
ۖ
ۗ

ሺ8			ݏ݁ܿݎݑ݋ݏ/ݏ݇݊݅ݏ െ 18ሻ 
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If we assume that ሺ8 െ 18ሻ is satisfied in the strong sense, that is the left-hand side of the 

integrand is equal to the right-hand side of the integrand, we get [57, p. 8] 

1
ܿ
	
݀
ݐ݀
,ܚఔ൫ܫ ષ෡, ൯ݐ ൅ ׏ ∙ ൣષ෡	ܫఔ൫ܚ, ષ෡,  ൯൧ݐ

ൌ ௦ߤ 	න ݂൫ષ෡,ષ෡ᇱ, ,ܚ ,ܚఔ൫ܫ	൯ݐ ષ෡ᇱ, ݀Ωᇱ	൯ݐ
ସ∙గ

െ ሺߤ௔ ൅ ,ܚఔ൫ܫ	௦ሻߤ ષ෡, ൯ݐ ൅ ݆ఔ௔൫ܚ, ષ෡, ሺ8										൯ݐ െ 19ሻ 

The term ׏ ∙ ൣષ෡	ܫఔ൫ܚ, ષ෡, ൯൧ is often replaced with ષ෡ݐ ∙ ,ܚఔ൫ܫ׏ ષ෡,  ൯. We can easily show that theseݐ

two forms are equivalent. First we have 

׏ ∙ ൣષ෡ ∙ ,ܚఔ൫ܫ ષ෡, ൯൧ݐ ൌ ׏ ∙ ቀܠො	Ω௫	ܫఔ൫ܚ, ષ෡, ൯ݐ ൅ ,ܚఔ൫ܫ	Ω௬	ොܡ ષ෡, ൯ݐ ൅ ,ܚఔ൫ܫ	Ω௭	ොܢ ષ෡,  ൯ቁݐ

ൌ Ω௫ 	
∂
ݔ߲

,ܚఔ൫ܫ ષ෡, ൯ݐ ൅ Ω௬ 	
∂
ݕ߲

,ܚఔ൫ܫ ષ෡, ൯ݐ ൅ Ω௭ 	
߲
ݖ߲
,ܚఔ൫ܫ ષ෡, ሺ8																			൯ݐ െ 20ሻ 

Then we can expand the form ષ෡ ∙ ,ܚఔ൫ܫ׏ ષ෡,  ൯ to getݐ

ષ෡ ∙ ,ܚఔ൫ܫ׏ ષ෡, ൯ݐ ൌ ൫ܠො	Ω௫ ൅ Ω௬	ොܡ ൅ Ω௭൯	ොܢ

∙ ൭ܠො 	
∂
ݔ߲

,ܚఔ൫ܫ ષ෡, ൯ݐ ൅ ොܡ 	
∂
ݕ߲

,ܚఔ൫ܫ ષ෡, ൯ݐ ൅ ොܢ 	
߲
ݖ߲
,ܚఔ൫ܫ ષ෡,  ൯൱ݐ

ൌ Ω௫ 	
∂
ݔ߲

,ܚఔ൫ܫ ષ෡, ൯ݐ ൅ Ω௬ 	
∂
ݕ߲

,ܚఔ൫ܫ ષ෡, ൯ݐ ൅ Ω௭ 	
߲
ݖ߲
,ܚఔ൫ܫ ષ෡, ሺ8																		൯ݐ െ 21ሻ 

It can clearly be seen that ሺ8 െ 20ሻ and ሺ8 െ 21ሻ are identical. We can then write 

1
ܿ
∙
݀
ݐ݀
,ܚఔ൫ܫ ષ෡, ൯ݐ ൅ ષ෡ ∙ ,ܚఔ൫ܫ׏ ષ෡,  ൯ݐ

ൌ ௦ߤ ∙ න ݂൫ષ෡,ષ෡ᇱ, ,ܚ ൯ݐ ∙ ,ܚఔ൫ܫ ષ෡ᇱ, ݀Ωᇱ	൯ݐ
ସ∙గ

െ ሺߤ௔ ൅ ௦ሻߤ ∙ ,ܚఔ൫ܫ ષ෡, ൯ݐ ൅ ݆ఔ௔൫ܚ, ષ෡, ሺ8										൯ݐ െ 22ሻ
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8.3 Practical Methods for Determining Light 
Transport Model Parameters in Tissues and 
Other Turbid Media 
 

As we have shown in the previous sections, the main light-scattering model parameters 

are the absorption coefficient ߤ௔, the scattering coefficient ߤ௦, and the anisotropy of scatter ݃. 

Over the years many methods have been devised to extract these parameters. However, we can 

group them into 5 categories: collimated transmittance, sampled fluence, diffuse transmittance, 

diffuse reflectance, and time-resolved. In the next few sub sections we will describe each and 

then provide examples of how they can be used together or separately to extract model 

parameters. 

 

8.3.1 Collimated Transmittance 
 

Collimated transmittance is an old but effective method of separating ballistic from 

diffuse photons, typically for the purpose of determining the total attenuation coefficient ߤ௧ ൌ

௦ߤ ൅  ௔. It is based on the principle that the decay of ballistic photons in a turbid media isߤ

described by the equation below [62, 50, 63]. 

ሻݖሺܫ ൌ ሺ8																																																										଴݁ି௭/ఓ೟ܫ െ 23ሻ 

where ݖ is the depth within the medium, ܫ଴ is the initial intensity and ܫሺݖሻ is the intensity at depth 

  .ݖ

An example setup for measuring collimated transmittance is shown in Figure 8-8. Here 

we see that a narrow, collimated beam enters the sample where the light becomes scattered. The 

light that escapes the sample then passes through an aperture some distance away thus eliminating  
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all or at least most diffuse photons. The distance ܮ and the size of the aperture near the detector 

determine the effectiveness of the system at eliminating diffuse photons. The maximum angle at 

which a scattered photon may reach the detector is 

ߙ ൌ tanିଵ ቀ
஺ݎ
ܮ
ቁ																																																										 ሺ8 െ 24ሻ 

where ݎ஺ is the radius of the aperture near the detector. In some cases a third aperture may be 

used to narrow the angle at which photons leaving the sample may travel and still reach the 

detector. The minimum allowable angle is related to the medium under study. For example, with 

high values of ݃ where scattering is primarily directed forward, there will be a great number of 

photons which may undergo a few collisions but still moving relatively straight. These are the so-

called snake photons and can be very difficult to separate from ballistic photons. Collimated 

transmittance can be coupled with other methods, i.e. one used to determine ߤ௔, so that ߤ௦ can be 

determined, or if ߤ௦ ≫  ௔ which is often the case with tissue, it can be used on its own toߤ

estimate ߤ௦.  

 

Figure 8-8: Example setup for measuring collimated transmittance. 
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8.3.2 Sampling of Fluence Rate 
 

The added absorber method is a common application of sampled fluence rate. This 

method relies entirely on the diffusion approximation, where measurements of forward-directed 

flux can be considered proportional to measurements of fluence. The procedure consists of first 

measuring on-axis transmission in a scattering medium, then adding an absorber with a known 

absorption coefficient and repeating the measurement [64].  

The absorber used is typically black ink, which is known to produce almost no scatter, 

and the scattering agent is typically intralipid (IL). Most importantly, it has been shown that ink 

and intralipid do not interact with each other in solution. In addition, while ink has very little 

scatter intralipid has very little absorbance, allowing ߤ௔ and ߤ௦ᇱ  to be adjusted independently [65]. 

Using the diffusion approximation, the spatial constants with and without the absorber are defined 

as 

ଶߜ ൌ
1

ඥ3ߤ௔ሺߤ௔ ൅ ௦ᇱߤ ሻ
																																																					 ሺ8 െ 25ሻ 

and 

ଶ,௔ߜ ൌ
1

ට3ሺߤ௔ሺ1 െ ௜௡௞ሻܥ ൅ Δߤ௔ሻ൫ߤ௔ሺ1 െ ௜௡௞ሻܥ ൅ Δߤ௔ ൅ ௦ᇱߤ ሺ1 െ ௜௡௞ሻ൯ܥ
											ሺ8 െ 26ሻ 

respectively. Here ܥ௜௡௞ is the concentration of ink and Δߤ௔ is the absorbance of the ink. In 

practice, I have found it rather difficult to work with undiluted ink. In its natural state, the 

absorbance is so high that one is forced to work with very small quantities. This is further 

complicated by the fact that the ink tends to stick to the sides of the pipettes used to measure out 

these small quantities. Hence, a solution of ink and water was mixed, calibrated, and used as the 

absorber. Using the ink and water solution  adds a significant amount of water along with the ink. 
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Hence the values of ߤ௔ and ߤ௦ᇱ  must be adjusted to account for the dilution. That is the reason for 

the factor ሺ1 െ ௜௡௞ሻ that appears in equation ሺ8ܥ െ 26ሻ. Solving equations ሺ8 െ 25ሻ and ሺ8 െ

26ሻ yields  

ሺ3ሺ1 െ ௔ଶߤ௔ሻߤ௜௡௞ሻΔܥ ൅ ቆ3Δߤ௔ଶ ൅
ሺ1 െ ௜௡௞ሻଶܥ

ଶߜ
ଶ െ

1
ଶ,௔ߜ
ଶ ቇ ௔ߤ ൅

Δߤ௔ሺ1 െ ௜௡௞ሻܥ

ଶߜ
ଶ ൌ 0										ሺ8 െ 27ሻ 

and  

௦ᇱߤ ൌ
1

ଶߜ௔ߤ3
െ ሺ8																																																									௔ߤ െ 28ሻ 

 

8.3.3 Diffuse Transmittance 
 

A measurement of diffuse 

transmittance involves collecting light 

transmitted through a sample with an 

integrating sphere. An example setup is 

shown in Figure 8-9. Results from this 

measurement can be interpreted using the 

Kubelka-Munk (KM) model [66, 67]. This 

model divides the diffuse flux into 2 groups: 

the flux traveling forward (same direction as incident light) and the flux traveling backward. 

Solving the differential equations for a slab geometry and a diffuse source of illumination yields 

௄ெܣ ൌ ሺ8																																																														௔ߤ2 െ 29ሻ 

ܵ௄ெ ൌ
3
4
ሺߤ௔ ൅ ௦ᇱߤ ሻ െ ௔ߤ ൌ

3
4
௦ᇱߤ െ

1
4
ሺ8																																					௔ߤ െ 30ሻ 

Sample

Integrating Sphere

Photodetector

Diffuse Light 
Source

Opening

 

Figure 8-9: Experimental setup for collecting 
diffuse transmittance through a turbid medium.  
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where ܵ௄ெ ሺmିଵሻ denotes backscattering and ܣ௄ெ ሺmିଵሻ denotes absorption. We can determine 

the values of ܣ௄ெ and ܵ௄ெ through a measurement of diffuse transmittance with total diffuse 

reflectance ܴௗ (see next section). The equations are shown below. 

ܵ௄ெ ൌ
1
ܾ݀

Lnቆ
1 െ ܴௗሺܽ െ ܾሻ

ௗܶ
ቇ																																											ሺ8 െ 31ሻ 

௄ெܣ ൌ ܵ௄ெሺܽ െ 1ሻ																																																						ሺ8 െ 32ሻ 

where ݀ is the thickness of the slab and 

ܽ ൌ
1 ൅ ܴௗ

ଶ െ ௗܶ
ଶ

2ܴௗ
																																																							 ሺ8 െ 33ሻ 

ܾ ൌ ඥܽଶ െ 1																																																												ሺ8 െ 34ሻ 

The diffuse transmittance, along with other measurements, has also been used to determine 

the light scattering model parameters using different mathematics and/or computer simulations. 

For example, a multiple-polynomial regression method based on monte carlo simulations was 

used to extract optical parameters from ௗܶ, ܴௗ, and collimated transmittance measurements in 

heart tissue [49].  

 

8.3.4 Diffuse Reflectance 
 

When light is incident on the surface of a turbid medium it stands to reason that some of 

it will enter the medium and some will be reflected back. If the light source is collimated and the 

light is incident parallel to the surface normal of the medium, then light is reflected due to 

collision with particles within the medium and not, for the most part, refractive index mismatch. 

The light reflected back is termed diffuse reflectance.  
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Diffuse reflectance has gained a great deal of popularity due to its non-invasive nature. 

There are 2 main types of diffuse reflectance measurements: Total diffuse reflectance ܴௗ and 

spatially-resolved diffuse reflectance ܴሺߩሻ. Figure 8-10 shows and example experimental setup 

for measuring total diffuse reflectance (panel A) and spatially-resolved diffuse reflectance (panel 

B).  

 

Figure 8-10: Example experimental setups for measuring diffuse reflectance. Panel A shows an integrating 
sphere collecting light reflected from the sample which is proportional to total reflectance ܴௗ. Panel B 
shows a system for measuring spatially-resolved diffuse reflectance ܴሺߩሻ. Here we show a single movable 
detector a distance ߩ from the incident beam, though alternatively multiple fixed photodetectors could be 
used.  

 Experimentally, ܴሺߩሻ can be used by itself to extract the parameters of the medium as 

was done in [68]. However it is more commonly used with other measurements. For example, 

measurements of ܴௗ can be combined with collimated transmittance [63, 49] or diffuse 

transmittance (see previous section). There are also examples in literature of combining ܴሺߩሻ 

with time-resolved measurements [69, 70]. It is also possible to use both ܴௗ and ܴሺߩሻ together to 
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get the optical parameters of a medium. In [71] expression for ܴሺߩሻ and ܴௗ are derived from the 

diffusion approximation of the RTE. They are 

ܴሺߩሻ ൌ
଴ݖ
ߨ2

exp ൝
െߤ௘௙௙ඥݖ଴

ଶ ൅ ଶߩ

଴ݖ
ଶ ൅ ଶߩ

ቆߤ௘௙௙ ൅
1

ඥߩଶ ൅ ଴ݖ
ଶ
ቇൡ														ሺ8 െ 35ሻ 

and  

ܴௗ ൌ
ܽᇱ

1 ൅ 2݇ሺ1 െ ܽᇱሻ ൅ ቀ1 ൅ 2݇
3 ቁඥ3ሺ1 െ ܽᇱሻ

																													ሺ8 െ 36ሻ 

where ݖ଴, the depth at which all incident photons are assumed to be isotropically 

scattered, is 

଴ݖ ൌ
1
௦ᇱߤ
																																																									ሺ8 െ 37ሻ 

ܽᇱ, the scattering albedo, is 

ܽᇱ ൌ
௦ᇱߤ

௔ߤ ൅ ௦ᇱߤ
																																																					ሺ8 െ 38ሻ 

and ݇ is  

݇ ൌ
1 ൅ ܴ
1 െ ܴ

																																																							ሺ8 െ 39ሻ 

where ܴ is related to the index of refraction by the empirically derived equation [72] 

ܴ ൌ െ1.44݊ିଶ ൅ 0.71݊ିଵ ൅ 0.668 ൅ 0.0636݊																						ሺ8 െ 40ሻ 

Using the above equations together it is possible to extract ߤ௔ and ߤ௦ᇱ  from a turbid 

medium. 
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8.3.5 Time-Resolved Measurements 
 

When light first enters a medium, it exhibits some time-dependent behavior. The methods 

described previously ignore this because they are only concerned with steady-state measurements, 

but there are ways of extracting meaningful information from these transient phenomena. 

Because the transient effects of light traveling through a medium are typically very brief, the light 

source must be modulated at high frequency. The modulating signal is typically either short 

pulses or a sinusoid.  

When a light source is pulsed at high frequency, one can observe the effect that the turbid 

medium has on the shape of the pulse. Figure 8-11 shows a simplified setup for observing time-

dependent behavior of pulsed light diffusing through a turbid medium. The light enters through 

the surface of the medium, and travels to the detector a distance ߩ from the point of entry. The 

oscilloscopes show the initial impulse of light and the delayed and dispersed collected light seen 

by the detector on the surface of the medium. In this example, the light collected is diffuse 

because ballistic photons cannot reach the detector in the position shown.  

In reality, the setup must be more complex because it is generally not possible to observe 

these time-domain effects on a traditional oscilloscope. A real implementation of this setup could 

use a time-to-amplitude converter (TAC) to capture the optical signal [70]. The TAC is basically 

an integrator designed to operate at high speeds and is commonly used to capture phenomena that 

occur  ~100ps. The output of the TAC would of course need to be differentiated to yield the true 

optical signal.  



Chapter 8 

199 
 

 

Figure 8-11: Example setup for extracting optical parameters from a turbid medium by observing the time-
dependent effects on a pulse of light.  

 

As mentioned previously, this method can be used to collect diffuse light. If this is the case, then 

the detected signal can be modeled using a time-dependent version of the diffusion approximation 

[70] as shown below. 

݊
ܿ
߲
ݐ߲
߶ሺߩ, ሻݐ െ ,ߩଶ߶ሺ׏ܦ ሻݐ ൅ ,ߩ௔߶ሺߤ ሻݐ ൌ ܵሺߩ, ሺ8																				ሻݐ െ 41ሻ 

Assuming that a depth ݖ଴ light is isotropically scattered (see equation ሺ8 െ 37ሻ), we can 

solve equation ሺ8 െ 41ሻ for an isotropic point source ܵሺߩ, ሻݐ ൌ  ሺ0,0ሻ located at depthߜ

,ߩ଴ and assuming ߶ሺݖ ሻݐ ൌ 0 at the medium surface. The result is 

ܴሺߩ, ሻݐ ൌ ሺ4ܿܦߨ/݊ሻଷ/ଶݖ଴ିݐହ/ଶ݁ିఓೌ௖௧/௡݁
ି
ఘమା௭బ

మ

ସ஽௖௧/௡																				ሺ8 െ 42ሻ 

where ܦ is the diffusion coefficient and ݊ is the refractive index of the medium. The 

equation is not valid before time ݐ଴ ൌ ଴ߩ
௡

௖
 because no photons will have reached the 
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observation point ߩ଴. In [70] the diffuse light escaping from the medium was detected. 

The rising edge and tail of the pulse were ignored and equation ሺ8 െ 42ሻ was fit to the 

data to extract ߤ௔ and ߤ௦ᇱ .  

 When the light source is sinusiodally modulated instead of pulsed, then the 

parameters of interest are the amplitude and phase change of the detected waveform. The 

setup is basically the same as that shown in Figure 8-11. Once again the goal is detect 

diffuse light exiting the surface of the medium some distance ߩ from the source. This 

method was used in [73] where measurements of amplitude and phase delay were taken 

at several distances from the source.  
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Chapter 9 Determining Light-Scattering 
and Absorption Parameters from 
Forward-Directed Flux Measurements in 
Cardiac Tissue 
 

In this section we will describe in detail how this method is used to characterize turbid 

media in terms of ߤ௔ and ߤ௦ᇱ , and then suggest a modification that can be used in certain cases to 

get the remaining light scattering model parameters ߤ௦ and ݃. 

 

9.1 Experimental Setup 
 

A schematic of the experimental setup for forward-directed flux measurements is 

shown in Figure 9-1. The sample was illuminated from underneath with a broad, collimated 

beam of light. The fiber-optic probe was placed over the sample and gradually advanced 

via a micromanipulator to measure the forward-directed flux ߰ሺݖሻ. 

The apparatus consisted of an aluminum stand (not shown) with a sample tray, the 

three-axis micromanipulator with attached fiber-optic probe, and the illumination system. 

The stand was painted flat black so as not to reflect light. The micromanipulator, bolted 

to the top of the stand, allowed the probe to move along x, y, and z axes as well as to 

rotate up to 90o around the horizontal axis. The fine-adjustment allows the probe to be 

advanced into the sample in steps as small as 10 microns.  

The light sources (Shanghai Dream Lasers) were a 660nm, 600mW laser (model 

SDL-LM-660-600T) and a 532nm, 1000mW laser (model SDL-532-1000T). To remove 
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the non-uniformity in the 660nm laser’s beam profile, the beam was focused with a 

45mm DCX lens (F=250mm) onto a holographic diffuser plate. The outgoing beam was 

collimated using an 83mm diameter DCX lens with F=173mm (Anchor Optics 

AX74813), and reflected upward by a 108mm x 145mm x 3mm mirror (Anchor Optics 

AX27536) to illuminate the tissue sample.  

 

 

Figure 9-1: Schematic of the experimental setup used for light attenuation measurments (side view).  

 

9.1.1 Manufacturing and Characterization of the Optical Probes 
 

The optical fibers were threaded through a needle mounted on a 1ml syringe and 

secured with super glue. A 25 gauge needle was used for the 200μm fibers. To pass the 

fiber through the shaft of the needle, the jacket and coating were removed. We then 

applied Norland Optical Adhesive 81 (NOA81) from Thorlabs, which protected the fiber 

from chipping and secured it within the needle. The fiber and needle were both cleaned 

prior to application of the adhesive; then a small amount of NOA81 was poured into the 

needle and cured with a UV light source. Care was taken to ensure that the tip of the 
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probe was covered with a protective layer of adhesive. The tip was then sanded flat using 

5 micron, 0.3 micron and then 0.05 micron lapping film (Digi-Key). The probe was 

continuously inspected under a microscope to ensure flatness and that the layer of 

NOA81 had been sufficiently polished to remove any imperfections. The fiber was 

attached to an optical sensor S120C (or an S150C for measurements at lower intensity) 

connected to a PM100D optical power meter, all from Thorlabs.  

The angular sensitivity of the probes was measured by rotating the optrode with 

respect to the light beam as shown in Figure 9-2a. To approximate the change in refractive 

index at the probe/tissue interface, the tip of the probe was immersed in a petri dish 

containing normal saline (0.9% w/v NaCl). Figure 9-2b shows the relative light intensity 

as a function of angle, for all probes measured at 532nm and 660nm.  

  

 

Figure 9-2: Measurement of the angular sensitivity of the probe. (a) Schematic of the experimental setup. (b) 
Angular sensitivity of the 25 guage needle optical probes at 660nm.  
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9.2 Methods for Measuring Forward-Directed 
Flux 
 

Measuring the forward directed flux required calibrating the position of the probe, 

such that the micromanipulator would read 0 when the tip of the needle was touching the 

glass. Next the probe was raised and the sample (heart tissue, homogenized heart tissue, 

or phantom) was placed under the probe. The needle was then advanced in small steps 

into the sample, starting on the surface and continuing until the probe tip touched the 

glass bottom (z = 0). To keep the change in intensity more uniform  over the entire 

thickness of the medium, the step size ሺΔݖሻ varied with z, so that the change in power 

between steps did not exceed 10%. The initial value of Δݖ was chosen between 100μm െ

200μm. When change in power between steps exceeded 10% the step size was cut in 

half.  As a result , Δݖ was reduced to 50μm, 20μm, and 10μm at depths of ݖ ൌ 1mm, 

200μm, and 100μm respectively. 

9.2.1 Tissue Samples 
 

All tissue experiments were performed in accordance with National Institutes of 

Health guidelines in the use of laboratory animals and approved by the SUNY Upstate 

Medical University Animal Care and Use Committee. Female Yorkshire pigs (26-32 kg) 

undergoing 48 hour sepsis studies were anesthetized using a continuous infusion of 

ketamine/xylazine. Our choice of the specimens was determined in part by the 

availability of freshly harvested hearts from another study, which enabled us to achieve 

our objectives without sacrificing additional animals. Upon completion of the study, pigs 

were euthanized and the hearts removed. The right ventricle was dissected from each 
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heart and laid flat on a piece of glass. The epicardial side faced the light source and the 

endocardial side faced the fiber-optic probe. A small incision was made in the 

endocardial side with a scalpel at the fiber-optic probe insertion site to prevent a dimple 

from forming on the surface as the flat-tipped and comparatively large-diameter needle 

went in.  

In some of the experiments the measurements of forward directed flux were carried 

out in homogenized tissue. The heart ventricles were separated from the valves, veins, 

arteries, atria, auricle, and fat. The isolated muscle tissues were then homogenized into a 

fine paste by the Omni Macro ES digital programmable homogenizer by Omni 

International. 

9.2.2 Phantoms 
 

We used a mixture of India Ink as the absorber with Intralipid 20% emulsion 

(Sigma Aldrich) as the scattering media. The experiments were conducted for intralipid 

(IL) concentration of 8% being close to the scattering properties of cardiac tissue at 660 

nm; see discussion below.  

For our experiments, we used a solution of India Ink and water as an absorber, and 

characterized its absorption using a the DU730 spectrophotometer by Beckman Coulter, as was 

done in [71]. The result is shown in Figure 9-3A, which depicts the absorption coefficient as a 

function of ink concentration. Notice that Δߤ௔ is a linear function of concentration, the same as in 

[65]. The equation of the fit line for 660nm light is 

Δߤ௔ ൌ ሺ9																																																											௜௡௞ܥ	0.007 െ 1ሻ 

and for 532nm light is 
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Δߤ௔ ൌ ሺ9																																																											௜௡௞ܥ	0.009 െ 2ሻ 

For the scattering agent, we used intralipid (Sigma Aldrich). For each 

concentration of intralipid (IL) used 2 measurements of sampled flux were taken: one 

with ink solution and one without. Solving equations ሺ8 െ 27ሻand ሺ8 െ 28ሻ gives us ߤ௔ 

and ߤ௦ᇱ  of the intralipid. This process was repeated for both red light (660nm) and green 

light (532nm). The results is shown in Figure 9-3B. As predicted in [65], ߤ௦ᇱ  is a linear 

function of intralipid concentration. 

 

A      B 

Figure 9-3: Absorption and Scattering vs. concentration. Plots of the absorption of the ink and water 
solution used for added absorber experiments (A) and reduced scattering coefficient of intralipid (B).  

Now that we have characterized our scatter, we can choose an intralipid concentration of 8% for 

our experiments because it has a ߤ௦ᇱ  that is closest to heart tissue (see discussion below). 

 

 



Chapter 9 

207 
 

9.3 Monte Carlo Light-Transport Simulations 
 

To simulate measurements of forward-directed flux at different depths, ߰ሺݖሻ, 

using optical fibers of varying numerical aperture (i.e., varying maximum acceptance 

angle, ߠ, where  ܰܣ ൌ ݊ sinሺߠሻ and n = index of refraction of the tissue), we performed 

Monte Carlo (MC) simulations using the open-source software packages MCML [60] and 

CONV [61].   

Using MCML, we obtained the tissue response to an infinitely narrow light beam. 

The ‘total transmittance’ MCML routine was modified to allow simulation of the 

forward-directed flux at any given depth z inside the tissue. This was achieved by 

allowing user-defined placement of the z-plane where total transmittance was calculated, 

which in the original routine was fixed at the tissue’s rear surface. The output of the 

modified program produced the forward directed flux ߰ሺݖ, ,ݎ  ሻ as function of theߙ

distance, r, from the beam axis, and the angle of photon incidence α, with respect to a 

line normal to a given z-plane (grid spacing, Δα = 1°; α	ൌ 0° to 90°) .  

The function ߰ሺݖ, ,ݎ  ሻ was then convolved using the CONV package to simulateߙ

broad field illumination. We simulated a circular, flat incident beam of radius R = 1.5 cm 

with total incident energy of 1.0 Joule. The probe was located in the center of the beam (r 

= 0).  Increasing R above the set value did not affect the convolution results. This 

suggests that the condition of uniform broad field illumination was satisfied. To obtain 

responses for probes with different numerical apertures, the function ߰ሺݖ, ݎ ൌ 0,  ሻ wasߙ

convolved with the function representing the angular sensitivity of the respective probe.    
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The following parameters were used as inputs to the program: 1) the photon 

absorption coefficient, μa;  2) the photon scattering coefficient, μs;  3) the scattering 

anisotropy factor, g;  4) the refractive index of both the tissue (ntissue = 1.4) and 

surrounding ambient air medium (nair =1.0); and, 5) the thickness of the tissue, d.  We 

used a single value for the absorption coefficient, μa = 0.1 mm-1, but three different values 

for the scattering coefficient, μs : 5.0 mm-1, 10.0 mm-1 and 20.0 mm-1. We explored how 

the forward-directed flux, ߰ሺݖሻ, as function of depth (z = 0 to 5 mm), was affected by the 

anisotropy coefficient, g (from 0.10 to 0.99) and fiber optic probe maximum acceptance 

angle, α (from 1° to 36°). The tissue thickness, d, was set at a value of 5.0 mm. For each 

MCML simulation, a total of 100,000,000 photon packets were launched.  

 

9.4 Forward-Directed Flux Measurements in 
Heart Tissue 
 

Representative samples of forward flux measurements in intact pig right ventricular wall 

at 660nm and 532nm are shown in Figure 9-4a. The normalized FDF is plotted on a log 

scale. The data points for 530nm lie well below of those for 660nm, which reflects the 

higher rate of attenuation of green light as compared to red light. However, both curves 

have an important similarity. Each has a steeper slope at smaller z and a lower one at 

larger z suggesting that the curves represent a sum of two decaying exponents.  
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(a)     (b) 

Figure 9-4: (a) Forward-directed flux plots at 660nm (red) and 532 nm (green) in pig right ventricular wall.  
Red and green solid lines show the respective two-exponent fits. (b) Relative error of the fits 

 
Confirmation that the data in Figure 9-4a, is indeed in accordance with the sum of two-

exponential decay functions as presented in equation ሺ9 െ 3ሻ, is obtained by using the 

FIT 

function of MATLAB. 

߰ሺݖሻ ൌ ݇ଵ݁ି௭/ఋభ ൅ ݇ଶ݁ି௭/ఋమ			.																																					ሺ9 െ 3ሻ 

Note that for normalized data ݇ଵ ൅ ݇ଶ ൌ 1. The weighting of each point was set 

to the inverse of its value. Such weighting enabled accurate fitting of the smaller-valued 

points of the slow exponent which otherwise would not be given the same consideration 

as the larger values of the fast exponent. Figure 9-4b shows the error of the two-exponent 

fit of the data shown in Figure 9-4a. One can see that the maximum error is below 8% 

and the average error is about 1.5%, which supports the two-exponent function 

hypothesis.  
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Similar measurements were carried out in different locations, in five different 

hearts. The recording sites were chosen primarily across the apical section of the right 

ventricle, which lacks fat patches and large blood vessels. An example of the 

measurement sites we chose is shown in  Figure 9-5, which depicts the endocardial and 

epicardial  surfaces of the right ventricle in one of the hearts and all of the measurement 

sites. The number of measurements conducted on each heart was 20 (10 with red light 

and 10 with green).  
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Figure 9-5: Picture of endocardial (a) and epicardial (b) sides of pig right ventricular wall in one of the 
hearts. The red-solid circles represent measurement sites for 660nm light and the green-dashed circles 
represent measurement sites for 532nm light. (c) Plot of average forward-directed flux data across all 
recording sites for 660nm and 532nm light. (d) Averaged fit error.  
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Figure 9-5 shows the averaged forward-directed flux data and fit curves in one of 

the preparations. It is notable that while the scatter of the light intensity at any given 

depth is quite significant, the accuracy of the individual fits (see Figure 9-5d) remains 

relatively high. This reflects the fact that while the optical properties of the tissue vary 

from one location to another, ߰ሺݖሻ remains a two-exponential function. The average fit 

parameters ݇ଵ, ߜଵ, and ߜଶ for different hearts and their standard deviations for 532nm and 

660nm light are shown in Table 9-1 for 5 hearts each with 10 measurements for red and 

green light, for a total of 100 measurements.   

 

Table 9-1: Optical characteristics of pig ventricular myocardium at 660nm and 532nm. Five hearts were 

examined and 10 measurements for red and green each were taken for a total of 100 measurements. 

Wavelength (nm) ݇ଵ ߜଵ ሺmmሻ 
 ሺmmሻ	ଶߜ

660 0.76 ± 0.05 0.24 ± 0.05 2.1 ± 0.45 

530 0.71 ± 0.08 0.13 ± 0.02 0.58 ± 0.13 

 

Due to signal normalization to ߰ሺ0ሻ, the parameter ݇ଶ is calculated as: ݇ଶ ൌ 1 െ

݇ଵ. The attenuation length for ballistic photons ߜଵ at 530nm is almost two times smaller 

than at 660nm (0.13±0.02mm vs 0.24±0.05mm). The difference is even greater for ߜଶ 

(0.58±0.13mm vs 2.1±0.45mm). The observed differences are the manifestation of 

reduced light absorption and scattering at longer wavelengths. 

 The interpretation of the long spatial constant is rather straightforward. It 

represents a spatial decay of fluence rate in the diffuse regime, with ߜଶ	being the 

attenuation length commonly symbolized as ߜ in the literature. Indeed, our numerical 

values of ߜଶ are within the range of values reported in the literature for cardiac tissue [74, 
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49, 68, 75]. The origin of the fast exponent is less obvious. The numerical value of δ1
-1 

between 5-8 mm-1 is not too far off from the values reported for the scattering coefficient 

in biological tissues suggesting that it may represent the decay of ballistic photons in the 

tissue. It may also reflect a heterogeneity of the optical properties of the myocardial 

surface layer, or both.  

To assess the potential contribution of myocardial heterogeneity on ߰ሺݖሻ we 

carried out the following experiment. After measuring ߰ሺݖሻ in intact heart tissue, the 

tissue was homogenized and the experiments were repeated. Figure 9-6 compares ߰ሺݖሻ 

before and after homogenization. If the first exponent was the result of optical 

heterogeneity, after homogenization we would have observed a significant reduction, or 

the complete disappearance, of the fast exponent. However, this was not the case. 

 

 

One can see that, after homogenization, the first exponent is largely preserved, 

which suggests that it is not the result of tissue heterogeneity. The average values of ߜଵ 

and ߜଶ obtained in intact and homogenized tissues (N = 100 and 5 respectively) at 660 

nm are compared in Table 9-2. The differences are insignificant, suggesting that the 

process of homogenization does not affect the decay constants. 

Figure 9-6: Comparison of ߰ሺݖሻ measured in the 
same heart, once as intact tissue and once after 
being homogenized, illuminated with 660nm light. 
The data was collected with the optrode made from 
the 25G needle and the FG200LCC optical fiber 
(0.22NA). 
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Table 9-2: Optical characteristics of intact and homogenized pig ventricular myocardium at 660nm. 

Tissue ࢾ૚ ሺܕܕሻ ࢾ૛ ሺܕܕሻ 

Intact 0.24 ± 0.05 2.1 ± 0.45 
Homogenized 0.25 ± 0.10 2.1 ± 0.28 

 

 

9.5 Monte Carlo Simulation Results 
 

To determine a potential link between the fast exponent and the rate of decay of 

ballistic photons, we carried out MC simulations of forward directed flux measurements 

reproducing our experimental protocol Figure 9-7.  

Figure 9-7a shows simulated ߰ሺݖሻ for two probes with different numerical apertures. 

One had a NA=0.22, matching the probe used in our experiments, while the second probe 

had a much smaller numerical aperture (NA=0.024) and consequently should accept 

much fewer diffuse photons. The parameters (see figure legend) were chosen to be close 

to those reported in the literature for pig myocardium [68]. As in the tissue experiments, 

both plots could be well approximated with the sum of two exponents (see fit error plots 

in Figure 9-7b).  
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Figure 9-7: MC simulations of the FDF, ߰ሺݖሻ, for fiber optic probes with large (NA=0.22) and small 
(NA=0.024) numerical apertures (a). The error of curve fit is shown on the right. (µs =5 mm-1, µa =0.1 mm-1, 
g=0.80) (b). 

 

The slope of the slow exponent δ2 is nearly identical in both cases (for NA=0.024 

and for NA= 0.22). As expected, δ2 corresponds to attenuation length reflecting the decay 

of diffuse photons: 

ଶߜ ൌ ሾ3ߤ௔	ሺߤ௔ ൅ ሻሿ	௦′ߤ
ିଵଶ																																												ሺ9 െ 4ሻ 

where ߤ௔ and ߤ௦′are the absorption and reduced scattering coefficients, respectively. Note 

that for equation ሺ9 െ 4ሻ to be valid ߤ௦ᇱ ≫  .௔ which is satisfied in our caseߤ

We compared the ߜଶ predicted by Eq. ሺ9 െ 4ሻ with the respective value obtained 

from fitting the ߰ሺݖሻ. The value of ߤ௦′ was calculated using the following equation  

௦ᇱߤ ൌ ௦ሺ1ߤ െ ݃ሻ																																																					ሺ9 െ 5ሻ 

where ߤ௦ and ݃ are the scattering coefficient and anisotropy, respectively. The difference 

between the predicted and the “experimental” values of ߜଶ  was within 3%.  
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The slopes of the fast exponents were also similar. Despite a 10-fold difference in 

the numerical aperture (NA=0.22 and NA=0.024), the values of δ1 were respectively, 

0.24 and 0.20. The only significant difference between the two cases was in the 

distribution of the weights between the fast and the slow exponents, which could be 

anticipated. Indeed, the weight of the slow exponent ݇ଶ obtained using the probe with 

larger numerical aperture should be greater, because it accepts a larger portion of diffuse 

photons. 

Notably, the shorter δ1 obtained from the fit was very close to the rate of decay of 

ballistic photons ߜ௕ ൌ 0.196 for given values of  ߤ௔ (0.1mm-1 ) and ߤ௦ (5 mm-1): 

௕ߜ ൌ ሺߤ௔ ൅ ሺ9																																																.	ሻିଵ	௦ߤ െ 6ሻ 

This result suggests that for a given set of optical characteristics the decay rate is not 

significantly influenced by diffuse photons despite relatively large numerical apertures of 

the probe. This was unexpected considering that the NA for measuring ߜ௕ are usually 10-3 

smaller than NA used in our experiments.   

To determine how well this observation holds at different parameters, we carried out 

a series of MC simulations varying the scattering coefficient ߤ௦, the anisotropy 

coefficient, g, and the numerical aperture of the probe NA. The absorption coefficient 

was held constant at ߤ௔ ൌ 0.1	mmିଵ for all simulations, which is close to the upper limit 

reported in the literature for this parameter [74, 49]. The values of µs were varied in the 

range between   5	mmିଵ and 20	mmିଵ which are close to the lower and the upper values 

reported in the literature, respectively [68, 74]. Note that in all simulations µa <<µs .  
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The simulation results are shown in Figure 9-8. Panel (a) shows the dependence of 

δ1
-1 on g at 3 different values of µs for a probe with NA=0.22 which we used in our 

experiments. Panel (b) shows the same data after normalization by ߤ௦. Panel (c) shows 

the effect of NA on δ1
-1  at different g for ߤ௦ ൌ 10mmିଵ.         

 

Figure 9-8: Data from the MC simulations. (a) The dependence of δ1
-1 on anisotropy g for ߤ௦ ൌ 5mmିଵ, 

10mmିଵ, and 20mmିଵ. (b) The data from panel A replotted with δ1
-1 normalized by dividing by ߤ௦. (c) 

The dependence of δ1
-1 on anisotropy g for five different values of the optical probe maximum acceptance 

angle α (here, µs =10 mm-1). In panels A and B, the numerical aperture of the probe was NA=0.22 (α ൎ	
10°).The absorption coefficient was µa=0.1 mm-1 for all plots. 

 

 

Our findings can be summarized as follows: 

ଵߜ .1
ିଵ is proportional to ߤ௦ for all values of g tested. Indeed, Figure 9-8b shows 

that after normalization by ߤ௦ the data points from the three sets in panel (a) fall 

on top of each other for all values of g.     

2. At smaller values of g,  ߜଵ
ିଵ ൎ  ௦.  The range of g where this holds (the plateauߤ

region in Figure 9-8a and Figure 9-8b) is rather wide and becomes even wider as 

the NA of the probe becomes smaller (see Figure 9-8c). For g<0.7 and a probe 

with NA=0.22 the difference between ߜଵ
ିଵand ߤ௦	is less 10%.  
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3. The dependence of ߜଵ
ିଵ on µs, g, and the optical probe’s maximum acceptance 

angle, ߠᇱ, (in radians) can be fitted using the following simple empirical formula: 

ଵߜ
ିଵ ൌ ௦ߤ ൤1 െ exp ൬

݃ െ 1
ᇱ݃ߠ

൰൨																																								ሺ9 െ 7ሻ 

The accuracy of the fit can be appreciated from Figure 9-8, panel (b), which shows plots 

of Eq. ሺ9 െ 7ሻ for ߜଵ
ିଵ ௦ൗߤ  versus the anisotropy coefficient g, superimposed on the 

normalized MC simulation data. Please note that all the above is valid for ߤ௦ ≫  ௔, theߤ

condition which is usually satisfied in the cardiac and other biological tissues.  

 

9.6 Using Forward Directed Flux measurements 
for estimating	,࢙ࣆ 	ࣆ′࢙,and 	ࢇࣆ in Cardiac Tissue 
 

In cardiac tissues, the reported values of g fall in the range between 0.78 [68] and 

0.96  [74]. In pig myocardium, at 700nm it is reported to be around g=0.91 [49]. Using 

this value of g as well as the experimentally derived values of  ߜଵ and ߜଶ we estimated 

the key optical parameters of the tissue such as	ߤ௦, 	ߤ′௦,and 	ߤ௔ and compared them with 

the respective values reported in the literature. The value of 	ߤ௦ was obtained from 

formula ሺ9 െ 7ሻ by substituting the numerical value of g and the average value of ߜଵ 

obtained in our experiments.  Then we calculated the reduced scattering coefficient 	ߤ′௦, 

from Eq. ሺ9 െ 5ሻ using the earlier  derived value of 	ߤ௦.  Finally, we plugged 	ߤ′௦ into 

Eq. ሺ9 െ 4ሻ and solved for ߤ௔. The respective results are shown in Table 9-3. 
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Table 9-3: Optical parameters of pig myocardial tissue At 660 nm 

 ࢇࣆ ࢙′ࣆ ࢙ࣆ	 

Estimated 9.6 0.87 0.08 

From Swartling et 
al. 2003 

10.4 0.94 0.094 

 

One can see that our estimates of all three parameters are consistent with the data 

reported in the literature obtained using completely different techniques. The difference 

between the values of  	ߤ௦, and 	ߤ′௦ estimated from ߜଵ and those reported in the literature 

is about 8% which is rather small and can be the result of myocardial heterogeneity. The 

differences in ߤ௔ are larger (≈15%), yet still in the range of scatter of the experimentally 

derived values of ߜଶ (see Table 9-1).  

 

9.7 Using Forward-Directed Flux Measurements 
for Estimating ࢙ࣆᇱ -in Intralipid ࢙ࣆ and ,ࢍ ,ࢇࣆ ,
Based Tissue Phantoms 
 

As we will show below, the values of 	ߤ′௦, 	ߤ௔, ݃, and ߤ௦ can be obtained from 

forward directed flux even without prior knowledge of ݃.  All we need is to repeat the 

measurements of ߰ሺݖሻ after adding a known amount of absorber. By comparing the 

changes in ߜଶ after adding an absorber one can determine the values of ߤ௦ᇱ  and the 

absorption coefficient 	ߤ௔. The method is known in the literature as the added absorber 

method [64]. Indeed, adding an absorber with a known absorption coefficient ߤ߂௔ 

changes the attenuation length ߜଶ to a new value ߜଶ௱which can be expressed using the 

following formula:   
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ଶ௱ߜ		    ൌ ሾ3ሺߤ௔ ൅ ௔ߤ௔ሻሺߤ߂ ൅ ௔ߤ߂ ൅ ሻሿ	௦′ߤ
ିభ
మ																														ሺ9 െ 8ሻ 

Solving Eqs. ሺ9 െ 4ሻ and ሺ9 െ 8ሻ together yields the values of	ߤ௔ and  ߤ௦ᇱ  . Subsequently, 

one can solve Eq. ሺ9 െ 5ሻ and Eq. ሺ9 െ 7ሻ together to derive ݃, and ߤ௦.  To illustrate the 

feasibility of this approach we carried out experiments in intralipid-based tissue 

phantoms. 

 

Figure 9-9: Forward-directed flux measurements in phantoms at 660 and 532nm. The data was collected 
with the optrode made from the 25G needle and the FG200LCC optical fiber (0.22NA). 
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 Figure 9-9 shows sample plots of ߰ሺݖሻ in 4% intralipid phantom with and without 

absorber (India Ink) at 660 nm (panel A) and 532 nm (panel C). The data fit average error 

was within 1%-2% (panels b and d). The addition of absorber has a negligible effect on 

 ,ଶ undergoes a significant changeߜ ௔ is very small. In contrast the values ofߤଵ because Δߜ

which is roughly proportional to the square root of ߤ௔ (see Eq. ሺ9 െ 8ሻ)  

Table 9-4 shows the values of ߜଵ, ,௔ߤ	 ,௦′ߤ	 as well as estimated values of	ଶ,ߜ ݃, 

and ߤ௦ for different phantoms at 660 nm and 532 nm.  Notably, the values of g obtained 

in our experiments are within 8% of the values reported in the literature (0.64 for red and 

0.73 for green) for this particular type of intralipid [63] as well as reproducing the 

increase in g caused by the reduction of the illumination wavelength from 660 nm to 532 

nm. To compare our values of  ߤ௦ with those reported in the literature we also estimated 

values of ߤ௦ for 20% emulsion intralipid under the assumption that ߤ௦ is proportional to 

intralipid concentration. Using the scattering coefficient for undiluted intralipid given in 

the literature (ߤ௦ ൌ 70mmିଵ for red light and 123mmିଵ for green light), we can expect 

௦ߤ ൌ 5.6mmିଵ for red light and ߤ௦ ൌ 9.84mmିଵ for green light at 8% concentration. 

The estimated values are close to the measured values in Table 9-4.  
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Table 9-4: Optical characteristics of intralipid phantoms at 660nm and 532nm derived from the forward 
directed flux measurements. 

λ (nm) Concentrations 
δ1 

(mm) 

δ2 

(mm) 

μa 

(mm-1) 

μs' 

(mm-1) 

μs 

(mm-1) 
g 

660 
8% IL 0.17 5.30 0.006 

1.83 
5.91 0.69 

8% IL, 7% Ink 0.18 1.79 0.055 5.62 0.67 

532 
8% IL 0.10 5.85 0.003 

2.99 
11.5 0.74 

8% IL, 7% Ink 0.10 1.33 0.066 11.5 0.74 

 

9.8 A Simplified Method for Extracting ࢙ࣆ ,ࢇࣆ, 
and ࢍ for Media with Low Anisotropy 
 

The following method was developed before the above method. It could be considered an early 

prototype of the method described above. This approach involves approximating the fast 

exponent as ߜ௕ from equation ሺ9 െ 6ሻ. We can see from figure Figure 9-8, that this approach will 

only work for small values of ݃, roughly less than 0.70 for a probe with numerical aperture of 

0.22.  

In Figure 9-9, notice the exponent with the short spatial constant near the surface of the medium. 

If this is assumed to be approximately the total attenuation coefficient ߤ௧, we can modify our 

added absorber experiment to get ߤ௦ and ݃. The fast exponent can then be estimated to 

ଵߜ ൌ
1

௦ߤ ൅ ௔ߤ
																																																														ሺ9 െ 9ሻ 

and 

ଵ,௔ߜ ൌ
1

ሺߤ௦ ൅ ௔ሻሺ1ߤ െ ௜௡௞ሻܥ ൅ Δߤ௔
																																								ሺ9 െ 10ሻ 
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for media without and with absorber, respectively. Either of the above equations can be used to 

get the parameter ߤ௦. The value of ݃ can then be calculated using the well-known relation 

௦ᇱߤ ൌ ሺ1 െ ݃ሻߤ௦.  

Table 9-5: Optical characteristics of intralipid phantoms at 660nm 

2% IL 0.65 12.02 0.005 1.61 0.70
2% IL, 7% Ink 0.63 3.39 0.054 1.54 0.69
4% IL 0.32 7.23 0.007 3.15 0.70
4% IL, 7% Ink 0.31 2.45 0.056 3.14 0.70
8% IL 0.17 5.30 0.006 5.91 0.69
8% IL, 7% Ink 0.18 1.79 0.055 5.62 0.67

0.49

1.83

0.94

Concentrations δ 2 (mm)δ 1 (mm) μ a (mm-1) μ s ' (mm-1)μ s (mm-1) g

 

Our calculated values of ݃ and ߤ௦ were in good agreement with those determined 

by Michels et al. [63]. In particular, our experimental values for ݃ ൌ 0.69 േ 1.5% were 

close to their experimental value (g = 0.64). By using the value ߤ௦ ൌ 70mmିଵ for 

undiluted intralipid illuminated by 660nm light, we can adjust for the concentration of 

intralipid that we used in our experiments. This yields ߤ௦ ൌ 1.4mmିଵ for 2%, ߤ௦ ൌ

2.8mmିଵ for 4%, and ߤ௦ ൌ 5.6mmିଵ for 8% intralipid concentration. This shows that 

our calculated values of ߤ௦ varied less than 15% from the values of ߤ௦ determined from 

Michels et al. [63]. 
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Table 9-6: Optical characteristics of  intralipid phantoms at 532 nm 

2% IL 0.40 6.53 0.010 2.49 0.70
2% IL, 7% Ink 0.38 2.44 0.073 2.57 0.71
4% IL 0.17 6.78 0.006 5.77 0.77
4% IL, 7% Ink 0.18 1.96 0.069 5.39 0.76
8% IL 0.10 5.85 0.003 10.2 0.71

8% IL, 7% Ink 0.10 1.33 0.066 9.73 0.69

Concentrations δ 2 (mm)δ 1 (mm) μ a (mm-1) μ s ' (mm-1)

1.30

μ s  (mm-1) g

2.99

0.755

 

 
The predicted value of ݃ for 532 nm (݃ ൌ 0.72	 േ 3%ሻ is larger than that of 660 

nm, which is in good agreement with the value of g = 0.73 reported by Michels et al. at 

532 nm [63]. We can compare our results to the reported value of ߤ௦ ൌ 123mmିଵ for 

undiluted intralipid and 532nm light by adjusting for the concentration used in our 

experiments. The value of ߤ௦ as predicted by [63] is then 2.46mmିଵ for 2%, 4.92mmିଵ 

for 4%, and 9.84mmିଵ for 8% IL. With the exception of the 4% IL experiment, the 

measured ߤ௦ was within less than 5% of the value determined by Michels et al [63]. 

These experiments show that even with only the approximation given by (4-29), we can 

still obtain reasonably accurate results. 
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Chapter 10 An Algorithm for Solving 
the Radiative Transfer Equation 
 

The goal of this chapter is to determine the photon distribution along a single path 

through a medium which is uniformly illuminated on one side as shown in Figure 10-1. To 

do so, we will solve the radiative transfer equation (RTE) numerically in 1-D.  

 

10.1 Solving the RTE Numerically 
 

Key Assumptions: 

 The light at a given depth ݖ is 

uniformly distributed 

throughout the medium for all 

distances ݎ. 

 Backscattered light is negligible 

and can be ignored. This means 

the algorithm will have higher 

accuracy with higher values of 

݃. 

 Only light from adjacent 

scattering events effects the 

photon density along the z-axis. 

z

x-y plane
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Δr

R >> Δr

Uniform Illumination
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Δ
z
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Z

Z
 >

>
 Δ

z

 

Figure 10-1: Diagram of photon scattering in medium 
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 Flux only changes along the z-direction, anything that exits along the ݎ-direction 

is assumed to re-enter the differential element through the leaky boundary as 

shown in the figure. Thus the net flux along the ݎ-direction is always null. 

 The light intensity just outside the medium is the same as the light intensity just 

inside the medium, i.e. ܫఔሺݖ ൌ 0ିሻ ൌ ݖఔሺܫ ൌ 0ାሻ. Thus the boundary condition is 

the continuity type. 

Begin with radiative transfer equation [55] 

1
ܿ
	
݀
ݐ݀
,ܚఔ൫ܫ ષ෡, ൯ݐ ൅ ષ෡ ∙ ,ܚఔ൫ܫ׏ ષ෡,  ൯ݐ

ൌ ௦ߤ න ݂൫ષ෡,ષ෡ᇱ, ,ܚ ,ܚఔ൫ܫ	൯ݐ ષ෡ᇱ, ݀Ωᇱ	൯ݐ
ସ∙గ

െ ሺߤ௔ ൅ ,ܚఔ൫ܫ	௦ሻߤ ષ෡, ൯ݐ ൅ ݆ఔ௔൫ܚ, ષ෡, ሺ10							൯ݐ െ 1ሻ 

Assuming steady-state operation the time dependent term goes to 0. 

1
ܿ
	
݀
ݐ݀
,ܚఔ൫ܫ ષ෡, ൯ݐ ൌ 0 

If we are only concerned with transmittance and there is no fluorescence, then the 

fluorescence term goes to 0. 

݆ఔ௔൫ܚ, ષ෡, ൯ݐ ൌ 0 

These simplifications reduce equation ሺ10 െ 1ሻ to 

ષ෡ ∙ ,ܚఔ൫ܫ׏ ષ෡൯ ൌ ௦ߤ න ݂൫ષ෡,ષ෡ᇱ, ,ܚఔ൫ܫ	൯ܚ ષ෡ᇱ൯	݀Ωᇱ
ସ∙గ

െ ሺߤ௔ ൅ ,ܚఔ൫ܫ	௦ሻߤ ષ෡൯										ሺ10 െ 2ሻ 

Assuming azimuthal and radial symmetry for ܫఔ, the above equation then becomes 
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ષ෡ ∙ ,ݖఔሺܫ׏ ሻߠ ൌ ௦ߤ න ݂൫ષ෡,ષ෡ᇱ, ,ݖఔሺܫ	൯ܚ ݀Ωᇱ	ᇱሻߠ
ସ∙గ

െ ሺߤ௔ ൅ ,ݖఔሺܫ	௦ሻߤ ሺ10										ሻߠ െ 3ሻ 

For spherical coordinates, the integral becomes 

௦ߤ න න ݂൫ષ෡,ષ෡ᇱ, ,ݖఔሺܫ	൯ܚ ᇱሻߠsinሺ	ᇱሻߠ ᇱ݀߶ᇱߠ݀
గ

଴

ଶగ

଴
																					ሺ10 െ 4ሻ 

For the phase function ݂൫ષ෡,ષ෡ᇱ,  ൯ we will use the Henyey-Greenstein function, which isܚ

defined below [76]. Note that the phase function is the same at any point in space within 

the medium, so the ܚ term will be dropped. 

݂ሺߠሻ ൌ
1
ߨ4

1 െ ݃ଶ

ሺ1 ൅ ݃ଶ െ 2݃ cosሺߠሻሻଷ/ଶ
																																					ሺ10 െ 5ሻ 

The function ݂ሺߠሻ can be plotted in 3-D as shown below in Figure 10-2. Note that for the form of 

the equation shown above, the incident photons are assumed to be traveling at an angle ߠᇱ ൌ 0°. 

 

Figure 10-2: Orthogonal and isometric views of the Henyey-Greenstein phase function for ݃ ൌ 0.50 plotted on the 
surface of a unit sphere. Here the  incident photons enter at ߠᇱ ൌ 0°. 
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The phase function is defined as the scattered intensity at a particular angle ߠ relative to 

the incident beam and normalized by the integral of the scattered intensities at all angles [58, p. 

693]. Therefore, if the incident photon is not traveling at an angle ߠᇱ ൌ 0°, then function must be 

rotated in 3 dimensional space. We can modify the original phase function in equation ሺ10 െ 5ሻ 

to account for non-zero ߠᇱ. The result is shown below. 

݂ሺߠ, ߶, ,ᇱߠ ߶ᇱሻ ൌ
1
ߨ4

1 െ ݃ଶ

൫1 ൅ ݃ଶ െ 2݃ሺcosሺߠሻ cosሺߠᇱሻ ൅ cosሺ߶ െ ߶ᇱሻ sinሺߠሻ sinሺߠᇱሻሻ൯
ଷ/ଶ 	ሺ10 െ 6ሻ 

It is important to note, that ߠ in equation ሺ10 െ 6ሻ is an absolute measure of the zenith angle 

relative to the z-axis and not relative to the direction of the incident photons. This is done to 

simplify the algorithm presented later on. Figure 10-3 shows an example of the phase function 

plotted on the surface of a sphere for photons incident at ߠᇱ ൌ 45° and ߶ᇱ ൌ 0°. 

 

 

Figure 10-3: Orthogonal and isometric views of the Henyey-Greenstein phase function for ݃ ൌ 0.50 plotted on the 
surface of a unit sphere. Here the incident photons enter at ߠᇱ ൌ 45° and ߶ᇱ ൌ 0°. 
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Following the assumption that for a given ߠᇱ the amount of incident photons is the same 

for all ߶ᇱ, we can also make the assumption that for a given ߠ, all the amount of scattered photons 

is the same for all ߶. This can be seen graphically in Figure 10-4. We can therefore integrate over 

߶ᇱ and ߶ᇱ leaving us with scattered light that is a function of ߠ and ߠᇱ. The expression for 

integrating over the azimuthal angles is shown below. 

,ߠ௦௦ሺܧ݀ ᇱሻߠ ൌ ௦ߤ න න ݂ሺߠ, ߶, ,ᇱߠ ߶ᇱሻ݀߶
ଶగ

଴
݀߶ᇱ

ଶగ

଴
																											ሺ10 െ 7ሻ 

Unfortunately, the phase function in ሺ10 െ 6ሻ cannot be integrated analytically. We will therefore 

have to compute the integral in ሺ10 െ 7ሻ using numerical integration. Begin by discretizing the 

phase function 

݂ൣ݅ఏ, ݅థ, ݅ఏᇲ, ݅థᇲ൧ ൌ ݂ ቀሺ݅ఏ ൅ 0.5ሻΔߠ, ൫݅థ ൅ 0.5൯Δ߶, ሺ݅ఏᇲ ൅ 0.5ሻΔߠᇱ, ൫݅థᇲ ൅ 0.5൯Δ߶ᇱቁ 

 

Figure 10-4: Orthogonal and isometric views of the Henyey-Greenstein phase function for ݃ ൌ 0.50 plotted on the surface of a 
unit sphere. Here the  incident photons enter at ߠᇱ ൌ 45° and all angles of ߶ᇱ. 
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where ݅ఏ ൌ 0 → ఏܰ െ 1, ݅థ ൌ 0 → థܰ െ 1, and ݅ఏᇲ ൌ 0 → ܰఏᇲ െ 1. The numerical 

integration then takes the form shown below. 

݂ሾ݅ఏ, ݅ఏᇲሿ ൌ
1
ߨ2

෍ ෍ ݂ൣ݅ఏ, ݅థ, ݅ఏᇲ, ݅థᇲ൧	Δ߶	Δ߶
ᇱ	

ேഝିଵ

௜ഝୀ଴

ேഝᇲିଵ

௜ഝᇲୀ଴

, ∀	݅ఏ, ݅ఏᇲ									ሺ10 െ 8ሻ 

Using the same procedure, we can discretize the solid angle as well 

ΔΩൣ݅ఏ, ݅థ൧ ൌ ቀ
ߨ

180°
Δ߶ቁ2 sin൫ሺ݅ఏ ൅ 0.5ሻߠ߂൯ sinሺ2/ߠ߂ሻ ; 

Discretize the integral 

,௦௦ሾ݅ఏܧ݀ ݅ఏᇲሿ ൌ ௦ߤ ෍ ݂ሾ݅ఏ, ݅ఏᇲሿ sin൫ሺ݅ఏᇲ ൅ 0.5ሻߠ߂ᇱ൯ sinሺߠ߂ᇱ/2ሻ ,ఔሾ݅௭ܫ ݅ఏᇲሿ

ேഇᇲିଵ

௜ഇᇲୀ଴

 

Discretize the rest of the radiative transfer equation ሺ10 െ 1ሻ  

	
ఔሾ݅௭ܫ ൅ 1, ݅ఏሿ െ ,ఔሾ݅௭ܫ ݅ఏሿ

Δݖ
ൌ ,ߠ݅ൣݏݏܧ݀ ݅߶൧ െ ሺߤ௔ ൅ ,ఔሾ݅௭ܫ௦ሻߤ ݅ఏሿ 

Solve for ܫఔሾ݅௭ ൅ 1, ݅ఏሿ 

ఔሾ݅௭ܫ ൅ 1, ݅ఏሿ ൌ Δߠ݅ൣݏݏܧ݀ݖ, ݅߶൧ െ ሺߤ௔ ൅ ,ఔሾ݅௭ܫݖ௦ሻΔߤ ݅ఏሿ ൅ ,ఔሾ݅௭ܫ ݅ఏሿ 

 

Pseudo Code: 

 

// Initialize Constants: Total depth ܼ, differential path length Δݖ, differential angle Δߠ 

௓ܰ ൌ  Number of steps along depth Z //  ;ݖ݀/ܼ

ఏܰ ൌ 180°/Δߠ; // Number of zenith angle divisions 
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థܰ ൌ 360°/Δ߶; // Number of azimuthal angle divisions 

ܰఏᇲ ൌ ఏܰ;  // Number of zenith angles for incident photons 

ܰథᇲ ൌ థܰ;  // Number of azimuthal angles for incident photons 

// Initialize input intensity  

for ݅ఏᇲ ൌ 0 → ܰఏᇲ െ 1 

// Set the initial values of ܫఔ to the angular distribution of the input light source 

,ఔሾ0ܫ ݅ఏᇲሿ ൌ ,ఔሺ0ܫ Δߠ ∗ ݅ఏᇲሻ; // Discretize continuous function of intensity ܫఔሺߠሻ 

end 

 

// Discretize phase function  

for ݅ఏᇲ ൌ 0 → ܰఏᇲ െ 1 

for ݅థᇲ ൌ 0 → ܰథᇲ െ 1 

  for ݅ఏ ൌ 0 → ఏܰ െ 1 

   for ݅థ ൌ 0 → థܰ െ 1 

   // Discretize phase function 

  ݂ൣ݅ఏ, ݅థ, ݅ఏᇲ, ݅థᇲ൧ ൌ ݂ ቀሺ݅ఏ ൅ 0.5ሻΔߠ, ൫݅థ ൅ 0.5൯Δ߶, ሺ݅ఏᇲ ൅ 0.5ሻΔߠᇱ, ൫݅థᇲ ൅ 0.5൯Δ߶ᇱቁ;  

   end 

  end 

 end 

end 

 

// Integrate over ߶ and ߶ᇱ 

݂ሾ݅ఏ, ݅ఏᇲሿ ൌ
1
ߨ2

෍ ෍ ݂ൣ݅ఏ, ݅థ, ݅ఏᇲ, ݅థᇲ൧	Δ߶	Δ߶
ᇱ	

ேഝିଵ

௜ഝୀ଴

ேഝᇲିଵ

௜ഝᇲୀ଴

 

 

// Solve the RTE 
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for ݅௭ ൌ 0 → ௓ܰ െ 1 

// Compute distribution of scattered light 

// Each incident ray at angle ߠᇱ produces a distribution of scattered light over all angles ߠ 
and ߶ 

for ݅ఏᇲ ൌ 0 → ఏܰ െ 1  // for each ષ෡ᇱ (or ߠᇱ) of incident photons 

  for ݅ఏ ൌ 0 → ఏܰ െ 1 

,௦௦ሾ݅ఏᇲܧ݀   ݅ఏሿ ൌ ௦ߤ ∗ ݂ሾ݅ఏ, ݅ఏᇲሿ ∗ ,ఔሾ݅௭ܫ ݅ఏᇲሿ ∗ sin൫ሺ݅ఏᇲ ൅ 0.5ሻߠ߂ᇱ൯ sinሺߠ߂ᇱ/2ሻ ; 

  end 

end 

// For each discrete angle ߠሾ݅ఏሿ calculate the intensity ܫఔ at the next step 

for ݅ఏ ൌ 0 → ఏܰ െ 1 

 // The summation integrates over ߠᇱ for each value of ߠ 

ఔሾ݅௭ܫ ൅ 1, ݅ఏሿ ൌ Δݖ ෍ ,௦௦ሾ݅ఏᇲܧ݀ ݅ఏሿ

ேഇିଵ

௜ഇᇲୀ଴

െ ሺߤ௔ ൅ ,ఔሾ݅௭ܫݖ௦ሻΔߤ ݅ఏሿ ൅ ,ఔሾ݅௭ܫ ݅ఏሿ; 

end 

end 

 

10.2 Simulation Results 
 

The comparison between the radiative transfer equation solver and the Monte 

Carlo simulation yielded a close match for the parameter ߜଵ. Figure 10-5 shows a plot of 

௦ߤ ଵ vs the anisotropy parameter ݃, the scattering coefficient was set toߜ ൌ 5mmିଵ, 

10mmିଵ, and 20mmିଵ. The absorption coefficient was set to ߤ௔ ൌ 0.1mmିଵ and the 

acceptance angle of the probe was set to 10° for all simulations. The spatial resolution Δݖ 

and the angle resolution Δߠ for each RTE simulation are shown in Table 10-1 along with 

the corresponding values of ߤ௦ and ݃. The Monte Carlo simulation data presented here 
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are the same presented in [77]. Here we can see a good match between ߜଵ obtained using 

the RTE and that using the MC simulations. The error is highest at low values of ݃, likely 

because the approximation used to solve the RTE work best when light is scattered in the 

forward direction. 

 

 

 

Figure 10-5: Plot of ߜଵ
ିଵ vs ݃ for Monte Carlo simulations and RTE simulations with ߤ௦ ൌ 5mmିଵ, 10mmିଵ, and 

20mmିଵ. The absorption coefficient was set to ߤ௔ ൌ 0.1mmିଵ and the acceptance angle was set to 10° for all simulations. 
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Figure 10-6 shows samples of the RTE and MC simulations for selected ߤ௦ and ݃ 

values, the acceptance angle was chosen to be 10°. This series of plots shows that while 

the fit near the surface is quite accurate ሺݖ ൏ 1mmሻ, further from the surface the curves 

begin to diverge. We also see that for higher values of ݃, the deviation is less, and the 

RTE and MC simulations produce similar data. 

 

 

Table 10-1: Parameters used in RTE model for comparison with Monte Carlo 

 ࢙ࣆ
ሺିܕܕ૚ሻ  

 ࢍ
ઢࢠ	 
ሺૄܕሻ 

ઢࣂ ሺ°ሻ
࢙ࣆ  

ሺିܕܕ૚ሻ 
 ࢍ

ઢࢠ  
ሺૄܕሻ 

ઢࣂ ሺ°ሻ 

5 

0.10 0.2 0.5 

10 

0.10 0.1 0.5 
0.50 0.4 0.5 0.50 0.1 0.5 
0.60 0.2 0.5 0.60 0.1 0.5 
0.70 2.0 0.5 0.70 1.0 0.5 
0.75 2.0 0.5 0.75 1.0 0.5 
0.80 2.0 0.5 0.80 1.0 0.5 
0.85 2.0 0.1 0.85 1.0 0.5 
0.90 2.0 0.1 0.90 1.0 0.5 
0.95 2.0 0.1 0.95 1.0 0.5 
0.97 2.0 0.1 0.97 1.0 0.5 
0.99 2.0 0.1 0.99 1.0 0.1 

 	࢙ࣆ
ሺିܕܕ૚ሻ 

 ࢍ
ઢࢠ	 
ሺૄܕሻ ઢࣂ ሺ°ሻ

20 

0.10 0.1 0.5 
0.50 0.1 0.5 
0.60 0.1 0.5 
0.70 0.5 0.5 
0.75 0.5 0.5 
0.80 0.5 0.5 
0.85 0.5 0.5 
0.90 0.5 0.5 
0.95 0.5 0.5 
0.97 0.5 0.5 
0.10 0.1 0.5 
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Figure 10-7 shows the normalized intensity as a function of zenith angle at selected 

depths in the medium for both the MC and RTE simulations. For both simulations 

௔ߤ ൌ 0.1mmିଵ, ߤ௦ ൌ 10mmିଵ, and ݃ ൌ 0.90. Here we see that the numerical solution 

of the RTE is in close agreement with the MC simulations.  

 

Figure 10-6: Sample plots of forward-directed flux for MC and RTE simulations. The curves are for the parameter listed at the 
top of each figure and acceptance angle 10°. The spatial and angular resolution for each can be found in Table 10-1. 
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These preliminary results show that it is possible to solve the RTE for the case of 

forward-directed flux measurements with a simple algorithm. This means that the fast 

spatial constant ߜଵ can be determined quickly and accurately without need to modify 

Monte Carlo code.  

 

 

 

Figure 10-7: Plot of normalized intensity vs zenith angle at depths ݖ ൌ 10μm, 100μm, and 1mm for RTE and MC 
simulations. The parameters chosen for this simulation were ߤ௦ ൌ 10mmିଵ and ݃ ൌ 0.90. 
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Chapter 11 Discussion and Conclusions 
 

In this study, we use a thin custom made fiber optic probe to investigate the 

forward directed flux (FDF) with a 10µm resolution in pig myocardial wall.  The 

measurements were carried out at 660 nm and 532 nm which represent the most common 

range of the excitation and emission wavelengths of fluorescent voltage-sensitive and 

Ca௜
ଶା-sensitive probes used in cardiac electrophysiology [78, 2].  We show that the FDF 

can be described as the sum of two exponents with distinctly different decay rates. In the 

vicinity of the illuminated surface we observed a rapid decay of the light intensity with 

the decay constant ߜଵin the range 100 - 200 microns for green and red light respectively. 

The slower exponent ߜଶ had a decay constant 5-10 times longer. A similar effect was 

observed in homogenized cardiac tissue and intralipid-based tissue phantoms.  

A similar two exponential decay was previously observed in collimated 

transmission experiments [50]. In these experiments the fast exponent represents the 

decay of ballistic photons. However, this interpretation does not fully apply to our 

experimental data. There are the following two major differences between collimated 

transmittance and our experiments: a) in our experiments the probe is inside and not 

outside the specimen; b) the numerical aperture of the optical fiber in our experiments 

was about two orders of magnitude larger than the numerical aperture typically used in 

collimated transmittance experiments. Thus, it would be reasonable to expect that in our 

experiments ߜଵ is affected by the gradient of diffuse photons near the surface.  

It is notable that previous measurements of forward-directed flux did not report 

the fast exponent [78, 64] and describe only the slow exponent. The decay constant of the 



Chapter 11 

237 
 

slow exponent  ߜଶ is typically referred to in the literature as the “attenuation length” [75, 

78]. The value of ߜଶ measured in our cardiac tissue experiments is comparable to the 

attenuation lengths reported in the literature [74, 78, 79] at similar wavelengths. 

Considering that ߜଵ is on the order of 100μm, the fast exponent can be easily missed, 

unless the probe is advanced at very small increments near the surface. In our 

experiments, the increments of z near the surface were as low as 10μm, which enabled us 

to reconstruct the fast exponent. 

To determine the factors affecting the rate of the fast exponent we reproduced our 

experiments using Monte Carlo (MC) simulations. The FDF was evaluated in the 

physiological range of absorption and scattering coefficients, variable anisotropy 

parameter g, and different numerical apertures of the probe.    

One of the unexpected findings was that despite the relatively large numerical 

aperture of the probe and the existence of a gradient of diffuse photons near the 

illuminated surface, as long as g was not too large, the decay constant ߜଵ still determined 

the rate of decay of the ballistic photons.  The MC simulations show that in turbid media 

with g < 0.7 the value  ߜଵ
ିଵ  yields a quite accurate (error less than 10%) estimate of ߤ௦. 

Thus, simple FDF measurements using a fiber-optic probe provide an alternative to the 

more sophisticated methods that are usually used to assess the scattering coefficient. 

Specifically, such an approach would be useful for estimating ߤ௦ in lipid-based 

phantoms which are characterized with relatively low anisotropy parameter [63].  

   It is interesting that the dependence of the rate of the fast exponent on the 

scattering coefficient, the anisotropy parameter g, and the numerical aperture of the probe 

can be linked by a simple empirical formula without any adjustable parameters. The 
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formula predicts MC simulation results in a broad range of parameters. It works 

particularly well at	NA ൑ 0.22 . We started observing deviations only at NA > 0.34. We 

tested the predictions of the formula in the cardiac tissue and in well characterized 

intralipid-based tissue phantoms. The tests results were in agreement with the data 

reported in the literature.   

 Our findings pave the way to an alternative method for determining major optical 

parameters in turbid media based exclusively on forward-directed flux measurements. 

The new approach allows the utilization of the same simple experimental setup for 

measuring all key optical parameters including anisotropy g. Previously, however, 

measurements of ߤ௦	and g	required completely different experimental setups than those 

used for measurements of ߤ௔ and ߤ௦ᇱ . The simplicity of the experimental approach 

described here as well as the ability to utilize the same setup for all measurements can 

make it a viable alternative to existing methods. While the feasibility of the new approach 

was tested only in intralipid-based tissue phantoms. It would be reasonable to assume that 

it would work in homogenized tissues as well. Indeed, our data suggest that the values of 

 ଶ in the homogenized tissues are not significantly different from the respectiveߜ  and	ଵߜ

values in the intact tissue (see Table 9-2).  

  

  The results of our work sheds a new light on light transport in the vicinity of the 

myocardial surface. This can be particularly useful for the interpretation of the optical 

recordings of cardiac excitation obtained using voltage-sensitive dyes, known as optical 

mapping, as well as for the development of 3D tomographic approaches [80]. One of the 

potential applications of our findings is obtaining an accurate description of voltage 
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distribution in the vicinity of the myocardial surface during strong defibrillation shocks. 

According to theoretical models the transmembrane voltage should fall off rapidly with 

depth [79], which makes the detailed knowledge of light transport near the illuminated 

surface critically important for accurate description of this phenomenon. Our study adds a 

potentially useful tool to the arsenal of existing methods which could help to fill this gap. 
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APPENDIX 1. Survey of Commercially 
Available Photodiodes 

 

Part # Manufacturer 

NEP 

Q.E. 

 ࢐ࢉ

ࢎ࢙࢘ ሺۻષሻValue 

൫ܢ۶√/܅ܘ൯ 
ࡾࢂ ሺ܄ሻ 

Value 
(pF) 

 ሻ܄ሺ	ࡾࢂ

SD200-11-21-241 
Advanced 
Photonics 

0.086 5 0.76 345 0 70 

SD172-11-31-221 
Advanced 
Photonics 

0.200 5 0.76 82 0 - 

SD445-11-21-305 
Advanced 
Photonics 

0.15 5 0.76 1490 0 15 

PDB-C107 
Advanced 
Photonics 

0.3 0 0.85 100 10 1,000 

PDB-C109 
Advanced 
Photonics 

0.5 0 0.85 120 10 100 

PDB-C110 
Advanced 
Photonics 

0.3 0 0.85 300 10 30 

PDB-C134 
Advanced 
Photonics 

0.18 100 0.76 6 10 2,000 

PDB-C139 
Advanced 
Photonics 

0.02 10 0.76 18 10 500 

PDB-C142 
Advanced 
Photonics 

0.02 10 0.76 18 10 500 

PDB-C152SM 
Advanced 
Photonics 

0.15 10 0.72 2.5 5 500 

PDB-C156 
Advanced 
Photonics 

0.044 10 0.76 10 10 150 

PDB-C158 
Advanced 
Photonics 

0.044 10 0.76 15 10 150 

PDB-C158F 
Advanced 
Photonics 

0.024 10 0.70 15 10 150 
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Part # Manufacturer 

NEP 

Q.E. 

 ࢐ࢉ

ࢎ࢙࢘ ሺۻષሻ Value 

൫ܢ۶√/܅ܘ൯ 
ࡾࢂ ሺ܄ሻ

Value 
(pF) 

 ሻ܄ሺ	ࡾࢂ

PDB-C160SM 
Advanced 
Photonics 

0.041 10 0.88 72 0 250 

PDB-C171SM 
Advanced 
Photonics 

0.04 10 0.94 25 3 - 

SD057-11-21-011 
Advanced 
Photonics 

0.028 5 0.76 28 0 800 

SD057-14-21-011 
Advanced 
Photonics 

0.010 5 0.76 28 0 1,600 

S1087 Hamamatsu - - 0.66 200 0 250,000 

S1087-01 Hamamatsu - - 0.75 200 0 250,000 

S1133 Hamamatsu - - 0.66 700 0 100,000 

S1133-01 Hamamatsu - - 0.75 700 0 100,000 

S1133-14 Hamamatsu - - 0.69 200 0 50,000 

S1223 Hamamatsu 0.0094 20 0.78 70 0.1 2,857 

S1223-01 Hamamatsu 0.0130 20 0.78 150 0.1 1,667 

S1226-18BQ Hamamatsu 0.0016 - 0.62 35 0 50,000 

S1226-18BK Hamamatsu 0.0016 - 0.62 35 0 50,000 

S1226-5BQ Hamamatsu 0.0025 - 0.62 160 0 20,000 

S1226-5BK Hamamatsu 0.0025 - 0.62 160 0 20,000 

S1226-44BQ Hamamatsu 0.0036 - 0.62 500 0 10,000 

S1226-44BK Hamamatsu 0.0036 - 0.62 500 0 10,000 

S1226-8BQ Hamamatsu 0.0050 - 0.62 1200 0 5,000 

S1226-8BK Hamamatsu 0.0050 - 0.62 1200 0 5,000 

S1227-16BQ Hamamatsu 0.0025 - 0.62 170 0 20,000 

S1227-16BR Hamamatsu 0.0021 - 0.74 170 0 20,000 

S1227-33BQ Hamamatsu 0.0025 - 0.62 160 0 20,000 
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Part # Manufacturer 

NEP 

Q.E. 

 ࢐ࢉ

ࢎ࢙࢘ ሺۻષሻValue 

൫ܢ۶√/܅ܘ൯ 
ࡾࢂ ሺ܄ሻ 

Value 
(pF) 

 ሻ܄ሺ	ࡾࢂ

S1227-33BR Hamamatsu 0.0021 - 0.74 160 0 20,000 

S1227-66BQ Hamamatsu 0.0050 - 0.62 950 0 5,000 

S1227-66BR Hamamatsu 0.0042 - 0.74 950 0 5,000 

S1227-1010BQ Hamamatsu 0.0080 - 0.62 3000 0 2,000 

S1227-1010BR Hamamatsu 0.0067 - 0.74 3000 0 2,000 

S1227-16BQ Hamamatsu 0.0025 - 0.62 170 0 20,000 

S1227-16BR Hamamatsu 0.0021 - 0.74 170 0 20,000 

S1227-33BQ Hamamatsu 0.0025 - 0.62 160 0 20,000 

S1227-33BR Hamamatsu 0.0021 - 0.74 160 0 20,000 

S1227-66BQ Hamamatsu 0.0050 - 0.62 950 0 5,000 

S1227-66BR Hamamatsu 0.0042 - 0.74 950 0 5,000 

S1227-1010BQ Hamamatsu 0.0080 - 0.62 3000 0 2,000 

S1227-1010BR Hamamatsu 0.0067 - 0.74 3000 0 2,000 

S1336-18BQ Hamamatsu 0.0057 - 0.65 20 0 2,000 

S1336-18BK Hamamatsu 0.0057 - 0.65 20 0 2,000 

S1336-5BQ Hamamatsu 0.0081 - 0.65 65 0 1,000 

S1336-5BK Hamamatsu 0.0081 - 0.65 65 0 1,000 

S1336-44BQ Hamamatsu 0.0100 - 0.65 150 0 600 

S1336-44BK Hamamatsu 0.0100 - 0.65 150 0 600 

S1336-8BQ Hamamatsu 0.0130 - 0.65 380 0 400 

S1336-8BK Hamamatsu 0.0130 - 0.65 380 0 400 

S1337-16BQ Hamamatsu 0.01 - 0.65 65 0 600 

S1337-16BR Hamamatsu 0.0084 - 0.80 65 0 600 



APPENDIX 1  

243 
 

 

Part # Manufacturer 

NEP 

Q.E. 

 ࢐ࢉ

ࢎ࢙࢘ ሺۻષሻ Value 

൫ܢ۶√/܅ܘ൯ 
ࡾࢂ ሺ܄ሻ

Value 
(pF) 

 ሻ܄ሺ	ࡾࢂ

S1337-33BQ Hamamatsu 0.0081 - 0.65 65 0 1,000 

S1337-33BR Hamamatsu 0.0065 - 0.80 65 0 1,000 

S1337-66BQ Hamamatsu 0.013 - 0.65 380 0 400 

S1337-66BR Hamamatsu 0.01 - 0.80 380 0 400 

S1337-1010BQ Hamamatsu 0.018 - 0.65 1100 0 200 

S1337-1010BR Hamamatsu 0.015 - 0.80 1100 0 200 

S1337-21 Hamamatsu 0.025 - 0.67 4000 0 100 

S1787-04 Hamamatsu - - 0.66 700 0 100,000 

S1787-08 Hamamatsu - - 0.75 700 0 100,000 

S1787-12 Hamamatsu - - 0.67 200 0 10,000 

S2281 Hamamatsu 0.018 0 0.65 1300 0 200 

S2281-01 Hamamatsu 0.0086 0 0.62 3200 0 1,700 

S2281-04 Hamamatsu 0.018 0 0.65 1300 0 200 

S2386-18K Hamamatsu 0.00068 0 0.78 140 0 100,000 

S2386-18L Hamamatsu 0.00068 0 0.78 140 0 100,000 

S2386-5K Hamamatsu 0.00096 0 0.78 730 0 50,000 

S2386-44K Hamamatsu 0.0014 0 0.78 1600 0 25,000 

S2386-45K Hamamatsu 0.0014 0 0.78 2300 0 25,000 

S2386-8K Hamamatsu 0.0021 0 0.78 4300 0 10,000 

S2387-16R Hamamatsu 0.00099 0 0.75 730 0 50,000 

S2387-33R Hamamatsu 0.00099 0 0.75 730 0 50,000 

S2387-66R Hamamatsu 0.0022 0 0.75 4300 0 10,000 

S2387-1010R Hamamatsu 0.0031 0 0.75 12000 0 5,000 
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Part # Manufacturer 

NEP 

Q.E. 

 ࢐ࢉ

ࢎ࢙࢘ ሺۻષሻ Value 

൫ܢ۶√/܅ܘ൯ 
ࡾࢂ ሺ܄ሻ

Value 
(pF) 

 ሻ܄ሺ	ࡾࢂ

S2387-130R Hamamatsu 0.0016 0 0.75 5000 0 20,000 

S2506-02 Hamamatsu 0.0100 10 0.72 15 12 667 

S2506-04 Hamamatsu 0.0100 10 0.72 15 12 667 

S6775 Hamamatsu 0.0180 12 0.90 40 10 167 

S6775-01 Hamamatsu 0.0190 12 0.88 40 10 167 

S6967 Hamamatsu 0.0200 12 0.90 50 10 500 

S2551 Hamamatsu 0.039 0 0.81 350 0 30 

S2592-03 Hamamatsu 0.0081 0 0.65 65 0 1,000 

S3477-03 Hamamatsu 0.0081 0 0.65 65 0 1,000 

S2592-04 Hamamatsu 0.013 0 0.65 380 0 400 

S3477-04 Hamamatsu 0.013 0 0.65 380 0 400 

S2744-08 Hamamatsu 0.047 70 0.85 750 0.1 - 

S2744-09 Hamamatsu 0.047 70 0.85 750 0.1 - 

S3588-08 Hamamatsu 0.047 70 0.85 450 0.1 - 

S3588-09 Hamamatsu 0.047 70 0.85 450 0.1 - 

S5627-01 Hamamatsu - - 0.69 700 0 5,000 

S6931-01 Hamamatsu - - 0.83 200 0 50,000 

S4797-01 Hamamatsu - - 0.69 50 0 50,000 

S2833-01 Hamamatsu - - 0.75 700 0 100,000 

S4011-06DS Hamamatsu - - 0.75 200 0 250,000 

S3071 Hamamatsu 0.021 24 0.81 150 0.1 - 

S3072 Hamamatsu 0.016 24 0.81 50 0.1 - 

S3399 Hamamatsu 0.0094 10 0.89 85 0.1 - 

S3883 Hamamatsu 0.0067 20 0.89 40 0.1 - 
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Part # Manufacturer 

NEP 

Q.E. 

 ࢐ࢉ

ࢎ࢙࢘ ሺۻષሻ Value 

൫ܢ۶√/܅ܘ൯ 
ࡾࢂ ሺ܄ሻ

Value 
(pF) 

 ሻ܄ሺ	ࡾࢂ

S3204-08 Hamamatsu 0.066 70 0.85 2000 0.1 - 

S3204-09 Hamamatsu 0.066 70 0.85 2000 0.1 - 

S3584-08 Hamamatsu 0.086 70 0.85 4000 0.1 - 

S3584-09 Hamamatsu 0.086 70 0.85 4000 0.1 - 

S3590-08 Hamamatsu 0.038 70 0.85 200 0.1 - 

S3590-09 Hamamatsu 0.038 70 0.85 200 0.1 - 

S3590-18 Hamamatsu 0.076 70 0.84 400 0.1 - 

S3590-19 Hamamatsu 0.076 70 0.75 400 0.1 - 

S3759 Hamamatsu - - 0.44 100 0.1 0.25 

S3994-01 Hamamatsu - - 0.84 200 0.1 33.3 

S4707-01 Hamamatsu - - 0.78 60 0.1 400.0 

S5106 Hamamatsu 0.016 10 0.93 200 0.1 - 

S5107 Hamamatsu 0.024 10 0.93 750 0.1 - 

S7509 Hamamatsu 0.017 10 0.93 150 0.1 - 

S7510 Hamamatsu 0.025 10 0.93 400 0.1 - 

S5821 Hamamatsu 0.0067 10 0.78 15 0.1 - 

S5821-01 Hamamatsu 0.0067 10 0.78 15 0.1 - 

S5821-02 Hamamatsu 0.0067 10 0.78 15 0.1 - 

S5821-03 Hamamatsu 0.0067 10 0.78 15 0.1 - 

S5971 Hamamatsu 0.0074 10 0.88 15 0.1 - 

S5972 Hamamatsu 0.0031 10 0.88 5.5 0.1 - 

S5973 Hamamatsu 0.0011 3.3 0.85 2.5 0.1 - 

S5973-01 Hamamatsu 0.0011 3.3 0.85 2.5 0.1 - 
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Part # Manufacturer 

NEP 

Q.E. 

 ࢐ࢉ

ࢎ࢙࢘ ሺۻષሻ Value 

൫ܢ۶√/܅ܘ൯ 
ࡾࢂ ሺ܄ሻ

Value 
(pF) 

 ሻ܄ሺ	ࡾࢂ

S5973-02 Hamamatsu 0.0019 3.3 0.65 2.5 0.1 - 

S6036 Hamamatsu - - 0.72 50 0.1 400.0 

S6036-01 Hamamatsu - - 0.72 50 0.1 400.0 

S6801 Hamamatsu - - 0.92 150 0.1 166.7 

S6801-01 Hamamatsu - - 0.80 150 0.1 166.7 

S6968 Hamamatsu - - 0.92 200 0.1 1,000.0 

S6968-01 Hamamatsu - - 0.80 200 0.1 1,000.0 

S7478 Hamamatsu - - 0.93 200 0.1 286 

S7686 Hamamatsu - - 0.86 200 0 100,000 

S8193 Hamamatsu - - 0.86 950 0 5,000 

S8265 Hamamatsu - - 0.69 230 0 12,500 

S8385 Hamamatsu 0.01 - 0.72 30 0.1 667 

S8385-04 Hamamatsu 0.01 - 0.72 30 0.1 667 

S8729 Hamamatsu 0.011 - 0.90 50 0.1 333 

S8729-04 Hamamatsu 0.012 - 0.88 50 0.1 333 

S8729-10 Hamamatsu 0.011 - 0.90 50 0.1 333 

S8552 Hamamatsu - - 0.39 4000 0 100 

S8553 Hamamatsu - - 0.39 8000 0 100 
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APPENDIX 2. Survey of Commercially 
Available Avalanche Photodiodes 

Part # 
૙ૢ,ࡲࡾ ஶࡾࡺࡿ ሺۻષሻ 

 ࡲ ࡹ
ࣁ  

ሺିࢋ

.ܜܗܐܘ/ ሻ 

Dark Current 
(nA) 

 ࢐ࢉ
(pF) Typ. Min. Max. Typ. Typ. Max. 

S12426-02 43.8 40.4 10.6 9.00 100 3.98 0.70 0.1 1.0 0.5 
S12426-05 43.4 37.4 10.4 7.72 100 3.98 0.70 0.2 2.0 1.1 
S12023-02 44.0 42.2 10.7 9.82 100 3.98 0.75 0.05 0.5 1 
S12023-05 43.8 40.4 10.6 9.00 100 3.98 0.75 0.1 1.0 2 
S12051 43.8 40.4 10.6 9.00 100 3.98 0.75 0.1 1.0 2 
S12086 43.8 40.4 10.6 9.00 100 3.98 0.75 0.1 1.0 2 
S12023-10 43.4 37.4 10.4 7.72 100 3.98 0.75 0.2 2.0 6 
S12023-10A 43.4 37.4 10.4 7.72 100 3.98 0.75 0.2 2.0 6 
S3884 42.2 31.3 9.82 5.40 100 3.98 0.75 0.5 5.0 10 
S2384 38.3 18.7 22.5 5.34 60 3.42 0.75 1.0 10 40 
S2385 23.3 8.2 18.7 2.31 40 3.02 0.75 3.0 30 95 
S12053-02 47.4 22.8 49.6 11.5 50 2.99 0.80 0.2 5.0 2 
S12053-05 47.4 22.8 49.6 11.5 50 2.99 0.80 0.2 5.0 5 
S12053-10 47.4 22.8 49.6 11.5 50 2.99 0.80 0.2 5.0 15 
S9075 43.2 14.2 41.1 4.43 50 2.99 0.80 0.5 15 30 
S5344 38.1 10.2 32.0 2.30 50 2.99 0.80 1.0 30 120 
S5345 27.7 5.7 16.9 0.71 50 2.99 0.80 3.0 100 320 
S12060-02 44.0 42.2 10.7 9.82 100 3.98 0.75 0.05 0.50 1.5 
S12060-05 43.8 40.4 10.6 9.00 100 3.98 0.75 0.1 1 2.5 
S12060-10 43.4 37.4 10.4 7.72 100 3.98 0.75 0.2 2 6 
S6045-04 42.2 31.3 9.82 5.40 100 3.98 0.75 0.5 5 12 
S6045-05 38.3 18.7 22.5 5.34 60 3.42 0.75 1 10 50 
S6045-06 23.3 8.2 18.7 2.31 40 3.02 0.75 3 30 120 
S8664-02K 57.5 44.5 72.8 43.7 50 2.19 0.70 0.1 1 0.8 
S8664-05K 55.4 40.3 67.8 35.8 50 2.19 0.70 0.2 1.5 1.6 
S8664-10K 53.6 32.4 63.4 23.1 50 2.19 0.70 0.3 3 4 
S8664-20K 49.1 24.8 53.1 13.6 50 2.19 0.70 0.6 6 11 
S8664-30K 44.5 16.6 43.7 6.05 50 2.19 0.70 1 15 22 
S8664-50K 32.4 11.1 23.1 2.71 50 2.19 0.70 3 35 55 
S8664-55 26.7 9.3 15.7 1.92 50 2.19 0.70 5 50 80 
S8664-1010 19.9 6.6 8.74 0.97 50 2.19 0.70 10 100 270 
S8890-02 43.4 37.4 10.4 7.72 100 3.98 0.92 0.2 2 0.20 
S8890-05 38.8 22.1 8.31 2.70 100 3.98 0.92 1.5 15 0.50 
S8890-10 31.3 13.3 5.40 0.98 100 3.98 0.92 5 50 1.50 
S8890-15 25.6 9.66 3.60 0.51 100 3.98 0.92 10 100 2.50 
S8890-30 22.1 7.95 2.70 0.35 100 3.98 0.92 15 150 8.00 
S10341-02 13.3 4.41 0.98 0.11 100 3.98 0.75 50 500 1 
S10341-05 9.66 3.12 0.51 0.05 100 3.98 0.75 100 1000 2 
S11519-10 35.0 16.7 6.75 1.54 100 3.98 0.65 3 30 2 
S11519-30 26.5 10.2 3.86 0.57 100 3.98 0.65 9 90 12 
S12092-02 43.8 40.4 10.6 9.00 100 3.98 0.5 0.1 1 0.4 
S12092-05 43.4 37.4 10.4 7.72 100 3.98 0.5 0.2 2 0.7 
S9251-10 42.6 33.0 10.0 6.00 100 3.98 0.5 0.4 4 1.9 
S9251-15 41.1 27.5 9.31 4.16 100 3.98 0.5 0.8 8 3.6 
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APPENDIX 3. Survey of Commercially 
Available Operational Amplifiers 

 

Part # 
Thermal 
Noise ࣒ࢀ 
(nV/√Hz) 

FNN 
(nV/√Hz) 

Current 
Noise ࢙ࣈ 
(fA/√Hz) 

CM Input 
Impedance 

(Ω║pF) 

DM Input 
Impedance 

(Ω║pF) 

Open-Loop 
Gain ࢒࢕࡭ 

GBW 
(MHz) 

ADA4000-1 16 47.4 10 1012 ║5.5 1010 ║4 316,228 5 
ADA4177 8.0 13 200 1011 ║1 4x106 ║1 - - 
ADA4530-1 14.0 250 0.07 1014 ║8 - 31,622,777 2 
ADA4610 7.3 44.4 1.26 1013 ║4.8 1013 ║3.1 223,872 15.4 
ADA4627 4.8 39.7 2.5 1012 ║7 1012 ║8 1,000,000 19 
ADA4637 4.8 39.7 2.5 1012 ║7 1012 ║8 1,000,000 19 
ADA4817 4.0 632 2.5 500G ║ 1.3 ? ║ 0.1 1,778 200 
AD515AJ 50 237 0.10 1015 ║0.8 1013 ║1.6 40,000 1 
AD515AK 50 237 0.10 1015 ║0.8 1013 ║1.6 100,000 1 
AD515AL 50 237 0.10 1015 ║0.8 1013 ║1.6 50,000 1 
AD795 9.0 63.2 0.6 1014 ║2.2 1012 ║2 1,000,000 1.6 
AD8065 7.0 326 0.6 1012 ║2.1 1012 ║4.5 501,187 145 
AD8066 7.0 326 0.6 1012 ║2.1 1012 ║4.5 501,187 115 
AD823 13.0 113 1.0 1013 ║1.3 1013 ║0.6 450,000 19 
AD8510 7.6 100.0 2.8 ?║11.5 ?║12.5 196,000 8 
AD8512 7.6 100.0 2.8 ?║11.5 ?║12.5 196,000 8 
AD8513 7.6 100.0 2.8 ?║11.5 ?║12.5 196,000 8 
AD8610 6 200 5.0 ?║15 ?║8 180,000 25 
AD8620 6 200 5.0 ?║15 ?║8 180,000 25 
AD8622 11 16.7 150.0 1012 ║ 3 - 7,079,458 0.560 
AD8624 11 20 220 1012 ║ 3 - 7,079,458 0.560 
AD8625 17.5 - 0.4 - - - - 
AD8626 17.5 - 0.4 - - - - 
AD8627 17.5 - 0.4 - - - - 
AD8641 28.5 401 0.5 ? ║3.0 ? ║4.5 290,000 3.5 
AD8642 28.5 401 0.5 ? ║3.0 ? ║4.5 290,000 3.5 
AD8643 28.5 401 0.5 ? ║3.0 ? ║4.5 290,000 3.5 
AD8646 6 221 0.3 ? ║7.8 ? ║2.5 125,893 24.0 
AD8647 6 221 0.3 ? ║7.8 ? ║2.5 125,893 24.0 
AD8648 6 221 0.3 ? ║7.8 ? ║2.5 125,893 24.0 
AD8655 3 86.4 1.0 ? ║ 16.5 - 316,228 28.0 
AD8656 3 86.4 1.0 ? ║ 16.5 - 316,228 28.0 
AD8691 6.5 150 0.25 1012 ║5 - - - 
AD8692 6.5 150 0.25 1012 ║5 - - - 
AD8694 6.5 150 0.25 1012 ║5 - - - 
LF156 12 137 10 1012 ║3 1012 ║3 200,000 5 
LM6211 5.5 100 10 1013 ║5.5 - - - 
LMC6001 22 276 0.13 >1T >1T 1,400,000 1 
LMC6035 27 304 0.2 > 1013 ║1  2,000,000 1.4 
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Part # 
Thermal 
Noise ࣒ࢀ 
(nV/√Hz) 

FNN 
(nV/√Hz) 

Current 
Noise ࢙ࣈ 
(fA/√Hz) 

CM Input 
Impedance 

(Ω║pF) 

DM Input 
Impedance 

(Ω║pF) 

Open-Loop 
Gain ࢒࢕࡭ 

GBW 
(MHz) 

LMC662 22 285 0.20 > 1012 - 2,000,000 1.4 
LMC8101 36 269 1.5 1010 ║10 - -  
LMV341-N 40 780 1.0 - - 446,684 1 
LMV342-N 40 780 1.0 - - 446,684 1 
LMV344-N 40 780 1.0 - - 446,684 1 
LPV521 265 648 100.0 - - 1,778,279 0.0061 
LT1057 26 52.6 1.8 400x109║4 400x109║4 300,000 5.0 
LT1058 26 52.6 1.8 400x109║4 400x109║4 300,000 5.0 
LT1464 24 85.7 0.4 1012║3 1012║3 1,000,000 1 
LT1793 6 31 0.8 1013 ║ 1.5 1014 ║ 1.5 3,000,000 3.1 
OP482 36 142 10 - - 20,000 4 
OPA111AM 6 125 0.5 1014 ║ 3 1013 ║ 1 1,778,279 2 
OPA111BM 6 93 0.4 1014 ║ 3 1013 ║ 1 1,778,279 2 
OPA111SM 6 125 0.5 1014 ║ 3 1013 ║ 1 1,778,279 2 
OPA121KM 6 125 0.8 1014 ║ 3 1013 ║ 1 1,000,000 2 
OPA121KP 7 157 1.1 1014 ║ 3 1013 ║ 1 501,187 2 
OPA121KU 7 157 1.1 1014 ║ 3 1013 ║ 1 501,187 2 
OPA124 6 99.8 0.5 1014 ║ 3 1013 ║ 1 1,778,279 2 
OPA128JM 15 300 0.22 1015 ║ 2 1013 ║ 1 2,511,886 1 
OPA128KM 15 300 0.16 1015 ║ 2 1013 ║ 1 2,511,886 1 
OPA128LM 15 300 0.12 1015 ║ 2 1013 ║ 1 2,511,886 1 
OPA128SM 15 300 0.16 1015 ║ 2 1013 ║ 1 2,511,886 1 
OPA132 8 85 3.0 1013 ║6 1013 ║2 1,000,000 8 
OPA1602 2.5 15 2200 109 ║2.5 - - - 
OPA140 5.1 15.7 0.8 1013 ║ 7.0 1013 ║ 10 1,995,262 11 
OPA141 6.5 18 0.8 1013 ║6 - - - 
OPA209 2.2 8 17.89 109 ║2 - - - 
OPA376 7.5 55 2.00 1014║13 ?║6.5 5,011,872 5.5 
OPA659 8.9 632 - 1012 ║ 2.5 - - - 
OPA827 3.8 20 0.98 1013 ║ 9 - - - 
TC75S63TU 7.5 85.4 0.57 - - - - 
TL072 18 130 4.56 1T 1T 200,000 3 
TSX920 12.9 671 - 1012 ║8 - - - 
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