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Merging parallel-plate and levitation actuators to enable linearity and
tunability in electrostatic MEMS

Mark Pallay,1, a) Ronald N. Miles,1, b) and Shahrzad Towfighian1, c)

Mechanical Engineering Department
Binghamton University
Binghamton, New York, 13902 USA

(Dated: 17 May 2019)

In this study, a linear electrostatic MEMS actuator is introduced. The system consists of a MEMS cantilever
beam with combined parallel-plate and electrostatic levitation forces. By using these two forcing methods
simultaneously, the static response and natural frequency can be made to vary linearly with voltage. The static
response shows a linear increase of 90nm per volt and is maintained for more than 12µm of tip displacement.
The natural frequency shows a linear increase of 16Hz per volt and is maintained throughout a 2.9kHz shift
in natural frequency. This wide range of linear displacement and frequency tunability is extremely useful for
MEMS sensors and actuators, which suffer from the inherent nonlinearity of electrostatic forces. A theoretical
model of the system is derived and validated with experimental data. Static, natural frequency, and frequency
response calculations are performed. Merging these two mechanisms enables high oscillation branches for a
wide range of frequencies with potential applications in MEMS filters, oscillators and sensors.

I. INTRODUCTION

Nonlinearity in electrostatic microelectromechanical
systems (MEMS) presents a challenging obstacle in the
design of many MEMS sensors and actuators. Electro-
static MEMS convert electrical energy in the form of a
voltage potential to kinetic and strain energy in a micro-
structure or vice versa. In most cases, MEMS are in-
terfaced with electronic circuits to supply power or read
the signal from a MEMS sensor. Ideally, sensors and ac-
tuators would have a linear relationship between voltage
and the electrode position to simplify and miniaturize
the electronic circuit. However, the electrostatic force
is inherently nonlinear and typically has the relationship
Force ∼ voltage2/gap2, where the gap is the distance be-
tween electrodes. Nonlinearity effectively causes the de-
vices to behave differently at different voltage levels and
gaps, so the working range of a device is normally lim-
ited to small motions where the force can be treated as
effectively linear. However, a smaller range creates less
actuation distance for actuators and a smaller signal-to-
noise ratio in sensors.

The most common structure of an electrostatic MEMS
device consists of two electrodes that act like parallel
plates. One electrode is fixed and the other is movable,
such as a micro-beam that deflects under the influence of
an external force. Applying a voltage potential between
the two electrodes creates an electric field that pulls them
together. This is the most common method of actuation
and sensing in commercial MEMS because it has low bulk
fabrication costs, very fast response times, and can be
easily integrated into an electronic circuit1. However,
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the electrostatic force is highly nonlinear and can create
instability that leads to pull-in (when the two electrodes
collapse together), stiction2, and even chaos3. Alterna-
tive electrode arrangements have been proposed to avoid
instability in electrostatic MEMS4–7, but all are ham-
pered by the nonlinearity associated with electrostatic
forces.

One alternative to parallel-plate actuation is electro-
static levitation8–13. The electrode configuration shown
in Figure 1 creates an electric field that pushes electrodes
apart instead of pulling them together. In this configu-
ration, three electrodes are fixed to the substrate, and a
beam is suspended above the center. The side electrodes
are given a voltage relative to the common voltage of
the center electrodes, which creates an electric field that
wraps around and pulls on the top of the movable beam
electrode more than the bottom, producing a net up-
ward force. Much effort has been spent characterizing
this system, and it has been shown to eliminate the pull-
in instability and increase travel ranges by more than an
order of magnitude. However, this comes at the expense
of requiring a large actuation voltage because the levita-
tion force is relatively weak compared to the attractive
force between a pair of parallel plates. The authors have
experimentally shown this system can act as a switch by
applying a bias voltage to the center electrode14. This
allowed the switch to toggle to and from the pulled-in po-
sition for the purpose of creating a more durable switch.
However, a comprehensive analysis of the system dynam-
ics, including deriving a theoretical model, was not per-
formed.

In this study, the parallel-plate and levitation mech-
anism is characterized by analyzing the static response,
natural frequency, and frequency response. A theoretical
model of the system is derived and validated with exper-
imental data. We demonstrate the combined system can
create a linear relationship with the side electrode voltage
for the static response and first natural frequency. This
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FIG. 1. Electrode layout to create electrostatic levitation with
electric field lines. The side electrodes (red) are denoted as
electrode 1, the middle electrode (green) is denoted as elec-
trode 2, and the beam (blue) is denoted as electrode 3. The
geometric parameters (h1, b1, g, etc.) are defined in Table II.

addresses the issues with the nonlinearity of electrostatic
systems and can aid in the creation of highly tunable,
linear, electrostatic MEMS with large travel ranges. The
organization of this paper is as follows: the next sec-
tion will outline the derivation of the theoretical model.
Section III will outline the solution of the model and ex-
perimental results for the static, natural frequency, and
frequency response.

II. MODEL DERIVATION

To model the actuator, the system can be treated as
an Euler-Bernoulli beam with the governing equation of
motion defined as,

ρA
∂2ŵ

∂t̂2
+ ĉ

∂ŵ

∂t̂
+ EI

∂4ŵ

∂x̂4
= f̂e(ŵ, ~V ) (1)

where ŵ is the transverse beam deflection that depends
on the position along the length of the beam, x, and

time, t, and f̂e(ŵ, ~V ) is the electrostatic force, which de-
pends on the transverse deflection and applied voltages.
Because there are multiple electrodes with different volt-

ages, ~V is a vector of voltages that are applied to the
beam, side electrodes, and center electrode. The dimen-
sions and material properties of the beam are given in
Table I.

For a classic electrostatic beam with a parallel-plate

electrode configuration, f̂e can be represented analyti-
cally with an inverse polynomial of order two that has
a singularity when the gap between electrodes goes to
zero. However, in the system examined here, the sim-
ple analytical expression for the electrostatic force is not
valid because of the different electrode arrangement, and
the force must be calculated numerically. One way this
can be achieved is to calculate the potential energy of
the beam at each position, then take the derivative with

TABLE I. Beam parameters as shown in Figure 1

Parameter Variable Value

Beam Length L 505 µm

Beam Width b3 20.5 µm

Beam Thickness h3 2 µm

Beam Anchor Height d 2 µm

Side Electrode Gap g 20.75 µm

Middle Electrode Width b2 32 µm

Side Electrode Width b1 28 µm

Electrode Thickness h1 0.5 µm

Dimple Length Ld 0.75 µm

Elastic Modulus E 160 GPa

Density ρ 2330 kg/m3

Poisson’s Ratio v 0.22

respect to the direction of motion (ŵ). In this case, the
potential energy is calculated from the voltage vector and
capacitance matrix, the latter of which is simulated with
a 2D finite-element analysis in COMSOL. The potential
energy can be represented by,

U =
1

2

[
Vside Vbias Vbeam

]ĉ11 ĉ12 ĉ13
ĉ21 ĉ22 ĉ23
ĉ31 ĉ32 ĉ33


 VsideVbias
Vbeam


(2)

where ĉij are the capacitances between each pair of elec-
trodes, and Vside, Vbias, and Vbeam, are the voltages on
the side electrodes (1), center electrode (2), and beam (3)
respectively. The capacitance matrix is symmetric with
cij=cji, which results in 6 independent capacitances in
the system. Expanding Equation (2), setting Vbeam = 0
because the beam is assumed to be the reference ground
voltage level, and taking the derivative with respect to
the transverse beam deflection, yields,

f̂e(ŵ, ~V ) =

1

2

(
V 2
side

∂ĉ11
∂ŵ

+ 2VsideVbias
∂ĉ12
∂ŵ

+ V 2
bias

∂ĉ22
∂ŵ

)
(3)

In Equation (3), the derivatives of the COMSOL sim-
ulated capacitance, ĉij , can be estimated with a simple

central difference method. ∂ĉ11
∂ŵ and ∂ĉ12

∂ŵ can be fit with
9th order polynomials to create an analytical representa-
tion of the numerical data that can be used in Equation
(1). ∂ĉ22

∂ŵ , however, would require upward of a 20th or-
der polynomial for an adequate fit, and therefore requires
more consideration regarding its representation in Equa-
tion (1). We will treat this term differently for the static,
natural frequency, and frequency response calculations,
which will be discussed in the next section. For now, it
will be left as a variable.
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TABLE II. Nondimensional substitutions and forcing coeffi-
cients for the governing differential equation

Parameter Substitution

x-direction position x = x̂/L

z-direction position w = ŵ/h3

Time t = t̂/T

Capacitance c22 = ĉ22/cn

Time constant T =
√
ρAL4/EI

Damping Constant c∗ = ĉ/EIT

Capacitance Constant cn = ρALh23/L2T2

Force Constant 1 Ai = αih
i−1
3 L4/2EI

Force Constant 2 Bi = βih
i−1
3 L4/EI

Figure 2 shows the three capacitances from the finite
element solution (COMSOL) and the electrostatic force
at various side and bias voltages. From Equation (3),
when the bias voltage is set to zero, the only remaining
force component is ∂ĉ11

∂ŵ , which represents the electro-
static levitation force. Conversely, if the side voltage is
set to zero, only ∂ĉ22

∂ŵ remains and the system acts as
a parallel-plate. By observing the c11 and c22 capaci-
tances, it is clear that c22 has a much larger nominal
capacitance and the magnitude of the slope is greater,
especially at small gaps. This shows the parallel-plate
force from the bias voltage is by far the dominant force
component in this system. To counter this, much larger
side voltages are needed to overcome the effect of the bias
voltage. Figure 2d shows the calculated force for several
voltage cases. At large gaps, the force is dominated by
the levitation force, but as the gap decreases, the total
force becomes strongly negative as the behavior is dom-
inated by the attractive parallel-plate force, despite the
side voltage being an order of magnitude larger than the
bias voltage.

After the force is calculated, Equation (3) is plugged
into Equation (1) yielding the dimensionalized equation
of motion for the cantilever,

ρA
∂2ŵ

∂t̂2
+ ĉ

∂ŵ

∂t̂
+ EI

∂4ŵ

∂x̂4
=

1

2
V 2
side

9∑
i=0

αiŵ
i+

VsideVbias

9∑
i=0

βiŵ
i +

1

2
V 2
bias

∂ĉ22
∂ŵ

(4)

where αi and βi are fitting coefficients for the c11 and
c12 terms respectively. Equation (4) is then nondimen-
sionalized with the substitutions shown in Table II, which
yields the final nondimensional equation of motion shown
in Equation (5).

∂2w

∂t2
+ c∗

∂w

∂t
+
∂4w

∂x4
= V 2

side

9∑
i=0

Aiw
i+

VsideVbias

9∑
i=0

Biw
i +

1

2
V 2
bias

∂c22
∂w

(5)

III. RESULTS AND DISCUSSION

A. Static

When the time-derivative terms in Equation (5) are set
to zero, it becomes a fourth-order ordinary differential
equation, with x being the only independent variable.
Despite the complicated forcing term, this equation can
be solved directly as a boundary value problem. First,
however, a form for ∂ĉ22

∂ŵ must be determined. Because
this force component behaves similarly to the parallel-
plate force, a fitting function with a similar form can be
used. ∂ĉ22

∂ŵ is fit with the function shown in Equation (6).

∂c22
∂w

=
−0.9252(
w + d

h3

)2.15 (6)

Plugging this into Equation (5) after dropping the time
derivatives gives the static equation of motion that can
be solved with the boundary value solver, bvp4c, in MAT-
LAB.

∂4w

∂x4
= V 2

side

9∑
i=0

Aiw
i+

VsideVbias

9∑
i=0

Biw
i − V 2

bias

0.4626(
w + d

h3

)2.15 (7)

For the experiment, cantilevers with the electrode ar-
rangement in Figure 1 are fabricated with the Poly-
MUMPs service by MEMSCAP15 to the dimensions
given in Table I. An image of a fabricated beam is shown
in Figure 3. Beam tip displacement is measured with
a Polytec MSA-500 Laser vibrometer. A USB-6366 Na-
tional Instruments Data Acquisition (DAQ) interfaced
with MATLAB supplies the bias and side voltage and
records the displacement data from the laser. Because
the voltage limitation of the DAQ is +/- 10V, the side
voltage is fed into a Krohn-Hite 7600 Wideband Power
Amplifier and stepped up 20x to reach the desired 200V
maximum voltage to the side electrodes. To measure the
side voltage, the output of the amplifier is also fed into
a resistive voltage divider to drop the voltage back down
under 10V and is fed back into the DAQ. The actual volt-
age on the side electrodes can be calculated with the sim-
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FIG. 2. a)-c) Capacitance per unit length of ĉ11, ĉ12, and ĉ22 as calculated in COMSOL. d) Electrostatic force at various
voltages showing the comparison between the pure attractive, pure repulsive, and combined forcing cases.

100µm

FIG. 3. Optical image of a fabricated beam.

ple voltage divider relationship and the DAQ measure-
ment. A schematic of the experimental setup is shown in
Figure 4.

In the experiment, the DAQ supplies a constant bias
voltage to the center electrode and a quasi-static ramp
function from 0V to approximately 190V to the side elec-
trodes. The ramp duration is one second, which is four
orders of magnitude longer than the natural frequency of
the beam to ensure the beam response is quasi-static.

Figure 5 shows that the model agrees very well with
the experiment, especially at higher bias voltages. To
account for support compliance at the fixed end of the
cantilever, a corrected length of 505µm is used. The tip
displacement reaches almost 14µm at 190V, despite the
anchor height of just 2µm. These large travel ranges are
not possible in conventional parallel plate actuators and
are a distinct advantage of electrostatic levitation. For
4V and 6V bias, the beam pulls in if the side voltage
is too low. In the experiment, the beam pulled in be-
low a side voltage of approximately 50V for 4V bias, and
80V for a 6V bias. However, as noted in a previous ex-
periment by the authors, when pull-in occurs, the side
voltage can be ramped up to release the beam from its

MATLAB

e) MSA Laser 
Vibrometer

b) Krohn-Hite Amplifier

a) National Instruments 
Data Acquisition

d) Voltage Divider d) MEMS Cantilver

Sid
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o
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B
ias V

o
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Beam Displacement In

FIG. 4. Experimental setup

pulled-in position, overcoming both the bias voltage and
stiction forces14. The model could reach slightly lower
voltages before becoming unstable, though this is most
likely because the model does not account for the dim-
ples on the underside of the beam. The dimples create
an effectively smaller gap between the beam and center
electrode, thus increasing the effect of the force from bias
voltage, which dominates when the gap is small.

Another interesting result from the static data is the
linear relationship between tip deflection and side volt-
age, especially at higher bias voltages. The slope is ap-
proximately 90nm per volt on the side electrodes. This
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FIG. 5. Comparison of predicted and measured static results for a) 0V, b) 2V, c) 4V, and d) 6V bias as a function of side
voltage. The results are in very close agreement.

linear relationship is maintained for more than 10µm of
static displacement. Because high voltages cannot be
applied in devices created using the PolyMUMPs fabri-
cation procedure, 190V was not exceeded. However, the
tip displacement shows no signs of saturating near 190V
and the linear voltage relationship most likely extends
much further than the data shows. When there is no
bias voltage, an approximately linear relationship exists
for deflections above around 4µm. However, when 4V
bias is added to the center electrode, the linearity ex-
tends all the way down to 0µm. If the bias voltage is
too large, such as at 6V, pull-in will occur at small gaps.
Therefore there exists an optimal bias voltage, 4V, that
yields a linear response over the entire static range.

The reason for the linearization between side voltage
and tip displacement can be seen by analyzing the force
and its associated components. Figure 6 shows the nondi-
mensional forcing components at 6V bias as a function
of side voltage when evaluated at the static equilibrium
points in Figure 5d. As shown in Figure 6a, the total
force, which is the sum of each forcing component in
Figures 6b-d, scales linearly with side voltage. Despite
Equation (3) showing the force scaling with the square
of the side voltage, when considering the increasing gap,
the relationship turns out to be linear. Because the force
is now effectively a linear function of side voltage, the
solution to Equation (7) will also be a linear function of
side voltage.

The reason for the linearization of the force is different
when at larger voltages as opposed to smaller voltages.
When the side voltage is above 80V, the c12 and c22 are
negligible compared to the c11 component. In this case,
the system acts like as if there was just a pure levitation
force with no bias voltage. When the side voltage is in-
creased, the upward electrostatic force on the beam also

increases. If the beam was completely rigid, this force
would scale with the square of the side voltage. But the
beam is not rigid and deflects upwards when the side
voltage is increased. This deflection increases the gap
between the beam and fixed electrodes, which in turn
causes the upward electrostatic force to decrease. When
the side voltage is large, the decrease in the upward elec-
trostatic force from increasing the gap counteracts the
nonlinearly increasing force with voltage and the result
is an effectively linear scaling of the total force with side
voltage. This can be seen in the static position in Figure
5a, which has no bias voltage, but still shows the linear
increase with side voltage. However, when the voltage
drops below 80V, Figure 5a shows a nonlinear relation-
ship with side voltage. This is because the levitation
force is inherently weak, and unless the voltage is very
large, the force is too low to deflect the beam enough for
the increasing gap to counteract the scaling of the force
with the square of the side voltage.

To achieve linearity at low side voltages, a bias volt-
age on the center electrode must be used. Comparing
the upward levitation (c11) and downward parallel-plate
(c22) components of the force in Figures 6b and d shows
why. As the side voltage decreases, the levitation c11
component starts to flatten out around zero. This de-
crease in total force brings the beam closer to the center
electrode and increases the influence of the bias voltage,
which pulls the beam downward. The parallel-plate c22
component is inversely related to the gap (Equation (6))
and therefore the downward force gets stronger as the gap
decreases. When combining the forcing terms, the down-
ward bending of the force from the parallel-plate com-
ponent counteracts the flattening of the force from the
levitation component. Because the parallel-plate force
scales with the square of the bias voltage, by choosing
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c22 component. Each component is scaled with its associated
voltages as denoted in Equation (3).

the appropriate bias, 4V, the two nonlinear effects can-
cel each other and the result is a nearly linear force that
decreases all the way to zero. If the bias voltage is too
large the downward bending from the parallel-plate force
overcomes the flattening of the levitation force and the
system becomes nonlinear in the negative direction before
the force can reach zero and the beam becomes unstable.
This is the case for 6V bias, where the beam pulls in dur-
ing the experiment before it can return to its undeflected
position. The linearity with side voltage is extraordinar-
ily useful for any actuator that is negatively affected by
nonlinearity and requires a large actuating range. Possi-
ble applications include micro-mirrors and micro-fluidic
devices.

B. Natural Frequency

Natural frequency is an important property of oscil-
lators and sensors that determines their resolution and
sensitivity. To calculate the natural frequency, we must
return to the dynamic partial differential equation from
Equation (5). Now w becomes a function of time and
position so it must be reduced to an ordinary differential
equation in time before we can calculate the natural fre-

quency. This can be achieved by performing Galerkin’s
method, which is a modal analysis using separation of
variables and integration over x to get a set of second-
order ordinary differential equations that are coupled
through nonlinear terms. If just a single mode is to be
considered, this will yield a single ordinary differential
equation that can be used to calculate the natural fre-
quency.

First, the transverse deflection of the beam is assumed
to have separate spatial and time-dependent functions as
shown in Equation (8).

w (x, t) = φ(x)q(t) (8)

The mode shapes, φ(x), can be solved from the eigen-
value problem, which depends on the boundary condi-
tions. The mode shapes for a simple cantilever are well
known and can be expressed by,

φi(x) = cosh(λix) − cos(λix)−
σi(sinh(λix) − sin(λix)) (9)

where λi is the square root of the ith nondimensional nat-
ural frequency, and σi is a constant. For the first mode,
φ1 (herein referred to as φ), σ1 and λ1 are 0.7341 and
1.875 respectively. However, to account for fabrication
imperfections the natural frequency is identified from an
experiment and nondimensionalized to use with Equation
(9).

After separation of variables, the governing equation is
multiplied by φ and integrated over x to yield Equation
(10), which is a second-order ordinary differential equa-
tion that depends only on the time-dependent component
of the solution, q,

m
d2q

dt2
+ c

dq

dt
+ kq = V 2

side

9∑
i=0

AiΦiq
i+

VsideVbias

9∑
i=0

BiΦiq
i +

1

2
V 2
bias

∫ 1

0

φ
∂c22
∂(φq)

dx (10)

where

m =

∫ 1

0

φ2dx c = c∗m

k = λ41m Φi =

∫ 1

0

φi+1dx (11)

The last term in Equation (10) can be problematic if
it is not dealt with appropriately. For the static prob-
lem, this term could be fitted with the function given in
Equation (6). However, the integration on x from the
modal analysis will create a singularity at x=0, which
will make the differential equation impossible to solve. A
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standard parallel-plate has a similar problem; however,
it can be mitigated by multiplying the entire equation by
the denominator, expanding the polynomial, and then
performing Galerkin’s method. In this case, two com-
plications prevent that from working. First, the order of
the polynomial in the denominator of Equation (6) is not
an integer, so it cannot be expanded. Second, multiply-
ing the two 9th order polynomials by a noninteger poly-
nomial will be extraordinarily difficult and tedious later
in the problem when solving for the natural frequency.
Therefore, this term can be treated numerically as a list
of numbers, where linear interpolation is used to estimate
the values between data points. This is more computa-
tionally expensive, but computation time is not an issue
for the natural frequency calculation. Before that can be
done, the integration on x must be performed.

The derivative, ∂c22
∂(φq) can be rewritten using the rela-

tionship,

∂c22
∂q

=
∂c22
∂w

∂w

∂q
=

∂c22
∂(φq)

∂(φq)

∂q
=

∂c22
∂(φq)

φ
∂q

∂q
(12)

which yields,

∂c22
∂(φq)

=
1

φ

∂c22
∂q

(13)

When substituting Equation (13) into Equation (10),
the φs cancel and the integration becomes 1. Now that
x has been integrated out of the equation, q represents
the deflection of the beam instead of w. The derivative
of the numerical c22 data from COMSOL with respect to
the deflection can be substituted in for ∂c22

∂q . The final

equation becomes,

m
d2q

dt2
+ c

dq

dt
+ kq = V 2

side

9∑
i=0

AiΦiq
i+

VsideVbias

9∑
i=0

BiΦiq
i +

1

2
V 2
bias

∂c22
∂q

(14)

To find the natural frequency, the eigenvalues of the
Jacobian matrix can be calculated by decomposing Equa-
tion (14) to two first-order ODEs with y1 = q and

y2 = dq
dt , setting the damping coefficient to zero, and

plugging the equations into the relationship,

J =

[
∂ẏ1
∂y1

∂ẏ1
∂y2

∂ẏ2
∂y1

∂ẏ2
∂y2

]
(15)

which is the Jacobian matrix. The eigenvalues of Equa-
tion (15) are,

Λ =

√√√√√√√√√
V 2
side

m

9∑
i=0

iAiΦiy
i−1
1 +

VsideVbias
m

9∑
i=0

iAiΦiy
i−1
1 +

1

2m
V 2
bias

∂2c22
∂y21

− λ41

(16)

where the natural frequency is the imaginary part of the
eigenvalue. The only variable that is unknown in this
equation is y1, which is the beam deflection. The value
of y1 at each voltage level can be determined from the
static model results at the given side and bias voltage,
after which the natural frequency can be calculated.

In the experiment, white noise was superimposed on
the DC side voltage while holding the bias voltage con-
stant, and the beam tip velocity was recorded with the
laser vibrometer. A fast-Fourier transform (FFT) was
performed on the velocity signal to extract the natural
frequency. Unlike the static experiment, the side voltage
was not swept up continuously to 190V. Instead, the side
and bias voltage were kept constant and the natural fre-
quency was extracted at 10 volt intervals. Figure 7 shows
the natural frequency results for the experiment and the
model.

The model agrees well with the natural frequency ex-
periment. The square root of the natural frequency, λ1,
was 1.7998. The curling of the beam tip in the fabricated
beam needs to be incorporated into the model to obtain
a better fit with the experiment. Because the beams are
very long, residual stress from fabrication causes them
to curl upward when released. This increases the gap
between the beam and center electrodes and reduces the
total electrostatic force. In this case, the beam tip was
curled up approximately 2µm out of plane. Ideally, this
would be incorporated into both q and the mode shapes.
However, the easiest way of addressing this problem is to
simply add 2µm of deflection to q.

When no bias voltage is applied, Figure 7 shows that
the natural frequency is relatively constant for side volt-
ages under approximately 50V. However, at higher bias
voltages the natural frequency starts to bend down at low
side voltages until the system becomes unstable. This
agrees with the initial assessment that the bias voltage
is dominant at low gaps because a parallel-plate electro-
static force is correlated with a decrease in natural fre-
quency, while electrostatic levitation increases the natu-
ral frequency with higher voltage. In the case of 4V and
6V bias, the natural frequency can be tuned from less
than 6kHz up to almost 12kHz. This is an increase of al-
most 100%, which gives the beam a tremendous amount
of tunability to control where the first resonant peak is lo-
cated. Many devices, such as sensors, operate near their
natural frequency to boost the signal-to-noise ratio. This
electrostatic tunability enables accounting for any fabri-
cation imperfection or environment operation changes to
ensure a large signal-to-noise ratio and resolution. The
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FIG. 7. Natural frequency results for a) 0V, b) 2V, c) 4V, and d) 6V bias as a function of side voltage.

proposed system can be tuned to capture a wide range
of frequencies, which is highly desirable in many sensors.

At an optimum value of the bias voltage, the high-
est linearity of natural frequency and the side voltage is
achieved. If the bias voltage is set to approximately 2V,
the downward bending of the natural frequency curve at
low side voltage reaches a point where it matches the
slope at higher side voltages. This creates a linear shift
in natural frequency with side voltage. Unlike the static
solution, the natural frequency is related to the slope of
the force at the equilibrium position instead of the mag-
nitude. The slope of the force is the linear stiffness, which
is related to the natural frequency through the relation-
ship,

ωn =

√
keff
m

(17)

where ωn is the natural frequency, m is the mass, and
keff is the effective stiffness, which is the sum of the
mechanical stiffness of the beam (kmech) and the added
stiffness from the electrostatic force (kelec), where kelec
is much larger than kmech. Because m and kelec are con-
stant, kelec must be related to the side voltage. If ωn
is linearly related to side voltage, then kelec must be re-
lated to the square of the side voltage. This is confirmed
to be true by analyzing the slope of the force at each
static equilibrium position. The linear relationship in fre-
quency is approximately 16Hz per volt and is maintained
for more than 2.9kHz of frequency shift. The combina-
tion of parallel-plate and electrostatic levitation enables
the designers to have a wider range of capabilities that is
not possible with each mechanism on its own.

C. Frequency Response

To obtain the model frequency response, the dynamic
equation of motion must be solved. Much of the proce-
dure for calculating the natural frequency of Equation (5)
can be used for the frequency response as well. Equation
(14) can be integrated directly using linear interpolation
to determine ∂c22

∂q . However, the computation expense of

using linear interpolation becomes problematic and cre-
ates very long solve times. To reduce the integration
time, ∂c22

∂q can be fit with the inverse non-integer poly-

nomial in Equation (6) with q replacing w. This is not
problematic anymore because the substitution is occur-
ring after the modal analysis, which is where the prob-
lems were occurring initially. This significantly reduces
the computation time so that the frequency response can
be calculated. The final dynamic equation is given in
Equation (18).

m
d2q

dt2
+ c

dq

dt
+ kq = V 2

side

9∑
i=0

AiΦiq
i+

VsideVbias

9∑
i=0

BiΦiq
i − V 2

bias

0.4626(
q + d

h3

)2.15 (18)

The damping coefficient is estimated from the experi-
ment, which was conducted at approximately 300mTorr,
which correlates to a quality factor of 500. The qual-
ity factor is used in Equation (18) by the relationship
c = λ2

1/Q.
To conduct the experiment, the side voltage is given an

AC voltage on top of the DC offset. The DAQ supplies
the AC voltage, and the DC offset function of the Krohn-
Hite amplifier applies the DC side voltage. The bias was
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held constant at the same 0V, 2V, 4V, and 6V values
used in the static and natural frequency tests. For the
frequency response, the tip velocity was measured with
the vibrometer. Figure 8 shows the frequency response
around the first natural frequency at 0V, 2V, 4V, and 6V
bias, with 170VDC and 0.5VAC on the side electrodes.

As with the static and natural frequency results, the
frequency response model agrees with the experiment. In
the experiment, the backsweep branch continues to grow
until it starts tapping on the center electrode and falls
back down to the lower branch. If the bias voltage is high
enough, instead of falling back down to the lower branch,
it pulls in, as is the case at 6V bias. Before pull-in occurs,
the backsweep branch becomes very flat and increases
in size. This extension of higher branch oscillation is
because of the quadratic nonlinearity that causes exces-
sive softening from electrostatic levitation and parallel-
plate schemes. With no bias, the backsweep branch ends
around 11kHz, but with 6V bias the branch travels back
to 10kHz before pulling in. The high amplitude vibration
could be useful for the development of high-resolution os-
cillators. The triggering of dynamic pull-in near the res-
onant peak can help create combined systems that act
as a sensor and a switch, which triggers when the sensed
quantity increases past a threshold. The levitation force
can be used to release the pulled-in structure and re-
use the device. To get more insight into the motion of
the beam, the model displacement was calculated and is
shown in Figure 9.

This dynamic displacement reaches upward of 28µm
with no bias voltage. Increasing the bias bends the peak
down and to the left, which drops the peak amplitude
by about 3µm for 6V bias. Unlike static and natural fre-
quency, the addition of the bias voltage always increases
the nonlinearity of the system. This is because levitation
and parallel-plate electrostatic forces create softening in
the frequency response, therefore the combination of the
two yields more softening. Therefore, MEMS oscillators
and resonators that require a linear frequency response
would not benefit from this method.

However, other applications that are less hindered by
the nonlinear frequency response may be able to exploit
other behaviors of the combined system, such as dynamic
pull-in shown in Figure 8d. One possible application
could be a pressure sensor that triggers dynamic pull-
in at the resonant peak when the pressure drops below
a threshold value. As reported in12, the resonance re-
gion of the levitation actuator is heavily dependent on
the ambient pressure because the oscillation amplitude
is very large and squeeze film damping effects are signifi-
cant. The voltage at which dynamic pull-in occurs could
be related to the ambient pressure to create a thresh-
old pressure sensor that utilized the switching mechanism
proposed in14.

Numerous other applications that exploit this property
could be conceived for this device. The large linear stroke
and tunability of the natural frequency can inspire the
creation of a variety of micro-actuators or manipulators

in biomedical devices.

IV. CONCLUSION

In this study, it was demonstrated theoretically and
experimentally that merging parallel-plate and electro-
static levitation actuators can yield increased functional-
ity of MEMS actuators. The relationship between static
tip displacement and natural frequency with side voltage
can be linearized by choosing an appropriate bias volt-
age, which can greatly simplify and minimize the elec-
tronic circuitry for processing information from sensors
and controlling actuator motion. The natural frequency
can be tuned from 6kHz up to 12kHz, increasing tunabil-
ity, which gives sensors a larger spectrum of detectable
frequencies with large signal-to-noise ratios. The soft-
ening branch of the frequency response can be flattened
and extended by adding a larger bias voltage. The larger
bias also trigger dynamic pull-in near the resonant peak,
which is promising for combined sensors and switches
that use pull-in to close a circuit. The levitation force
enables the system to release from its pulled-in position,
allowing the combined sensor and switch system to be
more reliable as it can be reused many times without
failure. While parallel-plate and electrostatic levitation
MEMS have a tremendous amount of advantages individ-
ually, by combining these two systems, more advanced
and efficient MEMS can be created.
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9 10 11 12 13

Frequency [kHz]

10

15

20

25

30

D
is

p
la

c
e
m

e
n
t 
[

m
]

0V
bias

2V
bias

4V
bias

6V
bias

FIG. 9. Model displacement frequency response around the
first natural frequency for 0V, 2V, 4V, and 6V bias at 170VDC
and 0.5VAC on the side electrodes.

14M. Pallay and S. Towfighian, Applied Physics Letters 113,
213102 (2018).

15A. Cowen, B. Hardy, R. Mahadevan, and S. Wilcenski, “Poly-
MUMPs Design Handbook a MUMPs® process,” (2011).

http://dx.doi.org/10.1063/1.5053090
http://dx.doi.org/10.1063/1.5053090
http://www.memscap.com/__data/assets/pdf_file/0019/1729/PolyMUMPs-DR-13-0.pdf
http://www.memscap.com/__data/assets/pdf_file/0019/1729/PolyMUMPs-DR-13-0.pdf

	Merging parallel-plate and levitation actuators to enable linearity and tunability in electrostatic MEMS
	Recommended Citation

	Merging parallel-plate and levitation actuators to enable linearity and tunability in electrostatic MEMS
	Abstract
	Introduction
	Model Derivation
	Results and Discussion
	Static
	Natural Frequency
	Frequency Response

	Conclusion
	Acknowledgment


