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Abstract

Interaction graphs are graphic representations of complex networks of mutually interacting com-

ponents. Their main application is in the field of gene regulatory networks, where they are used to

visualize how the expression levels of genes activate or inhibit the expression levels of other genes.

First we develop a natural transformation of activation functions and their derived interaction

graphs, called conjugation, that is related to a natural transformation of signed digraphs called

switching isomorphism. This is a useful tool for the analysis of interaction graphs used throughout

the rest of the dissertation.

We then discuss the question of what restrictions, if any, apply to interaction graphs derived

from activation functions. Within these restrictions, we then construct activation functions with any

desired interaction graph. The specific case of threshold activation functions, a commonly used

kind of activation function, is also considered.

We then conclude with some discussion, and new proofs of the conjectures of René Thomas,

using the theory of conjugate activation functions. These conjectures relate feedback in the inter-

action graph to dynamic properties of multi-stationarity and periodic stability. We prove a more

general form of Richard and Comet’s version of René Thomas’ first conjecture. Included is a new

counterexample to a local version of Thomas’ second conjecture, on only eight components. This

is the smallest counterexample that I am currently aware of.
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Introduction

Signed digraphs are directed graphs where each arc is signed, + or -. They are often used to

represent complex systems of multiple interacting components, such as gene regulatory networks.

Positive or negative arcs between nodes denote positive or negative influence of one component on

another. This dissertation is primarily concerned with interaction graphs, a kind of signed directed

graph that is derived from an activation function. Interaction graphs, together with their activation

function intend to model these kinds of complex systems of multiple interacting components.

One of the main purposes of this dissertation is to determine what, if any, restrictions there are

on the structure of interaction graphs. More specifically, for a given signed digraph ∆, when can

we find an activation function whose interaction graph is ∆? What can we say about ∆ if no such

activation function exists?

We also discuss the conjectures or René Thomas. These conjectures, loosely stated, say that

positive and negative feedback in the interaction graph are necessary for multi-stationary and stable-

periodic dynamics respectively. These phenomenon are of great interest in biology since multi-

stationary and stable-periodic dynamics of gene expression levels correspond to processes of cell

differentiation and homeostasis respectively. These kinds of dynamics are also of interest in the the-

ory of chemical reaction networks and population models. The strongest versions of René Thomas’

conjectures that I am aware of have been proved in [4] and [5]. Using my new techniques devel-

oped herein, we will prove the same, or slightly more general versions of these conjectures. We

also present a smaller counter example to a local version of René Thomas’ second conjecture than

the first known counter example presented in [6].

The dissertation is arranged as follows.

Chapter 1 is a short development of relevant background theory on digraphs and signed digraphs

that will be used throughout this dissertation.

In chapter 2, we begin with the development of my take on the theory of activation functions.

We develop some theory on their associated interaction graphs and present new methods of trans-

forming activation functions and their interaction graphs which aid greatly in their analysis. Then

1



we tackle what, if any, restrictions there are on the structure of interaction graphs as well as how to

construct activation functions that have a given interaction graph. We do this first for the general

case, and then for the specific case of threshold activation functions.

In chapter 3 we introduce the state transition graph, a graph that represents how the states of an

activation function can change over time. Then, using new techniques developed in this dissertation,

we explore René Thomas’ first and second conjectures, on multi-stationary and stable-periodic

dynamics in the state transition graph respectively. Finally, we present a new counter-example to

a local version of René Thomas’ second conjecture. This counter-example has fewer components

than previously known counterexamples.
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Chapter 1

Signed Digraphs

1.1 Digraphs

A directed graph, or digraph is a pair D = (V,A) where V the finite, non-empty vertex set of D

and A is the finite arc set of D, a multiset whose elements are from V × V . For an arc a = (v, w),

we say that a is incident with v and w. For two subsets of vertices, A and B, we say that there is an

arc between A and B if there is an arc incident with a vertex in A and a vertex in B.

A digraph D is connected if D contains a single vertex, or for all non-empty W ⊂ V , there is

an arc between W and V \W . For us, ⊂ means strict-subset, i.e., W 6= V .

The in-degree (out-degree) of v in D is |{w | (w, v) ∈ D}| (|{w | (v, w) ∈ D}|). The degree

of v is the sum of the in-degree and out-degree of v.

The degree of the vertices and the number of arcs in a digraph are related in a nice way.

Proposition 1.1.1. Let dv be the degree of the vertex v ∈ D. Then
∑
v∈D dv = 2|A|.

Proof. Any arc (a, b) will contribute 1 to the sum in da and 1 to the sum in db. So this arc is counted

twice in the sum
∑
v∈D dv. Therefore adding the degree of every vertex counts each arc twice.

Let the bijection φ : V → φV . The digraph φD = (φV, φA) where φA = {(φv, φw) | (v, w) ∈

D}. Two digraphs D and D′ are called isomorphic if there exists a bijection φ such that φD = D′.

1.1.1 Subgraphs, Paths, Trees, Circles and Cycles

For the remainder of this section, let the digraphs D = (V,A), D1 = (V1, A1) and D2 = (V2, A2).

D1 is a sub-digraph ofD2 if V1 ⊆ V2 andA1 ⊆ A2. Often we will call sub-digraphs just subgraphs.

The union of two digraphs is just the union of their vertex and arc sets respectively, or D1 ∪D2 =

(V1 ∪ V2, A1 ∪ A2).

If V1 ⊆ V2 and A1 = {(i, j) ∈ A2 | i, j ∈ V1}, then we call D1 the subgraph of D2 induced by

V1. Subgraphs of this form are called induced subgraphs.
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If D is connected and |A| = |V | − 1, then D is called a tree. Combining this definition with

proposition 1.1.1, ∑
v∈D

dv = 2|A| = 2|V | − 2. (1.1)

I have much use for trees, so their theory demands development.

Proposition 1.1.2. A tree T contains a vertex of degree zero if and only if the tree consists of a

single vertex.

Proof. Suppose that T contains a vertex v of degree zero. If |V | > 1, then there is an arc to or from

v to V \ v since T is connected. So the degree of v is at least 1, a contradiction. Therefore |V | = 1.

Using equation (1.1),
∑
v∈V dv = 2|V | − 2 = 0 = 2|A|. Therefore |A| = 0, so T contains no arcs

and so consists of a single vertex. Conversely, if T consists of a single vertex v, then clearly the

degree of v is zero.

Proposition 1.1.3. A tree T that contains more than one vertex has at least two vertices of degree-1.

Proof. By proposition 1.1.2, T has no degree-0 vertex, since T contains more than one vertex.

Suppose all but one vertex in T has degree at least two. Then
∑
v∈T dv ≥ 2|V | − 1. Combining

this with equation (1.1), we see that 2|V | − 2 ≥ 2|V | − 1, a contradiction. Therefore T contains at

least two degree-1 vertices.

If the tree T is a subgraph of the digraph D and T contains every vertex of D, then T is called

a spanning-tree of D.

Proposition 1.1.4. Every connected digraph D = (V,A) contains a spanning-tree.

Proof. The proof is an iterative construction.

Any subgraph of D consisting of a single vertex is a tree, so any digraph D contains tree-

subgraphs.

So let Tk = (Vk, Ak) be a tree-subgraph of D. If Tk is a spanning-tree, we are done. If not, then

there is an arc ak between Vk and V \Vk sinceD is connected. Let vk be the vertex in V \Vk incident

with ak. Let Vk+1 = Vk ∪ vk and Ak+1 = Ak ∪ ak. I claim the subgraph Tk+1 = (Vk+1, Ak+1) is

also a tree. To justify this, we have to show Tk+1 is connected and has one fewer arcs than vertices.

Let us first show that Tk one fewer arcs than vertices. Since Tk is a tree, |Ak| = |Vk| − 1.

Therefore |Ak ∪ ak| = |Vk ∪ vk| − 1, i.e., |Ak+1| = |Vk+1| − 1.

4



To see Tk+1 is connected, let W ⊂ Vk+1 be non-empty. We may assume that W contains vk

since the following argument can be just as easily applied to the compliment of W . If W contains

only vk, then ak is an arc between W and Vk+1 \ vk = Vk. If W contains vertices other than vk,

then there is an arc between W \ vk and Vk \W in Tk since Tk is connected. Therefore the same

arc is between W and Vk+1 \W in Tk+1. Therefore Tk+1 is connected.

Now if Tk+1 is a spanning tree, we are done. If not, then we can iterate this process |V | − |Vk|

times to get a tree contained in D whose vertex set is V . This tree is then by definition a spanning

tree of D.

A tree that contains no vertex of degree 3 or more is called a path.

Proposition 1.1.5. A path is either a single vertex, or it contains exactly two vertices of degree-1

and all other vertices have degree 2.

Proof. Let P = (V,A) be the path. If |V | = 1, then it P consists of a single vertex by proposition

1.1.2.

What if P contains more than one vertex? By proposition 1.1.3, P contains at least two degree-

1 vertices. Since the degree of all other vertices is less than three,
∑
v∈V dv = |V | − k, where k

is the number of degree-1 vertices. Combining this with equation (1.1), |V | − 2 = |V | − k, i.e.,

k = 2. So P contains exactly two degree-1 vertices.

If a digraph D contains a path such that the degree-1 vertices of the path are v and w, then we

say there is a path between v and w in D.

Proposition 1.1.6. In a tree, there is a path between every pair of vertices.

Proof. The proof is by induction on the number of vertices.

Clearly the proposition is true if the tree consists of a single vertex. If the tree contains exactly

two vertices, then each vertex has degree 1 by proposition 1.1.3. So the tree contains a single arc

between the two vertices, so it is a path.

Now suppose T = (V,A) is a tree on k > 2 vertices and that the proposition is true for trees

with less than k vertices. We need the following lemma to complete the induction step.

Lemma 1.1.7. If T = (V,A) is a tree and v is a degree-1 vertex in T incident with the arc a, then

the subgraph S = (V \ v, A \ a) is a tree.

5



Proof. To prove this, we have to show that S is connected and that |A \ a| = |V \ a| − 1.

Since T is a tree, |A| = |V | − 1. Therefore |A \ a| = |V \ a| − 1.

Is S connected? Since T has a degree-1 vertex, V contains at least two vertices since it is not

just a single vertex by proposition 1.1.2.

If |V | = 2, then T contains a single arc and S consists of a single vertex. So the result is true in

this case.

If |V | > 2, let W ⊂ V \ v be non-empty. This is possible since V \ v contains at least two

vertices. We just have to show that there is an arc betweenW and (V \v)\W . Since T is connected,

there is an arc a between W and V \W . Similarly there is an arc b between W ∪v and (V \v)\W .

If a and b are both incident with v, then a and b are distinct arcs since the other end of a is in W and

the other end of b is in (V \ v) \W . But then v would have degree 2. Since the degree of v is one,

at most one of a or b is incident with v. So whichever arc is not incident with v is an arc between

W and (V \ v) \W . Therefore, S is connected, so S satisfies both tree conditions.

Let us continue the proof of proposition 1.1.6. By proposition 1.1.3, T contains a degree-1

vertex v incident with an arc a. Let S = (V \ v, A \ a). By lemma 1.1.7, S is a tree on less than

k vertices. Therefore it satisfies the proposition by the induction hypothesis. So there is a path

between every pair of vertices in S. This mean that in T , there is a path between every pair of

vertices excluding v. We just need to show that in addition, there is a path between v and any other

vertex w ∈ T . Let x be the other vertex incident with a. Since x,w ∈ S, there is a path between x

and w in S. This path is also contained in T . Combining this path with arc between v and x in T

yields a path between w and v in T .

A directed path, or dipath is a path that consists of a single vertex, or a path that contains a

single vertex of out-degree 1, a single vertex of in-degree 1 and all other vertices have in-degree

and out-degree 1. In other words, a dipath is a path such that the direction of every arc in the path

is consistent. If a digraph D contains a dipath such that the vertex with in-degree 1 is w and the

vertex with out-degree 1 is v, then we say there is a dipath in D from v to w.

A digraph D is strongly connected if for any pair of vertices v and w in D, there is dipath from

v to w and a dipath from w to v. A subgraph of D is called a strong component of D if it is a

maximal strongly connected subgraph of D. A strong component C is terminal there are no arcs

(v, w) in D such that v ∈ C and w /∈ C. A strong component C is initial there are no arcs (v, w) in

D such that v /∈ C and w ∈ C.

6



Proposition 1.1.8. The strong components of a digraph partition the vertex set of the digraph.

Proof. Consider the relation ∼ on the vertex set where v ∼ w if there is dipath from v to w and

a dipath from w to v. if ∼ is an equivalence relation, then the equivalence classes of ∼ are strong

components of the digraph. So to prove the proposition, we will show that ∼ is an equivalence

relation.

There is always a path from v to itself, so the relation is reflexive. The relation is clearly

symmetric. If v ∼ w and w ∼ x then there is a dipath from v to w and from w to x. The union of

two dipaths is not necessarily itself a dipath, but we can use the following lemma.

Lemma 1.1.9. If P is a dipath from v to w and Q is a dipath from w to x, then P ∪ Q contains a

dipath from v to x.

Proof. Starting at v, we follow the dipath P until we encounter the first vertex y contained in Q.

This is guaranteed to happen since P contains at least one vertex in Q, namely x. Let P ′ ⊆ P be

the part of P that goes from v to y. Let Q′ ⊆ Q be the part of Q that goes from y to x. Both P ′ and

Q′ are dipaths that only intersect at y since y is the earliest vertex in P that is also in Q. Therefore

P ′ ∪Q′ is a dipath from v to x.

This lemma shows that ∼ is transitive. Therefore ∼ is an equivalence relation.

A circle in D is a connected subgraph C ⊆ D such that the degree of every vertex in C is 2. If

every vertex of C has in-degree one and out-degree one, then we call C a cycle.

1.2 Signed Digraphs

A signed digraph is a pair ∆ = (V,A) where V is the non-empty vertex set of ∆ and A ⊆ V ×V ×

{±} is the arc set of ∆. The vertex set of ∆ will also be denoted by V (∆). If (v, w, σvw) ∈ A, we

say there is an arc from v to w with sign σvw. An illustration of a signed digraph is given in figure

1.1.

Signed digraphs are themselves digraphs if you ignore the arc signs. So every digraph concept

applies equally well to signed digraphs.

If there is at most one arc between any two vertices in the same direction, and at most one loop

on any vertex, then the signed digraph can be represented with a matrix. If ∆ = (V,A) is a signed

digraph with this property, then the adjacency matrix of ∆, Adj(∆) is the |V | × |V | matrix whose

ij entry is σij if the arc (i, j, σij) is contained in ∆ and 0 otherwise.

7



1

23

4

Figure 1.1: A signed digraph with arc set
{(1, 2,+), (1, 2,−), (2, 3,+), (3, 2,−), (3, 1,+), (4, 4,+), (4, 4,−)}.

1

23

4

Figure 1.2: Signed digraph ∆ that has an adjacency matrix.

For example, the signed digraph ∆ in figure 1.2 has the following adjacency matrix.

Adj(∆) =



0 − 0 0

0 0 + 0

+ − 0 0

0 0 0 +


However, the signed digraph in figure 1.1 does not have an adjacency matrix because it has a pair

of parallel arcs from vertex 1 to vertex 2.

1.2.1 Balance

The sign of a signed digraph is the product of the signs of all of its arcs. The sign of ∆ is written

as sgn ∆ =
∏

(i,j,σij)∈A σij . So a signed digraph is positive (negative) if and only if it contains an

even (odd) number of negative arcs.

A signed digraph ∆ is balanced if every circle contained in ∆ is positive. A signed digraph

is cycle-balanced if every cycle it contains is positive. Examples of balanced and cycle-balanced

digraphs are given in figure 1.3. The signed digraph in figure 1.1 is not balanced.

8



1

23

4 1

23

4

Figure 1.3: A balanced signed digraph on the left and a cycle-balanced digraph that is not
balanced on the right.

1

3

2

2

1

3

Figure 1.4: Switching isomorphic digraphs ∆ and λ∆ where λ = ((1 2 3), (−,+,−)).

1.3 Switching Isomorphism

Given a signed digraph ∆ with vertex set V . Let the bijection φ : V → W . We may writeW = φV .

Let ζ ∈ {±}V . We call the pair λ = (φ, ζ) a switching isomorphism of ∆. If φ is a permutation,

then we may also call λ a signed permutation of V . The switching isomorphism λ transforms ∆ in

the following way. The signed digraph λ∆ = (W, {(φi, φj, ζiσijζj) | (i, j, σij) ∈ ∆}). If we write

ζ∆, this means that ζ∆ = λ∆ where the bijection φ in λ is the identity map. In this case we can

call the map ζ a switching of ∆. Similarly φ∆ = λ∆ where ζ = {+}V . In this case we call φ an

isomorphism of ∆. Let ∆1 and ∆2 be signed digraphs. If there is a switching isomorphism λ of

∆1 such that λ∆1 = ∆2, then we say that ∆1 and ∆2 are switching isomorphic. An example of a

switching isomorphism is given in figure 1.3.

It is an elementary observation that switching isomorphisms preserve the signs of circles.

Proposition 1.3.1. Let λ be a switching isomorphism of the signed digraph ∆. If C ⊆ ∆ is a circle,

then sgn C = sgnλC.

Proof. Note that sgn λC =
∏

(φi,φj,ζiσijζj)∈λC ζiσijζj =
∏

(i,j,σij)∈C ζiσijζj . Since the degree

of each vertex in C is two, ζi occurs twice in this product for any vertex i of C. Therefore∏
(i,j,σij)∈C ζiσijζj =

∏
(i,j,σij)∈C σij = sgnC.
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Here is arguably the most important result on balance and switching. This is corollary 3.3 in

[8].

Theorem 1.3.2. A signed digraph ∆ is balanced if and only if there is ζ ∈ {±}V such that every

arc in ζ∆ is positive.

Proof. If there is ζ ∈ {±}V such that every arc in ζ∆ is positive, then every circle in ∆ is positive

by proposition 1.3.1.

Conversely, suppose ∆ is balanced. We will construct ζ , a switching of ∆ such that ζ∆ is

positive.

First we will prove this result specifically for trees.

Lemma 1.3.3. If T is a tree, then there exists ζ , a switching of T , such that every arc of ζT is

positive.

Proof. The proof is by induction.

The proposition is trivially true if the tree consists of a single vertex since then there are no

arcs.

Suppose the tree has k > 1 vertices and that the result is true for trees with less than k vertices.

By proposition 1.1.3, T has a degree-1 vertex v incident with arc a between v and w with sign σ.

By lemma 1.1.7, S = (V \ v,A \ a) is a tree on fewer than k vertices. By assumption, there is ζ ′ a

switching of S such that every arc in ζ ′S is positive. Let ζ be the switching of T such that ζi = ζ ′i

if i 6= v and ζv = ζ ′wσ. In ζT , the sign of a is ζwζvσ = ζ ′w(ζ ′wσ)σ = +. Any other arc (i, j, ζiζjσij)

in ζT is also positive because ζiζjσij = ζ ′iζ
′
jσij = + since (i, j, ζ ′iζ ′jσij) ∈ S, a positive tree by

induction. Therefore every arc in ζT is positive.

Back to the proof of the theorem. Each connected component of ∆ can be treated separately.

So for the purposes of this proof we will assume that ∆ is connected.

Since ∆ is connected it contains a spanning-tree T by proposition 1.1.4. By lemma 1.3.3, there

is ζ , a switching of T , such that ζT is positive. Since T and ∆ have the same vertices, ζ is also a

switching of ∆. Every arc in T will be positive in ζ∆ so we just need to show that the arcs outside

of T are also positive in ζ∆.

Let (i, j, σij) be an arc in ζ∆ not contained in T . By proposition 1.1.6, there is a path in ζT

between i and j. This path together with a forms a circleC in ζ∆. Since ∆ is balanced,C is positive

in ζ∆ by proposition 1.3.1. But every arc in the path is positive since ζT is positive. Therefore the
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sign of C is the sign of a. Therefore σij = +. This shows that every arc in ζ∆ is positive, whether

in T or not.
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Chapter 2

Interaction Graphs

2.1 Introduction

Interaction graphs are signed digraphs derived from a special kind of function, called an activation

function. They are used to represent a group of interacting components, such as a gene regulatory

network.

In section 2.2, activation functions and their interaction graphs are defined.

Section 2.3 deals with a useful way of transforming activation functions and their interaction

graphs and establishes the relationship between the interaction graphs of an activation function and

its conjugate activation functions.

Next are the main results of this chapter. Section 2.4 deals with the question of when a given

signed directed graph ∆ is a global interaction graph. A general method to construct an activation

function whose interaction graph is ∆ is then detailed.

Section 2.5 deals with the same question for local interaction graphs and provides a general

method to construct an activation function whose local interaction graph is a given signed digraph.

Finally, section 2.6 covers the question of when a given signed directed graph is an interaction

graph of a threshold activation function.

2.2 Interaction Graphs

2.2.1 Activation Functions

Let Cf be a finite set. For each i ∈ Cf , let Si be a non-empty finite set of integers and let Sf =∏
i∈Cf Si. An activation function is a function f : Sf → Sf . The set Cf is called the set of

components of f . The set Sf is the state space of f . We may also refer to Sf as the states of f and

call elements of Sf states. Each component function fj : Sf → Sj is called a component activation

function. For x ∈ Sf , Si will normally denote the set of possible values of xi.
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If |Si| ≤ 2 for all i ∈ Cf , then f is called a Boolean activation function.

The states of an activation function f will be ordered using the product ordering. That is for

two states x,y ∈ Sf , x ≥ y if xi ≥ yi for all i ∈ Cf .

If f(x) = x, then we call x a steady state of f .

We use Hamming metric to measure distance between states x,y ∈ Sf . That is, the distance

between x and y is |x,y| := |{i ∈ Cf | xi 6= yi}|.

2.2.2 Interaction Graphs of an Activation Function

For this section we are interested in how changing a single input of an activation function f affects

the outputs of f .

First we will establish some notation to aid in the analysis. Let f be an activation function,

x ∈ Sf , i ∈ Cf , and a ∈ Si. Define xi→a to be the state in Sf such that

(xi→a)j := xi→aj =


xj j 6= i

a j = i.

(2.1)

The idea here is we are only changing the value of the ith component of x.

We shall be comparing the outputs of f(x) and f(xi→a) for different values of i and a. We will

also want to see if the outputs of f increase or decrease when varying the ith input.

First some notation. Recall that for any real number x,

sgn x =


+ x > 0

0 x = 0

− x < 0.

For any x ∈ Sf and a ∈ Si, let

∂i→afj(x) = sgn[fj(xi→a)− fj(x)][a− xi]. (2.2)

Let us examine what this definition means. The value of ∂i→afj(x) signifies what effect chang-

ing the ith input of f has on the jth output of f . Specifically, suppose ∂i→afj(x) = +. Then

sgn(fj(xi→a)− fj(x)) = sgn(a−xi) 6= 0. So either fj(xi→a) < fj(x) and a < xi, or fj(xi→a) >

fj(x) and a > xi. Therefore increasing the ith input of f increased the jth output, or decreasing the

ith input decreased the jth output. So the jth output of f changes in the same way as the ith input

was changed. Similarly, if ∂i→afj(x) = −, then sgn(fj(xi→yi) − fj(x)) = − sgn(yi − xi) 6= 0.
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So in this case increasing the ith input of f decreased the jth output, or decreasing the ith input

increased the jth output. So the value of fj changed contrary to the change of xi. If ∂i→afj(x) = 0,

then fj(xi→a) = fj(x) regardless or what the value of a is, so changing xi has no effect on fj .

Here is one fact about ∂i→afj(x) that will prove useful. In ∂i→afj(x) we start with x and

change the ith input to a. But what if we start with xi→a and change the ith input to xi? It turns out

we get the same sign.

Proposition 2.2.1. Given an activation function f , x ∈ Sf and a ∈ Si, then

∂i→xifj(xi→a) = ∂i→afj(x).

Proof. This is a straightforward calculation based on equation (2.2).

∂i→xifj(xi→a) = sgn[fj([xi→a]i→xi)− fj(xi→a)][xi − a]

= sgn[fj(x)− fj(xi→a)][xi − a]

= sgn[−(fj(xi→a)− fj(x))][−(a− xi)]

= sgn[fj(xi→a)− fj(x)][a− xi]

= ∂i→afj(x)

Now we will represent graphically how changing the inputs of an activation function affects the

outputs. Let f be an activation function and x,y ∈ Sf . The local interaction graph of f at x in the

direction of y is the signed digraph If (x,y) with vertex set Cf and with arc set {(i, j, σij) | σij =

∂i→yifj(x) 6= 0}.

For example, let the activation function f(x1, x2) = (1−2x2
2, x2(x1−1)/2) where S1 = {±1}

and S2 = {0,±1}. Let us find the local interaction graph If (〈−1,−1〉, 〈1, 0〉). We just have to

calculate ∂i→yifj(〈−1,−1〉) for each possible i and j where y = 〈1, 0〉.

∂1→1f1(〈−1,−1〉) = sgn[f1(〈1,−1〉)− f1(〈−1,−1〉)][1− (−1)] = sgn[−1− (−1)] = 0

∂2→0f1(〈−1,−1〉) = sgn[f1(〈−1, 0〉)− f1(〈−1,−1〉)][0− (−1)] = sgn[1− (−1)] = +

∂1→1f2(〈−1,−1〉) = sgn[f2(〈1,−1〉)− f2(〈−1,−1〉)][1− (−1)] = sgn[0− 1] = −

∂2→0f2(〈−1,−1〉) = sgn[f2(〈−1, 0〉)− f2(〈−1,−1〉)][0− (−1)] = sgn[0− 1] = −

Therefore the arc set of If (〈−1,−1〉, 〈1, 0〉) is {(2, 1,+), (1, 2,−), (2, 2,−)}. An illustration of

If (〈−1,−1〉, 〈1, 0〉) is given in figure 2.1. In the same figure we also have If (〈1, 1〉, 〈−1, 0〉).

You can easily check that ∂1→−1f1(〈1, 1〉) = ∂2→0f2(〈1, 1〉) = 0, ∂1→−1f2(〈1, 1〉) = + and

∂2→0f1(〈1, 1〉) = −.
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1 2 1 2

Figure 2.1: Local interaction graphs If (〈−1,−1〉, 〈1, 0〉) and If (〈1, 1〉, 〈−1, 0〉).

1 2

Figure 2.2: Global interaction graph If

Since local interaction graphs have at most one arc from any vertex to another, they can be rep-

resented by an adjacency matrix. The ijth entry of Adj(If (x,y)) is ∂i→yifj(x). We will abbreviate

the ith row of this adjacency matrix by ∂i→yif(x) := sgn[f(xi→yi) − f(x)][yi − xi]. So for the

activation function f(x1, x2) = (1− 2x2
2, x2(x1 − 1)/2),

Adj(If (〈−1,−1〉, 〈1, 0〉)) =

∂1→1f(〈−1,−1〉)

∂2→0f(〈−1,−1〉)

 =

0 −

+ −

 ,
Adj(If (〈1, 1〉, 〈−1, 0〉)) =

∂1→−1f(〈1, 1〉)

∂2→0f(〈1, 1〉)

 =

0 +

− 0

 .
The global interaction graph of an activation function f , or just the interaction graph of f , is

the union of all the local interaction graphs of f . Put another way, If is the signed digraph with

vertex set Cf and with arc set {(i, j, σij) | ∃ x ∈ Sf , a ∈ Si such that σij = ∂i→afj(x) 6= 0}.

An illustration of the global interaction graph of the activation function f(x1, x2) = (1 −

2x2
2, x2(x1 − 1)/2) is given in figure 2.2. Notice that it includes all of the arcs from the two local

interaction graphs above. Since f1 does not depend on x1 there will be no loops on vertex 1 in the

graph. You can also check that ∂2→yif2(x) ≤ 0, so there is no positive loop on vertex 2.

2.2.3 Boolean Interaction Graphs

Given an activation function f , if |Si| ≤ 2 for all i ∈ Cf , then f is called a Boolean activation

function since each xi has exactly two possible values for each i ∈ Cf .

For Boolean activation functions, If (x) will denote the local interaction graph If (x,y) where

y is the state in Sf such that yi 6= xi for each i ∈ Cf . This is well defined since |Si| = 2 for each
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i ∈ Cf . Also xi→a where a ∈ Si and a 6= xi will be denoted by xi→ since the ith coordinate of x

can only be changed to a single value that differs from xi.

Here is proposition 2.2.1 for Boolean activation functions with our new shorthand notation.

The proof is practically identical.

Proposition 2.2.2. Given a Boolean activation function f , if x ∈ Sf , then

∂i→fj(xi→) = ∂i→fj(x).

2.2.4 A Restriction on Interaction Graphs

My definition of a local interaction graph is a bit looser than standard. Others, such as the definition

in [4] and [5], compare the outputs of the activation function when only changing the value of a

component by the smallest amount possible. That is, they only consider ∂i→afj(x) when al xi or

am xi. The relation al b is the cover relation: b covers a, i.e., al xi means that a < xi, and there

is no b ∈ Si such that a < b < xi. Similarly, am xi means that a > xi, and there is no b ∈ Si such

that a > b > xi.

With this in mind, we will define a restricted version of the interaction graphs. If a > xi, let

∂i→
∗afj(x) := ∂i→bfj(x) where b m xi. Similarly, if a < xi, let ∂i→

∗afj(x) := ∂i→bfj(x) where

b l xi. The restricted local interaction graph of f at x in the direction of y is the signed digraph

I∗f (x,y) with vertex set Cf and with arc set {(i, j, σij) | σij = ∂i→
∗yifj(x) 6= 0}.

For any states x and y, let x→∗y be the state whose ith coordinate satisfies (x→∗y)i l xi if

yi < xi, (x→∗y)i m xi if yi > xi, and (x→∗y)i = xi otherwise. This way, if z = x→∗y, then

xi→∗yi = xi→zi . (2.3)

So ∂i→
∗yifj(x) = ∂i→zifj(x). From this we get the following result immediately.

Proposition 2.2.3. I∗f (x,y) = If (x,x→∗y).

Many of our future results on interaction graphs also apply to restricted interaction graphs

because of this fact.

Since Boolean interaction graphs can take at most two values on each of their components,

there is no distinction between local interaction graphs and restricted ones in this case.

Proposition 2.2.4. If f is a Boolean activation function, then I∗f (x,y) = If (x,y).
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So we do not need to concern ourselves with restricted interaction graphs when working with

Boolean activation functions.

The restricted global interaction graph, I∗f is the union of all the restricted local interaction

graphs of f . Some results about local interaction graphs, such as those in section 3.3.1, can be

proved for the first kind of local interaction graphs, but are stronger if you prove them for restricted

interaction graphs. You may suspect that the same is true for global interaction graphs. Fortunately,

we have the following result.

Proposition 2.2.5. For an activation function f , I∗f = If .

Proof. By proposition 2.2.3, I∗f ⊆ If . So we just need to show the reverse containment. Since

both interaction graphs have the same vertex set, we only need to show that any arc contained in If
is also contained in I∗f . To do this we will use the following lemma.

Lemma 2.2.6. Given an activation function f .

1. If the arc (i, j,+) /∈ I∗f , then fj is weakly decreasing in the ith component. I.e., if a > xi,

then fj(x) ≥ fj(xi→a).

2. If the arc (i, j,−) /∈ I∗f , then fj is weakly increasing in the ith component. I.e., if a > xi,

then fj(x) ≤ fj(xi→a).

Proof. For the first item, suppose the arc (i, j,+) /∈ I∗f . Let x = x1. So ∂i→
∗afj(x1) 6= +. Using

equation (2.2), since a > xi,

∂i→
∗afj(x) = sgn[fj(xi→

∗a)− fj(x)][a− xi] = sgn[fj(xi→
∗a)− fj(x)].

So fj(xi→
∗a

1 ) ≤ fj(x1).

Now let x2 = xi→∗a. Again, since (i, j,+) /∈ I∗f , ∂i→
∗afj(x2) 6= +. Since a > xi,

∂i→
∗afj(x) = sgn[fj(xi→

∗a
2 )− fj(x2)] 6= +. So fj(xi→

∗a
2 ) ≤ fj(x2) again.

Now let x3 = xi→∗a2 and repeat this process. Eventually xn = xi→a after some number of steps

and fj(xk+1) ≤ fj(xk) for all k ∈ [n− 1]. Therefore fj(xn) ≤ fj(x1), i.e fj(xi→a) ≤ fj(x).

The second item follows by a similar argument. If (i, j,−) /∈ I∗f , then ∂i→
∗afj(x1) 6= −. Since

a > xi, ∂i→
∗afj(x) = sgn[fj(xi→

∗a
1 )− fj(x1)]. So fj(xi→

∗a
1 ) ≥ fj(x1).

Now let x2 = xi→∗a. Again, since (i, j,−) /∈ I∗f , ∂i→
∗afj(x2) 6= −. Since a > xi,

∂i→
∗afj(x) = sgn[fj(xi→

∗a
2 )− fj(x2)]. So fj(xi→

∗a
2 ) ≥ fj(x2) again.

Now let x3 = xi→∗a2 and repeat this process. Eventually xn = xi→a after some number of steps

and fj(xk+1) ≥ fj(xk) for all k ∈ [n− 1]. Therefore fj(xn) ≥ fj(x1), i.e fj(xi→a) ≤ fj(x).
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Back to the proof of proposition 2.2.5. Suppose the arc (i, j,+) ∈ If . Then ∂i→yifj(x) = +

for some x,y ∈ Sf . If yi > xi, using equation (2.2),

∂i→yifj(x) = sgn[fj(xi→yi)− fj(x)][yi − xi] = sgn[fj(xi→yi)− fj(x)].

Since ∂i→yifj(x) = +, fj(xi→yi) > fj(x). By lemma 2.2.6, if (i, j,+) /∈ I∗f then fj(xi→yi) ≤

fj(x), a contradiction. Therefore (i, j,+) ∈ I∗f . If instead yi < xi, then

∂i→yifj(x) = − sgn[fj(xi→yi)− fj(x)] = +.

So fj(xi→yi) < fj(x). But if (i, j,+) /∈ I∗f then fj(xi→yi) ≥ fj(x) by lemma 2.2.6. Again, this is

a contradiction. Therefore (i, j,+) ∈ I∗f .

If the arc (i, j,−) ∈ If , we can show that (i, j,−) ∈ I∗f using essentially the same argument.

Since (i, j,−) ∈ If , ∂i→yifj(x) = − for some x,y ∈ Sf . If yi > xi, using equation (2.2),

∂i→yifj(x) = sgn[fj(xi→yi) − fj(x)]. Since ∂i→yifj(x) = −, fj(xi→yi) < fj(x). By lemma

2.2.6, if (i, j,−) /∈ I∗f then fj(xi→yi) ≥ fj(x), a contradiction. Therefore (i, j,+) ∈ I∗f . If

instead yi < xi, then ∂i→yifj(x) = − sgn[fj(xi→yi) − fj(x)] = +. So fj(xi→yi) > fj(x). But

if (i, j,+) /∈ I∗f then fj(xi→yi) ≤ fj(x) by lemma 2.2.6. Again, this is a contradiction. Therefore

(i, j,−) ∈ I∗f .

So every arc in If is also contained in I∗f . Therefore If = I∗f .

So when working with global interaction graphs, we can use their more convenient standard

definition and all results we prove will also be true for the restricted global interaction graph.

2.3 Conjugate Activation Functions

Given an activation function f , let φ : Cf → W be a bijection and ζ ∈ {±}Cf . In particular,

λ = (φ, ζ) is a switching isomorphism of If and of If (x,y) for any x,y ∈ Sf . We will also call

λ a switching isomorphism of f for reasons which will become clear in the next section. Also note

that W = φCf , since it is the codomain of φ.

There is a natural way for λ to transform states in Sf . First we will establish how the bijection

φ transforms states in Sf . If x ∈ Sf , φx is the state whose components are in φCf and are such that

φjx := (φx)j = xφ−1j , or φφix = xi.

Let ◦ be the Hadamard component-wise product. Define λx = (φ, ζ)x := φ(ζ ◦ x). Since ◦

is the only kind of product between states and sign-vectors, we normally suppress the ◦ notation.
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Note that even though ζx may not be in Sf , its components are Cf , so it can still be transformed by

φ as defined above. So if j ∈ φCf , then

λjx := (λx)j = φj(ζx) = (ζx)φ−1j = ζφ−1jxφ−1j .

Or more cleanly,

λφix = ζixi. (2.4)

So when the switching isomorphism λ = (φ, ζ) transforms states in Sf this way, what is the

codomain? Let ζiSi := {ζix | x ∈ Xi}. For j ∈ φCf , define Sj := ζφ−1jSφ−1j . More cleanly,

Sφi := ζiSi. Let λSf :=
∏
j∈W Sj . This way, λSf is the codomain of λ, i.e λ : Sf → λSf .

Elements of {±}Cf can be transformed by φ the same way states are, since its components are

also indexed by Cf . That is φζ ∈ {±}φCf where φjζ := (φζ)j = ζφ−1j , or φφiζ = ζi. It follows

that

λjx = ζφ−1jxφ−1j = (φjζ)(φjx).

Combining this with the previous definition of λx we get

λx = φ(ζx) = (φζ)(φx). (2.5)

By this definition, the transformation λ : Sf → λSf is a bijection with inverse transformation

λ−1 = (φ−1, φζ) since

(φ−1, φζ)[(φ, ζ)x] = (φ−1, φζ)[(φζ)(φx)] = φ−1[(φζ)(φζ)(φx)] = φ−1[φx] = x.

If λ is a switching isomorphism of an activation function f , the λ-conjugate activation function

of f is the activation function fλ : λSf → λSf with the property that

fλ(λx) = λf(x). (2.6)

The conjugate activation function is defined this way so that figure 2.3 is a commutative diagram.

Note that Cfλ = φCf and Sfλ = λSf . Also

fλφi(λx) = [fλ(λx)]φi = [λf(x)]φi = ζifi(x). (2.7)

If ζ ∈ {±}Cf , then f ζ = fλ where λ = (φ, ζ) and φ is the identity function on Cf . Similarly, if

φ : Cf → φCf , then fφ = fλ where λ = ({+}Cf , φ). Two activation functions f and g are called

conjugate if g = fλ for some switching isomorphism λ.
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Sf Sf

λSf λSf
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λ λ

fλ

Figure 2.3: Commutative diagram that defines the conjugate activation function.

2.3.1 Interaction Graphs of Conjugate Activation Functions

It turns out that the interaction graphs of an activation function and its conjugate activation functions

are related in a nice way. This will justify why we are also calling a switching isomorphism of If
a switching isomorphism of the activation function f itself.

Theorem 2.3.1. Let f be an activation function, let x,y ∈ Sf and let λ be a switching isomorphism

of f . Then;

1. Ifλ(λx, λy) = λ[If (x,y)], i.e., If (x,y) and Ifλ(λx, λy) are switching isomorphic.

2. I∗fλ(λx, λy) = λ[I∗f (x,y)], i.e., I∗f (x,y) and I∗fλ(λx, λy) are switching isomorphic.

3. Ifλ = λIf , i.e., If and Ifλ are switching isomorphic.

4. I∗fλ = λI∗f , i.e., I∗f and I∗fλ are switching isomorphic.

Proof. To prove the first item, we will show that ∂φi→λφiyfλφj(λx) = ζi∂
i→yifj(x)ζj , so that

(i, j, σij) ∈ If (x,y) if and only if (φi, φj, ζiσijζj) ∈ Ifλ [λx, λy]. Note that

∂φi→λφiyfλφj(λx) = sgn[fλφj(λxφi→λφiy)− fλφj(λx)][λφiy− λφix].

To complete a calculation, we need the following lemma.

Lemma 2.3.2. If x,y ∈ Sf , then λ(xi→yi) = (λx)φi→λφiy.
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Proof. We just apply equation (2.4).

λφj(xi→yi) = ζjxi→yij

=


ζjxj j 6= i

ζiyi j = i

=


λφjx φj 6= φi

λφiy φj = φi

= (λx)φi→λφiyφj

We are now ready to complete the proof. Using this lemma, equation (2.7) and equation (2.4),

∂φi→λφiyfλφj(λx) = sgn[fλφj(λxφi→λφiy)− fλφj(λx)][λφiy− λφix]

= sgn[fλφj(λ[xi→yi ])− fλφj(λx)][λφiy− λφix]

= sgn[ζjfj(xi→yi)− ζjfj(x)][λφiy− λφix]

= sgn[ζjfj(xi→yi)− ζjfj(x)][ζiyi − ζixi]

= sgn ζj [fj(xi→yi)− fj(x)]ζi[yi − xi]

= ζi(sgn[fj(xi→yi)− fj(x)][yi − xi])ζj

= ζi∂
i→yifj(x)ζj .

Now if (i, j, σij) ∈ If (x,y), then ∂i→yifj(x) = σij . Therefore (φi, φj, ζiσijζj) ∈ Ifλ if and only

if (i, j, σij) ∈ If (x,y).

For the second item, we start with the left hand side. By proposition 2.2.3, I∗fλ(λx, λy) =

Ifλ(λx, (λx)→∗λy). Using the same proposition, the right hand side λ[I∗f (x,y)] = λ[If (x,x→∗y)].

By the first item in this theorem, λ[If (x,x→∗y)] = Ifλ(λx, λ(x→∗y)). So to prove the second item,

we will use the following lemma.

Lemma 2.3.3. Given states x,y and a switching isomorphism λ of an activation function f . Then

(λx)→∗λy = λ(x→∗y).

Proof. Let z = x→∗y and z′ = (λx)→∗λy. We want to show that λz = z′. We will show this

component-wise, i.e., that λφiz = z′φi for all i ∈ Cf .
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First suppose that yi > xi. Then zi m xi by definition. If ζi = +, then ζiyi > ζixi. By equation

(2.4), λφiy > λφix. So z′φimλφix by definition. But since zimxi, ζizim ζixi. So by equation (2.4),

λφiz m λφix. Therefore λφiz = z′φi. If ζi = −, then ζiyi < ζixi. By equation (2.4), λφiy < λφix.

So z′φi l λφix by definition. But since zi m xi, ζizi l ζixi. So by equation (2.4), λφiz l λφix.

Therefore λφiz = z′φi.

Similarly, if yi < xi, then zi l xi by definition. If ζi = +, then ζiyi < ζixi. By equation (2.4),

λφiy < λφix. So z′φi l λφix by definition. But since zi l xi, ζizi l ζixi. So by equation (2.4),

λφiz l λφix. Therefore λφiz = z′φi. If ζi = −, then ζiyi > ζixi. By equation (2.4), λφiy > λφix.

So z′φi m λφix by definition. But since zi l xi, ζizi m ζixi. So by equation (2.4), λφiz m λφix.

Therefore λφiz = z′φi.

We have shown that λφiz = z′φi for all i ∈ Cf . Therefore λz = z′, or (λx)→∗λy = λ(x→∗y).

By lemma 2.3.3, Ifλ(λx, (λx)→∗λy) = Ifλ(λx, λ(x→∗y)). By the first item of this theorem

Ifλ(λx, λ(x→∗y)) = λ[If (x,x→∗y)]. Therefore, I∗fλ(λx, λy) = λ[I∗f (x,y)] by proposition 2.2.3

since Ifλ(λx, (λx)→∗λy) = λ[If (x,x→∗y)]. This proves the second part of the theorem.

Finally the same results hold for the global interaction graphs since they are the unions of local

interaction graphs. This proves the third and fourth items.

2.4 Forbidden Interaction Graphs

Can every signed digraph be an interaction graph? More specifically, given any signed digraph

∆, is there an activation function f such that If = ∆? Is there an activation function g such that

∆ = Ig(x,y) for some x,y ∈ Sg? If there is no such activation function, what restrictions are there

on the structure of ∆ to insure that it is an interaction graph? These are the questions that motivate

the next few sections.

It turns out that every signed digraph is indeed the interaction graph of some activation function.

However, there are restrictions on what kind of signed directed graphs can be the interaction graph

of a Boolean activation function, as the following result shows.

Theorem 2.4.1. Let f be a Boolean activation function. If both (i, j,+), (i, j,−) ∈ If , then the

in-degree of j is at least four.

Proof. Suppose that (i, j,+), (i, j,−) ∈ If and the in-degree of j is less than four. Then all arcs

into j come only from at most two vertices, i and k. That means ∂i
′→fj(x) = 0 for i′ 6= i, k, i.e.,
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fj depends only on the ith and kth inputs. Because of this, we will write fj(x) = fj(xi, xk) for

the purpose of this proof. We will show that under these conditions, both (k, j,+) and (k, j,−) are

also in If which will contradict our assumption about the in-degree of j.

There is a state x such that ∂i→fj(x) = + because (i, j,+) ∈ If . Let Si = {xi, x′i}. Since

∂i→fj(xi, xk) = ∂i→fj(x′i, xk) by proposition 2.2.2, we may assume for the sake of argument that

xi < x′i. Putting this assumption into equation (2.2),

∂i→fj(xi, xk) = sgn[fj(x′i, xk)− fj(xi, xk)][x′i − xi] = sgn[fj(x′i, xk)− fj(xi, xk)].

Since ∂i→fj(xi, xk) = +, fj(x′i, xk) > fj(xi, xk). Also Sj = {z, z′} where z < z′ since f is

Boolean. So fj(x′i, xk) = z′ and fj(xi, xk) = z.

Similarly, since (i, j,−) ∈ If , there is a state y = (yi, yk) such that ∂i→fj(y) = −. Now

yk 6= xk since otherwise ∂i→fj(y) would be the same as ∂i→fj(xi, xk) or ∂i→fj(x′i, xk) which

are both positive. So let yk = x′k. Now by a similar calculation to that above, it follows that

fj(xi, x′k) > fj(x′i, x′k), so fj(xi, x′k) = z′ and fj(x′i, x′k) = z. Based on this,

∂k→fj(xi, xk) = sgn[fj(xi, x′k)− fj(xi, xk)][x′k − xk] = sgn[x′k − xk].

Similarly ∂k→fj(x′i, xk) = − sgn[x′k − xk]. Therefore ∂k→fj(xi, xk) = −∂k→fj(x′i, xk), and so

both (k, j,+) and (k, j,−) are in If , so the in-degree of j is four.

This theorem tells us that for a signed digraph ∆ to be an interaction graph of a Boolean

activation function, it is necessary that if both (i, j,+), (i, j,−) ∈ ∆, then the in-degree of j is at

least four. It turns out that this condition is also sufficient, which will be proved shortly.

What if the Boolean restriction is removed? It turns out that every signed digraph is an interac-

tion graph of a ternary function. That is an activation function f : {0,±1}Cf → {0,±1}Cf . In fact

we can be even more specific.

Theorem 2.4.2. Given a signed digraph ∆. There is an activation function f such that If = ∆,

and:

1. each component activation function fi is a polynomial,

2. Si = {0,±1} if there is j ∈ Cf such that (i, j,+), (i, j,−) ∈ ∆ and the in-degree of j is two

or three,

3. Si = {±1} otherwise.
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As an immediate corollary to this theorem, the “in-degree four” property is sufficient for a

signed digraph ∆ to be an interaction graph of a Boolean activation function.

Corollary 2.4.3. Let ∆ be a signed digraph with the property that if both (i, j,+), (i, j,−) ∈ ∆,

then the in-degree of j is at least four. Then there is a Boolean activation function f such that

∆ = If , and each fj is a polynomial.

Proof. If there are no vertices i ∈ Cf with the property that (i, j,+), (i, j,−) ∈ ∆ and the in-degree

of j is two or three, then theorem 2.4.2 says there is an activation function f such that If = ∆,

each fi is a polynomial, and Si = {±1} for all i ∈ Cf , i.e., f is a Boolean activation function.

Proof of theorem 2.4.2. For each j ∈ V (∆), we will provide a method to construct a component

activation polynomial fj of an activation function f such that If = ∆. We will do this by showing

that j has the same in-star in If as in ∆, where the in-star of j is the set of all arcs into j. For

brevity, we will call the in-star of j in If the in-star of fj .

Every component activation polynomial fj we will use in the proof maps from {0,±1}Cf to

{±1}. This way fj can be used when Sj = {±1}. We also need to insure that if (i, j, σij) ∈ ∆,

then there is a state x ∈ Sf such that xi = −1 and ∂i→1fj(x) = σij so that if 0 /∈ Si, ∂i→1fj(x) is

well defined for fj .

Consider the in-star of j in ∆. The in-star contains either no parallel arcs, a single pair of

parallel arcs or, multiple pairs of parallel arcs. We will break down the proof by dealing with these

three cases separately.

First let us deal with the case when there are no parallel arcs in the in-star of j in ∆. There may

be no arcs into j in ∆. Then let fj be the constant polynomial fj(x) = 1. This does not depend on

any of its inputs so the in-star of fj will be empty.

Now we provide a way to add an additional non-parallel arc into j in the in-star of a seed

component activation function gj in the interaction graph. We will construct a component activation

function fj whose in-star includes the in-star of gj and the additional arc. Also, if gj is a polynomial,

then the new function fj will also be a polynomial. Moreover, the values of the initial component

of the new arc need not include 0. This lemma can then be iterated to add as many additional

non-parallel arcs as we wish.

Lemma 2.4.4. Let gj : {0,±1}Cg → {±1} be a component activation function that is not identi-

cally −1 and does not depend on input i ∈ Cg. For σ ∈ {±}, let fj : {0,±1}Cg → {±1} be the
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component activation function

fj(x) := 1
2(gj(x) + 1)(σxi + x2

i )− 1 =


1 if gj(x) = σxi = 1

−1 otherwise.
(2.8)

Then:

1. the in-star of fj is T ∪ (i, j, σ) where T is the in-star of gj ,

2. there is x ∈ Sf such that xi = −1 and σ = ∂i→1fj(x).

Proof. We have to show that the in-star of fj contains all arcs in the set T ∪ (i, j, σ) and nothing

more.

Let us start by showing that the in-star of fj contains (i, j, σ) and there is x ∈ Sg such that

xi = −1 and σ = ∂i→1fj(x). Since gj is not identically −1, we know that there is a state x such

that gj(x) = 1. Since gj does not depend on input i we may assume that xi = −1. This simplifies

equation (2.2) slightly since

∂i→1fj(x) = sgn[fj(xi→1)− fj(x)][1− xi]

= sgn[fj(xi→1)− fj(x)][1− (−1)]

= sgn[fj(xi→1)− fj(x)].

If σ = +, then σxi = −1. So by the definition of fj , fj(x) = −1. Since gj does not depend on

input i , gj(x) = gj(xi→1) = 1 = σxi→1
i . So by the definition of fj again, fj(xi→1) = 1. Therefore

∂i→1fj(x) = sgn[fj(xi→1)− fj(x)]

= sgn[1 + (−1)]

= +.

Similarly, if σ = −, then ∂i→1fj(x) = sgn[−1−1] = −. Either way ∂i→1fj(x) = σ, so (i, j, σ)

is indeed contained in the in-star of fj and the state x satisfies our {±1} input requirements.

Next, let us show that every arc in T , the in-star of gj , is also contained in the in-star of fj . If

(k, j, σkj) ∈ T , then there is a state x such that ∂k→agj(x) = σkj . Since gj does not depend on input

i, we may assume that σxi = 1. If gj(x) = 1, then fj(x) = 1 by definition. Similarly, if gj(x) =

−1, then fj(x) = −1. Therefore fj(x) = gj(x) if σxi = 1. So ∂k→agj(x) = ∂k→afj(x) = σkj .

Therefore (k, j, σkj) is also contained in the in-star of fj . It follows that in-star of fj contains every

arc in T .
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Next we have to show that every arc in the in-star of fj is either (i, j, σ), or is contained in the

in-star of gj . Suppose the in-star of fj contains (k, j, σkj), i.e., ∂k→afj(x) = σkj . This means that

fj(x) 6= fj(xk→a), so either fj(x) = 1 or fj(xk→a) = 1.

First suppose that fj(x) = 1. Then gj(x) = σxi = 1 by the definition of fj . Recall that if

σxi = 1, then fj(x) = gj(x). So if k 6= i,

∂k→agj(x) = sgn[gj(xk→a)− gj(x)][a− xk]

= sgn[fj(xk→a)− fj(x)][a− xk]

= ∂k→afj(x)

= σkj .

Therefore (k, j, σkj) ∈ T . Suppose k = i, i.e., (i, j, σij) is in the in-star of fj . Since σxi = 1,

σa 6= 1 because a 6= xi. So by the definition of fj , fj(xi→a) = −1. Therefore

σij = ∂i→afj(x)

= sgn[fj(xi→a)− fj(x)][a− xi]

= sgn[−1− 1][a− xi]

= − sgn[a− xi].

If σ = +, then xi = σxi = 1 and a = −1 or a = 0, so a − xi < 0. It follows that σij = +.

Similarly, if σ = −, then xi = −1. Since a is 0 or 1, a − xi > 0. Again σij = −. In all cases,

σij = σ. So if the in-star of fj contains (i, j, σij), then (i, j, σij) = (i, j, σ) and that is the only

possibility for arcs from i to j.

If we had instead assumed that fj(xk→a) = 1, then gj(xk→a) = σxk→ai = 1. If k 6= i, then

σxk→ai = σxi = 1, and gj(x) = fj(x) again. So ∂k→agj(x) = σkj as before. If k = i, then

σxk→ai = σxi→ai = σa = 1 and (i, j, σij) is contained in the in-star of fj . So

σij = ∂i→afj(x)

= sgn[fj(xi→a)− fj(x)][a− xi]

= sgn[1− (−1)][a− xi]

= sgn[a− xi].

If σ = +, then a = σa = 1 and xi = −1 or xi = 0, so a− xi > 0. Therefore σij = +. Similarly, if

σ = −, then a = −1, xi is 0 or 1, so a− xi < 0 and σij = −. Again σij = σ in all cases. So if the
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in-star of fj contains (i, j, σij), then (i, j, σij) = (i, j, σ) as before and that is the only possibility

for arcs from i to j. Therefore every arc in the in-star of fj is either (i, j, σ) or contained in T , the

in-star of gj . And so the in-star of fj is T ∪ (i, j, σ).

If we want a component activation polynomial fj whose in-star contains a single arc, we can

start with the constant polynomial gj(x) = 1 and apply lemma 2.4.4 to get a suitable component

activation polynomial fj . If we want to construct a component activation polynomial fj whose

in-star contains as many non-parallel arcs of any sign that we wish, then we can apply lemma 2.4.4

iteratively to gj to get the desired activation function. So if the in-star of j in ∆ contains no parallel

arcs, we can construct a suitable component activation polynomial fj with the same in-star.

It is worth pointing out that when iterating lemma 2.4.4 as described previously, we get a nice

function. If the in-star of j in ∆ is {(i, j, σij) | i ∈ A}, then the resulting fj(x) = 1 if and only if

σijxi = 1 for all i ∈ A.

Now let us handle the case when the in-star of j contains a single pair of parallel arcs. Recall

that in the Boolean case, there are only two restrictions on a signed graph ∆ that prevent it from

being the interaction graph of a Boolean activation function. There cannot be a vertex j ∈ ∆

whose in-star is {(i, j,+), (i, j,−)} or {(i, j,+), (i, j,−), (k, j, σkj)}. So let us begin with ternary

component activation polynomials with these as in-stars.

Lemma 2.4.5. Let fj : {0,±1}Cf → {±1} be the component activation polynomial fj(x) =

2x2
i − 1. Then the in-star of fj is {(i, j,+), (i, j,−)}.

Proof. Observe that

∂i→0fj(−1) = sgn[fj(0)− fj(−1)][0− (−1)] = sgn[−1− 1] = −.

Also

∂i→1fj(0) = sgn[fj(1)− fj(0)][1− 0] = sgn[1− (−1)] = +.

Therefore the arcs (i, j,+) and (i, j,−) are contained in the in-star of j in If . Since fj depends

only on xi, there are no other arcs in the in-star of j.

If we apply lemma 2.4.4 to the polynomial in lemma 2.4.5, we can construct a component

activation polynomial fj with {(i, j,+), (i, j,−), (k, j, σkj)} as its in-star where Si = {0,±1}.

These are the only two cases where we specifically need ternary polynomials.
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Next we will show how to produce a component activation polynomial whose in-star contains a

single pair of parallel arcs and has in-degree four or more. We start with a polynomial fj whose in-

star contains exactly four arcs. Its inputs are all ±1 to satisfy the hypotheses of theorem 2.4.2. This

polynomial depends only on three inputs xi1 , xi2 and xi3 so we will write fj(x) = fj(xi1 , xi2 , xi3)

for the following lemma.

Lemma 2.4.6. For σ1, σ2 ∈ {±}, let fj : {0,±1}Cf → {±1} be the component activation polyno-

mial

fj(x) = 1
2(xi3 [σ1xi1(σ1xi1 + 1)(xi3 + 1) + σ2xi2(σ2xi2 + 1)(xi3 − 1)])− 1

= 1
2[(x2

i1 + σ1xi1 − 1)(x2
i3 + xi3) + (x2

i2 + σ2xi2 − 1)(x2
i3 − xi3)] + (x2

i3 − 1)

=


1 σ1xi1 = xi3 = 1 or σ2xi2 = −xi3 = 1

−1 otherwise.

Then:

1. the in-star of fj is {(i1, j, σ1), (i2, j, σ2), (i3, j,+), (i3, j,−)},

2. ∂i3→1fj(xi1 , xi2 ,−1) = + if σ1xi1 = 1 and σ2xi2 = −1,

3. ∂i3→1fj(xi1 , xi2 ,−1) = − ,

4. ∂i1→1fj(−1, xi2 , 1) = σ1,

5. ∂i2→1fj(xi1 ,−1,−1) = σ2.

Proof. There are three parts to the proof. First we will show that the in-star of fj contains the arcs

(i3, j,+) and (i3, j,−). Then we will show that (i1, j, σ1) is the only arc from i1 to j in the in-star

of fj and that (i2, j, σ2) is the only arc from i2 to j in the in-star of fj .

First some useful observations about fj . Notice that

fj(xi1 , xi2 , 1) = 1
2[(x2

i1 + σ1xi1 − 1)(12 + 1) + (x2
i2 + σ2xi2 − 1)(12 − 1)] + (12 − 1)

= x2
i1 + σ1xi1 − 1. (2.9)

If in addition xi1 = ±1, then

fj(xi1 , xi2 , 1) = σ1xi1 . (2.10)

Similarly

fj(xi1 , xi2 ,−1) = x2
i2 + σ2xi2 − 1. (2.11)
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If in addition xi2 = ±1, then

fj(xi1 , xi2 ,−1) = σ2xi2 . (2.12)

So if xi1 = ±1 and xi2 = ±1, by equations (2.10) and (2.12),

∂i3→1fj(xi1 , xi2 ,−1) = sgn[fj(xi1 , xi2 , 1)− fj(xi1 , xi2 ,−1)][1− (−1)]

= sgn[fj(xi1 , xi2 , 1)− fj(xi1 , xi2 ,−1)]

= sgn[σ1xi1 − σ2xi2 ]. (2.13)

Now suppose that σ1xi1 = 1 and σ2xi2 = −1. In particular, this means that xi1 = ±1 and xi2 = ±1.

So by equation (2.13),

∂i3→1fj(xi1 , xi2 ,−1) = sgn[σ1xi1 − σ2xi2 ] = sgn[1− (−1)] = +.

Similarly if σ1xi1 = −1 and σ2xi2 = 1, then

∂i3→1fj(xi1 , xi2 ,−1) = sgn[−1− 1] = −.

Therefore (i3, j,+) and (i3, j,−) are both contained in the in-star of fj .

Next we will show that (i1, j, σ1) is the only arc from i1 to j in the in-star of fj . Con-

sider ∂i1→dfj(a, b, c). Using lemma 2.2.1 we can assume that d > a, so ∂i1→dfj(a, b, c) =

sgn[fj(d, b, c) − fj(a, b, c)][d − a] = sgn[fj(d, b, c) − fj(a, b, c)]. Notice that fj(d, b,−1) =

fj(a, b,−1) by equation (2.11). Also fj(d, b, 0) = fj(a, b, 0) = −1 from the definition of fj ,

so ∂i1→dfj(a, b, c) = 0 if c 6= 1. So we need only consider the case when c = 1. Using equation

(2.9),

∂i1→dfj(a, b, 1) = sgn[fj(d, b, 1)− fj(a, b, 1)]

= sgn[d2 + σ1d− 1− (a2 + σ1a− 1)]

= sgn[(d2 − a2) + σ1(d− a)]

= sgn[(d+ a)(d− a) + σ1(d− a)]

= sgn[(d− a)][d+ a+ σ1(1)].

Since d > a,

∂i1→dfj(a, b, 1) = sgn[(d+ a) + σ1(1)].

Now a, d ∈ {0± 1}, so −1 ≤ (d+ a) ≤ 1. Then (d+ a) + 1 ≥ 0 and (d+ a)− 1 ≤ 0.
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If σ1 = +, then ∂i1→dfj(a, b, 1) = sgn[(d + a) + 1] ≥ 0. If σ1 = −, then ∂i1→dfj(a, b, 1) =

sgn[(d+ a)− 1] ≤ 0. In either case ∂i1→dfj(a, b, 1) is σ1 or 0. Specifically,

∂i1→1fj(−1, b, 1) = sgn[(1 + (−1)) + σ1(1)] = σ1.

Therefore (i1, j, σ1) is the only arc from i1 to j in the in-star of fj .

Using a similar argument, we will show that (i2, j, σ2) is the only arc from i2 to j in the in-star

of fj .

Consider ∂i2→dfj(a, b, c). Using lemma 2.2.1 again we can assume that d > b. It follows that

∂i2→dfj(a, b, c) = sgn[fj(a, d, c) − fj(a, b, c)]. Similarly to before, if c 6= −1, then fj(a, d, c) =

fj(a, b, c), so ∂i2→dfj(a, b, c) = 0. By equation (2.11),

∂i2→dfj(a, b,−1) = sgn[d2 + σ2d− 1− (b2 + σ2b− 1)]

= sgn[(d− b)][d+ b+ σ2(1)]

= sgn[(d+ b) + σ2(1)].

Again −1 ≤ (d+ b) ≤ 1 since b, d ∈ {0,±1}. So (d+ b) + 1 ≥ 0 and (d+ b)− 1 ≤ 0.

If σ2 = +, then ∂i2→dfj(a, b,−1) = sgn[(d+b)+1] ≥ 0. If σ2 = −, then sgn[(d+b)−1] ≤ 0.

Either way ∂i2→dfj(a, b,−1) is σ2 or 0. Specifically,

∂i2→1fj(xi1 ,−1,−1) = sgn[(1 +−1) + σ2(1)] = σ2.

Therefore (i2, j, σ2) is the only arc from i2 to j in the in-star of fj .

Starting with the polynomial in lemma 2.4.6, we can then iteratively apply lemma 2.4.4 to

construct a component activation polynomial fj whose in-star contains

{(i1, j, σ1), (i2, j, σ2), (i3, j,+), (i3, j,−)} and as many additional non-parallel arcs as we wish and

the inputs can be taken exclusively from {±1}. This covers the case when the in-star of j in ∆

contains a single pair of parallel arcs.

Now suppose there are multiple pairs of parallel arcs into j in ∆.

First we start with a polynomial fj whose in-star contains only two pairs of parallel arcs and

whose inputs can be exclusively from {±1}. The polynomial depends only on inputs i and k so we

will write fj(x) = fj(xi, xk) for the purposes of the lemma. Note that Y means exclusive-or.

Lemma 2.4.7. Let fj : {0,±1}Cf → {±1} be a component activation function such that

fj(x) = (1 + xi − x2
i )(1 + xk − x2

k) =


−1 if (xi = −1) Y (xk = −1)

1 otherwise.
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Then:

1. the in-star of fj is {(i, j,+), (i, j,−), (k, j,+), (k, j,−)},

2. ∂i→1fj(−1, 1) = ∂k→1fj(1,−1) = +,

3. ∂i→1fj(−1,−1) = ∂k→1fj(−1,−1) = −.

Proof. Since fj only depends on xi and xk, all we need to do is calculate ∂i→1fj(−1, 1),

∂k→1fj(1,−1), ∂i→1fj(−1,−1), and ∂k→1fj(−1,−1).

∂i→1fj(−1, 1) = sgn[fj(1, 1)− fj(−1, 1)][1− (−1)] = sgn[1− (−1)] = +.

∂k→1fj(1,−1) = sgn[fj(1, 1)− fj(1,−1)][1− (−1)] = sgn[1− (−1)] = +.

∂i→1fj(−1,−1) = sgn[fj(1,−1)− fj(−1,−1)][1− (−1)] = sgn[−1− 1] = −.

∂k→1fj(−1,−1) = sgn[fj(−1, 1)− fj(−1,−1)][1− (−1)] = sgn[−1− 1] = −.

This shows that the in-star of fj is {(i, j,+), (i, j,−), (k, j,+), (k, j,−)}.

Combining lemma 2.4.7 with the next, we will be able to construct a component activation

polynomial fj whose in-star contains more than two pairs of parallel arcs.

Lemma 2.4.8. Let gj : {0,±1}Cg → {±1} be a non-constant component activation function that

does not depend on input i ∈ Cg. Let fj be the component activation function such that Cf = Cg

and

fj(x) = (1 + xi − x2
i )gj(x) =


−1 if (gj(x) = −1) Y (xi = −1)

1 otherwise.

Then the in-star of fj contains T ∪ {(i, j,+), (i, j,−)} where T is the in-star of gj and there are

states x,y ∈ Sf such that xi = yi = −1, ∂i→1fj(x) = + and ∂i→1fj(y) = −. Also, if k ∈ Cf
such that k 6= i and there is no arc from k to j in T , then there are no arcs from k to j in the in-star

of fj .

Proof. To prove this, we have to show that the in-star of fj contains (i, j,+), (i, j,−), and all the

arcs in T .

First let us show that every arc contained in T , the in-star of gj , is also contained in the in-star of

fj . If (k, j, σkj) ∈ T , then there is a state x such that ∂k→agj(x) = σkj . Since gj does not depend

on input iwe may assume that xi = 1. Notice that if xi = 1, then fj(x) = (1+1−1)gj(x) = gj(x).

Therefore ∂k→afj(x) = ∂k→agj(x). So the in-star of fj also contains (k, j, σkj).
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Now let us show that the in-star of fj contains (i, j,+) and (i, j,−). There is a state x such that

gj(x) = 1 since gj is not constant. Since gj does not depend on input i, gj(xi→1) = gj(x) and we

may assume that xi = −1. Putting this into the formula for fj ,

∂i→1fj(x) = sgn[fj(xi→1)− fj(x)][1− (−1)]

= sgn[fj(xi→1)− fj(x)]

= sgn[(1 + 1− 1)gj(xi→1)− (1− 1− 1)gj(x)]

= sgn[gj(x) + gj(x)]

= sgn[1 + 1]

= +.

By a similar argument there is a state y such that gj(y) = −1 since gj is not constant and we may

assume that yi = −1. In this case

∂i→1fj(y) = sgn[fj(yi→1)− fj(y)]

= sgn[(1 + 1− 1)gj(yi→1)− (1− 1− 1)gj(y)]

= sgn[gj(y) + gj(y)]

= sgn[−1− 1]

= −.

Therefore the in-star of fj contains (i, j,+) and (i, j,−) also.

Finally, if k ∈ Cf , and there is no arc from k to j in T , then g(xk→a) = g(x) always since g

does not depend on k. Therefore f(xk→a) = f(x), if k 6= i.

Notice that if gj in lemma 2.4.8 is a polynomial, then fj is also a polynomial.

Now we can apply lemma 2.4.8 iteratively to the polynomial in lemma 2.4.7 to give us a com-

ponent activation polynomial fj whose in-star contains two or more pairs of parallel arcs.

Now while applying lemma 2.4.8, there is the possibility to add an additional arc from k to j in

the in-star of fj if there is already an arc from k to j in the in-star of gj , T . But since the polynomial

in 2.4.7 starts with pairs of parallel arcs, this is not an issue for our purposes since all possible arcs

that could be contained in the in-star of j are present at each step when we iteratively apply lemma

2.4.8 to the polynomial in lemma 2.4.7.

As we have done before, we can then iteratively apply lemma 2.4.4 to construct a component

activation polynomial whose in-star contains as many pairs of parallel arcs as we like and as many
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non-parallel arcs as we like. This covers the case when the in-star of j in ∆ contains multiple

parallel arc pairs. And at last we have covered all possible cases for the proof of the theorem. So

we can indeed construct a component activation polynomial with any desired in-star.

2.4.1 Restricting to Boolean Activation Functions

It is worth noting that if we restrict to Boolean activation functions, then the polynomials used in

the proof of theorem 2.4.2 simplify because if x ∈ {±1}, then x2 = 1. The function in lemma 2.4.4

becomes

fj(x) = 1
2(gj(x) + 1)(σijxi + 1)− 1 = min(gj(x), σijxi).

So if we want a component activation function fj whose in-star is {(i, j, σij) | i ∈ A}, then

fj(x) = mini∈A(σijxi) works in the Boolean case. The function in lemma 2.4.6 becomes

fj(x) = 1
2[σ1xi1(1 + xi3) + σ2xi2(1− xi3)] =


σ1xi1 xi3 = 1

σ2xi2 xi3 = −1.

The function in lemma 2.4.7 becomes fj(x) = xi1xi2 and the function in lemma 2.4.8 becomes

fj(x) = xigj(x). So when lemma 2.4.8 is iteratively applied to the function in lemma 2.4.7, we

just get a product. Specifically, if we want a component activation polynomial fj whose in-star is

{(i, j,+), (i, j,−) | i ∈ A} where A contains at least two vertices, then fj(x) =
∏
i∈A xi will work

in the Boolean case.

2.5 Forbidden Local Interaction Graphs

In this section we will address the same question as in the previous section for local interaction

graphs. That is, for a given signed digraph ∆, when can we find an activation function f and states

x,y ∈ Sf such that If (x,y) = ∆? We will only discuss the first kind of local interaction graphs,

but by proposition 2.2.3, all the results in this section apply to restricted local interaction graphs

too.

The first observation is that for this to be possible, ∆ cannot contain any parallel arcs since

there is a single arc from i to j in If (x,y) if and only if ∂i→yifj(x) is non-zero. It turns out that if

this condition is met, then ∆ is a local interaction graph. Moreover f is at worst ternary.

For a set of vertices W ⊆ V (∆), we can also give a condition for when it is possible to have

|Si| ≤ 2 for all i ∈ W for this activation function. For a vertex j in a signed digraph, if every

arc into j is positive, then call j positive inward-homogeneous. Similarly, if every arc into j is
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negative, call j negative inward-homogeneous. Call j inward-homogeneous if it is either positive,

or negative inward-homogeneous. For W ⊆ V , call W inward-homogeneous if every vertex in W

is inward-homogeneous. We call a signed digraph inward-homogeneous if all of its vertices are

inward-homogeneous.

Theorem 2.5.1. Given a signed digraph ∆ containing no parallel arcs.

1. There are an activation function f and states x,y ∈ Sf such that If (x,y) = ∆.

2. For each j ∈ Cf , Sj can be chosen to be {±1} or {0,±1}.

3. For W ⊆ Cf , there is an activation function f such that |Sj | ≤ 2 for all j ∈ W if and only

if there is ζ ∈ {±}V (∆) such that W is inward-homogeneous in ζ∆.

This theorem has an immediate corollary for Boolean activation functions.

Corollary 2.5.2. A signed digraph ∆ is a local interaction graph of a Boolean activation function

if and only if ∆ contains no parallel arcs and ∆ is switching equivalent to an inward-homogeneous

digraph.

Proof. This is simply part three of theorem 2.5.1 when W = Cf

A natural question arises from this corollary. Given a signed digraph, is there a way to quickly

identify whether it is switching equivalent to an inward-homogeneous digraph or not? As of this

writing, I still have not found a satisfying answer to this question.

Proof of theorem 2.5.1. Let us begin with the first part of the theorem, that for any signed digraph

we can in fact find an appropriate activation function.

We will start with a method of constructing an activation function f such that If (x,y) = ∆ in

a simpler case that also addresses the size of Si for each i ∈ Cf .

Lemma 2.5.3. Let ∆ be a signed digraph that does not contain any parallel arcs. Let W ⊆

V (∆) be inward-homogeneous. Then there are an activation function f and x,y ∈ Sf such that

If (x,y) = ∆ and Si = {±1} if i ∈ W and Si = {0,±1} otherwise.

Proof. We have to find an activation function f such that ∂i→yifj(x) = σij if (i, j, σij) ∈ ∆ and

∂i→yifj(x) = 0 otherwise. To completely determine If (x,y), it will suffice to know the values of

fj(x) and fj(xi→yi) for all i, j ∈ Cf .
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Let x be the state such that xi = −1 for all i ∈ Cf and let yi > xi. If j ∈ W and there are

arcs into j in ∆, let fj(x) = (−1)σj where σj is the sign of all the arcs into j in ∆. Otherwise, let

fj(x) = 1. Let fj(xi→yi) = −fj(x) if there is an arc from i to j in ∆. Under these assumptions,

∂i→yifj(x) = sgn[fj(xi→yi)− fj(x)][yi − xi]

= sgn[−2fj(x)]

= sgn[−fj(x)]

= sgn[−(−1)σj ]

= σj .

Therefore (i, j, σj) is also an arc in If (x,y).

If there is no arc from i to j in ∆, let fj(xi→yi) = fj(x). Then ∂i→yifj(x) = 0 so there is also

no arc from i to j in If (x,y).

Now suppose j /∈ W . In this case we let fj(x) = 0. If (i, j, σij) ∈ ∆, let fj(xi→yi) = (1)σij .

Then

∂i→yifj(x) = sgn[fj(xi→yi)− fj(x)][yi − xi] = sgn[(1)σij − 0] = σij .

Therefore (i, j, σij) ∈ If (x,y).

If there is no arc from i to j in ∆ then let fj(xi→yi) = 0 so that ∂i→yifj(x) = 0 and there is no

arc from i to j in If (x,y).

From here, we can strengthen the result.

Lemma 2.5.4. Given a signed digraph ∆ that contains no parallel arcs, ζ ∈ {±}V (∆) and W ⊆

V (∆) that is inward-homogeneous in ζ∆. Then there are an activation function f and x,y ∈ Sf
such that ∆ = If (x,y), Si = {±1} if i ∈ W and Si = {0,±1} otherwise.

Proof. By lemma 2.5.3, there are an activation function g and x,y ∈ Sg such that Ig(x,y) = ζ∆

and Si = {±1} if i ∈ W and Si = {0,±1} otherwise. Using theorem 2.3.1,

∆ = ζ(ζ∆) = ζIg(x,y) = Igζ (ζx, ζy).

Now let f = gζ . Together with the states ζx and ζy, these states and f satisfy all hypotheses of the

lemma.

So now we know that we can construct an activation function f such that Sj = {±1} for all j

in W ⊆ Cf if there is ζ ∈ {±}Cf such that W is inward-homogeneous in ζ∆.
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For the last part of the theorem, suppose that there are an activation function f and x,y ∈ Sf
such that If (x,y) = ∆ and |Sj | ≤ 2 for all j ∈ W for some W ⊆ Cf . We will construct

ζ ∈ {±}Cf such that W is inward-homogeneous in ζ∆.

First a useful lemma.

Lemma 2.5.5. Given an activation function f and states x,y ∈ Sf such that x ≤ y.

1. If fj(x) ≥ fj(xi→yi) for all i ∈ Cf , then j is negative inward-homogeneous in If (x,y).

2. If fj(x) ≤ fj(xi→yi) for all i ∈ Cf , then j is positive inward-homogeneous in If (x,y).

Proof. If yi = xi, then ∂i→yifj(x) = 0, so suppose that yi > xi. This means that ∂i→yifj(x) =

sgn[fj(xi→yi) − fj(x)]. So if fj(x) ≥ fj(xi→yi), then ∂i→yifj(x) is − or zero. Therefore every

arc into j is negative.

Similarly if fj(x) ≤ fj(xi→yi), then ∂i→yifj(x) is + or zero. So every arc into j is positive in

that case.

The property fj(x) ≥ fj(xi→yi) for all i ∈ Cf , or fj(x) ≤ fj(xi→yi) for all i ∈ Cf is

automatically satisfied if |Sj | ≤ 2. So the next lemma follows immediately from lemma 2.5.5

Lemma 2.5.6. Given an activation function f and states x,y ∈ Sf such that x ≤ y. If |Sj | ≤ 2,

then j is inward-homogeneous in If (x,y).

From here we are ready to show that if |Sj | ≤ 2 for all j ∈ W ⊆ Cf , then there is ζ ∈ {±}Cf

such that j is inward-homogeneous in ζIf (x,y) = Ifζ (ζx, ζy).

Lemma 2.5.7. Given an activation function f and states x,y ∈ Sf . Let W ⊆ Cf be the set of

vertices with the property that |Sj | ≤ 2 if j ∈ W . Let ζ ∈ {±}Cf where ζi = − if and only if

xi > yi. Then W is inward-homogeneous in ζIf (x,y).

Proof. From the definition of ζ , ζixi < ζiyi if ζi = − and ζixi ≤ ζiyi if ζi = +. Therefore

ζx ≤ ζy. Since |Sj | ≤ 2, for any j ∈ W either f ζj (ζx) ≤ f ζj (ζxi→ζiyi) or f ζj (ζx) ≥ fj(ζxi→ζiyi)

for all i ∈ Cf . Therefore j is inward-homogeneous in Ifζ (ζx, ζy). And Ifζ (ζx, ζy) = ζIf (x,y)

by lemma 2.5.6.

So now we can construct ζ ∈ {±}V (∆) as required and so conclude the proof of theorem

2.4.2.
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What if you have a signed digraph ∆ that contains no parallel arcs, but no Boolean activation

function f exists such that If (x,y) = ∆. We know now that there are non-Boolean activation

functions f such that If (x,y) = ∆ by 2.5.1. Among all of these activation functions, which one

is the “most Boolean”? More precisely, among all such activation functions, which one has the

most components such that |Sj | = 2? By theorem 2.5.1, there is an activation function f such that

|Sj | = 2 for all j ∈ W ⊆ V (∆) if and only if there is ζ ∈ {±}V (∆) such that every vertex in

W is inward-homogeneous in ζ∆. So the maximal number of Boolean components an activation

function f such that If (x,y) = ∆ can have is the same as the maximal size of W ⊆ V (∆) such

that, for some ζ ∈ {±}V (∆), every j ∈ W is inward-homogeneous in ζ∆.

2.6 Interaction Graphs of Threshold Activation Functions

Continuing the theme of what kinds of signed digraphs are interaction graphs, in this section we

explore the question for threshold activation functions. This is a kind of activation function has

been used to model real world gene regulatory networks. See for example [3].

A Boolean activation function f : {±1}Cf → {±1}Cf is called a threshold activation function

if for each j ∈ Cf , there is an aj ∈ RCf that defines the output of fj in the following way.

We say the jth component of f tends active when fj(x) = 1 if aj · x ≥ 0 and fj(x) = −1 if

aj · x < 0. Similarly, we say the jth component of f tends inactive when fj(x) = 1 if aj · x > 0

and fj(x) = −1 if aj · x ≤ 0.

Interaction graphs of threshold activation functions have a convenient condition on their arc

signs.

Proposition 2.6.1. Given a threshold activation function f . If the arc (i, j, σij) ∈ If , then σij =

sgn(aji ) where aj defines fj .

Proof. Suppose the arc (i, j, σij) ∈ If . Then σij = ∂i→fj(x) for some state x ∈ Sf . I claim that

sgn[aj · xi→ − aj · x] = sgn[fj(xi→) − fj(x)] in this case. If this is true, our result will follow

because

∂i→fj(x) = sgn[fj(xi→)− fj(x)][−xi − xi]

= sgn[aj · xi→ − aj · x][−2xi]

= sgn[aj · (xi→ − x)][−2xi]

= sgn[aji (−2xi)][−2xi]

= sgn[aji ].

37



To see that sgn[aj ·xi→−aj ·x] = sgn[fj(xi→)−fj(x)], observe that either fj(xi→)−fj(x) < 0,

or fj(xi→)− fj(x) > 0 because ∂i→fj(x) 6= 0.

First suppose that fj(xi→) − fj(x) < 0. So fj(xi→) = −1 and fj(x) = 1. If fj tends active,

then aj ·x ≥ 0 and aj ·xi→ < 0. If fj tends inactive, then aj ·x > 0 and aj ·xi→ ≤ 0. Either way,

aj · xi→ − aj · x < 0. Therefore sgn[aj · xi→ − aj · x] = sgn[fj(xi→)− fj(x)].

Now suppose that fj(xi→) − fj(x) > 0. So fj(xi→) = 1 and fj(x) = −1. If fj tends active,

then aj ·x < 0 and aj ·xi→ ≥ 0. If fj tends inactive, then aj ·x ≤ 0 and aj ·xi→ > 0. Either way,

aj · xi→ − aj · x > 0. Therefore sgn[aj · xi→ − aj · x] = sgn[fj(xi→)− fj(x)] again.

Since sgn[aj · xi→ − aj · x] = sgn[fj(xi→) − fj(x)], the result now follows from our earlier

calculation.

2.6.1 Global Interaction Graphs

Proposition 2.6.1 has an immediate corollary.

Corollary 2.6.2. If f is a threshold activation function, then If contains no parallel arcs.

Proof. Suppose If contains (i, j,+) and (i, j,−). Since (i, j,+) ∈ If , sgn(aji ) = + by proposition

2.6.1. Similarly, since (i, j,−) ∈ If , sgn(aji ) = −, a contradiction. Therefore (i, j,+) and (i, j,−)

cannot both be contained in If .

It turns out that this necessary condition of containing no parallel arcs is also sufficient for a

signed digraph to be the interaction graph of a threshold activation function.

Theorem 2.6.3. A signed digraph is the interaction graph of a threshold activation function f if

and only if it contains no parallel arcs.

Proof. For each j ∈ ∆, we will construct an aj that defines the component threshold activation

function fj such that the in-stars of j in both ∆ and If are the same.

For j ∈ Cf , let P be the set of all vertices in ∆ such that there is a positive arc from each vertex

in P to j. Similarly, let N be the set of all vertices in ∆ such that there is a negative arc from each

vertex in N to j. There are three cases: the in-degree of j is odd, the in-degree of j is even and

greater than two, or the in-degree of j is two. We will show how to construct aj in each of these

cases and show that the in-star of j in If contains every arc in the in-star of j in ∆.

First suppose the in-degree of j is odd. Let aji = 1 if i ∈ P , aji = −1 if i ∈ N and aji = 0

otherwise. This way if (i, j, σij) ∈ ∆, then sgn(aji ) = σij . Let k ∈ P ∪ N . Now since |(P ∪ N)|
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is odd, |(P ∪N) \ k| is even. Since aji is 1 or −1 for all i ∈ P ∪N , as are the values of xi for any

state, there is a state x ∈ Sf such that

∑
i∈(P∪N)\k

ajixi = 0.

You can just alternately add and subtract 1 for example. This works since |(P ∪ N) \ k| is even.

Since aji = 0 for all i outside of P ∪ N , aj · x = ajkxk and aj · xk→ = −ajkxk and these are

non-zero. Therefore ∂k→fj(x) = sgn(ajk) = σij by proposition 2.6.1. Therefore (i, j, σij) ∈ If if

(i, j, σij) ∈ ∆.

Now suppose that the in-degree of j is even and more than 2. We choose m ∈ P ∪ N and let

ajm = 2 if m ∈ P , or ajm = −2 if m ∈ N . For all other i 6= m, let aji = 1 if i ∈ P , aji = −1 if

i ∈ N and aji = 0 otherwise. Again this means that if (i, j, σij) ∈ ∆, then sgn(aji ) = σij . Now let

k ∈ (P ∪N). If k 6= m, then similarly to the odd case, there is a state x ∈ Sf such that

∑
i∈(P∪N)\k

ajixi = 0.

For example, we can first let ajmxm = 2 then subtract 1 twice. This is possible since |(P ∪N)\k| >

2 because P ∪N is even but greater than two. Doing this accounts for three elements of (P ∪N)\k,

leaving us with an even number of elements. Now we can just alternately add and subtract 1 as we

did previously. Therefore aj · x = ajkxk and aj · xk→ = −ajkxk, as before and these are non-zero.

So ∂i→fj(x) = sgn(aji ) by proposition 2.6.1. If k = m, then there is a state x ∈ Sf such that

∑
i∈(P∪N)\m

ajix1 = 1.

Just alternately add and subtract 1 again, which will yield a final total of 1 since |(P ∪ N) \m| is

odd. Therefore aj · x = 1 + ajmxm and aj · xm→ = 1− ajmxm. Since ajm = ±2, one of these is 3

and the other is−1. Therefore fj(x) = −fj(xm→), so ∂m→fj(x) = sgn(ajm) by proposition 2.6.1.

Therefore (i, j, σij) ∈ If if (i, j, σij) ∈ ∆.

If the in-degree of j is 2, then let (i1, j, σ1) and (i2, j, σ2) be the arcs into j. Let aj ∈ RCf

where aji1 = 1 if σ1 = +, aji1 = −1 if σ1 = −, aji2 = 1 if σ2 = +, aji2 = −1 if σ2 = −,

and all other ajk = 0. Now let x ∈ Sf such that aji1xi1 = aji2xi2 = 1. Then aj · x = 2 and

aj · xi1→ = aj · xi2→ = 0. So if fj is the tending inactive component threshold activation function

defined by aj , then fj(x) = 1 and fj(xi1→) = fj(xi2→) = −1. Therefore ∂i1→fj(x) = σ1 and

∂i2→fj(x) = σ2 by proposition 2.6.1. So (i1, j, σ1) and (i2, j, σ2) are arcs in If .
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Finally we have to show that every arc in If is contained in ∆. We will argue the contrapositive

statement. If there is no arc from i to j in ∆, then aji = 0 by definition. By proposition 2.6.1, there

is no arc from i to j in If . Therefore (i, j, σij) ∈ If if and only if (i, j, σ) ∈ ∆.

It is worth pointing out that in order to have the in-degree of a component j be two, then

|aji1 | = |aji2 |. To see this, just observe that if |aji1 | > |a
j
i2
|, and aji1xi1 + aji2xi2 > 0 say, then

aji1xi1 − aji2xi2 > 0 also. This means that fj(x) = fj(xi2→), so ∂i2→fj(x) = 0 for all states.

This is why we had to invoke that the threshold activation function is tending inactive only in the

in-degree two case in the previous theorem whereas this was not required for any other in-degree.

2.6.2 Local Interaction Graphs

What restrictions are there on which signed digraphs are local interaction graphs of threshold acti-

vation functions? That is, if ∆ is a signed digraph, then is there a threshold activation function f

and a state x ∈ Sf such that If (x) = ∆? It turns out that there are no restrictions on fewer than

three components, save for having no parallel arcs and the condition of inward-homogeneity from

theorem 2.5.1.

First consider the case where |Cf | = 1. Then f(x) = x is a threshold activation function where

a = 1. Also, ∂1→f(1) = +. So If (1) consists of a single positive loop. Similarly, f(x) = −x is

a threshold activation function where a = −1, where ∂1→f(1) = −. So If (1) consists of a single

negative loop. And f(x) = 0 is a threshold activation function where a = 0, where ∂1→f(x) = 0.

So If (1) contains no arcs. So every possible graph on a single vertex that does not contain parallel

arcs is the local interaction graph of a threshold activation function.

Now consider the case where |Cf | = 2. Let us say Cf = {1, 2}. By theorem 2.5.1, there

is ζ ∈ {±}2 such that ζ∆ is inward-homogeneous. Let (a, b) define f1. By proposition 2.6.1,

there is no corresponding arc in If (x) into 1 for any state x if a or b is zero. So this gives us a

straightforward way to handle the absence of arcs in ∆.

First suppose that the arcs into 1 in ζ∆ are +. Then let a = 1 if there is an arc from 1 to itself in

∆ and a = 0 otherwise. Similarly, let b = 1 if there is an arc from 2 to 1 in ∆ and b = 0 otherwise. I

claim that if f1 is the tending inactive threshold activation function defined by (a, b), then the in-star

of 1 in If (1, 1) is the same as that in ζ∆. We already know what happens when either a or b is 0,

no corresponding arc. If a = 1, then (a, b) · (1, 1) = a + b ≥ 1 and (a, b) · (−1, 1) = −a + b ≤ 0

since b is 0 or 1. Therefore f1(1, 1) = 1 and f1(−1, 1) = −1 since f1 tends inactive. Therefore

∂1→f1(1, 1) = sgn[f1(−1, 1)−f1(1, 1)][−1−1] = sgn[−1−1][−2] = +. Similarly, if b = 1, then
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(a, b) · (1, 1) = a+ b ≥ 1 and (a, b) · (1,−1) = −a+ b ≤ 0 since a is 0 or 1. Therefore f1(1, 1) = 1

and f1(1,−1) = −1 again. So ∂2→f1(1, 1) = sgn[f1(1,−1)− f1(1, 1)][−1− 1] = + also.

Now suppose that the arcs into 1 in ζ∆ are −. Let a = −1 if there is an arc from 1 to itself

in ∆ and a = 0 otherwise. Similarly, let b = −1 if there is an arc from 2 to 1 in ∆ and b = 0

otherwise. I claim that if f1 is the active tending threshold activation function defined by (a, b),

then the in-star of 1 in If (1, 1) is the same as that in ζ∆. Again, we already know what happens

when either a or b is 0. If a = −1, then (a, b) ·(1, 1) = a+b ≤ −1 and (a, b) ·(−1, 1) = −a+b ≥ 0

since b is 0 or −1. Therefore f1(1, 1) = −1 and f1(−1, 1) = 1 since f1 tends active. Therefore

∂1→f1(1, 1) = sgn[f1(−1, 1)− f1(1, 1)][−1− 1] = sgn[1− (−1)][−2] = −. Similarly, if b = −1,

then (a, b) · (1, 1) = a + b ≤ −1 and (a, b) · (1,−1) = −a + b ≥ 0 since a is 0 or −1. Therefore

f1(1, 1) = −1 and f1(1,−1) = 1 again. So ∂2→f1(1, 1) = sgn[f1(1,−1)− f1(1, 1)][−1− 1] = −

also.

Now f2 can be defined in exactly the same way depending on the sign of the arcs into 2 in ζ∆.

That is, if the arcs into 2 are positive in ζ∆, then let f2 be the tending inactive component threshold

activation function where a = 1 if there is an arc from 2 to 1 in ∆ and a = 0 otherwise, and b = 1

if there is an arc from 2 to itself in ∆ and b = 0 otherwise. If the sign of the arcs into 2 are negative

in ζ∆, then let f2 be the active tending component threshold activation function where a = −1 if

there is an arc from 2 to 1 in ∆ and a = 0 otherwise, and b = −1 if there is an arc from 2 to itself

in ∆ and b = 0 otherwise. Then all calculations for ∂i→f2(1, 1) are the same as before.

So we have shown that If (1, 1) = ζ∆. Therefore ∆ = ζIf (x) = Ifζ (ζx) by theorem 2.3.1.

So we now use the following lemma to finish the argument, which we’ll also need for the case when

∆ has more than two vertices.

Lemma 2.6.4. Let f be a threshold activation function and let λ = (φ, ζ) be a switching isomor-

phism of f . Then fλ is also a threshold activation function.

Proof. I claim that fλ is the same function as the threshold activation function g where gφj is

defined by ζj(λaj) where aj defines fj . If ζj = +, then the tendency of gφj , active or inactive, is

the same as the tendency of fj . If ζj = −, then the tendency of gφj is the opposite of the tendency

of fj . So we just have to show that fλ = g which we will do by showing they always have the same

output on each component.

Since we have to compare dot products in Sf with dot products in Sλf , tho following equation
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will be useful. So for a state x ∈ Sf and aj ∈ RCf ,

aj · x = ζaj · ζx

= φ(ζaj) · φ(ζx)

= λaj · λx (2.14)

First suppose that ζj = +. If fλφj(λx) = 1, then fj(x) = 1 by equation (2.7). If fj tends inactive,

λaj · λx > 0 by equation (2.14). Since ζj = +, gφj also tends inactive and ζj(λaj) · λx > 0.

Therefore gφj(λx) = 1 also. If fj tends active, λaj · λx ≥ 0 by equation (2.14). Since ζj = +,

gφj also tends active and ζj(λaj) · λx ≥ 0. Therefore gφj(λx) = 1 again. If fλφj(λx) = −1,

then fj(x) = −1 by equation (2.7). If fj tends inactive, λaj · λx ≤ 0 by equation (2.14). Since

ζj = +, gφj also tends inactive and ζj(λaj) · λx ≤ 0. Therefore gφj(λx) = −1 also. If fj tends

active, λaj · λx < 0 by equation (2.14). Since ζj = +, gφj also tends active and ζj(λaj) · λx < 0.

Therefore gφj(λx) = −1 again.

Now suppose that ζj = −. If fλφj(λx) = 1, then fj(x) = −1 by equation (2.7). If fj tends

inactive, λaj · λx ≤ 0 by equation (2.14). Since ζj = −, gφj tends active and ζj(λaj) · λx ≥ 0.

Therefore gφj(λx) = 1 also. If fj tends active, λaj · λx < 0 by equation (2.14). Since ζj = −,

gφj tends inactive and ζj(λaj) · λx > 0. Therefore gφj(λx) = 1 again. If fλφj(λx) = −1, then

fj(x) = 1 by equation (2.7). If fj tends inactive, λaj ·λx > 0 by equation (2.14). Since ζj = −, gφj

tends active and ζj(λaj) ·λx < 0. Therefore gφj(λx) = −1 also. If fj tends active, λaj ·λx ≥ 0 by

equation (2.14). Since ζj = −, gφj tends inactive and ζj(λaj) · λx ≤ 0. Therefore gφj(λx) = −1

again.

So we have shown that in all cases, gφj(λx) = fλφj(λx). Therefore fλ is indeed a threshold

activation function.

So every signed digraph on two components that contains no parallel arcs and is switching

equivalent to an inward-homogeneous digraph is a local interaction graph of a threshold activation

function. However, the situation changes when there are more than two components.

Proposition 2.6.5. Let f be a threshold activation function such that n = |Cf | > 2. Then the

in-degree of any component in If (x) is at most n− 1.
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Proof. First observe that

∑
i∈Cf

aj · xi→ = aj ·

∑
i∈Cf

xi→


= aj · ([n− 2]x)

= (n− 2)aj · x (2.15)

Now suppose there is j ∈ Cf in If (x) whose in-degree is n. This means that fj(x) 6= fj(xi→) for

all i ∈ Cf . If for all i ∈ Cf , aj · xi→ > 0, aj · xi→ ≥ 0, aj · xi→ < 0, or aj · xi→ ≤ 0, then by

equation (2.15), aj · x > 0, aj · x ≥ 0, aj · x < 0, or aj · x ≤ 0 respectively. But this means that

fj(x) = fj(xi→) for all i ∈ Cf , so there are no arcs into j in If (x), a contradiction. Therefore the

in-degree of j cannot be n.

It turns out that this is the only additional restriction on local interaction graphs of threshold

activation functions.

Theorem 2.6.6. Given a signed digraph ∆.

1. If ∆ has 1 or 2 vertices, then it is the local interaction graph of a threshold activation

function if and only if it contains no parallel arcs and is switching equivalent to an inward-

homogeneous signed digraph.

2. If ∆ has more than 2 vertices, then it is the local interaction graph of a threshold activation

function if and only if it contains no parallel arcs, is switching equivalent to an inward-

homogeneous signed digraph, and it’s maximum in-degree is (n− 1).

Proof. There is ζ ∈ {±1}Cf such that ζ∆ is inward-homogeneous. For each j ∈ Cf , we will

construct an aj ∈ RCf that defines the component threshold activation function fj with the same

in-star as j in ζ∆.

Let A be the set of all vertices with arcs going to j in ∆. Let the state x = {1}Cf . If A is empty,

then let aj = {0}Cf . This way, the in-star of j is empty in If (x) by proposition 2.6.1. So from

now on, we will assume that A is non-empty.

First suppose every arc into j is positive in ζ∆. Let aji = 1 for all i ∈ A. Now since the

in-degree of j is less than n, there is at least one k ∈ Cf \ A. Let ajk = 1 − |A| and aji = 0 for

all other i ∈ Cf \ (A ∪ k). Observe that aj · x = 1 and aj · xi→ = −1 for all i ∈ A. This means

that fj(x) = 1 and fj(xi→) = −1 for all i ∈ A. So since aji > 0 for all i ∈ A, ∂i→fj(x) = +
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for all i ∈ A by proposition 2.6.1. Now aj · xk→ = 2|A| − 1 > 0 since A is non-empty. So

fj(x) = fj(xk→) = 1. And since aji = 0 for all other i outside of A, fj(x) = fj(xi→) = 1 for all

i ∈ Cf \ A. So ∂i→fj(x) = 0 for all i /∈ A. Therefore If (x) has the same j in-star as ζ∆.

Similarly, if every arc into j is negative in ζ∆, then let aji = −1 for all i ∈ A. Let ajk = |A| − 1

for some k ∈ Cf \ A and aji = 0 for all other i ∈ Cf \ (A ∪ k). Observe that aj · x = −1 and

aj · xi→ = 1 for all i ∈ A. Also, aj · xk→ = 1 − 2|A| < 0. So since aji < 0 for all i ∈ A,

∂i→fj(x) = − for all i ∈ A by proposition 2.6.1. Also, ∂i→fj(x) = 0 for all i /∈ A. Therefore

If (x) has the same j in-star as ζ∆ again.

So we have shown that If (x) = ζ∆. Therefore ∆ = ζIf (x) = Ifζ (ζx) by theorem 2.3.1. So

by lemma 2.6.4, f ζ is also a threshold activation function. Since ∆ = Ifζ (ζx), ∆ is indeed a local

interaction graph of a threshold activation function.
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Chapter 3

Conjectures of René Thomas

3.1 Introduction

In the context of gene regulatory networks, René Thomas introduced two general conjectures in

[7]. The first was that positive feedback in the gene regulatory network is a necessary condition

for multistationarity in the dynamics of gene expression. The second was that negative feedback

in the gene regulatory network is a necessary condition for stable periodicity. Signed directed

graphs are often used as representations of gene regulatory networks. In fact, the main intended

use of interaction graphs is to model gene regulatory networks. We interpret positive and negative

feedback correspond to positive and negative cycles within an interaction graph. What we currently

lack is an interpretation of multistationarity and stable periodicity.

A new directed graph called the state transition graph will be introduced in section 3.2. It will

represent how gene expression levels or the values of components of an activation function can

change over time. Then we will be able to define the features within the state transition graph that

correspond to multistationarity and stable periodicity and relate these features to feedback in the

interaction graph.

Versions of René Thomas’ conjectures have been proved by several authors in different con-

texts. The most relevant version for our discussion is Corollary 1 in [4]. Richard and Comet’s result

uses a less general definition of the state transition graph then we use here however. In subsection

3.3.1, I will present and prove a new version of Thomas’ first conjecture using our more general

definition of the state transition graph, but with a weaker conclusion. Then I show that that Richard

and Comet’s result follows from this version of the Thomas’ first conjecture for a special class of

activation functions that produce the same kind of state transition graphs used in [4].

In [5], Adrien Richard proved a version of the second conjecture. In subsection 3.3.2, I will

present a new proof of Richard’s theorem.
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In [5] and [2], Adrien Richard and others ask a local version of René Thomas’ second conjec-

ture. Is there a Boolean activation function f with no steady states whose local interaction graphs

contain no negative cycles? Paul Ruet gives an example of such an activation function in [6] that

has twelve components. In section 3.4, I will give another example with only eight components.

3.1.1 State Transition Graphs

For an activation function f , we will imagine the elements of Sf as the states of a discrete dynamical

system where f is telling us how the states of the system can change over time. There are a

few different ways to interpret this. For our sake we are interested in a dynamical system where

the values of the components in Cf can only change one at a time. This is called asynchronous

dynamics. More specifically while the system is in state x, the system tends towards f(x). Since

we only allow one component to change at a time, the next state in the system will be xi→fi(x) for

some i ∈ Cf such that fi(x) 6= xi.

Now we give a graphical way to represent this asynchronous dynamical system. Given an

activation function f , the state transition graph of f , denoted Sf is a directed graph derived from

f whose vertex set is Sf . If fi(x) 6= xi, then the arc (x,xi→fi(x)) ∈ Sf . In particular there are no

arcs in Sf between states that differ in more than one coordinate and there are no loops.

For example, let the activation function f(x1, x2) = (1 − x2
2, x2(x1 − 1)/2) where Sf =

{±1} × {0,±1}. A picture of Sf is given in figure 3.1.

The focus of this chapter is relating features of the state transition graph Sf with features in the

interaction graphs If and If (x,y).

It turns out that the state transition graphs of conjugate activation functions are related in a nice

way.

Theorem 3.1.1. If λ = (φ, ζ) is a switching isomorphism of an activation function f , then Sfλ =

φSf , i.e., Sf and Sfλ are isomorphic.

Proof. Suppose the arc (x,xi→fi(x)) ∈ Sf , i.e., fi(x) 6= xi. All we need to do is show that

the arc (λx, λxφi→f
λ
φi(λx)) is also in Sfλ . This is sufficient since λ is an invertible map. Since

λ : Sf → Sfλ is a bijection, λφif(x) 6= λφix if fi(x) 6= xi. But λφif(x) = fλφi(λx) by equation

(2.7), so fλφi(λx) 6= λxφi. Therefore the arc (λx, λxφi→f
λ
φi(λx)) ∈ Sf .
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(−1,−1)

(1,−1) (−1, 0)

(1, 0) (−1, 1)

(1, 1)

Figure 3.1: A state transition graph Sf .

3.2 Attractors

Given a state transition graph Sf . We call A ⊆ Sf an attractor of Sf if A is a terminal strong

component of S. If A contains a single state, then we call A a steady state attractor, or just a

steady state. Otherwise we call A a periodic attractor.

For example in figure 3.1, the attractors are {(1, 0)} and {(−1,−1), (−1, 1)}. The first is a

steady state and the second is a periodic attractor.

If we are interested in how the states of the dynamical system change over time, then attractors

are important. If the system is in a state contained in an attractor, then all future states will also be

in the attractor. Furthermore, from any state in Sf there is a path from that state into an attractor

since attractors are terminal strong components of Sf .

Proposition 3.2.1. There is a dipath into an attractor from any vertex of Sf .

Proof. The proof is by induction on the number of strong components of Sf .

If Sf contains a single connected component, then Sf is strongly connected itself. So the

proposition is true in this case.

Now assume that Sf has k > 1 strong components and that the proposition is true for digraphs

with fewer than k strong components. Let x ∈ Sf . If x is contained in an attractor, then we are

done. So suppose that x is not contained in an attractor. By proposition 1.1.8, x is contained in

some strong component C of Sf . Since C is not an attractor, there is an arc out of C to another

strong component C′ of Sf . Since the initial vertex of this arc is in C, there is a dipath from x to x′,

the terminal vertex of the arc. Therefore there is a dipath from x to x′.
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Now consider S ′ the subgraph of Sf induced by Sf \C. Any strong component of Sf other than

C is also a strong component of S ′. To see this, let y,y′ ∈ Sf \ C be in the same strong component

of Sf . Then there is still a dipath from y to y′ and a dipath from y′ to y in S ′ since it is an induced

subgraph.

This means that S ′ has k − 1 strong components. So by induction, there is a dipath in S ′ from

x′ into an attractor A ⊆ S ′. Combining this dipath with the dipath in Sf from x to x′ yields a

dipath from x to A. All that is left to show is that A is also an attractor in Sf .

As we showed earlier, every strong component of Sf other than C is also a strong component

of S ′. Therefore A is a strong component in Sf . Suppose that A is not an attractor in Sf . Then

there must be an arc fromA into C sinceA is terminal in S ′. But then there would be a dipath from

A to C and a dipath from C to A. This means that A and C are in the same strong component of Sf
which is not the case. Therefore there are no arcs out of A in Sf either. Therefore A is an attractor

in Sf .

It turns out that some structure of the attractors can be related to cycles in the interaction graphs.

3.2.1 Thomas’ Conjectures

A gene regulatory network is a graphical representation of a system of interacting genes. Signed

digraphs are often used as a model of gene regulatory networks. A positive arc from i to j in the

network indicates that changing the expression level of gene i can cause the expression level of gene

j to change in the same way. A negative arc from i to j in the network indicates that changing the

expression level of gene i can cause a contrary change in the expression level of gene j. Interaction

graphs and state transition graphs are used as a model gene regulatory networks and the dynamics

of gene expression respectively. The activation functions gives us a more concrete way to think

about how gene expression levels change over time since we can think of a dynamical system in

state x tending towards state f(x).

In the context of gene regulatory networks, the geneticist René Thomas made two conjectures.

Conjecture 3.2.2 (Conjectures of René Thomas).

1. Positive feedback is a necessary condition for multi-stablility.

2. Negative feedback is a necessary condition for stable periodicity.
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We interpret feedback to mean cycles within the interaction graph of an activation function f .

Multi-stability we interpret to mean the presence of multiple attractors in the state transition graph

of f . Stable periodicity we interpret to mean the presence of periodic attractors contained in the

state transition graph of f .

3.3 Proofs of the Conjectures using Conjugate Activation Functions

For the proofs of our versions of Thomas’ conjectures, we will need restricted versions of a given

activation function. If f is an activation function and the states s, t ∈ Sf , let

[s, t] = {x ∈ Sf | min(si, ti) ≤ xi ≤ max(si, ti)}.

Also, [si, ti] = {a ∈ Si | min(si, ti) ≤ a ≤ max(si, ti)} for and i ∈ Cf . Define [s, t]|f to be the

activation function with the same components as f whose state space is [s, t], where

[s, t]|fi(x) =


fi(x) if fi(x) ∈ [si, ti]

max(si, ti) if fi(x) > max(si, ti)

min(si, ti) if fi(x) < min(si, ti).

(3.1)

How are the interaction graphs of [s, t]|f and f related?

Lemma 3.3.1. Given an activation function f . Let g = [s, t]|f . Then

1. Ig(x,y) is a subgraph of If (x,y)

2. I∗g (x,y) is a subgraph of I∗f (x,y).

Proof. For the first item, all we need to show is that if (i, j, σij) ∈ Ig(x,y), then (i, j, σij) ∈

If (x,y).

If (i, j, σij) ∈ Ig(x,y), then σij = ∂i→yigj(x) = sgn[gj(xi→yi) − gj(x)][yi − xi]. Also,

∂i→yifj(x) = sgn[fj(xi→yi)− fj(x)][yi− xi]. So if we want to see that ∂i→yifj(x) = ∂i→yigj(x),

we need only compare the quantities fj(xi→yi)− fj(x) and gj(xi→yi)− gj(x).

Since σij 6= 0, gj(xi→yi) 6= gj(x). Suppose gj(x) < gj(xi→yi). Since the maximum value of

gj is max(xj , yj), gj(xi→yi) ≤ max(xj , yj). So gj(x) < max(xj , yj). By equation (3.1), either

fj(x) = gj(x), or gj(x) = min(xj , yj) > fj(x). In either case gj(x) ≥ fj(x).

Similarly, g(xi→yi) = f(xi→yi) or g(xi→yi) = max(xi, yi) < f(xi→yi) by equation (3.1). So

g(xi→yi) ≤ fj(xi→yi). Therefore fj(xi→yi) ≥ gj(xi→yi) > gj(x) ≥ fj(x), so sgn[fj(xi→yi) −
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fj(x)] = sgn[gj(xi→yi) − gj(x)]. Therefore ∂i→yifj(x) = ∂i→yigj(x) = σij , so (i, j, σij) ∈

If (x, t).

If instead gj(xi→yi) < gj(x), the same argument with all inequalities reversed shows that

∂i→yifj(x) = ∂i→yigj(x) = σij again. So in either case, (i, j, σij) ∈ If (x,y).

For the second item, I∗g (x,y) = Ig(x,x→
∗y) and I∗f (x,y) = If (x,x→∗y) by proposition

2.2.3. By the first item of this lemma, Ig(x,x→
∗y) is a subgraph of If (x,x→∗y). Therefore

I∗g (x,y) is a subgraph of I∗f (x,y).

Conjugating a restricted activation function behaves as you would expect.

Lemma 3.3.2. Given λ = (φ, ζ), a switching isomorphism of an activation function f and s, t ∈

Sf . If g = [s, t]|f , then gλ = [λs, λt]|fλ.

Proof. A straightforward, if tedious calculation is all that is needed to prove this. We will show

the functions are equal component-wise. Let us start with the right hand side of the equation

gλ = [λs, λt]|fλ. By equation (3.1),

[λx, λy]|fλφi(λx) =


fλφi(λx) if fλφi(λx) ∈ [λφis, λφit]

max(λφis, λφit) if fλφi(λx) > max(λφis, λφit)

min(λφis, λφit) if fλφi(λx) < min(λφis, λφit).

Using equation (2.4),

[λx, λy]|fλφi(λx) =


fλφi(λx) if fλφi(λx) ∈ [ζisi, ζiti]

max(ζisi, ζiti) if fλφi(λx) > max(ζisi, ζiti)

min(ζisi, ζiti) if fλφi(λx) < min(ζisi, ζiti).

And by equation (2.7),

[λx, λy]|fλφi(λx) =


ζifi(x) if ζifi(x) ∈ [ζisi, ζiti]

max(ζisi, ζiti) if ζifi(x) > max(ζisi, ζiti)

min(ζisi, ζiti) if ζifi(x) < min(ζisi, ζiti).

For the left hand side of gλ = [λs, λt]|fλ, gλφi(λx) = ζigi(x) by equation (2.7). Using equation

(3.1),

ζigi(x) =


ζifi(x) if fi(x) ∈ [si, ti]

ζi max(si, ti) if fi(x) > max(si, ti)

ζi min(si, ti) if fi(x) < min(si, ti).
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If ζi = +, then

[λx, λy]|fλφi(λx) =


ζifi(x) if ζifi(x) ∈ [ζisi, ζiti]

max(ζisi, ζiti) if ζifi(x) > max(ζisi, ζiti)

min(ζisi, ζiti) if ζifi(x) < min(ζisi, ζiti).

=


fi(x) if fi(x) ∈ [si, ti]

max(si, ti) if fi(x) > max(si, ti)

min(si, ti) if fi(x) < min(si, ti).

= gi(x)

= ζigi(x)

= gλφi(λx).

If ζi = −, then

[λx, λy]|fλφi(λx) =


−fi(x) if − fi(x) ∈ [−si,−ti]

max(−si,−ti) if − fi(x) > max(−si,−ti)

min(−si,−ti) if − fi(x) < min(−si,−ti)

=


−fi(x) if fi(x) ∈ [si, ti]

max(−si,−ti) if − fi(x) > max(−si,−ti)

min(−si,−ti) if − fi(x) < min(−si,−ti)

=


−fi(x) if fi(x) ∈ [si, ti]

−min(si, ti) if − fi(x) > −min(si, ti)

−max(si, ti) if − fi(x) < −max(si, ti)

=


−fi(x) if fi(x) ∈ [si, ti]

−min(si, ti) if fi(x) < min(si, ti)

−max(si, ti) if fi(x) > max(si, ti)

= −gi(x)

= ζigi(x)

= gλφi(λx).
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In either case, we have shown that gλ = [λs, λt]|fλ.

3.3.1 The First Conjecture

Now for the theorem that will lead to a new version of Thomas’ first conjecture.

Theorem 3.3.3. Let f be an activation function. Suppose there are distinct states x,y ∈ Sf such

that x is a steady state of g = [x,y]|f and g(xi→∗yi) 6= x for all i ∈ W where W = {i ∈ Cg |

xi 6= yi}. Then I∗f (x,y) contains a positive cycle.

Proof. First we will prove a simpler version of the theorem.

Lemma 3.3.4. Let f be an activation function. Suppose that x,y ∈ Sf , x < y, x is a steady state

of g = [x,y]|f and g(xi→∗yi) > x for all i ∈ W where W = {i ∈ Cg | xi 6= yi}. Then I∗f (x,y)

contains a positive cycle whose vertices are in W .

Proof. For i ∈ W , we will first show that there is a positive arc out of i to some other vertex in W .

Since g(xi→∗yi) > x, there is some j ∈ Cg such that gj(xi→
∗yi) > xj . If j /∈ W , then xj = yj .

So gj(xi→
∗yi) = gj(x) = xj since x is a steady state of g. Therefore j ∈ W .

Since yi > xi,

∂i→
∗yigj(x) = sgn[gj(xi→

∗yi)− gj(x)][yi − xi] = sgn[gj(xi→
∗yi)− gj(x)].

Since x is a steady state of g, ∂i→
∗yigj(x) = sgn[gj(xi→

∗yi)− xj ]. And finally, since gj(xi→
∗yi) >

xj , ∂i→
∗yigj(x) = +. Therefore, there is a positive arc from i to j in I∗g (x,y).

Finally, I∗g (x,y) is a subgraph of I∗f (x,y) by lemma 3.3.1. Therefore I∗f (x,y) contains a

positive arc from i to j since I∗g (x,y) does.

Finally, Pick a vertex i1 ∈ W . There is a positive arc out of i1 to a new vertex i2 in W . Since

i2 ∈ W , there is a positive arc from i2 to i3 ∈ W , and so on. Repeating this creates a sequence

of vertices. Since W is finite, there is a first repeated vertex ik in this sequence. Following the

vertices from the first occurrence of ik in the sequence until it repeats closes a positive cycle in

I∗f (x,y).

Back to the proof of theorem 3.3.3. The idea is to apply lemma 3.3.4 to f ζ , a conjugate acti-

vation function of f . Since I∗f (x,y) and I∗fζ (ζx, ζy) are switching isomorphic by theorem 2.3.1,

I∗f (x,y) will contain a positive cycle because I∗fζ (ζx, ζy) contains a positive cycle by lemma 3.3.4.

Let ζ ∈ {±}Cf such that ζi = + if xi ≤ yi and ζi = − otherwise. We have to show that f ζ

together with the states ζx and ζy satisfy all three hypotheses of lemma 3.3.4.
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By the definition of ζ , ζixi ≤ ζiyi for all i ∈ Cf . Therefore ζx < ζy since x 6= y. So the first

hypothesis of lemma 3.3.4 is satisfied.

For the next hypothesis, we have to show that ζx is a steady state of [ζx, ζy]|f ζ . By lemma

3.3.2, [ζx, ζy]|f ζ = gζ . By equation 2.6, gζ(ζx) = ζg(x). Since x is a steady state of g, gζ(ζx) =

ζx. Therefore ζx is a steady state of gζ .

Finally, we have to show that gζ([ζx]i→∗ζiyi) > ζx for all i ∈ W . We know that g(xi→∗yi) 6=

x for all i ∈ W by assumption. So ζx 6= ζg(xi→∗yi). Using equation (2.3), ζg(xi→∗yi) =

ζg(xi→zi) where z = x→∗y. Using equation (2.6), ζg(xi→zi) = gζ(ζ[xi→zi ]). Then gζ(ζ[xi→zi ]) =

gζ([ζx]i→ζizi) by lemma 2.3.2. Since ζz = z′ where z′ = [ζx]→∗ζy by lemma 2.3.3, z′i = ζizi.

So gζ([ζx]i→ζizi) = gζ([ζx]i→z′i) = gζ([ζx]i→∗ζiyi) by equation (2.3). Therefore gζ([ζx]i→∗ζiyi) =

ζg(xi→∗yi). Since ζx 6= ζg(xi→∗yi), gζ([ζx]i→∗ζiyi) 6= ζx. Now by the definition of ζ , ζx is

the minimum state in [ζx, ζy]. Therefore gζ([ζx]i→∗ζiyi) > ζx since gζ([ζx]i→∗ζiyi) 6= ζx, and

gζ([ζx]i→∗ζiyi) ∈ [ζx, ζy].

We can now apply lemma 3.3.4 to f ζ and the states ζx and ζy. Therefore I∗fζ (ζx, ζy) contains

a positive cycle. Since I∗fζ (ζx, ζ,y) and I∗f (x,y) are switching isomorphic by theorem 2.3.1,

I∗f (x,y) must also contain a positive cycle.

With this theorem, we can now prove a new version of Thomas’ first conjecture.

Theorem 3.3.5 (Thomas’ First conjecture). If an activation function f has at least two steady

states, then there exist states x,y ∈ Sf such that I∗f (x,y) contains a positive cycle.

Proof. If z and y are distinct steady states of f , then z and y are also steady states of [z,y]|f . So

pairs of distinct states x and y such that x is a steady state of [x,y]|f certainly exist.

Among all such pairs, there is a pair of states that are closest. So let us assume that among all

pairs of distinct states (x,y) such that x is a steady state of g = [x,y]|f , |x,y| is minimum. Let

W = {i ∈ Cg | xi 6= yi}. It turns out that with these assumptions, g(xi→∗yi) 6= x for all i ∈ W . So

we can apply theorem 3.3.3 to get our result.

Let z = xi→∗yi and g′ = [z,y]|f . It is possible that z = y. In this case, g(xi→∗yi) = g(y) = y

since y is a steady state of g. So g(xi→∗yi) 6= x for all i ∈ W since x and y only differ in the ith

component. So theorem 3.3.3 applies in this case.

Now suppose that z 6= y, i.e., z and y are distinct. If xi < yi, then by equation (3.1),

f(xi→∗yi) ≤ xi since gi(z) = xi. So fi(z) < zi. Similarly if xi > yi, then fi(z) > xi. In
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either case, g′i(z) = zi by equation (3.1). For j ∈ W different from i, again using equation (3.1),

g′j(z) =


fj(z) if fj(z) ∈ [zj , yj ]

max(zj , yj) if fj(z) > max(zj , yj)

min(zj , yj) if fj(z) < min(zj , yj)

=


fj(z) if fj(z) ∈ [xj , yj ]

max(xj , yj) if fj(z) > max(xj , yj)

min(xj , yj) if fj(z) < min(xj , yj)

= gj(z)

= xj .

Therefore z is a steady state of g′. However, |z,y| = |xi→∗yi ,y| < |x,y|. This contradicts our

assumption that among all distinct pairs of states (x,y) such that x is a steady state of g = [x,y]|f ,

|x,y| is minimal. Therefore g(xi→∗yi) 6= x for all i ∈ W . Now we can apply theorem 3.3.3 to f , x

and y to get our result.

Call an activation function f unitary if for all states x ∈ Sf and i ∈ Cf , either fi(x) m xi,

fi(x) l xi or fi(x) = xi. So if f is unitary and (x,xi→a) ∈ Sf , then a m xi, or a l xi since

a = fi(x) and fi(x)mxi or fi(x)lxi. So the state transition graphs of unitary activation functions

are the same as those used in [4]. If we restrict to unitary activation functions, then corollary 1 in

[4] follows from corollary 3.3.5.

Corollary 3.3.6. Given a unitary activation function f . If Sf contains at least two attractors, then

there are states x,y ∈ Sf such that I∗f (x,y) contains a positive cycle.

Proof. Let A and B be attractors in Sf . Let s ∈ A and t ∈ B be as close as possible, i.e., |s, t| is

minimum. Let g = [s, t]|f . I claim that s and t are steady states of g. If this is true, then we can

apply corollary 3.3.5 to g. Our result will then follow since I∗g (x,y) is a subgraph of I∗f (x,y) by

lemma 3.3.1.

First, we will show that s is a steady state of g. The situation of s and t is symmetric, so the

same argument shows t is also a steady state of g.

Suppose that gi(s) 6= si for some i ∈ Cg. This means that si 6= ti since gi(s) = si by equation

(3.1) otherwise. Now gi(s) ∈ [si, ti] by equation (3.1) also. Suppose that si < ti. Since f is

unitary, fi(s) m si since gi(s) = si otherwise. Similarly, if si > ti, then fi(s) l si. In either
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−1 0 1

Figure 3.2: S−x has two attractors, but I−x contains no positive cycle.

case, fi(s) ∈ [si, ti]. Therefore fi(s) = gi(s) by equation (3.1). Since gi(s) 6= si, fi(s) 6= si

also. Therefore the arc (s, si→fi(s)) ∈ Sf . So the state si→fi(s) ∈ A. But |si→fi(s), t| < |s, t|, a

contradiction since s and t were chosen to be closest. Therefore gi(s) = si for all i ∈ Cg, i.e., s is

a steady state of g.

By symmetry, the same argument shows that t is a steady state of g. So g has at least two

steady states. Therefore, there exist states x,y ∈ Sg such that I∗g (x,y) contains a positive cycle

by corollary 3.3.5. Finally, I∗g (x,y) is a subgraph of I∗f (x,y) by lemma 3.3.1, so I∗f (x,y) also

contains a positive cycle.

You may ask whether unitary activation functions are required for corollary 3.3.6 to be true.

It turns out that this version of Thomas’ first conjecture is not true in general. To see this, let

f(x) = −x where Sf = {0,±1}. Then Sf contains the two attractors {−1, 1} and {0}. This can

be seen in figure 3.2. But

∂i→af(x) = sgn[f(a)− f(x)][a− x] = sgn[−a+ x][a− x] = − sgn[a− x]2 = −.

So If consists of a single vertex and a single negative loop. So no local interaction graph of f can

contain a positive cycle. However, this does not contradict corollary 3.3.5 since Sf does not contain

multiple steady states.

3.3.2 The Second Conjecture

Theorem 1 in [5] proves that a negative cycle in the interaction graph If is a necessary condition

for Sf to contain a periodic attractor. What follows is my own new proof of the theorem using

techniques I have developed.

Theorem 3.3.7. If Sf contains a periodic attractor, then If contains a negative cycle.

Proof. I will prove the contrapositive statement.

Lemma 3.3.8. If If is cycle-balanced, then every attractor in Sf is a steady state.
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Proof. We will prove several weaker intermediate versions of the lemma on our way to the final

version. We begin with a result about positive interaction graphs.

Lemma 3.3.9. Given an activation function f such that every arc in If is positive. If x,y ∈ Sf
and x ≤ y, then f(x) ≤ f(y), i.e., f is isotone.

Proof. We proceed by induction on |x,y|.

If |x,y| = 1 then y = xi→a for some i ∈ Cf . Since every arc in If is positive, ∂i→afj(x) =

sgn[fj(xi→a)− fj(x)][a−xi] ≥ 0 for any j ∈ Cf . Now y > x, so a > xi. Therefore ∂i→afj(x) =

sgn[fj(xi→a) − fj(x)], so fj(xi→a) ≥ fj(x). This is true for all j ∈ Cf , so f(xi→a) ≥ f(x) i.e.,

f(y) ≥ f(x).

Now suppose |x,y| = k and that the lemma is true when the distance is less than k. Say x and

y differ in the ith coordinate. Since y > x, yi > xi. But |y,xi→yi | = k−1 since |x,y| = k. By the

induction hypothesis, f(y) ≥ f(xi→yi). Since f(xi→yi) ≥ f(x) by the first step of the induction,

it follows that f(y) ≥ f(x).

We are now ready to prove the weakest version of lemma 3.3.8.

Lemma 3.3.10. If every arc in If is positive, then every attractor in Sf is a steady state.

Proof. Let A be an attractor in Sf and let x be a maximal state in A. I claim that f(x) ≤ x.

To see this, suppose that fj(x) > xj for some j ∈ Cf . So (x,xj→fj(x)) ∈ Sf . This means that

xj→fj(x) ∈ A. But xj→fj(x) > x. Since x is a maximal state in A, xj→fj(x) cannot be contained in

A. Therefore fj(x) ≤ xj . Since this is true for each component of f , it follows that f(x) ≤ x.

Now suppose that x is not a steady state. So f(x) < x. In particular, fi(x) < xi for some

i ∈ Cf . This means that there is an arc (x,x′) ∈ Sf where x′ = xi→fi(x) and x′ ∈ A.

I claim that there is no directed path from x′ back to x, a contradiction since x ∈ A. To prove

the claim, I will show that if y is any state such that there is a directed path from x′ to y in Sf , then

yi < xi.

Let y and z be consecutive states in a dipath in Sf that starts at x′ where y < x and yi < xi

in particular. I claim that this implies that z < x and zi < xi also. Since y < x, f(y) ≤ f(x) by

lemma 3.3.9. This means fi(y) ≤ fi(x) < xi.

The arc (y, z) ∈ Sf , so z = yj→fj(y) for some j ∈ Cf . If j = i, then zi = fi(y) < xi. If

j 6= i, then zi = yi < xi. Either way zi < xi. Also, since y < x and fj(y) ≤ fj(x) ≤ xj ,

z = yj→fj(y) ≤ x. So z < x and zi < xi in particular, establishing the claim.
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Now for the proof of this lemma, we are assuming that x′ < x and x′i < xi. So for any state y

such that there is a directed path from x′ to y in Sf , it follows by the argument above that yi < xi

since this property holds for consecutive states in such a dipath. Therefore there is no directed path

from x′ to x. This cannot happen since x ∈ A. Therefore f(x) = x, so A = {x} is a steady

state.

This lemma can be immediately improved.

Lemma 3.3.11. If If is balanced, then every attractor in Sf is a steady state.

Proof. By theorem 1.3.2, there is ζ such that every arc in ζIf is positive. By corollary 2.3.1,

ζIf = Ifζ . Therefore every attractor in Sfζ is a steady state by lemma 3.3.10. By theorem 3.1.1,

Sfζ and Sf are isomorphic, so every attractor in Sf is also a steady state.

We are now ready to tackle the final version of lemma 3.3.8. There are two cases, If is strongly

connected, or not. In the former case, we can use the following result.

Lemma 3.3.12 ([1, Corollary 13.11a]). A strongly connected signed digraph is cycle-balanced if

and only if it is balanced.

So if If is strongly connected, it is balanced by lemma 3.3.12 since it is cycle-balanced. Then

all attractors in Sf are steady states by lemma 3.3.11.

Suppose If is not strongly connected. Let f be an activation function whose interaction graph

is cycle-balanced and not strongly connected, and such that Sf contains periodic attractors. In

addition, suppose that among all activation functions with these properties, |Sf | is minimum. We

will show that from any state in an attractorA of f , there is a dipath to a steady state of f . This will

mean that the attractor must have been a steady state to begin with.

We will use a special kind of restricted activation function for the remainder of the proof. Given

an activation function f , x ∈ Sf and W ⊆ Cf . Let s ∈ Sf such that si = minSi for i ∈ W and

si = xi otherwise. Let t ∈ Sf such that ti = max Si for i ∈ W and ti = xi otherwise. Similar to

equation (3.1), define

[W,x]|f := [s, t]|f. (3.2)

Lemma 3.3.13. Given an activation function f , x ∈ Sf and W ⊆ Cf . If g = [W,x]|f , then

Sg ⊆ Sf .
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Proof. Suppose the arc (y,yi→a) ∈ Sg, i.e., gi(y) = a. Note that i /∈ W , then a = xi = yi since

there is only one possible output of gi in this case. So there would be no arc if this were the case.

Therefore i ∈ W . By equation (3.1), gi(y) = fi(y) since si and ti are the minimum and maximum

values of Si respectively. Therefore fi(y) = a, so (y,yi→a) ∈ Sf also.

Now let A be an attractor of f , x be a state in A, and let W be an initial strong component

of If . Let g = [W,x]|f . By lemma 3.3.1, Ig is a subgraph of If . For this particular activation

function g, we can actually say more than this.

First, observe that for all j ∈ W , fj depends only on inputs in W . To see this, let j ∈ W . If

k /∈ W , there is no arc from k to j in If since W is an initial strong component. Therefore

∂k→afj(x) = sgn[fj(xk→a)− fj(x)][a− xk] = 0.

If xk 6= a, fj(xk→a) − fj(x) = 0, so fj(xk→a) = fj(x). So fj does not depend on inputs outside

of W .

Now suppose (i, j, σij) ∈ If where i, j ∈ W . So there is y ∈ Sf such that ∂i→afj(y) = σij .

Let z ∈ Sf such that zk = yk for all k ∈ W and zk = xk otherwise. Since fj only depends on

inputs from W ,

∂i→afj(y) = sgn[fj(yi→a)− fj(y)][yi − a]

= sgn[fj(zi→a)− fj(z)][zi − a]

= sgn[gj(zi→a)− gj(z)][zi − a]

= ∂i→agj(z).

Therefore Ig contains every arc between vertices in W that is in If . So the subgraph of Ig on W is

actually the induced subgraph of If on W .

Since W is a strong component of If , the subgraph of Ig on W is strongly connected. Since

Ig is cycle-balanced, this strong component of Ig is balanced by 3.3.12. Since the components in

Cg \W can take only a single value, there are no arcs to or from these vertices in Ig, i.e., they are

all isolated vertices. Therefore Ig is balanced. So all attractors in Sg are steady states by lemma

3.3.11. Therefore, there is a dipath P1 from x to the steady state x′ in Sg by lemma 3.2.1.

Now let g′ = [Cf \W,x′]|f . By lemma 3.3.1 again, Ig′ is a subgraph of If . So Ig′ is cycle-

balanced. Now if Ig′ is strongly connected, then it is balanced by lemma 3.3.12. So all attractors

of g′ are steady states by lemma 3.3.11. If Ig′ is not strongly connected, then g′ is an activation

function whose interaction graph is cycle-balanced and not strongly connected such that |Sg′ | <
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|Sf |. Therefore all attractors of g′ are steady states by the minimality of f . Either way, there is a

dipath P2 in Sg′ from x′ to x′′, a steady state of g′.

I claim that x′′ is a steady state of f . To see this, Let k ∈ W . Since there is only one possible

value for the components of g′ in W , x′′k = x′k. Now fk depends only on inputs in W , so fk(x′′) =

fk(x′). By the definition of g, fk(x′) = gk(x′). Since x′ is a steady state of g, gk(x′) = x′k = x′′k.

Therefore fk(x′′) = x′′k.

If instead k /∈ W , then g′k(x′′) = x′′k since x′′ is a steady state of g′. But g′k(x′′) = fk(x) by the

definition of g, so fk(x′′) = x′′k in this case also. Therefore x′′ is indeed a steady state of f .

Finally, by lemma 3.3.13, P1 and P2 are also contained in Sf . Therefore P1 ∪ P2 ⊂ Sf is a

dipath from x to x′′, a steady state of f . Remember that we assumed x is contained in the attractor

A ⊆ Sf . The only way it is possible for there to be a path from a state in an attractor to a steady

state is if A is a steady state to begin with. Therefore all attractors in Sf are steady states.

This completes the proof of the contrapositive statement of theorem 3.3.7.

3.4 The Local Version of the Second Conjecture

3.4.1 A Boolean Counterexample

In [5], Adrian Richard proves the following.

Theorem 3.4.1 ([5, Corollary 1]). If an activation function f has no steady states, then If contains

a negative cycle.

Adrian Richard then asks a natural follow-up question. If an activation function f has no steady

states, are there states x,y ∈ Sf such that the local interaction graph If (x,y) contains a negative

cycle? Put another way, if every local interaction graph of f is cycle-balanced, must f have a steady

state? A non-Boolean counterexample to this question is given in example 6 in [5]. However the

question was left open in the boolean case, i.e., when each component of f can takes only two

values. The boolean version of the question is also asked in [2]. In [6], Paul Ruet gives a Boolean

counterexample on twelve components. I will now present another Boolean activation function that

has no steady states and for which every local interaction graph is cycle-balanced, but on only eight

components. I suspect that there are no counter examples on fewer components, but I have not been

able to prove this yet.
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For this activation function f , Cf = [8] := {1, 2, . . . , 8}, Si = {±1} and Sf = {±1}8.

Since the activation function is boolean and has eight components, it has 256 local interaction

graphs. Deriving each of these would be impractical so we will develop some tools to streamline

the presentation.

Given an activation function f and λ, a signed permutation of Cf such that λSf = Sf . We say

that λ commutes with f if f(λx) = λf(x) for all states x ∈ Sf . Note that λx ∈ Sf since λSf = Sf .

So f(λx) makes sense here.

Lemma 3.4.2. Let f be an activation function and let λ be a signed permutation of Cf such that

λSf = Sf . If f commutes with λ, then If (λx, λy) = λIf (x,y), i.e., If (x,y) and If (λx, λy) are

switching isomorphic.

Proof. We use the conjugate activation function fλ. Under these hypotheses, f = fλ. To see this

we use equation 2.6.

f(x) = f(λλ−1x)

= λf(λ−1x)

= fλ(λλ−1x)

= fλ(x).

Note that f(λ−1x) makes sense since λ−1x ∈ Sf because λSf = Sf . Since f = fλ, by lemma

2.3.1,

If (λx, λy) = Ifλ(λx, λy)

= λIf (x,y).

So If (λx, λy) and If (x, λy) are switching isomorphic.

So in the presentation of this counterexample, we will have a group Γ of signed permutations

of [8] such that every element of Γ commutes with our activation function f . If If (x) is cycle-

balanced, then the local interaction graph of any state in the orbit of x is also cycle-balanced by

lemma 3.4.2. So we need only pick a set of distinct orbit representatives and check whether the

local interaction graphs at each representative state is cycle-balanced. The action of Γ on {±1}n

will have eight orbits. So we will only have to check eight local interaction graphs instead of 256.

Before we can put this plan into action, we have to address how multiplication works in the

signed permutation group based on our definitions. Recall definition (2.5) which defines how a

60



switching isomorphism of an activation function f transforms states of f . The set of signed permu-

tations of f forms a group with group product being composition. But how does this composition

work? Let λ1 = (ζ1, π1) and λ2 = (ζ2, π2) be signed permutations of an activation function f .

Using equation (2.5) several times,

λ2(λ1x) = λ2(π1[ζ1x])

= π2(ζ2π1[ζ1x])

= π2(π1π
−1
1 )(ζ2π1[ζ1x])

= π2π1[π−1
1 (ζ2π1[ζ1x])]

= π2π1[(π−1
1 , ζ2)π1(ζ1x)]

= π2π1[(π−1
1 ζ2)(π−1

1 π1[ζ1x])]

= π2π1[(π−1
1 ζ2)ζ1x]

= (π2π1, (π−1
1 ζ2)ζ1)x.

So we have shown that for elements of the signed permutation group,

λ2λ1 = (π2, ζ
2)(π1, ζ

1) = (π2π1, (π−1
1 ζ2)ζ1). (3.3)

The identity element of the group is e = (π0, {+}Cf ) where π0 is the identity permutation. What

about inverses? Using equation (3.3),

(π−1, πζ)(π, ζ) = (π−1π, [π−1πζ]ζ)

= (π0, ζζ)

= e.

Similarly (π, ζ)(π−1, πζ, ) = e, so (ζ, π)−1 = (πζ, π−1).

Here is a useful formula for powers in this group.

Lemma 3.4.3. If λ = (π, ζ, ) is a signed permutation, then

λn =
(
πn,

n∏
i=1

(π1−iζ)
)
.
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Proof. The proof is by induction. The formula is valid for n = 1 since

λ1 = (π1,
1∏
i=1

π1−iζ)

= (π, π0ζ)

= (π, ζ)

= λ.

Now suppose that the formula is true for n < k. Using equation (3.3),

λk = λλk−1

= (π, ζ)
(
πk−1,

k−1∏
i=1

π1−iζ

)

=
(
ππk−1, π−(k−1)ζ

k−1∏
i=1

π1−iζ

)

=
(
πk, π1−kζ

k−1∏
i=1

π1−iζ

)

=
(
πk,

k∏
i=1

π1−iζ

)
.

Therefore the formula is also true for k. So the formula is valid for all n by induction.

Let Γ = 〈λ, ζ〉, the group generated by ζ = (−,+,−,+,−,+,−,+) and λ = [π, ζ ′] =

[(1 2 3 4 5 6 7 8), (+,+,+,+,+,+,+,−)]. Note that for π we are using the cycle notation for

permutations. The group Γ will commute with our activation function. So it demands some detailed

analysis. We will show that this group has order 32 and its action on {±1}8 is free.

Let us first show that the order of Γ is 32. By equation (2.4), πjx = xπ−1j . It follows that

π(x1, x2, x3, x4, x5, x6, x7, x8) = (x8, x1, x2, x3, x4, x5, x6, x7). For powers of λ, using lemma

3.4.3,

λ2 = [π2, (π−1ζ ′)ζ ′]

= [π2, (+,+,+,+,+,+,−,+)ζ ′]

= [π2, (+,+,+,+,+,+,−,−)].

62



Similarly, for the remaining powers,

λ3 = [π3, (+,+,+,+,+,−,−,−)]

λ4 = [π4, (+,+,+,+,−,−,−,−)]

λ5 = [π5, (+,+,+,−,−,−,−,−)]

λ6 = [π6, (+,+,−,−,−,−,−,−)]

λ7 = [π7, (+,−,−,−,−,−,−,−)]

λ8 = (−,−,−,−,−,−,−,−)

So λ16 is the identity, i.e the order of λ is 16. By equation (3.3),

ζλ = [π, (π−1ζ)ζ ′]

= [π, ζ ′](π−1ζ)

= λ(+,−,+,−,+,−,+,−)

= λ(−,−,−,−,−,−,−,−)(−,+,−,+,−,+,−,+)

= λλ8ζ

= λ9ζ.

So each γ ∈ Γ can be written in the form λnζm for n ∈ [16] and m = 0, 1 since ζ has order 2.

Therefore |Γ| = 32.

It turns out that the action of Γ on Sf is free. So when Γ acts on Sf , each orbit of Γ will contains

thirty two states. Since |Sf | = 256 = 32 × 8, there are eight orbits in total. We will need a set of

distinct representative states for the orbits of Γ. I claim that the following states will forms a set of

distinct representatives.
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x1 = (1, 1, 1, 1, 1, 1, 1, 1)

x2 = (1,−1, 1, 1, 1, 1, 1, 1)

x3 = (1, 1,−1, 1, 1, 1, 1, 1)

x4 = (1, 1, 1,−1, 1, 1, 1, 1)

x5 = (1, 1, 1, 1,−1, 1, 1, 1)

x6 = (1, 1, 1, 1, 1,−1, 1, 1)

x7 = (1, 1,−1,−1, 1, 1, 1, 1)

x8 = (1, 1,−1, 1, 1,−1, 1, 1)

To show that {x1, . . . ,x8} forms a set of distinct representatives, we just look at each set of

states {γxi | γ ∈ Γ, i ∈ [8]} and confirm that these sets partition Sf into eight blocks, each

containing 32 states. This will also show that this group action is free. The orbit of x1 is given in

table 3.4.1. It occupies half a page of space, so four pages are needed to print each orbit. So to

confirm that we have a set of distinct orbit representatives and that the action of Γ on Sf is free,

we just to check that each table contains 32 distinct states and that there is no overlap between the

tables. Easy! But in the interest of the readers eyes and the Amazon rain forest, or server space

more likely, let us try to be more concise.

For x ∈ Sf , since ζ = (−,+,−,+,−,+,−,+) ∈ Γ, either x7 = 1 or (ζx)7 = 1. Similarly

ζλ8 = (+,−,+,−,+,−,+,−) ∈ Γ, so either x8 = 1 or (ζλ8x)8 = 1. So each state in Sf is

equivalent to a state x such that x7 = x8 = 1 under the action of Γ. So we do not need to include

states whose seventh of eighth coordinates are negative in the table.

To save even more space, we will use the following function. For x ∈ Sf , let N(x) = {i |

xi = −1}. If we exclude states whose seventh or eight coordinate is negative, N(x) ⊆ [6]. Table

3.2 contains each orbit of Γ where N(λnx) is represented by N(λnx), N(ζλnx), N(λn+8x) or

N(ζλn+8x), depending on which one is a subset of [6]. As you can see, the table contains every

subset of [6] and there is no overlap between the rows. This justifies that {x1, . . . ,x8} forms a set

of distinct representatives and that the action of Γ on Sf is free.

Now we are ready to define the activation function f itself. The first defining property of f is

that it commutes with Γ. Now every state y = γxi for some γ ∈ Γ and orbit representative xi.

Since f commutes with Γ, f(y) = f [γxi] = γf(xi). So to completely define f , we only need to

specify the outputs of f on each orbit representative. This will determine the output of f on every
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n λnx1 λnζx1

0 (1, 1, 1, 1, 1, 1, 1, 1) (−1, 1,−1, 1,−1, 1,−1, 1)
1 (−1, 1, 1, 1, 1, 1, 1, 1) (−1,−1, 1,−1, 1,−1, 1,−1)
2 (−1,−1, 1, 1, 1, 1, 1, 1) (1,−1,−1, 1,−1, 1,−1, 1)
3 (−1,−1,−1, 1, 1, 1, 1, 1) (−1, 1,−1,−1, 1,−1, 1,−1)
4 (−1,−1,−1,−1, 1, 1, 1, 1) (1,−1, 1,−1,−1, 1,−1, 1)
5 (−1,−1,−1,−1,−1, 1, 1, 1) (−1, 1,−1, 1,−1,−1, 1,−1)
6 (−1,−1,−1,−1,−1,−1, 1, 1) (1,−1, 1,−1, 1,−1,−1, 1)
7 (−1,−1,−1,−1,−1,−1,−1, 1) (−1, 1,−1, 1,−1, 1,−1,−1)
8 (−1,−1,−1,−1,−1,−1,−1,−1) (1,−1, 1,−1, 1,−1, 1,−1)
9 (1,−1,−1,−1,−1,−1,−1,−1) (1, 1,−1, 1,−1, 1,−1, 1)
10 (1, 1,−1,−1,−1,−1,−1,−1) (−1, 1, 1,−1, 1,−1, 1,−1)
11 (1, 1, 1,−1,−1,−1,−1,−1) (1,−1, 1, 1,−1, 1,−1, 1)
12 (1, 1, 1, 1,−1,−1,−1,−1) (−1, 1,−1, 1, 1,−1, 1,−1)
13 (1, 1, 1, 1, 1,−1,−1,−1) (1,−1, 1,−1, 1, 1,−1, 1)
14 (1, 1, 1, 1, 1, 1,−1,−1) (−1, 1,−1, 1,−1, 1, 1,−1)
15 (1, 1, 1, 1, 1, 1, 1,−1) (1,−1, 1,−1, 1,−1, 1, 1)

Table 3.1: Orbit of x1

i N (xi) N(λxi) N
(
λ2xi

)
N(λ3xi) N(λ4xi) N(λ5xi) N(λ6x) N(λ7xi)

1 {} {1} {1, 2} {1, 2, 3} {1, 2, 3, 4} {1, 2, 3, 4, 5} {1, 2, 3, 4, 5, 6} {2, 4, 6}
2 {2} {1, 3} {1, 2, 4} {1, 2, 3, 5} {1, 2, 3, 4, 6} {2, 4} {1, 3, 5} {1, 2, 4, 6}
3 {3} {1, 4} {1, 2, 5} {1, 2, 3, 6} {2, 4, 5} {1, 3, 5, 6} {2, 3, 4, 5, 6} {4, 6}
4 {4} {1, 5} {1, 2, 6} {2, 5} {1, 3, 6} {2, 3, 4, 5} {1, 3, 4, 5, 6} {2, 3, 4, 6}
5 {5} {1, 6} {2, 3, 5} {1, 3, 4, 6} {2, 3, 4} {1, 3, 4, 5} {1, 2, 4, 5, 6} {2, 6}
6 {6} {3, 5} {1, 4, 6} {2, 3} {1, 3, 4} {1, 2, 4, 5} {1, 2, 3, 5, 6} {2, 4, 5, 6}
7 {3, 4} {1, 4, 5} {1, 2, 5, 6} {2, 5, 6} {5, 6} {3, 5, 6} {3, 4, 5, 6} {3, 4, 6}
8 {3, 6} {3, 4, 5} {1, 4, 5, 6} {2, 3, 6} {4, 5} {1, 5, 6} {2, 3, 5, 6} {4, 5, 6}

Table 3.2: Orbits of Γ
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Figure 3.3: If (x1)

state via the group action.

Here are the outputs of f for each orbit representative.

f(x1) = f(x2) = (−1, 1, 1, 1, 1, 1, 1, 1)

f(x3) = f(x4) = f(x5) = x1

f(x6) = (1, 1, 1, 1, 1, 1, 1,−1)

f(x7) = x4

f(x8) = (−1, 1,−1, 1, 1,−1, 1, 1).

For any γ ∈ Γ, If (x) and If [γx] are switching isomorphic by lemma 3.4.2. Therefore, if x and y

are in the same orbit of Γ, If (x) and If (y) are switching isomorphic. Also, since f(x) 6= x for

each orbit representative, f [γx] = γf(x) 6= γ(x) since the action of Γ is free. Therefore f has no

steady states, as required.

Next we need to show that If (xi) is cycle-balanced for each i ∈ [8]. I will generate If (x1) in

detail so we can see how the process goes. We will need to know f(xi→1 ) for each i ∈ [8]. First,

notice that xi→1 = xi for i ∈ [2, 6]. So we know the output of f for each of these states from

above. Now x1→
1 = λx1, so f(x1→

1 ) = λf(x1) = (−1,−1, 1, 1, 1, 1, 1, 1). Next, x7→
1 = λ−2x2, so

f(x7→
1 ) = λ−2f(x2) = (1, 1, 1, 1, 1, 1, 1,−1). Finally, x8→

1 = λ−1x1, so f(x8→
1 ) = λ−1f(x1) =

x1. This is all the data needed to generate the adjacency matrix of If (x1). A picture of If (x1) is

given in figure 3.3. It contains no cycles, so it is cycle-balanced.

For the local interaction graph of each other orbit representative, we proceed in the same way.

To find f(xj→i ), we just need to express xj→i as γxk. Then f(xj→i ) = γf(xk).
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Adj[If (x1)] =



∂1→f(x1)

∂2→f(x1)

∂3→f(x1)

∂4→f(x1)

∂5→f(x1)

∂6→f(x1)

∂7→f(x1)

∂8→f(x1)



=



− sgn[f(x1→
1 )− f(x1)]

− sgn[f(x2→
1 )− f(x1)]

− sgn[f(x3→
1 )− f(x1)]

− sgn[f(x4→
1 )− f(x1)]

− sgn[f(x5→
1 )− f(x1)]

− sgn[f(x6→
1 )− f(x1)]

− sgn[f(x7→
1 )− f(x1)]

− sgn[f(x8→
1 )− f(x1)]



=



− sgn[f(λx1)− f(x1)]

− sgn[f(x2)− f(x1)]

− sgn[f(x3)− f(x1)]

− sgn[f(x4)− f(x1)]

− sgn[f(x5)− f(x1)]

− sgn[f(x6)− f(x1)]

− sgn[f(λ−2x2)− f(x1)]

− sgn[f(λ−1x1)− f(x1)]



=



− sgn[(−1,−1, 1, 1, 1, 1, 1, 1)− (−1, 1, 1, 1, 1, 1, 1, 1)]

− sgn[(−1, 1, 1, 1, 1, 1, 1, 1)− (−1, 1, 1, 1, 1, 1, 1, 1)]

− sgn[(1, 1, 1, 1, 1, 1, 1, 1)− (−1, 1, 1, 1, 1, 1, 1, 1)]

− sgn[(1, 1, 1, 1, 1, 1, 1, 1)− (−1, 1, 1, 1, 1, 1, 1, 1)]

− sgn[(1, 1, 1, 1, 1, 1, 1, 1)− (−1, 1, 1, 1, 1, 1, 1, 1)]

− sgn[(1, 1, 1, 1, 1, 1, 1,−1)− (−1, 1, 1, 1, 1, 1, 1, 1)]

− sgn[(1, 1, 1, 1, 1, 1, 1,−1)− (−1, 1, 1, 1, 1, 1, 1, 1)]

− sgn[(1, 1, 1, 1, 1, 1, 1, 1)− (−1, 1, 1, 1, 1, 1, 1, 1)]



=



− sgn[(0,−2, 0, 0, 0, 0, 0, 0)]

− sgn[(0, 0, 0, 0, 0, 0, 0, 0)]

− sgn[(2, 0, 0, 0, 0, 0, 0, 0)]

− sgn[(2, 0, 0, 0, 0, 0, 0, 0)]

− sgn[(2, 0, 0, 0, 0, 0, 0, 0)]

− sgn[(2, 0, 0, 0, 0, 0, 0,−2)]

− sgn[(2, 0, 0, 0, 0, 0, 0,−2)]

− sgn[(2, 0, 0, 0, 0, 0, 0, 0)]



=



0 + 0 0 0 0 0 0

0 0 0 0 0 0 0 0

− 0 0 0 0 0 0 0

− 0 0 0 0 0 0 0

− 0 0 0 0 0 0 0

− 0 0 0 0 0 0 +

− 0 0 0 0 0 0 +

− 0 0 0 0 0 0 0


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Adj[If (x2)] =



− sgn[f(x1→
2 )− f(x2)]

sgn[f(x2→
2 )− f(x2)]

− sgn[f(x3→
2 )− f(x2)]

− sgn[f(x4→
2 )− f(x2)]

− sgn[f(x5→
2 )− f(x2)]

− sgn[f(x6→
2 )− f(x2)]

− sgn[f(x7→
2 )− f(x2)]

− sgn[f(x8→
2 )− f(x2)]



=



− sgn[f(λ2x1)− f(x2)]

sgn[f(x1)− f(x2)]

− sgn[f(λ3x6)− f(x2)]

− sgn[f(ζλ5x2)− f(x2)]

− sgn[f(ζλ3x4)− f(x2)]

− sgn[f(ζλ7x5)− f(x2)]

− sgn[f(ζλ3x2)− f(x2)]

− sgn[f(λ−1x3)− f(x2)]



=



− sgn[(−1,−1,−1, 1, 1, 1, 1, 1)− f(x2)]

sgn[(−1, 1, 1, 1, 1, 1, 1, 1)− f(x2)]

− sgn[(−1,−1, 1, 1, 1, 1, 1, 1)− f(x2)]

− sgn[(1,−1, 1,−1, 1,−1,−1, 1)− f(x2)]

− sgn[(1,−1, 1, 1,−1, 1,−1, 1)− f(x2)]

− sgn[(1,−1, 1,−1, 1,−1, 1, 1)− f(x2)]

− sgn[(1,−1, 1,−1,−1, 1,−1, 1)− f(x2)]

− sgn[(1, 1, 1, 1, 1, 1, 1,−1)− f(x2)]



=



0 + + 0 0 0 0 0

0 0 0 0 0 0 0 0

0 + 0 0 0 0 0 0

− + 0 + 0 + + 0

− + 0 0 + 0 + 0

− + 0 + 0 + 0 0

− + 0 + + 0 + 0

− 0 0 0 0 0 0 +


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Adj[If (x3)] =



− sgn[f(x1→
3 )− f(x3)]

− sgn[f(x2→
3 )− f(x3)]

sgn[f(x3→
3 )− f(x3)]

− sgn[f(x4→
3 )− f(x3)]

− sgn[f(x5→
3 )− f(x3)]

− sgn[f(x6→
3 )− f(x3)]

− sgn[f(x7→
3 )− f(x3)]

− sgn[f(x8→
3 )− f(x3)]



=



− sgn[f(λx2)− f(x3)]

− sgn[f(λ3x6)− f(x3)]

sgn[f(x1)− f(x3)]

− sgn[f(x7)− f(x3)]

− sgn[f(ζλx6)− f(x3)]

− sgn[f(x8)− f(x3)]

− sgn[f(ζλx4)− f(x3)]

− sgn[f(λ−1x4)− f(x3)]



=



− sgn[(−1,−1, 1, 1, 1, 1, 1, 1)− f(x3)]

− sgn[(−1,−1, 1, 1, 1, 1, 1, 1)− f(x3)]

sgn[(−1, 1, 1, 1, 1, 1, 1, 1)− f(x3)]

− sgn[(1, 1, 1,−1, 1, 1, 1, 1)− f(x3)]

− sgn[(−1, 1,−1, 1,−1, 1,−1, 1)− f(x3)]

− sgn[(−1, 1,−1, 1, 1,−1, 1, 1)− f(x3)]

− sgn[(1, 1,−1, 1,−1, 1,−1, 1)− f(x3)]

− sgn[(1, 1, 1, 1, 1, 1, 1,−1)− f(x3)]



=



+ + 0 0 0 0 0 0

+ + 0 0 0 0 0 0

− 0 0 0 0 0 0 0

0 0 0 + 0 0 0 0

+ 0 + 0 + 0 + 0

+ 0 + 0 0 + 0 0

0 0 + 0 + 0 + 0

0 0 0 0 0 0 0 +


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Adj[If (x4)] =



− sgn[f(x1→
4 )− f(x4)]

− sgn[f(x2→
4 )− f(x4)]

− sgn[f(x3→
4 )− f(x4)]

− sgn[f(x4→
4 )− f(x4)]

− sgn[f(x5→
4 )− f(x4)]

− sgn[f(x6→
4 )− f(x4)]

− sgn[f(x7→
4 )− f(x4)]

− sgn[f(x8→
4 )− f(x4)]



=



− sgn[f(λx3)− f(x4)]

− sgn[f(ζλ5x2)− f(x4)]

− sgn[f(x7)− f(x4)]

sgn[f(x1)− f(x4)]

− sgn[f(ζλ4x8)− f(x4)]

− sgn[f(ζλ7x3)− f(x4)]

− sgn[f(ζλ5x5)− f(x4)]

− sgn[f(λ−1x5)− f(x4)]



=



− sgn[(−1, 1, 1, 1, 1, 1, 1, 1)− f(x4)]

− sgn[(1,−1, 1,−1, 1,−1,−1, 1)− f(x4)]

− sgn[(1, 1, 1,−1, 1, 1, 1, 1)− f(x4)]

sgn[(−1, 1, 1, 1, 1, 1, 1, 1)− f(x4)]

− sgn[(1, 1, 1,−1, 1, 1, 1, 1)− f(x4)]

− sgn[(1,−1, 1,−1, 1,−1, 1, 1)− f(x4)]

− sgn[(1,−1, 1,−1, 1, 1,−1, 1)− f(x4)]

− sgn[(1, 1, 1, 1, 1, 1, 1,−1)− f(x4)]



=



+ 0 0 0 0 0 0 0

0 + 0 + 0 + + 0

0 0 0 + 0 0 0 0

− 0 0 + 0 0 0 0

0 0 0 + 0 0 0 0

0 + 0 + 0 + 0 0

0 + 0 + 0 0 + 0

0 0 0 0 0 0 0 +



70



Adj[If (x5)] =



− sgn[f(x1→
5 )− f(x5)]

− sgn[f(x2→
5 )− f(x5)]

− sgn[f(x3→
5 )− f(x5)]

− sgn[f(x4→
5 )− f(x5)]

− sgn[f(x5→
5 )− f(x5)]

− sgn[f(x6→
5 )− f(x5)]

− sgn[f(x7→
5 )− f(x5)]

− sgn[f(x8→
5 )− f(x5)]



=



− sgn[f(λx4)− f(x5)]

− sgn[f(ζλ3x4)− f(x5)]

− sgn[f(ζλx6)− f(x5)]

− sgn[f(ζλ4x8)− f(x5)]

sgn[f(x1)− f(x5)]

− sgn[f(λ−4x7)− f(x5)]

− sgn[f(ζλx2)− f(x5)]

− sgn[f(λ−1x6)− f(x5)]



=



− sgn[(−1, 1, 1, 1, 1, 1, 1, 1)− f(x5)]

− sgn[(1,−1, 1, 1,−1, 1,−1, 1)− f(x5)]

− sgn[(−1, 1,−1, 1,−1, 1,−1, 1)− f(x5)]

− sgn[(1, 1, 1,−1, 1, 1, 1, 1)− f(x5)]

sgn[(−1, 1, 1, 1, 1, 1, 1, 1)− f(x5)]

− sgn[(1, 1, 1, 1,−1,−1,−1, 1)− f(x5)]

− sgn[(1,−1,−1, 1,−1, 1,−1, 1)− f(x5)]

− sgn[(1, 1, 1, 1, 1, 1,−1,−1)− f(x5)]



=



+ 0 0 0 0 0 0 0

0 + 0 0 + 0 + 0

+ 0 + 0 + 0 + 0

0 0 0 + 0 0 0 0

− 0 0 0 0 0 0 0

0 0 0 0 + + + 0

0 + + 0 + 0 + 0

0 0 0 0 0 0 + +


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Adj[If (x6)] =



− sgn[f(x1→
6 )− f(x6)]

− sgn[f(x2→
6 )− f(x6)]

− sgn[f(x3→
6 )− f(x6)]

− sgn[f(x4→
6 )− f(x6)]

− sgn[f(x5→
6 )− f(x6)]

− sgn[f(x6→
6 )− f(x6)]

− sgn[f(x7→
6 )− f(x6)]

− sgn[f(x8→
6 )− f(x6)]



=



− sgn[f(λx5)− f(x6)]

− sgn[f(ζλ7x5)− f(x6)]

− sgn[f(x8)− f(x6)]

− sgn[f(ζλ7x3)− f(x6)]

− sgn[f(λ−4x7)− f(x6)]

sgn[f(x1)− f(x6)]

− sgn[f(λ−3x3)− f(x6)]

− sgn[f(λ−3x2)− f(x6)]



=



− sgn[(−1, 1, 1, 1, 1, 1, 1, 1)− f(x6)]

− sgn[(1,−1, 1,−1, 1,−1, 1, 1)− f(x6)]

− sgn[(−1, 1,−1, 1, 1,−1, 1, 1)− f(x6)]

− sgn[(1,−1, 1,−1, 1,−1, 1, 1)− f(x6)]

− sgn[(1, 1, 1, 1,−1,−1,−1, 1)− f(x6)]

sgn[(−1, 1, 1, 1, 1, 1, 1, 1)− f(x6)]

− sgn[(1, 1, 1, 1, 1,−1,−1,−1)− f(x6)]

− sgn[(1, 1, 1, 1, 1, 1,−1,−1)− f(x6)]



=



+ 0 0 0 0 0 0 −

0 + 0 + 0 + 0 −

+ 0 + 0 0 + 0 −

0 + 0 + 0 + 0 −

0 0 0 0 + + + −

− 0 0 0 0 0 0 +

0 0 0 0 0 + + 0

0 0 0 0 0 0 + 0


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Adj[If (x7)] =



− sgn[f(x1→
7 )− f(x7)]

− sgn[f(x2→
7 )− f(x7)]

− sgn[f(x3→
7 )− f(x7)]

− sgn[f(x4→
7 )− f(x7)]

− sgn[f(x5→
7 )− f(x7)]

− sgn[f(x6→
7 )− f(x7)]

− sgn[f(x7→
7 )− f(x7)]

− sgn[f(x8→
7 )− f(x7)]



=



− sgn[f(λ4x6)− f(x7)]

− sgn[f(λ4x5)− f(x7)]

sgn[f(x4)− f(x7)]

sgn[f(x3)− f(x7)]

− sgn[f(ζλx8)− f(x7)]

− sgn[f(ζλ7x7)− f(x7)]

− sgn[f(ζλx7)− f(x7)]

− sgn[f(ζλ−5x8)− f(x7)]



=



− sgn[(−1,−1,−1, 1, 1, 1, 1, 1)− f(x7)]

− sgn[(−1,−1,−1,−1, 1, 1, 1, 1)− f(x7)]

sgn[(1, 1, 1, 1, 1, 1, 1, 1)− f(x7)]

sgn[(1, 1, 1, 1, 1, 1, 1, 1)− f(x7)]

− sgn[(1,−1,−1,−1,−1, 1, 1, 1)− f(x7)]

− sgn[(1,−1,−1,−1, 1,−1, 1, 1)− f(x7)]

− sgn[(−1, 1,−1, 1, 1, 1,−1, 1)− f(x7)]

− sgn[(1, 1,−1, 1, 1, 1, 1,−1)− f(x7)]



=



+ + + − 0 0 0 0

+ + + 0 0 0 0 0

0 0 0 + 0 0 0 0

0 0 0 + 0 0 0 0

0 + + 0 + 0 0 0

0 + + 0 0 + 0 0

0 0 + − 0 0 + 0

0 0 + − 0 0 0 +


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Adj[If (x8)] =



− sgn[f(x1→
8 )− f(x8)]

− sgn[f(x2→
8 )− f(x8)]

− sgn[f(x3→
8 )− f(x8)]

− sgn[f(x4→
8 )− f(x8)]

− sgn[f(x5→
8 )− f(x8)]

− sgn[f(x6→
8 )− f(x8)]

− sgn[f(x7→
8 )− f(x8)]

− sgn[f(x8→
8 )− f(x8)]



=



− sgn[f(ζλ−4x4)− f(x8)]

− sgn[f(λ3x8)− f(x8)]

sgn[f(x6)− f(x8)]

− sgn[f(ζλ7x7)− f(x8)]

− sgn[f(ζλ−3x7)− f(x8)]

sgn[f(x3)− f(x8)]

− sgn[f(λ−3x8)− f(x8)]

− sgn[f(ζλ−4x5)− f(x8)]



=



− sgn[(−1, 1,−1, 1, 1,−1, 1, 1)− f(x8)]

− sgn[(1,−1,−1,−1, 1,−1, 1, 1)− f(x8)]

sgn[(1, 1, 1, 1, 1, 1, 1,−1)− f(x8)]

− sgn[(1,−1,−1,−1, 1,−1, 1, 1)− f(x8)]

− sgn[(1, 1,−1, 1,−1,−1, 1,−1)− f(x8)]

sgn[(1, 1, 1, 1, 1, 1, 1, 1)− f(x8)]

− sgn[(1, 1,−1, 1, 1, 1,−1, 1)− f(x8)]

− sgn[(−1, 1,−1, 1, 1,−1, 1,−1)− f(x8)]



=



0 0 0 0 0 0 0 0

− + 0 + 0 0 0 0

+ 0 + 0 0 + 0 −

− + 0 + 0 0 0 0

− 0 0 0 + 0 0 +

+ 0 + 0 0 + 0 0

− 0 0 0 0 − + 0

0 0 0 0 0 0 0 +


Pictures of the local interaction graphs for the orbit representative of Γ are given in figures 3.4.1

and 3.4.1. Each of these interaction graphs is cycle-balanced. Since every local interaction graph

is switching isomorphic to one of these, every local interaction graph is cycle-balanced. So f is

indeed an activation function whose local interaction graphs contain no negative cycles that has no

steady-states.
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Figure 3.4: Local interaction graphs of the first four orbit representatives.
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Figure 3.5: Local interaction graphs of last four orbit representatives.
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