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Abstract

Moving animal groups are prime examples of natural complex systems. In most
models of such systems each individual updates its heading based on the current po-
sitions and headings of its neighbors. However, recently, a number of models where
the heading update instead is based on the future anticipated positions/headings
of the neighbors have been published. Collectively these studies have established
that including anticipation may have drastically different effects in different mod-
els. In particular, anticipation inhibits polarization in alignment-based models and
in one alignment-free model, but promotes polarization in another alignment-free
model. Indicating that our understanding of how anticipation affects the behavior of
alignment-free models is incomplete. Given that attraction is a component of many
alignment-free models we include anticipation in an attraction only model here to
investigate. We establish that anticipation induces polarized collective motion and
inhibits swarming and milling in combination with attraction alone. We also show
that anticipation orients milling groups when attraction is sufficiently strong, but
not otherwise. Finally, we derive an explicit heading update formula for this model
with anticipation that allows for a simple heuristic explanation of its polarization
inducing capacity. Due to the biological plausibility of both attraction and antic-
ipation we believe that utilizing these components to explain collective motion in
animal groups may be advantageous in some cases.

1 Introduction

Self-propelled particle (SPP) models have been used to model collective motion in
a range of animals including fish schools, bird flocks, herds of sheep, and human
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crowds [1]. SPP models come in a variety of forms and are often characterized by
the local interaction rule on which they are based. Common local interaction rules
include alignment only [2], attraction only [3,4], attraction and repulsion [5–7], and
attraction, repulsion and alignment [8, 9]. While SPP models have been shown to
generate a range of different group types the standard groups produced by mini-
mal models are polarized groups, mills and swarms [1, 9]. Polarized groups (also
known as dynamic parallel, or aligned, groups) are characterized by collective rec-
tilinear motion resulting from the individuals moving in (approximately) the same
direction. Mills are characterized by individuals orbiting a common center, and
swarms by individuals moving erratically around a common center. Each of these
group types are ubiquitous in nature. For example, fish are known to engage in
milling [10], flying insects often engage in swarming [11], and all animal groups
that move from one location to another must exhibit at least a degree of polarization
or the group would not move.

In most SPP models, regardless of local interaction rule, each particle calculates
its new heading based on the current positions and/or headings of its neighbors.
However, recently a number of studies have highlighted the potential importance
of anticipation in models of this type [12–15]. In models with anticipation, each
particle uses the future anticipated positions and/or headings of its neighbors to
calculate its new heading rather than current positions and headings. This idea
is biologically plausible and it is well established that many animals across taxa
use anticipation. For example, predators such as dragonflies [16], bats [17], and
hawks [18] use a form of anticipation when pursuing their prey. In addition, humans
use anticipation when navigating in crowds [19] and models of pedestrian dynamics
that include some type of anticipatory effects are numerous [20–22].

The effects on the resulting collective motion that arises from including antic-
ipation in alignment-based models, i.e. models that include an explicit alignment
interaction where particles align their headings with the heading of their neighbors,
has been described in [12, 14], and in one attraction and repulsion model without
self-propulsion in [13]. The overall finding of these studies is that including an-
ticipation inhibits polarized collective motion and promotes milling and swarming.
This is particularly surprising in the case of alignment-based models because the
production of polarized collective motion is a key feature of models of this type,
whereas production of mills and swarms is not [1]. In addition, [15] has established
that polarized collective motion emerges in an alignment-free model based on ”mu-
tual anticipation”, ”following”, ”free movement”, and asynchronous updating on
a lattice space. Combined, these examples show that models with different com-
ponents are differently affected by the inclusion of anticipation, in particular, with
respect to their capacity to produce polarized groups.

Attraction is a fundamental biologically plausible interaction in the context of

2

Northeast Journal of Complex Systems (NEJCS), Vol. 3, No. 1 [2021], Art. 2

https://orb.binghamton.edu/nejcs/vol3/iss1/2
DOI: 10.22191/nejcs/vol3/iss1/2



moving animal groups [23] and a key component of many SPP models [1]. In
addition, it is a subcomponent of the two alignment-free models introduced above
[13,15], of which one produces polarized groups and the other does not. Suggesting
that investigating the interplay between attraction and anticipation may help explain
the varying effects of anticipation on group formation observed, in particular, its
polarization inducing capacity. Here we introduce anticipation of the type used in
[13] in a version of the local attraction model [4]. This model is particularly suitable
for investigating the effects of anticipation in combination with attraction because
particles interact via attraction alone and it is the simplest model known to produce
the three standard groups, non-oriented mills, swarms and polarized groups, under
certain conditions [3]. In particular, it generates all three groups when asynchronous
update is used and only non-oriented mills and swarms when synchronous update
is used [4]. Here we introduce anticipation into the synchronous version because it
is more restrictive with respect to group formation, in particular, it does not produce
polarized groups, and most SPP models against which it should be compared have
been implemented with synchronous update only [4].

2 Model and Methods

First we provide a summary of the local attraction model (LAM) [3, 4], including
a previously unpublished derivation of the heading update term in this model, and
then we describe how anticipation was introduced. We use hat notation for normal-
ized vectors and bar notation for vectors of arbitrary length.

The LAM is a SPP model in which particles interact via local attraction alone
(Fig 1A). We denote the position of particle i at time t by P t

i , the set of indices
of particle i’s neighbors at time t by Ωt

i, where i’s neighbors are all other particles
within a distance of R from it, and the number of neighbors at time t by |Ωt

i|. The
local center of mass that particle i detects at time t is given by

LCM t
i =

1

|Ωt
i|
∑
j∈Ωt

i

P t
j (1)

and the non-normalized local attraction vector from P t
i to the LCM t

i is

C̄t
i = LCM t

i − P t
i =

1

|Ωt
i|
∑
j∈Ωt

i

P t
j − P t

i (2)

and the non-normalized current heading vector of particle i is

D̄t
i = P t

i − P t−1
i . (3)
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The heading update formula for particle i is

D̄t+1
i = cĈt

i + D̂t
i (4)

where the parameter c specifies the relative tendency to steer towards the LCM t
i

when the relative tendency to proceed with the current heading is 1, and the posi-
tional update formula is

P t+1
i = P t

i + δ
cĈt

i + D̂t
i

|cĈt
i + D̂t

i |
(5)

where δ is the displacement of the particle per time step. This is the model studied
in [4] with asynchronous update (particles update their headings and positions in
sequential random order) and synchronous update (all particles update their head-
ings and positions simultaneously).

We now extend the LAM to include anticipation and use a preindex a to distin-
guish components of the model with anticipation from the original model without
anticipation. For example, the position of particle i in the original model is denoted
by P t

i and the anticipated position of particle i in the model with anticipation is
denoted by aP

t
i. Following [13] we define the anticipated position of a neighboring

particle j by
aP

t
j = P t

j + τδD̂t
j (6)

where τ is the anticipation time. The anticipated position of a particle is therefore
the position that that particle would be at if it continued with its current heading for
τ time steps, and particle j is a neighbor of particle i if aP

t
j is within a distance ofR

from P t
i . See Fig 1B. The formula for the anticipated local center of mass detected

by particle i at time t is given by

aLCM
t
i =

1

| aΩt
i|
∑
j∈aΩt

i

aP
t
j =

1

| aΩt
i|
∑
j∈aΩt

i

(P t
j + τδD̂t

j) (7)

where | aΩt
i| is the number of anticipated neighbors. The non-normalized local

interaction vector with anticipation is

aC
t

i = aLCM
t
i − P t

i =
1

| aΩt
i|
∑
j∈aΩt

i

P t
j − P t

i + τδ
1

| aΩt
i|
∑
j∈aΩt

i

D̂t
j. (8)

The heading update formula for particle i in the LAM with anticipation is then
given by

aD
t+1

i = câC
t

i + D̂t
i . (9)
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We note that this reduces to the heading update formula for the LAM without antic-
ipation (Eq. 4) when τ = 0 because then âC

t

i = Ĉt
i . Finally the positional update

formula for the LAM with anticipation is

P t+1
i = P t

i + δ
câC

t

i + D̂t
i

|câC
t

i + D̂t
i |
. (10)

Figure 1: The LAM with and without anticipation. Illustration of how the local attraction
vector (Ĉt

i ) and current heading vector (D̂t
i) are set up for a focal particle i located at posi-

tion P t
i in the LAM without anticipation (A) and with anticipation (B). The main difference

between the two versions is that the local center of mass (LCM) is the actual center of mass
of the neighbors in the model without anticipation (LCM t

i ), and an anticipated future cen-
ter of mass in the model with anticipation (aLCM

t
i ). This affects the calculation of the

local attraction vector but leaves the current heading vector unchanged. These figures have
been adapted from Fig 2a in [4] (Strömbom CC-BY).

2.1 Simulations and Analysis

We analyzed the model via simulation and used two standard measures to quantify
the polarization and size of the resulting groups.

The polarization, or velocity alignment, (α) measures the degree to which all the
particles are heading in the same direction and can be calculated via the formula

α =
1

N

∣∣∣∣∣
N∑
i=1

D̂i

∣∣∣∣∣ , (11)

where N is the total number of particles and D̂i is the normalized current heading
of particle i [2]. The polarization ranges from 0 to 1 and the higher the value the
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more polarized the group is. In particular, highly polarized groups have polarization
value 1, and mills, where the particles orbit a common center, have low polarization
values (close to 0) because the sum of current heading vectors (D̂i) cancel out when
the particles are moving in a circular path.

The scaled size (σ) measures how much of the available space the group occu-
pies and can be calculated by the formula

σ =
(∆Px)(∆Py)

L2
, (12)

where ∆Px is the length of the range of particle x-coordinates, ∆Py is the length
of the range of particle y-coordinates, and L2 is the total area of the simulation
environment [3, 4]. Scaled size ranges from 0 to 1 and the more space the group
occupies the higher the value. In particular, if no group has formed σ is high (≈ 1)
and if a cohesive group has formed σ is lower.

Using these measures we can determine if a cohesive group has formed and
whether or not it is a polarized group. Allowing us to distinguish between the
known group types: no group, cohesive polarized group, and the mill and swarm
phases. See [4] for further details.

To analyze the model we ran 100 simulations for each (c, τ)-pair with c and τ
varying from 0 to 2 in increments of 0.1. To facilitate comparison with [4] we use
N = 50, R = 4 and δ = 0.5. The particles move in a 2D region with periodic
boundary conditions and at the start of each simulation the N particles are assigned
random positions and headings. Each simulation was 10000 time steps long and
over the last 50 time steps of each simulation the polarization (α) and scaled size
(σ) of the resulting group was measured, and the mean of the 50 values for both
measures were returned from the simulation.

We also generated plots showing the distribution of polarization values returned
for each value of c over a 100 simulations for τ = 0, τ = 1 and τ = 2. To achieve
this we partitioned the range of the polarization measure [0, 1] into 50 subintervals
of equal length and counted the number of polarization values returned from sim-
ulations in each subinterval and scaled the result for each c by the total number
of simulations (100). This type of plot will show if two polarization-wise distinct
groups tend to form for a given c, for example, one with high polarization and one
with low polarization (depending on the initial conditions). Information that would
not be apparent if the average polarization for each c was displayed instead.

3 Results

The model with anticipation (τ = 1) generates polarized groups, non-oriented mills,
and oriented mills. Unlike the original model without anticipation (τ = 0) that only
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produces no group, non-oriented mills and swarms [4]. In Fig 2 examples of the
groups that form for different values of c are displayed and their polarization and
scaled size values specified. For c = 0.1 the model with anticipation produces po-
larized groups and the original model produces no group. For c = 0.5 and c = 1
both models produce non-oriented mills that appear similar, however, after 10000
time steps there is a large difference in the polarization values. The mills produced
by the original model have polarization values on the order of 10−14 whereas the
mills produced by the model with anticipation is on the order of 10−2. For c = 1.5
the original model produces non-oriented mills and the model with anticipation
generates non-oriented mills in some simulations and polarized groups in others.
Finally, for c = 2 the model with anticipation generates oriented mills in some sim-
ulations and polarized groups in others, whereas the original model only generates
swarms.

Figure 2: Group types produced with anticipation and without anticipation. In the model
without anticipation (τ = 0) no group is produced when c = 0.5, non-oriented mills when
c = 0.5−1.5, and swarms when c = 2. This is consistent with the results of the synchronous
update model in [4]. In the model with anticipation (τ = 1) polarized groups form when
c = 0.5, non-oriented mills when c = 0.5 − 1, a mix of non-oriented mills and polarized
groups when c = 1.5, and a mix of oriented mills and polarized groups when c = 2. The
black dots represent the particles and the red rods the D̂t

i vector in Fig 1.

The distribution of polarization values returned for each c from 0 to 2 in incre-
ments of 0.1 for τ = 0, τ = 1 and τ = 2 is shown in Fig 3, and the result is con-
sistent with the picture presented in Fig 2. In particular, it confirms that for c large
both mills and polarized groups form in the model with anticipation for τ = 1. In
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this case there is substantial production of both mills (α low) and polarized groups
(α high), but no sign of groups with intermediate polarization. Indicating that either
a mill or a polarized group form in each simulation and that the outcome depends
on the initial conditions. Comparing the polarization distributions for τ = 0, τ = 1
and τ = 2 in Fig 3 also reveal that the proportion of polarized groups relative to
mills, for c large, increases with τ , and for τ = 2 mills are no longer produced, only
polarized groups emerge for c ≥ 1.4.

Figure 3: Polarization distributions over c for τ = 0, 1 and 2. When there is no anticipation
(τ = 0) polarization remains low for all values of c indicating that polarized groups do not
form. As τ is increased to 1 polarized groups start to emerge for c ≤ 0.2 and c ≥ 1.3,
and in the latter range both polarized and non-polarized groups are readily produced for
each value of c. When τ is increased to 2 the polarization for c ≤ 0.2 is unaffected, but
for c ≥ 1.4 a mix of groups is no longer produced, instead the model exclusive produce
polarized groups for these values of c.

A more detailed investigation of the group formation over the (c, τ) parameter
space with τ varying from 0 to 2 in increments of 0.1 shows that there are indeed
two distinct regions where cohesive polarized groups are consistently produced.
One for c ≤ 0.2 and one for larger c. See Fig 4. In between these regions cohesive
non-polarized groups are consistently generated. It also shows that a significant an-
ticipation time τ is required to generate polarized groups both for small and large
c, and that this time is higher for polarization to emerge in the large c region.
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Figure 4: Group formation over the (c, τ) parameter space. The polarization (α) shows that
there are two regions of high polarization, one for small c and one for larger c, separated
by a region of low polarization. The scaled size (σ) shows that there is one region where
the scaled size is high, indicating that no group formed for those parameter combinations,
and for all other combinations cohesive groups tend to form. Combined this shows that
cohesive polarized groups form in two distinct regions in the included parameter ranges.

How the inclusion of anticipation (τ > 0) induces a polarizing effect can be
heuristically understood via the mathematical description of the model (Eq. 6-10).
The interaction vector aC

t

i (Eq 8) contains all the interactions between particles in
the model with anticipation. It consists of one attraction part ( 1

| aΩt
i|
∑

j∈aΩt
i
P t
j −P t

i )

that we denote by K
t

i, and one anticipated alignment part (τδ 1
| aΩt

i|
∑

j∈aΩt
i
D̂t

j) that

we denote by A
t

i. Intuitively, one expects that if |Kt

i| > |A
t

i| the interactions are
dominated by attraction and the model effectively reduces to the model without an-
ticipation. Conversely, if |At

i| > |K
t

i| one expect that anticipated alignment will
dominate and particles will align their headings with the average anticipated head-
ing of the anticipated neighbors and polarization might emerge. We also note that
the magnitude of the anticipated alignment term is τδ which increases with τ for δ
fixed. This, at least heuristically, explains why the polarization inducing capacity
of the model increases with τ and why τ = 0 yields no polarization in this version
of the model.

4 Discussion

How moving animal groups coordinate themselves via local interactions between
individuals is typically explained via a combination of attraction, repulsion and
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alignment using the current positions and headings of neighboring particles to de-
fine these interactions. Recently, using arguments pertaining both to biological
plausibility and model theoretical considerations a number of authors have argued
that it might be advantageous to use anticipated future positions and headings rather
than the current to explain a number of phenomena observed in moving animal
groups. In particular, the emergence of polarized collective motion. However, the
outcome of adding anticipation to a number of different models have been disper-
ate, suggesting that our understanding of the effects of anticipation, in particular,
in alignment-free models, is lacking. Here we included positional anticipation into
an attraction only model, because attraction is a fundamental biological interaction
and a core component of many models of collective motion, to investigate.

We established that introducing anticipation in combination with attraction only
induces polarized group formation and inhibits swarm and mill formation. There-
fore, including anticipation in combination with attraction has the opposite effect
that including anticipation in combination with alignment has been reported to
have. Namely that polarization is inhibited and milling and swarming are pro-
moted [12–14]. Our work also provide a potential explanation for the polarization
inducing capacity of the model in [15] that contains both attraction-like interactions
and anticipation. However, this model employ asynchronous updating, in addition
to anticipation, that is also known to induce polarization in combination with at-
traction alone [4]. Therefore, it remains unclear exactly which components of the
model in [15] is responsible for the polarization inducing capacity of the model.

The finding that the magnitude of the anticipated alignment is given by δτ is
interesting to consider in relation to the findings in [13]. The original model is an
attraction and repulsion model with self-propulsion that readily produce polarized
groups [5], however, when the self-propulsion is removed and anticipation is in-
cluded polarization is inhibited in favor of milling and swarming [13]. Based on this
observation and our work here suggest that anticipation, self-propulsion, and speed
are intimately linked in alignment-free models and that exploring this link further
may advance our understanding of the inclusion of anticipation in alignment-free
models more broadly.

In [4] it was established that asynchronous update induced polarized group for-
mation where no group would form with synchronous updates, but it left the milling
and swarm regimes largely unaffected. Here we have shown that including antici-
pation not only induce polarization where no group forms, but also where mills and
swarms form, in the original model. Indicating that anticipation is a stronger polar-
ization inducing mechanism than asynchrony. Hence, at least in models similar to
ours where collective motion is driven by attraction, anticipation may be an under-
utilized mechanism for inducing polarized collective motion. This observation may
be particularly useful to consider in the context of inferring interaction rules in real
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animal groups from trajectory data. In particular, where some studies find no evi-
dence for standard alignment interactions operating in schools of fish [24,25] while
others do [26]. While there could be many other circumstances that better explain
this, as discussed in [4, 7], adding anticipation to the list of mechanisms that can
generate polarized collective motion in SPP models, in particular as an alternative
to explicit alignment interactions, may be useful in advancing our understanding of
how qualitatively similar collective motion emerges from seemingly different local
interactions between individuals in the group.

Acknowledgements

This work was in part supported by a grant from the Swedish Research Council to
D.S. (ref: 2015-06335).

References

[1] Vicsek T, Zafeiris A. Collective motion. Physics Reports. 2012;517:71–140.
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[3] Strömbom D. Collective motion from local attraction. J Theor Biol.
2011;283:145–151.
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[7] Strömbom D, Siljestam M, Park J, Sumpter DJ. The shape and dynamics of
local attraction. The European Physical Journal Special Topics. 2015;224(17-
18):3311–3323.

[8] Reynolds CW. Flocks, herds and schools: A distributed behavioral model.
SIGGRAPH Comput Graph. 1987;21:25–34.

11

Strömbom and Antia: Anticipation Induces Polarized Collective Motion

Published by The Open Repository @ Binghamton (The ORB), 2021



[9] Couzin ID, Krause J, James R, Ruxton GD, Franks NR. Collective memory
and spatial sorting in animal groups. J Theor Biol. 2002;218:1–11.

[10] Tunstrøm K, Katz Y, Ioannou CC, Huepe C, Lutz MJ, Couzin ID. Collective
states, multistability and transitional behavior in schooling fish. PLoS Comput
Biol. 2013;9(2):e1002915.

[11] Attanasi A, Cavagna A, Del Castello L, Giardina I, Melillo S, Parisi L, et al.
Collective behaviour without collective order in wild swarms of midges. PLoS
Comput Biol. 2014;10(7):e1003697.

[12] Morin A, Caussin JB, Eloy C, Bartolo D. Collective motion with anticipation:
Flocking, spinning, and swarming. Physical Review E. 2015;91(1):012134.

[13] Gerlee P, Tunstrøm K, Lundh T, Wennberg B. Impact of anticipation in dy-
namical systems. Physical Review E. 2017;96(6):062413.

[14] Baggaley AW. Stability of model flocks in a vortical flow. Physical Review E.
2016;93(6):063109.

[15] Murakami H, Niizato T, Gunji YP. Emergence of a coherent and cohesive
swarm based on mutual anticipation. Scientific Reports. 2017;7.

[16] Olberg RM. Visual control of prey-capture flight in dragonflies. Current opin-
ion in neurobiology. 2012;22(2):267–271.

[17] Ghose K, Horiuchi TK, Krishnaprasad P, Moss CF. Echolocating bats use a
nearly time-optimal strategy to intercept prey. PLoS biology. 2006;4(5):e108.

[18] Kane SA, Fulton AH, Rosenthal LJ. When hawks attack: animal-borne video
studies of goshawk pursuit and prey-evasion strategies. Journal of Experimen-
tal Biology. 2015;218(2):212–222.

[19] Karamouzas I, Skinner B, Guy SJ. Universal power law governing pedestrian
interactions. Physical review letters. 2014;113(23):238701.

[20] Johansson A. Constant-net-time headway as a key mechanism behind pedes-
trian flow dynamics. Physical review E. 2009;80(2):026120.

[21] Moussaı̈d M, Helbing D, Theraulaz G. How simple rules determine pedes-
trian behavior and crowd disasters. Proceedings of the National Academy of
Sciences. 2011;108(17):6884–6888.

12

Northeast Journal of Complex Systems (NEJCS), Vol. 3, No. 1 [2021], Art. 2

https://orb.binghamton.edu/nejcs/vol3/iss1/2
DOI: 10.22191/nejcs/vol3/iss1/2
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