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Abstract

The presence of hierarchy in many real-world networks is not yet fully understood.
We observe that complex interaction networks are often coarse-grain models of vast
modular networks, where tightly connected subgraphs are agglomerated into nodes
for simplicity of representation and computational feasibility. The emergence of hi-
erarchy in such growing complex networks may stem from one particular property
of these ignored subgraphs: their graph conductance. Being a quantification of the
main bottleneck of flow through the coarse-grain node, this scalar quantity implies
a structural limitation and supports the consideration of heterogeneous degree con-
straints. The internal conductance values of the subgraphs are mapped onto integer
degree restrictions, which we call internal bottlenecks, by using inverse cumulative
density functions. This leads to a hidden variable model based on the rich-get-richer
scheme. It is shown that imposing such restrictions generally leads to an increased
measure of hierarchy and alters the tail of the degree distribution in a predictable
way. Thus, a mechanism is provided whereby inherent limitations on network flow
leads to hierarchical self-organization.

1 Introduction

Many real-world networks display both a measure of hierarchy [1] and a scale-free
(SF) powerlaw form for some portion of the degree distribution. However, recent
work [2] has reminded us that the rich-get-richer SF model was only meant as a
first approximation [3]. In particular, the SF portion of the degree distribution does
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not necessarily extend into the region where the hubs are found [4], indicating a
potential relationship between the failings of the SF model and the observation of
hierarchy. We shed light on this relationship by considering the consequences of
the fact that many complex networks are coarse-grain models of more intricate,
yet highly modular interaction networks, where the finer grained details are either
computationally prohibitive or unknown.

To illustrate, we consider the extreme case of a social network, where each node
represents a person. In turn, each person could be represented as a complex brain
network, making the social network such a coarse-grain model. The properties of
the highly connected subgraphs that are being agglomerated into nodes (brain net-
works in this case) are ignored due to ignorance, however, one property of these
subgraphs that should not be overlooked is their graph conductance, especially in
applications of transport and information flow. The conductance of a network, G,
is a scalar value, denoted by Φ = Φ(G) ∈ [0, 1]; it serves as a quantification of the
main bottleneck to the flow over the graph [5], where Φ ∼ 0 implies an extreme
bottleneck, while Φ ∼ 1 implies essentially no bottleneck. An adaptation of this
metric applied to subgraphs was defined as cluster conductance in [6], but we refer
to this feature as the agglomerated node’s internal conductance. While these in-
ternal conductance values may not be known, there are often proxy measurements
that can quantify the effects produced by this fundamental restriction. For example,
extrapolating from data on primate societies and the sizes of their neocortex, Robin
Dunbar posited that human beings are likely capable of on average tracking a net-
work of approximately 150 human relationships [7]. This result was supported by
archaeological evidence of human tribe sizes along with the natural formation of
divisions in large corporations. This provides a clear example of the type of map-
ping to proxy values that might associate the conductance of the neural network of
the neocortex to a person’s maximum allowable degree in a social network.

A hidden variable model for producing a randomly growing network (RGN)
is presented. The node attribute is called the node’s internal bottleneck, and its
value is assumed to be a function of that node’s internal conductance (as a sub-
graph within the coarse-grain model). The internal bottleneck, which we denote
with B, defines a limit for the number of links to a node, and we are interested in
showing that such restrictions lead to an increased measure of hierarchy as mea-
sured by common measures such as the Global Reaching Centrality (GRC) [8] and
the Random Walk Hierarchy (HRW ) measure [9]. A survey of many early models,
some of which impose degree restrictions in various ways, can be found in [10],
and other work has considered degree limitations, but usually by setting a global
degree limit, often through a probabilistic activation function as in [11]. To the au-
thors’ knowledge, fixed heterogeneous degree limits have not been considered for
an RGN model, especially in the context of their influence on the development of
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hierarchy. Peer-to-Peer (P2P) networks have been studied using a similar approach
to the one presented here, except that all nodes share a common degree limit. And
in that case, it was shown to lead to an exponential cutoff in the otherwise scale-free
degree distribution [12]. Since that model is in fact a limiting case of the present
model, we explore the effects on the tail of the degree distribution from allowing
heterogeneity in these imposed limits.

We begin by reviewing two measures of hierarchy. This is followed by a de-
scription of a hidden variable RGN model that incorporates a review of the clas-
sic SF rich-get-richer model of Barabási-Albert [13]. Since measuring hierarchy
for undirected networks is limited to a single metric, we consider a directed vari-
ant of this original model and explain why the particular choice in direction was
made. The assumptions chosen for the unknown internal conductance values are
described, for which various inverse Cumulative Density Functions (CDF) are then
used to map these values onto the node’s B values. We then present our results
and provide explanation of both how the restrictions imposed generally lead to
higher measures of hierarchy and how the tail of the degree distribution is altered
by choices made in the model. We conclude with a summary and provide some
interesting future work in this direction.

2 Hierarchy

The historical definition and understanding of the term hierarchy is complicated,
and may best be described in terms of category theory; but, the measurement of
hierarchy in complex networks has recently reached a reasonable, albeit fractured,
concensus [8], [9], [14], [15], [16]. Of the widely known measures of hierarchy,
two are considered in this paper: the Global Reaching Centrality (GRC) [8] and the
Random Walk Hierarchy measure (HRW ) [9]. Perhaps the most versatile measure
of hierarchy, presented in 2012, is the GRC. It is intuitively based on the definition
of hierarchy as a heterogeneous distribution of reach centrality, where the ideal net-
work would have few nodes with large centrality values and relatively many nodes
with smaller values. The main advantage of this measure is the inclusion of undi-
rected and weighted networks with simple alterations to the formulae, although this
flexibility is not utilized here. We use directed links in the presented model to en-
able the comparison of different measures. The GRC is described in terms of the set
of reaching centralities, denoted CR. More specifically, the GRC is defined as the
average distance of these centrality values from the maximum reaching centrality,
denoted CRmax, i.e.:

GRC =

∑N
i CRmax − CR(i)

N − 1
. (1)
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This same formula can be used for different graph schemes by altering how the
CR values are computed. In the presently considered case of directed unweighted
graphs, CR(i) is simply the proportion of nodes that are reachable along directed
edges from node i.

It is clear from (1) that having few nodes with large centrality will result in many
large contributions to the overall sum. In this way, the GRC measures the spread
of the distribution of CR, in particular promoting distributions with exponentially
decreasing histograms of reach centrality values. This captures the essence of tree-
like networks, without explicitly requiring tree-like structure. For example, a flower
graph [17], which has no discernible tree-like structure and many cycles, is still very
hierarchical by the GRC measure.

Having identified a potential issue with the widely accepted GRC measure, the
Random Walk Hierarchy measure (HRW ) was introduced in 2015 in order to penal-
ized structures that were technically tree-like, though not noticeably hierarchical,
such as chains or star graphs. This alternate measure is formulated through simu-
lated backward diffusion of decaying random walkers. It is a measure of the spread
of the stationary distribution of a particular random walk (pstat) and can be com-
puted in closed form by

HRW =

√√√√N
N∑
i=1

(pstati )2 − 1; (2)

with the ith element of the stationary distribution being given by

pstati =
e1/λ − 1

N

(
e1/λIN − T̂

)−1
T̂ · 1̂

=
e1/λ − 1

N

∞∑
n=1

(
e−1/λT̂

)n
1̂;

where 1̂ is the vector of ones, T̂ is a stochastic transition matrix computed by setting
the probability of transition from node j to node i such that

Prob(j → i) ∝

{
1

kinj kouti
, if i ∼ j

0 , o.w.
,

and λ is a parameter that represents the characteristic distance for which the weight
of the random walker is decreased to e−1. This parameter was shown to be op-
timally set to λ = 4 in the case of large normal branching trees, balancing the
benefits of exploring more of the local neighborhood, while remaining well-defined
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in the thermodynamic limit of an infinite graph. In the absence of more thorough
analysis of this parameter for non-tree networks, we retain λ = 4, where the opti-
mum branching number for tree-like growth is near 3.84. The series representation
provided is used for approximations when matrix inversion becomes too computa-
tionally expensive. This measure targets a heterogeneity in the distances between
pairs of points, and we chose it to provide a counter to certain results for the GRC,
which do not involve the distances between nodes in the directed case.

3 The Internal Bottleneck Model

In order to focus our attention on the main concepts presented, we chose to alter
the basic Albert-Barabási rich-get-richer model using m = 2, which was shown to
create Scale-Free (SF) powerlaw degree distributions [13]. In this model, one node
is added in each generation and that node is connected to m previously generated
nodes; these nodes are chosen at random but are weighted by their current degrees.
One specific network that might be generated by this model is shown in Figure 1
for reference.

Figure 1: An example of a directed Barabási-Albert SF net using the parameter m = 2.
The proposed internal bottleneck model follows this construction, except that each node
has a specific degree restriction, which is theoretically obtained from a transformation of
the hidden subgraph’s conductance value. Nodes are taken out of the pool of potential links
from new nodes once their degree reaches this internal bottleneck state.

As stated in the introduction, we consider a directed version of this basic model
since only one metric for hierarchy can be generalized well to undirected networks
(GRC). As such, there are essentially two options for how direction can be assigned.
The more natural choice may be to have links directed from older nodes to the new
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node, however, we found that this choice leads to uninteresting results. Particularly
for the GRC metric, we find that the node with maximum reach centrality is just the
oldest node. Additionally, as the network grows in size, the GRC value converges
to 1 in the infinite limit for all choices of bottleneck values. Thus, our model uses
edges directed away from the newly added nodes, meaning older nodes are consid-
ered offspring of the new nodes. This version has the more interesting results where
the overall size of the network has less of an influence as the age of the node is not
the only determining factor in reach centrality or hub formation.

We alter this basic SF model further by arguing that Φ should naturally corrre-
spond to a limit on the potential degree of the agglomerated node through some
monotonically increasing function f : [0, 1] → Z+, which is used to assign what
we call an internal bottleneck, B, to each node. Furthermore, being a structural
property of a functioning unit in the coarse-grain network, we assume a truncated
normal distribution on the underlying internal conductance values to ensure that
Φ ∈ [0, 1]. We then need only define the mapping f from these internal conduc-
tance values to their corresponding B values, for which inverse CDF provide an
obvious choice. More specifically, if we define F : [a,∞) → [0, 1] as the definite
integral

y = F (x) =

∫ x

a

p(s) ds,

for some probability distribution p, then F is the CDF of p and we can say that

B = f(Φ) = F−1(Φ). (3)

In this way, we consider the results from four common distributions for comparison:
binomial (p = 0.5), poisson, negative binomial (p = 0.5), and powerlaw (α = 2.5);
altering the parameters n, λ, r, and xmin respectively in order to shift the average
bottleneck values.

This hidden variable could also very well be assigned arbitrarily using any prob-
ability distribution in general, but the present model is based on a theoretical ar-
gument involving graph conductance. Taking this into consideration, an arbitrary
distribution may still be utilized by assuming a uniform distribution of internal con-
ductance values, which is then mapped through the inverse CDF of the desired
distribution. However, the fact that conductance is a structural property and these
values represent subgraphs that are functional units of some more complex system,
we assumed a truncated normal distribution for Φ in order to obtain a localized dis-
tribution with compact support on [0, 1] that tends toward better flow characteristics
(e.g. mean µ = 0.75 and standard deviation σ = 0.1).

As many measures of human potential actually follow a heavy tailed distribu-
tion [18], there is no reason to expect this normality to be retained through the
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mapping to B, i.e. f : [0, 1] → Z+ may incorporate time dependent growth pro-
cesses that lead to heavy tailed distributions. Thus, using the same distribution of
underlying conductance values for all simulations, we compare the resulting net-
works from assigning B values using inverse CDF of both localized (binomial and
Poisson) and heavy tail (powerlaw and negative binomial) distributions. It is also
worth mentioning that the P2P network case described in the introduction is incor-
porated into the present model through the use of the inverse CDF of the degenerate
distribution. Figure 2 shows examples of the inverse CDF functions used (with pa-
rameter choices that lead to comparable 〈B〉), together with a superimposed sketch
of the truncated normal distribution used for the conductance values that make up
the input to these functions. This shows how our sampling strategy will dispropor-
tionately utilize the tail of the distributions.

Figure 2: Examples of the inverse CDF functions (3) and a sketch of the truncated normal
distribution used for the conductance values. We assume normality with Φ = 0.75 meaning
the tails of the distributions are more heavily sampled.

Having described the assignment of the variable, we now focus on its function.
During the random growth process, once a node’s degree meets its assigned internal
bottleneck value, that node is no longer considered in the selection of children for
new nodes. For example, referring back to Figure 1, if B(a) = 5 upon creation,
after the current generation it would no longer be eligible to link to newly added
nodes. However, it is important to note that node a would still likely be a more
distant descendent of many additional nodes due to its high relative number of links
at this point in the process. This feature of increased likelihood of becoming a de-

7

Diggans et al.: Emergent Hierarchy Through Conductance-based Degree Constraints

Published by The Open Repository @ Binghamton (The ORB), 2021



scendent but not a direct child of new nodes is important to showing why measures
of hierarchy increase as the restrictions are imposed.

4 Results

In considering the two options for assigning direction to the links in the original
model, one choice proved to be problematic for measuring hierarchy, and we now
take the time to explain this issue before presenting the results for our chosen model.
For the directed model in which links are directed from old nodes to the newly
added ones, we find misleading results. In this case, the oldest nodes are by defini-
tion going to obtain the maximum reaching centrality, and thus, CRmaxis too closely
tied to the age of the node. In fact, we find that the general trends of the GRC and
HRW disagree, as can be seen in Figure 3.

(a) (b)

Figure 3: Measures of (a) GRC and (b) HRW against the sample median 〈B〉 for the in-
correctly assigned directed edge model. Results are averaged over 1000 trials for graphs of
size N = 1000 nodes, i.e. 1 million nodes. All networks were created using the python
Networkx package. Curves represent the same inverse CDF maps through different param-
eter choices. In this directed case, while HRW increases as the average restriction imposed
becomes more severe, the GRC has the opposite trend. This is due to CRmax being a func-
tion of node age and thus directly related to the network size; this is seen as a problem
with the model and not reflective of an accurate appraisal of the hierarchy of the network.
The original expected Scale Free values are included as a dashed line to which all measures
converge for sufficiently large bottleneck values.

Though it is interesting to find a RGN model for which the GRC trend fails
to coincide with that of HRW , it should be made clear why this occurs. For a
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directed graph, the path lengths are not relevant to the defintion of the CR values in
calculating the GRC. Instead, it is only the number of nodes that can be reached that
matters. Thus, the alteration from hub formation to more chain-like growth does
not affect the trend as it does for HRW . This chain-like growth actually leads to a
more evenly spread out distribution of reaching centralities, which results in lower
contributions to the overall GRC sum. While the results for HRW for this case are
more in line with what is expected, one may note that the choice of distribution used
does not make much of a difference here either. Instead, the measure is again highly
dependent on the size of the graph and is a function of how chain-like the network
is made by the restrictions. Thus, the location of the hump in this case is due to the
choice of λ = 4 and the reduction afterward is due to the general prevention of hub
formation.

For these reasons, we define our model in what may be thought of as the reveresed
direction, having links directed from newly added nodes to existing nodes. This
choice leads to quite low GRC values in general, but we find that the two metrics
chosen for assessing hierarchy at least have similar trends under this model. The
low GRC values are simply due to younger nodes being more likely to attain the
maximum reaching centrality, meaning the finite simulations lead to a somewhat
artifical reduction in GRC. Regardless, we find that distributions resulting in lower
〈B〉 values lead to the prevention of hub nodes. As mentioned previously, those
nodes, which reach their maximum degrees, will not be direct descendents of any
additional new nodes. They will, however, have a much higher likelihood of be-
coming distant descendents of many future nodes, allowing its ancestors to attain
larger CR values, even if they reach their own B values. With respect to HRW ,
the prevention of hub formation particularly leads to more clearly defined levels of
hierarchy emerging, which drives the measure up until there are too many levels for
the number of nodes and we get chain-like networks.

Figure 4 (a) and (b) show the change in GRC and HRW , respectively, as a func-
tion of the sample median of B values for the proposed model under various choices
for the mapping f . Medians were used to mitigate comparison issues that arise with
heavy tailed distribution means, and sample means were shifted for the various f
through a single distribution parameter for each case.

As might be expected, the influence of the imposed limits are subtle in all cases
where 〈B〉 ∼ N . However, as the restrictions get more severe, i.e. 〈B〉 << N ,
both measures of hierarchy increase with an acceleration that is dependent on the
variation in the distributions. A break down in the trend is noticeable for HRW

when the average bottleneck value gets smaller than k = 5.84, since each node has
m = 2 out-links and the optimal branching for the choice of λ = 4 is 3.84 [9]. Any
additional restriction then leads to lower measures of HRW .

We also use this model to explore changes to the tail of the degree distribution.
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(a) (b)

Figure 4: Measures of (a) GRC and (b) HRW against the sample median of bottleneck
values for networks created by the internal bottleneck model. Results are averaged over
1000 trials with graph sizes of N = 1000 nodes, i.e. 1 million nodes. All networks were
created using the python Networkx package. Curves represent the same inverse CDF maps
through different parameter choices. In all cases, both measures of hierarchy increase as the
average restriction imposed becomes more severe. This general trend breaks down in the
case of HRW , as the restrictions lead to more chain-like networks. Maps associated with
heavy tail distributions have the potential to lead to slightly less hierarchical networks on
average due to an increased likelihood of hub formation. The values obtained by the original
SF model are included as dashed lines, to which all measures converge for sufficiently large
〈B〉 values.

Again, the extreme case of using a degenerate CDF leads to a constant degree limit,
which was shown to result in an exponential cut-off of the otherwise scale-free de-
gree distribution. In general, for all choices of f , the rich-get-richer growth process
is essentially unaltered for nodes with small degrees, until the internal limits are
attained. This quenching of degree growth leads to two general properties of the
resulting degree distributions: there is a bunching up of degrees near or before 〈B〉,
followed by a drop-off in the otherwise SF degree distribution. We find that using
the inverse of CDF for localized distributions as f leads to similar results to that
of the degenerate distribution (i.e. B =constant). Though, as seen in Figure 5, the
bunching up of the degree count before 〈B〉 is more spread out and is followed by
a slower drop-off whose slope depends on the variance of the distribution, which
controls hub formation.

These localized distributions can be contrasted with the results from using the
inverse CDF for heavy tail distributions. The curves for both the negative bino-
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Figure 5: A log-log plot of the degree distributions for 1000 trials of graph sizes N = 2000
nodes, i.e. 2 million nodes, resulting from a localized distribution of conductance values
being mapped through various inverse CDF, i.e. f : [0, 1] → Z+, with parameters chosen
so that 〈B〉 = 7 (near the maximum HRW value). As parameters are shifted so that 〈B〉
gets larger, all degree distributions converge to the SF degree distribution regardless of f .

mial distribution and a powerlaw distribution, included in Figure 5, have a less
pronounced drop-off in the degree distribution due to higher probability of hub for-
mation. Of interest is the noticeable hump representing an increased number of
smaller degree nodes from the skewness of the powerlaw distribution. It appears
that the negative binomial distribution provides the most realistic choice for obtain-
ing networks whose degree distribution follow the SF form more closely, except in
the region of hub formation, as expected in real-world networks.

5 Conclusions

Nothing in the physical world has true limitless potential. Networks of information
flow are restricted by the processing speed of each node, as rivers are restricted
by the height of their banks. We have presented a paradigm for understanding
why real-world networks tend to display increased hierarchical structure over what
is expected from purely scale-free growth by assuming that many networks are
coarse-grain models of more intricate networks, and that the ignored properties of
the underlying structure impact the growth process. Link constraints can increase
hierarchy, but using heavy tailed distributions for the hidden variable can reduce the
observed hierarchy to an extent due to increased hub formation. We also find the
change in the tail of the degree distribution is associated with the increased measure
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of hierarchy. Future work will explore how the growth process itself may impact
the development of the underlying conductance values either through a multiscale
model or under a use-it-or-lose-it growth assumption in an effort to identify the
correct distribution to use for this model to effectively reproduce real-world network
structures.
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