
Northeast Journal of Complex Systems (NEJCS) Northeast Journal of Complex Systems (NEJCS)

Volume 3
Number 1 Special Issue: NERCCS 2021 Papers Article 6

March 2021

Flocc: From Agent-Based Models to Interactive Simulations on the Flocc: From Agent-Based Models to Interactive Simulations on the

Web Web

Scott Donaldson
Open Set, scott@openset.tech

Follow this and additional works at: https://orb.binghamton.edu/nejcs

 Part of the Non-linear Dynamics Commons, Numerical Analysis and Computation Commons,

Organizational Behavior and Theory Commons, and the Systems and Communications Commons

Recommended Citation Recommended Citation
Donaldson, Scott (2021) "Flocc: From Agent-Based Models to Interactive Simulations on the Web,"
Northeast Journal of Complex Systems (NEJCS): Vol. 3 : No. 1 , Article 6.
DOI: 10.22191/nejcs/vol3/iss1/6
Available at: https://orb.binghamton.edu/nejcs/vol3/iss1/6

This Article is brought to you for free and open access by The Open Repository @ Binghamton (The ORB). It has
been accepted for inclusion in Northeast Journal of Complex Systems (NEJCS) by an authorized editor of The
Open Repository @ Binghamton (The ORB). For more information, please contact ORB@binghamton.edu.

https://orb.binghamton.edu/nejcs
https://orb.binghamton.edu/nejcs/vol3
https://orb.binghamton.edu/nejcs/vol3/iss1
https://orb.binghamton.edu/nejcs/vol3/iss1/6
https://orb.binghamton.edu/nejcs?utm_source=orb.binghamton.edu%2Fnejcs%2Fvol3%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/118?utm_source=orb.binghamton.edu%2Fnejcs%2Fvol3%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=orb.binghamton.edu%2Fnejcs%2Fvol3%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/639?utm_source=orb.binghamton.edu%2Fnejcs%2Fvol3%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=orb.binghamton.edu%2Fnejcs%2Fvol3%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.22191/nejcs/vol3/iss1/6
https://orb.binghamton.edu/nejcs/vol3/iss1/6?utm_source=orb.binghamton.edu%2Fnejcs%2Fvol3%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ORB@binghamton.edu

Flocc: From Agent-Based Models to Interactive Simulations on the Web

Scott Donaldson1*
1 Open Set, Washington DC, USA

* scott@openset.tech

Abstract

Agent-based modeling (ABM) is a computational technique wherein systems are

represented through the actions and interactions of many individual entities

(‘agents’) over time. ABM often attempts to elucidate the unpredictable, high-level

behavior of systems through the predictable, low-level behavior of actors within

the system. There are currently few software or frameworks for ABM that allow

modelers to design and build interactive models on the web, for a wide audience as

well as a scientifically literate audience well-versed in complexity, models, and

simulations. Flocc is a novel framework for agent-based modeling written in

JavaScript, the lingua franca programming language of the web (which can also run

on servers or one’s machine). In this paper, we present Flocc’s main features and

show how it can be used by scientists, data journalists, web developers, and others

to create web-based simulations able to be viewed and interacted with by anyone

with a modern web browser. By lowering the barrier to entry to complexity science,

we contend that Flocc shows promise as a pedagogical tool as well as a software

for exploring complex systems.

1. Introduction

Agent-based modeling (ABM) is an approach toward modeling complexity across

domains, from political science and economics to population ecology,

epidemiology, and more. In ABM, individual entities (‘agents’) are represented as

distinct data representations, along with rules for their behavior (actions and

interactions). A simulation takes place over many discrete time steps, and a modeler

may hope to gain insight into the high-level behavior of the system being modeled

through the logic of its parts. Simulations (including ABM), as philosopher Manuel

DeLanda argues, give conceptual legitimacy to the notion that complex behavior

can emerge from interactions between the elements of a system at all: “Simulations

can play the role of laboratory experiments in the study of emergence[,]

complementing the role of mathematics in deciphering the structure of possibility

spaces” [1]. By designing, running, and analyzing agent-based models, we can gain

valuable insights into complex systems.

1

Donaldson: Flocc: From Agent-Based Models to Interactive Simulations on the Web

Published by The Open Repository @ Binghamton (The ORB), 2021

1.1 Agent-based modeling and complex systems

A canonical example of an agent-based model exhibiting emergent behavior is the

flocking model [2] designed by artificial life researcher Craig Reynolds. In the

flocking model (from which Flocc takes its name), individual agents —

affectionately nicknamed ‘boids’ — are modeled spatially in two dimensions, and

follow three simple rules:

1. Avoid collisions with nearby boids

2. Attempt to match velocity with nearby boids

3. Attempt to stay close to nearby boids

In a typical run of the flocking model, boids begin randomly dispersed both in

position and direction. However, as the simulation advances in time and boids move

in space, they begin to form groups (‘flocks’) that emerge and disperse, identifiable

and persisting over time but not reducible to their constituents. As writer M.

Mitchell Waldrop describes, “What is striking about these rules is that none of them

said ‘Form a flock’... the rules were entirely local, referring only to what an

individual boid could do and see in its own vicinity… And yet flocks did form,

every time” [3]. As an example of emergence, flock formation is intuitively

graspable, and the computational implementation demonstrates how well-defined,

simple rules that individuals follow can lead to such group-level behavior.

 While Reynolds’ original program for the flocking model was written in

Lisp, most if not all programming languages today can be used to write ABM. And,

while Reynolds’ program was bespoke, using a few packages for graphics and

geometry, there are currently several software libraries with the sole purpose of

designing and running agent-based models.

1.2. Software for ABM

A popular ABM software is NetLogo [4], a desktop application that allows users to

write model code (in its own custom scripting language) and run and visualize

simulations. NetLogo includes many features for designing and developing models,

but is difficult to interface with other software and requires downloading the

application in order to run models. There is an attempt to port NetLogo models to

the web, but it does not contain all of the features of the desktop application and

the website states, “The desktop version of NetLogo is recommended for most

uses” [5].

 Another library, Mesa [6], is close to Flocc in spirit, but uses the Python

programming language. Like Flocc, it can be used with 3rd-party libraries (there is

a robust and growing collection of Python-based tools for data science and

analysis). One of Mesa’s strengths (which Flocc does not aim to replicate) is its

ability to integrate with 3rd-party Python-based tools for data analysis. Mesa also

2

Northeast Journal of Complex Systems (NEJCS), Vol. 3, No. 1 [2021], Art. 6

https://orb.binghamton.edu/nejcs/vol3/iss1/6
DOI: 10.22191/nejcs/vol3/iss1/6

affords model and data visualization in a web browser using JavaScript. However,

to place a Mesa model on a web server and visualize it on a web page is a non-

trivial task, making it an unattractive tool when considering publishing models for

a wide audience.

 Two more software, AgentScript [7] and AgentBase [8], are written in

JavaScript (or have JavaScript APIs) with the purpose of building and sharing

browser-based models. Both make it relatively easy to create interactive

simulations that can be viewed by a large audience. However, each focuses

primarily on visualizing models themselves, providing few tools for visualizing

data about models. Since many agent-based models lack a spatial or network

dimension, this makes it difficult to meaningfully represent such models.

We introduce Flocc to address the gaps in the above ABM software.

Flocc is an open-source, MIT-licensed JavaScript library for designing and building

agent-based models. Flocc models can easily be distributed on the web, making it

possible for anyone with a modern web browser to view and interact with them.

Additionally, those distributing/publishing models can use free platforms, managed

services, or self-hosted web pages on which to place the models. Since it is a

JavaScript library, Flocc models can integrate with any 3rd-party code written in

JavaScript, as well as interface with APIs. Lastly, to explore the parameter spaces

of models and analyze the results of simulations, Flocc can also run in a Node.js

environment on a remote server or one’s machine. A key benefit is that the same

code can be used to produce interactive simulations for a lay audience as well as to

perform exploration and data analysis of models.

2. Overview of Flocc

Flocc emphasizes customizability, flexibility, and a relatively unopinionated

approach to developing computational models. As with agent-based modeling and

programming more generally, while there are more straightforward and suggested

approaches, there is no ‘right’ or ‘wrong’ way to build a Flocc model. There is

usually more than one way to build a given model feature, both syntactically and

procedurally, using built-in Flocc components, extending them, or drawing from

the larger JavaScript ecosystem.

 The types of objects that Flocc provides can be divided into roughly two

categories — those used for modeling/analysis and those used for visualization.

Modeling objects include the Agent, Environment, Network, Terrain (a 2-

dimensional grid for cellular automata), and other classes. Visualization objects

include the CanvasRenderer (a spatial representation of an Environment with

Agents), renderers for line charts, histograms, and heatmaps, and a tabular view of

3

Donaldson: Flocc: From Agent-Based Models to Interactive Simulations on the Web

Published by The Open Repository @ Binghamton (The ORB), 2021

data. There is also a separate, add-on library called Flocc UI1 that can be used to

build interactive interfaces in the browser (similar to the popular dat.GUI library).

It provides components such as sliders, inputs, and buttons to allow users to update

model variables and parameters, reducing the friction in creating explorable

simulations. Flocc UI is still in beta development and will not be covered in this

paper, but we expect to publish it in the future.

2.1. Environment

The core of any Flocc model is the Environment class. It provides functionality for

both the space and time in which a simulation occurs. A model typically only has a

single environment, which is instantiated using the `new` keyword:

const environment = new Environment();
2

An Environment can be configured with a number of options, such as a `width`

and `height` for spatial environments, and a boolean value for `torus` (whether

or not a 2-dimensional spatial environment wraps from one edge to the other).

const environment = new Environment({

 “width”: 500,

 “height”: 500,

 “torus”: false

});

An empty Environment is of little value to an agent-based model — in general,

models rely on the Agent class to add individual agents to the simulation.

2.2. Agents

Like all other classes in Flocc, Agents are instantiated with the `new` keyword:

const agent = new Agent();

Agent data can be added or removed at any time, and does not have to adhere to the

same data type once it is set (although for code maintenance this is discouraged).

Values can be anything from simple types such as booleans, numbers, and strings,

1 https://github.com/o-p-e-n-s-e-t/flocc-ui

2 Throughout this paper, we will use modern JavaScript syntax, such as `const` and `let` for

variable declaration. In early versions of JavaScript, only `var` could be used to declare variables,

and older web browsers may not support or recognize newer syntax. Flocc itself makes few

concessions to older browsers, assuming that in general, most browsers are automatically updated

to the latest version.

4

Northeast Journal of Complex Systems (NEJCS), Vol. 3, No. 1 [2021], Art. 6

https://orb.binghamton.edu/nejcs/vol3/iss1/6
DOI: 10.22191/nejcs/vol3/iss1/6

https://github.com/dataarts/dat.gui

to more complex types such as arrays and objects, to other agents in the

environment and beyond3. Data may be set using the `set` method:

agent.set(“favorite_food”, “pizza”);

agent.set(“hunger”, 60);

The `set` method can also set multiple key-value pairs at once by passing a

JavaScript object, so the above code could be rewritten:

agent.set({

 “favorite_food”: “pizza”,

 “hunger”: 60

});

Any of these values can be retrieved using the `get` method (ex. calling

`agent.get(“hunger”)` will return the number 60).

The `set` method also allows for functions as values, which return dynamically

calculated whenever they are retrieved. This can specify relationships between the

agent’s pieces of data, or between agent and environment data (an environment is

itself a special type of agent, and can call the `set` and `get` methods to allow for

high-level, global variables). For example, by passing a function for

`favorite_beverage`, this agent’s drink of choice can return different values

depending on its `favorite_food`:

agent.set(“favorite_beverage”, function(agt) {

 if (agt.get(“favorite_food”) === “pizza”) {

 return “soda”;

 } else {

 return “water”;

 }

});

Note that the function that is passed takes a single parameter, which refers to the

agent on which it is being called. Usually, the function is declared separately and

used for all agents when initially populating the environment:

function favorite_beverage(agt) { … }

agent.set(“favorite_beverage”, favorite_beverage);

3 In the case of complex types, the usual warnings about object reference apply. If two agents a

and b both have a key-value pair that refers to the same object, and a piece of data on that object

changes (say, by agent c), then it will be changed for both a and b.

5

Donaldson: Flocc: From Agent-Based Models to Interactive Simulations on the Web

Published by The Open Repository @ Binghamton (The ORB), 2021

A special, reserved key-value pair is the `tick` value. This must be a function, and

describe the behavior of the agent over time. There are few restrictions on `tick`

functions otherwise. They may run synchronously and/or asynchronously.

Synchronous ̀ tick` functions ensure that any changes in data occur simultaneously

across all agents, while in asynchronous functions they occur sequentially, either in

the order agents were added to the environment or in a randomized order (see

section 2.3. below). `tick` functions can update the agent’s own data, that of other

agents, or even environment variables; that is, the restrictions on `tick` functions

come more from JavaScript as a programming language than anything else. As in

the above example, a typical `tick` function will be declared separately and then

added to all agents as they are instantiated and added into the environment:

function tick(agent) {
 if (agent.get(“hunger”) > 100) {

 if (agent.get(“favorite_food”) === “pizza”) {

 agent.decrement(“hunger”, 10);
 } else {
 agent.decrement(“hunger”, 5);
 }

 } else {
 agent.increment(“hunger”, 3);

 }
}

environment.addAgent(new Agent({

 “favorite_food”: “pizza”,
 “hunger”: 60,
 “tick”: tick
});

The above is an example of asynchronous updating. As soon as `decrement` or

`increment` are called, that agent’s ̀ hunger` value is immediately updated. If code

is added later in the function to reference the agent’s `hunger` value, it will return

the updated value, just as it will if another agent references it. However, the same

function could be rewritten to run synchronously:

function tick(agent) {
 let hunger = agent.get(“hunger”);
 if (agent.get(“hunger”) > 100) {

 if (agent.get(“favorite_food”) === “pizza”) {

 hunger = hunger - 10;
 } else {

 hunger = hunger - 5;
 }

 } else {

6

Northeast Journal of Complex Systems (NEJCS), Vol. 3, No. 1 [2021], Art. 6

https://orb.binghamton.edu/nejcs/vol3/iss1/6
DOI: 10.22191/nejcs/vol3/iss1/6

 hunger = hunger + 3;

 }

 return { “hunger”: hunger };
}

In synchronous updating, instead of calling an agent’s `set`, `increment`, or

`decrement` methods within the function, an object of key-value pairs should be

returned, which will update the agent’s values only after the `tick` function has

run for all agents in the environment in a given time step. Unlike asynchronous

updating, calling `agent.get(“hunger”)` within this function, or referencing

another agent’s `hunger` value will always return the value at the start of the time

step. This helps to avoid runaway patterns where an agent updates based on

another’s changes, which in turn are effected by another’s changes, etc.

Note, however, that in a model where one agent is able to make changes to another

agent’s data, these changes must run asynchronously, by referencing the other agent

and calling its `set`, `increment`, or `decrement` methods. In fact, the concept of

synchronous updating introduces a problem here — if agent a updates both agent

b’s and its own data, and agent b updates both agent a’s and its own data, then the

priority of these changes must be dependent on the order of activation (that is, it is

necessarily asynchronous).

2.3. Running a model

Once agents have been added to an environment (usually adding many at a time

with a `for` loop), the model is ready to run over time. To do this, the program

should call `environment.tick()`, which will advance the model forward by one

discrete time step, calling each agent’s `tick` function once. By default, the

environment loops over every agent in the order they were added. However, the

order of agent activation can have significant effects on the emergent behavior of

the system [9]. For example, in a spatial model, if agents reference nearby agent

data, and updates occur sequentially, it is easy for cascading patterns to emerge that

are an artifact of the order of activation, rather than from the behavior itself. By

passing a configuration object, it is possible to override this default4:

environment.tick({

 “randomizeOrder”: true

});

4 Most ABM software defaults to randomized order, and Flocc will shift to this regime in the

release of version 0.6.0 (so users will need to opt into, not out of, sequential activation).

7

Donaldson: Flocc: From Agent-Based Models to Interactive Simulations on the Web

Published by The Open Repository @ Binghamton (The ORB), 2021

Alternatively, a modeler may not want to uniformly activate each agent in one time

step. For example, uniform activation is more relevant to physical simulations,

where motion is guaranteed to occur deterministically, than social simulations,

where individuals act sporadically or unpredictably. To randomly activate only one

or a few agents, the configuration object should contain these keys:

environment.tick({

 “activation”: “random”,
 “activationCount”: 5

});

In the above examples, the environment progresses one time step. However, a

single step will likely not reveal much about the emergent behavior of the model,

as complexity arises from the continuous interaction among parts of a system over

time. An environment can progress several time steps at once by either passing a

number as the single parameter to `environment.tick`, or by passing it as part of

a configuration object:

environment.tick(100);

environment.tick({

 “count”: 100

});

The above examples are identical, both advancing the environment by 100 time

steps. However, in these examples, assuming there is a visual representation of the

model (a renderer, described in the next section), the progression over time will not

be depicted. Instead, 100 time steps will appear to have instantaneously passed, and

any visualizations will now show the state of the environment and agents after the

fact.

Often, it is useful to show progression and evolving system behavior over time.

Rather than advancing the environment by a large number of time steps, a built-in

JavaScript function can be used to ensure updates occur regularly over time and are

rendered each time `environment.tick` is called. To do this, `environment.tick`

is usually wrapped in an outer function:

function run() {

 environment.tick();
 requestAnimationFrame(run);

}
run();

8

Northeast Journal of Complex Systems (NEJCS), Vol. 3, No. 1 [2021], Art. 6

https://orb.binghamton.edu/nejcs/vol3/iss1/6
DOI: 10.22191/nejcs/vol3/iss1/6

The built-in browser function `requestAnimationFrame` takes as a parameter a

callback function, which will be run on the next available frame for the browser to

be ‘re-painted’ (i.e. the display’s refresh rate). As the name suggests, this can be

used to produce relatively smooth animations. In the above example, once `run` is

called for the first time, since it calls itself (via `requestAnimationFrame`), the

animation will begin running and never stop. It can be useful to ‘shortcut’ and stop

animating under certain conditions, as below:

function run() {

 environment.tick();
 if (environment.time < 1000) requestAnimationFrame(run);

}
run();

The above example will begin running but stop once the environment has

progressed 1,000 time steps (on a 60 Hz display, this will take 16-17 seconds).

2.4. Environment helpers

There are three classes that provide additional functionality for agents and

environments. They can be considered ‘plugins’ in the sense that they aren’t strictly

necessary for many models but can be indispensable for some. Briefly, the three

helpers are:

1. Terrain: Extends the environment to allow for space- and time-efficient

cellular automata-based models (CA). Rather than populating an

environment with an agent for each cell of a CA, terrains come pre-

populated and follow slightly different update rules than agents in a non-

CA model. For example, since terrains are expected to be visualized by a

CanvasRenderer (see below), their cells contain numeric values for red,

green, blue, and alpha channels (or a single value, if running in grayscale

mode). However, by using multiple terrains, cells can contain arbitrary data

as well.

2. Network: Networks provide a means for storing and representing

relationships between agents. Relative to libraries built specifically for

network analysis such as cytoscape.js [10] and webweb [11], the

functionality of networks in Flocc are limited to the basics of undirected

edges between agents. However, it is possible to extend networks to include

edge attributes (including weights and/or directionality), and to generate

different network structures, from random graphs to small world networks

to preferential attachment networks and beyond. Upcoming releases of

Flocc will include built-in methods for wiring networks in a given structure.

9

Donaldson: Flocc: From Agent-Based Models to Interactive Simulations on the Web

Published by The Open Repository @ Binghamton (The ORB), 2021

3. KDTree: For spatial environments where agents have limited visibility,

operations such as finding the nearest neighbor(s) of an agent can be

inefficient, typically involving looping over every other agent in the

environment and filtering to only those within a certain distance. Over a

single time step this has O(n2) algorithmic efficiency. By using a KDTree,

these spatial operations can be performed at O(n log n) efficiency, a

significant improvement when there are large numbers of agents in a model.

The difference may be negligible in a spatial environment with 500 or fewer

agents, but as that number increases, to maintain relatively smooth

visualization/animation, a KDTree becomes indispensable.

2.5. Visualizing the model and data about the model

Especially for interactive simulations where numerical output is less important than

the first-hand experience of witnessing complex, emergent behavior, it is important

to represent models visually. The CanvasRenderer class can be used to visualize

environments and agents in two-dimensional space, and several other renderers can

be used to visualize aggregate data in other ways. The other renderers are the

LineChartRenderer, Histogram, TableRenderer, and Heatmap.

All renderers follow a similar pattern for instantiation — they take the environment

as the first parameter, and can take a configuration object as the second. All

renderers also have a `mount` method, which states which DOM element on the

web page should be populated with the renderer’s visual output. Since a

CanvasRenderer attempts to provide a complete visual representation of agents in

an environment, it has the most configuration options:

const renderer = new CanvasRenderer(environment, {

 “width”: 600,
 “height”: 300,
 “background”: “blue”,
 “scale”: 2,
 “origin”: { “x”: 150, “y”: 75 }
});

The above options will draw a 300 x 600 canvas with a blue background, scaled up

2x with the origin (the upper-left corner, as in computer graphics) set to the

coordinates (150, 75) (with the lower-right corner, then, showing the coordinates

(450, 225)). CanvasRenderers will draw agents in the environment differently

depending on what agent data they encounter. As with the above `tick` key-value

pair, there are certain pieces of data that have significance for rendering.

new Agent({

10

Northeast Journal of Complex Systems (NEJCS), Vol. 3, No. 1 [2021], Art. 6

https://orb.binghamton.edu/nejcs/vol3/iss1/6
DOI: 10.22191/nejcs/vol3/iss1/6

 “x”: 200,

 “y”: 125,

 “size”: 6,

 “color”: “yellow”,

 “shape”: “arrow”,

 “vx”: 0,

 “vy”: 1

});

An agent with the above data would be represented by a yellow triangle at the point

(200, 125) (for the above CanvasRenderer, this would actually be drawn at (100,

100)), 6 pixels wide at the base, pointing due south (following the `vx` and `vy`

data).

3. Example Model: Race to the Center

Having provided an overview of the basics of the Flocc library, we will now present

a model, called “Race to the Center,” with more interesting emergent behavior. A

highly idealized model of preferential voting dynamics in a two-party system, it

attempts to show how candidates from opposing parties might shift their positions

in order to attain a greater share of the vote. The full version can be viewed online

on the Flocc website: https://flocc.network/examples — here we focus on the code

relevant to the behavior of the model, as opposed to its presentational aspects.

This model includes two types of agents, voters and candidates. There are 201

voters (an odd number to prevent a tie vote) and 2 candidates representing opposing

political parties. Both voters and candidates are initialized with an `x` value, which

represents their ideological position along a political spectrum (as noted in section

2.5. above, this also allows them to be visualized on a CanvasRenderer). This code

adds the voters:

for (let i = 0; i < 201; i++) {

 environment.addAgent(

 new Agent({

 “x”: utils.gaussian(50, 25),

 “tick”: vote

 })

);

}

The voter’s `x` value is drawn from a Gaussian distribution with mean value 50 and

standard deviation 25 (most values fall between 0 and 100, clustered around 50).

The two candidates begin with `x` values closer to 0 and 100, respectively, to

represent opposing political ideologies:

11

Donaldson: Flocc: From Agent-Based Models to Interactive Simulations on the Web

Published by The Open Repository @ Binghamton (The ORB), 2021

https://flocc.network/examples

left = new Agent({

 “x”: utils.random(0, 25),

 “votes”: 0,

 “direction”: utils.sample([1, -1]),

 “tick”: shift

});

right = new Agent({

 “x”: utils.random(75, 100),

 “votes”: 0,

 “direction”: utils.sample([1, -1]),

 “tick”: shift

});

The candidates, left and right, are declared in the global scope so that voters can

reference them in their `vote` functions. They are also initialized with 0 votes (this

is updated in the `vote` function), and a `direction`, either 1 or -1, which will be

the direction they choose to move in when they receive a minority of votes.

The `vote` function is straightforward, incrementing the `votes` value of the

candidate who is closer (in this 1-dimensional ideological space) to the agent in

question:

function vote(agent) {

 let choice;

 if (utils.distance(agent, left) < utils.distance(agent, right))

{
 choice = left;
 } else if (utils.distance(agent, left) > utils.distance(agent,

right)) {
 choice = right;
 } else {

 choice = utils.sample([left, right]);

 }

 choice.increment(“votes”);
}

In the event both candidates are equidistant from the voter, they essentially flip a

coin to choose.

As noted in section 2.2., since voters update the candidates’ data, this function must

run asynchronously (calling `increment`). However, because both candidates’

`tick` functions run after all the voters have voted, they are guaranteed to count all

votes.

Meanwhile, the two candidates follow a slightly more involved rule:

12

Northeast Journal of Complex Systems (NEJCS), Vol. 3, No. 1 [2021], Art. 6

https://orb.binghamton.edu/nejcs/vol3/iss1/6
DOI: 10.22191/nejcs/vol3/iss1/6

function shift(agent) {
 if (agent.get(“votes”) < 101) {
 agent.increment("x", agent.get("direction"));

 const min = agent === left ? 0 : 50;
 const max = agent === right ? 50 : 100;
 agent.set("x", utils.clamp(agent.get("x"), min, max));

 const choices = [1, -1];
 for (let i = 0.4; i > 0; i -= 0.1) {
 if (agent.get(“lastVotes”) !== null) {
 choices.push(
 agent.get("lastVotes") > agent.get(“votes”) ?
 -1 :
 1
);
 }
 }
 agent.set("direction", agent.get("direction") *

utils.sample(choices));
 }
 agent.set("lastVotes", agent.get(“votes”));

 return {
 “lastVotes”: agent.get(“votes”),
 “votes”: 0
 };
}

The bulk of this function only runs when the candidate has received less than 101

(half of the total) votes. If so, the candidate moves in the `direction` they have

set — shifting their position in the hopes of gaining more votes in the future. The

next lines ensure that they always remain within the ideological bounds of the given

space and within their own ‘lanes’ (i.e. the left candidate can never occupy the right

half of the space and vice-versa). After this, they may update their `direction`, in

a rudimentary model of learning from past mistakes. Based on comparing the

previous amount of votes they received to the number they received this time, they

will create an array (or list) of either mostly 1s or mostly -1s. If their previous vote

count was higher, it will be mostly -1s, and if their previous vote count was lower,

it will be mostly 1s. Then, they update their `direction` by multiplying it by a

value randomly chosen from this array — so if they gained votes this round, the

value will likely be 1, maintaining the direction they’re moving in, and if they lost

votes, it will likely be -1, changing course and beginning to move in the opposite

direction in order to gain more votes. The possibility of not changing direction

means that candidates are not merely deterministically following the path toward

13

Donaldson: Flocc: From Agent-Based Models to Interactive Simulations on the Web

Published by The Open Repository @ Binghamton (The ORB), 2021

more voters. The function finishes by returning the values that will be used for

`lastVotes` and `votes` in the next round.

Although this is a simple model, the dynamics over time demonstrate the incentive

for both candidates to shift positions ever closer to the center of the political space.

Below, the figure shows the spatial layout (with candidates, blue and red, slightly

larger than voters), along with the number of votes received over time and the

candidates’ distances from the center at 2,500 time steps elapsed.

The chart with the number of votes over time shows that the left candidate begins

with a greater share of the vote (and, not coincidentally, also begins closer to

center). However, the right candidate shifts their position until they both have close

to half of the vote, around time 400. From there, they are deadlocked, each shifting

closer and closer to the center until, slightly after time 2,000, left is at the center

and right just a short distance away — this particular simulation’s equilibrium state.

The above model, including the code, parameters, and visualization can be

embedded on a web page, able to be viewed and interacted with by a wide audience.

With a few more lines of code, using Flocc UI, parameters such as the population

count and the candidates’ learning rate could be easily manipulated by viewers,

allowing them to explore how varying these parameters affects the outcome.

4. Current and Future Work with Flocc

The library of examples on the Flocc website (https://flocc.network/examples)

shows the broad domains which can be modeled using ABM and Flocc — from the

14

Northeast Journal of Complex Systems (NEJCS), Vol. 3, No. 1 [2021], Art. 6

https://orb.binghamton.edu/nejcs/vol3/iss1/6
DOI: 10.22191/nejcs/vol3/iss1/6

https://flocc.network/examples

social and political sciences (“Tribute Model,” “Iowa Caucuses”) to population

ecology (“Predator-Prey”) to linguistics (“Language Evolution”) and beyond.

These examples represent adaptations of existing models, as well as original work

by the author and others. More models are added to the website regularly in order

to demonstrate the expansive world of complexity.

Over the past year, Flocc has been presented at workshops to web developers and

to graduate students enrolled in a computational design program. It is also currently

being used by researchers at Aarhus University to translate a NetLogo model to the

web in order to build an interactive simulation to facilitate remote learning in high

schools. In both workshops and in the classroom, relative to existing software,

Flocc is useful in that it requires no special software to be downloaded and can be

run in a web browser. We are encouraged by these projects and hope to see more

student-based work as Flocc finds more usage.

Flocc is an open-source library, and we hope that as more people (across fields and

specialties) build models using Flocc, they will identify areas for improvement and

provide feedback in the form of bug reports, feature requests, and code

contributions. Like all software, Flocc’s success will be an emergent, collaborative

effort. However, we do have some concrete plans to add new features to Flocc in

the near future:

⚫ Officially releasing Flocc UI as an add-on library for parameter-based

interfaces

⚫ Adding more network modeling capabilities, including automatic

generation of certain network structures, having both directed and

undirected networks, incorporating edge weights, and more

⚫ Allowing for server-side (Node.js) based visualization (currently only the

browser is supported)

⚫ Lowering the barrier to entry of publishing models by providing the ability

to create one’s own models on the Flocc website

Finally, a software library is only as usable as its documentation is useful. The Flocc

website (https://flocc.network) attempts to provide a comprehensive overview of

the library API, but would certainly benefit from more documented examples and

tutorials, as well as audience-specific sections for those with more or less

experience with programming, web development, agent-based modeling, or

domain-specific backgrounds.

5. Conclusion

Agent-based models and simulations are increasingly prominent in the world of

interactive data visualization and digital storytelling. In 2020, The Washington

15

Donaldson: Flocc: From Agent-Based Models to Interactive Simulations on the Web

Published by The Open Repository @ Binghamton (The ORB), 2021

https://flocc.network/

Post’s most viewed article [12] was an interactive ABM showing how social

distancing and quarantine measures could slow the spread of diseases like

coronavirus. As opposed to modeling through mathematical parameters (like the

coefficients of an SIR model), simulations and ABM in particular provide a more

embodied experience, showing through animation and visualization how the

parameters, rules, and interactions between individuals in a simulation give rise to

complex, system-level behavior.

Flocc provides a robust framework for designing and building ABM, taking

advantage of the web as a medium to allow a wide audience to interact with models.

It easily integrates with 3rd-party JavaScript libraries, such as Three.js for 3-

dimensional visualization, React for complex user interfaces, TensorFlow for

leveraging machine learning models, and more. Since the same Flocc model can

run in a browser or on a server, it is possible for the same code to be used for

interactive digital storytelling as well as computationally intensive parameter

sweeps and data analysis. We are proud to present it, and we believe that Flocc can

be a valuable tool for computational scientists, researchers, and modelers as well as

data journalists, artists, and students of complexity.

16

Northeast Journal of Complex Systems (NEJCS), Vol. 3, No. 1 [2021], Art. 6

https://orb.binghamton.edu/nejcs/vol3/iss1/6
DOI: 10.22191/nejcs/vol3/iss1/6

References

1. DeLanda, Manuel. Philosophy and simulation: The emergence of synthetic

reason. Bloomsbury Publishing, 2011.

2. Reynolds, Craig W. "Flocks, herds and schools: A distributed behavioral

model." Proceedings of the 14th annual conference on Computer graphics

and interactive techniques. 1987.

3. Waldrop, Mitchell M. Complexity: The emerging science at the edge of

order and chaos. Simon and Schuster, 1993.

4. Wilensky, Uri. “NetLogo.” Evanston, IL: Center for Connected Learning

and Computer-Based Modeling, Northwestern University, 1999.

5. Weintrop, D., Hjorth, A., Brady, C., & Wilensky, U. NetLogo Web:

Bringing Turtles to the Cloud. https://netlogoweb.org/

6. Masad, David, and Jacqueline Kazil. "MESA: An agent-based modeling

framework." 14th PYTHON in Science Conference. 2015.

7. Densmore, Owen, “AgentScript.” RedfishGroup LLC.

http://agentscript.org/

8. Wiersma, Wybo. "Agentbase: Agent-based modeling in the browser."

Advances in Social Simulation 2015. Springer, Cham, 2017. 451-455.

9. Comer, Kenneth W. “Who Goes First? An Examination of the Impact of

Activation on Outcome Behavior in Agent-Based Models.” George Mason

University, 2014. http://ebot.gmu.edu/handle/1920/9070

10. Franz, Max, et al. "Cytoscape. js: a graph theory library for visualisation

and analysis." Bioinformatics 32.2 (2016): 309-311.

11. Wapman, K., and Daniel Larremore. "webweb: a tool for creating,

displaying, and sharing interactive network visualizations on the web."

Journal of Open Source Software 4.40 (2019).

12. Stevens, Harry. "Why outbreaks like coronavirus spread exponentially,

and how to “flatten the curve”." The Washington Post (2020).

17

Donaldson: Flocc: From Agent-Based Models to Interactive Simulations on the Web

Published by The Open Repository @ Binghamton (The ORB), 2021

https://netlogoweb.org/
http://agentscript.org/
http://ebot.gmu.edu/handle/1920/9070

	Flocc: From Agent-Based Models to Interactive Simulations on the Web
	Recommended Citation

	docs-internal-guid-aca20867-7fff-00cc-e4
	docs-internal-guid-d728b6a9-7fff-a788-21

