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Abstract

We formulated and analyzed a set of partial integro-differential equations that cap-
ture the dynamics of our adaptive network model of social fragmentation involving
behavioral diversity of agents. Previous results showed that, if the agents’ cultural
tolerance levels were diversified, the social network could remain connected while
maintaining cultural diversity. Here we converted the original agent-based model
into a continuous equation-based one so we can gain more theoretical insight into
the model dynamics. We restricted the node states to 1-D continuous values and
assumed the network size was very large. As a result, we represented the whole
system as a set of partial integro-differential equations about two continuous func-
tions: population density and connection density. These functions are defined over
both the state and the cultural tolerance of nodes. We conducted numerical inte-
gration of the developed equations using a custom-made integrator implemented
in Julia. The results obtained were consistent with the simulations of the original
agent-based adaptive social network model we previously reported, confirming the
robustness of the original finding. Specifically, when the variance of cultural toler-
ance d is large enough, the population with low d maintains the original clusters of
cultures/opinions, while the one with high d tends to come to the center and con-
nect culturally distant groups. Parameter dependence of the model behavior was
also revealed through systematic numerical experiments.
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1 Introduction

Social fragmentation and opinion polarization are the major social problems these
days. They are partly driven by the advanced personalized information communica-
tion tools, such as social media and smartphones, on which people choose only such
information sources that match their preference. While there are many recent stud-
ies on social fragmentation [1–9], most of the earlier studies typically considered
only two societal outcomes: (1) fragmented society with many disconnected, in-
compatible social clusters and (2) well-connected society in which cultural/opinion
states of individuals are homogenized. From a viewpoint of promoting creativity
and innovation, however, the latter societal state (well-connected homogenization)
is not any better than social fragmentation either, because of the loss of informa-
tional diversity it implies.

To seek the possibility of the third alternative social state that maintains both
social connectivity and cultural/opinion diversity, we had proposed an agent-based
adaptive social network model that incorporated behavioral diversity of nodes
(agents) [10]. This model showed that, when the cultural tolerance levels of agents
were diversified within society, social evolution could lead to a culturally diverse
yet structurally connected state [10], which was not reported in the earlier literature
of social fragmentation. However, this model was entirely computational and the
simulation experiments were done with relatively small-sized network topologies,
and hence it did not provide much theoretical insight into how a much larger social
network might behave according to the same model assumptions.

In the present study, we have formulated and analyzed a set of partial integro-
differential equations (PIDEs) [11] that collectively capture the essential dynamics
of the aforementioned agent-based adaptive social network model. Numerical inte-
gration of the model equations produced the results that were consistent with pre-
vious results obtained using the agent-based model (ABM), which confirms the ro-
bustness of the original finding that behavioral diversity in cultural tolerance levels
could help achieve culturally diverse yet connected society. In the rest of the paper,
we will describe the original model (Section 2), the newly developed equation-
based model (Section 3), the method for numerical integration (Section 4), numeri-
cal simulation results (Section 5), and then conclusions with limitations of the work
and future directions (Section 6).

2 Original Agent-Based Model

The original agent-based adaptive social network model described social network
evolution in which cultural information was shared among agents (nodes) and the
weights of their connections (edges) were updated according to acceptance or re-
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jection of shared cultural information [12, 13]. In this original model, each agent
had a 10-dimensional numerical vector vi as its cultural/opinion state, with i being
the node ID. In each iteration, each agent would randomly choose one neighbor j
from its out-neighbors by using the (normalized) edge weight wij as the selection
probability and obtain the chosen neighbor’s cultural state vj as an input. Agent i
would accept the received input with the following acceptance probability

PA =

(
1

2

) |vi−vj |
d

, (1)

where d is the cultural tolerance level. If the input was accepted, then agent i’s state
would be updated as follows:

vi → (1− rs)vi + rsvj (2)

If the input was rejected, there would be no change to agent i’s state. The accep-
tance/rejection of the input would also update the edge weight from i to j as follows
(acceptance: +; rejection: −):

wij → logistic(logit(wij)± rw) (3)

When all the agents did the above in a randomized order, that constituted one iter-
ation in a simulation. This model included three parameters for agents’ behaviors:
d (cultural tolerance level), rs (rate of cultural state change), and rw (rate of edge
weight change). In the original study presented in [12,13], the same parameter val-
ues were uniformly applied to all the agents within a social network. By introducing
behavioral diversity into this ABM, we previously demonstrated that, if the agents’
cultural tolerance levels were diversified within society, the social network could
remain connected while still maintaining cultural diversity (Fig. 1) [10]. This was
not observed in other more conventional network models of social fragmentation.

3 New Model: Partial Integro-Differential Equations

In the current study, we have converted the rather complex, discrete, if-then-rule-
based original ABM into a smooth, continuous, analytically tractable equation-
based one so that we can gain more theoretical insight into the model dynamics.
To make it easier to represent the configuration of the network that involves het-
erogeneity in behavioral traits of nodes, we have restricted the attributes and states
of each node to one-dimensional continuous values and have assumed that the size
of the network is very large, which allows for continuous representation. As a
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Figure 1: Simulation results of the original agent-based adaptive social network model
(from [10]; slightly revised). This 3D scatter plot shows the effect of the diversity, or
standard deviation (s.d.), of the cultural tolerance level (d) on two outcome measures (⟨CD⟩,
average cultural difference, and ⟨SPL⟩, average shortest path length) in the final network
configuration. Each dot represents a result of one simulation run, colored according to the
s.d. of d. The results marked by a tilted red ellipse show the structurally connected yet
culturally diverse social states (i.e., small ⟨SPL⟩ and large ⟨CD⟩), which occur only when d
is sufficiently diversified.

result, we have represented the whole system as a set of PIDEs about just two con-
tinuous state functions: population density function p(v, d, t)—density of nodes
with opinion v and cultural tolerance d at time t, and connection density function
c(v, u, dv, du, t)—density of directed edges from nodes with opinion v and cultural
tolerance dv to nodes with opinion u and cultural tolerance du at time t. Note that
c is asymmetric between v and u (and also between dv and du). p is a probability
density function since the total number of nodes remains constant, whereas c is not
a probability density function. These functions are defined over a multidimensional
domain made of the node state (v, u) and the cultural tolerance (d) of nodes in-
volved. We also have assumed that other node attributes, rs (cultural state change
rate) and rw (edge weight change rate), were fixed and homogeneous across all
nodes because we previously found that their diversity would not have significant
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effects on the overall system behavior [10].
The basic strategy we took in converting the original ABM to PIDEs was

to “count” and write down how many times acceptance/rejection occurs between
agents with specific attributes (current opinion and cultural tolerance), and then rep-
resent the cultural state/edge weight changes according to the result of such count-
ing as migration and local reaction in continuous space [11]. To do this, we first
define the following formulas:

cv,dv =

∫
c ddu∫ ∫
c ddudu

(4)

Pa(x, d) =

(
1

2

) |x|
d

(5)

Eq. (4) represents the normalized probability density function of connectivity from
a node with opinion v and cultural tolerance dv to a neighbor with opinion u (irre-
spective of the neighbor’s cultural tolerance du). Eq. (5) is the acceptance probabil-
ity function for opinion difference |x| and cultural tolerance d.

Using the above formulas, the probability for a node with opinion v and cultural
tolerance dv to accept an opinion coming from its neighbor with opinion u can be
written as cv,dvPa(v − u, dv), and such acceptance also causes the drift of opinion
v toward (1− rs)v + rsu, according to Eq. (2). The direction and magnitude of the
drift are thus given by (1− rs)v + rsu− v = rs(u− v). By integrating the product
of these quantities over u, we obtain the overall trend of migration of p for nodes
with opinion v and cultural tolerance dv, as follows:

Tp(v, dv) =

∫
cv,dv Pa(v − u, dv) rs(u− v) du (6)

We incorporate this trend in the migration term and add another term for stochastic
diffusion in a standard transport equation [11], to obtain the following first key
equation of our PIDE model in terms of p:

∂p

∂t
= Dp

∂2p

∂v2
− α

∂

∂v
[p Tp(v, dv)] (7)

Meanwhile, connection density function c also drifts along the v axis after the
acceptance of a neighbor’s opinion, because the opinion state v of the source nodes
of involved edges changes due to the acceptance. The overall trend of this drift is
given by

Tc(v, u, dv, du) = Pa(v − u, dv) rs(u− v), (8)
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which is similar to Tp(v, dv) but does not involve the integrals because c is explicitly
defined over a two-dimensional opinion space (v, u) (in addition to (dv, du)). Fi-
nally, we note that c also increases or decreases locally after acceptance or rejection
of a neighbor’s opinion. The rate of such connectivity changes can be written down
as

Rc(v, u, dv, du) = (1− Pa(v − u, dv)) (logistic(logit(c)− rw)− c)

+ Pa(v − u, dv) (logistic(logit(c) + rw)− c) , (9)

where the first term on the right-hand side is the probability of rejection times the
edge weight decrease (per Eq. (3)) and the second term the probability of acceptance
times the edge weight increase (again, per Eq. (3)).

By incorporating the above two functions in the migration and local reaction
terms and adding another term for stochastic diffusion along v and u, we obtain the
following second key equation of our PIDE model in terms of c:

∂c

∂t
= Dc

(
∂2c

∂v2
+

∂2c

∂u2

)
+ βcRc(v, u, dv, du)− γ

∂

∂v

[
c Tc(v, u, dv, du)

]
(10)

Eqs. (7) and (10) collectively represent the continuous dynamics of population
and connection densities based on the assumptions used in the original ABM. These
equations are a concrete demonstration of how one can convert rule-based complex
ABM rules into continuous mathematical equations.

4 Numerical Integration Method and Conditions

The developed PIDEs are rather complex because they involve double integrals in
Eq. (4), which is used inside yet another integral in Eq. (6), and also because the two
dependent variables p and c have different domains with different dimensionalities
(i.e., p is over v, d and t, while c is over v, u, dv, du and t). Most of the read-
ily available PDE solvers cannot handle such complicated equations. We therefore
have implemented a custom-made numerical integrator in Julia 1.7.11 by straight-
forward spatial discretization and a simple Euler forward method. The ranges and
the resolutions of discretization of the independent variables used for numerical
integration are as follows:

• v, u ∈ [−5, 5], with ∆v, ∆u = 0.1

• dv, du ∈ [0, 2], with ∆dv, ∆du = 0.1

1The code is available from the author upon request.
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• t ∈ [0, 50], with ∆t = 0.01

The main experimental parameters varied are the following:

• Standard deviation of the distribution of cultural tolerance d: σ(d) ∈ [0.1, 1.0]

• Diffusion coefficients Dp = Dc ∈ [0.003, 0.03] (The two diffusion coeffi-
cients were assumed to be the same for simplicity.)

Other settings are as follows:

• Mean of d = 0.5

• rs = rw = 0.5 (constant with no variation)

• α = β = γ = 1

• Cut-off spatial boundary conditions

These parameter settings are consistent with those used in the original ABM [10],
except for the diffusion coefficients that did not exist explicitly in the original ABM.
The diffusion terms in the PIDE model represent aggregated stochastic behaviors
of the agents.

The initial condition of p was set with a mixture of two multivariate Gaussian
distributions with σ(v) = 0.5 and σ(d) experimentally varied as described above.
Their peaks were separated by 3.0 around the origin along the v axis (Fig. 2, top
left), to represent two initially separated opinion clusters (this setting was used in
the original ABM-based study [10]). The height of the peaks was adjusted to make
p a valid probability distribution. The initial condition of c was set with a mixture
of two multivariate Gaussian distributions with σ(v) = σ(u) = 0.5 whose peaks
were separated by 3.0 around the origin along both the v and u axes, plus another
mixture of two multivariate Gaussian distributions whose peaks were positioned
along the opposite diagonal in the v-u space (Fig. 2, top right and bottom two). The
heights of those pairs of the peaks were set to 1.0 and 0.3, respectively, to represent
strong and weak connections within and between the initial two opinion clusters,
respectively.

5 Results

Figure 3 shows the final states of population density function p(v, d) and connec-
tion density function c(v, u, dv, du) at t = 50 for three different values of diffusion
coefficients (Dp = Dc = 0.003 (top), 0.01 (middle), and 0.03 (bottom)) when the
diversity of cultural tolerance d is low (σ(d) = 0.1). The diffusion represents the
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Figure 2: Initial condition of p (top left) and c (top right and bottom two) used in numerical
integration. σ(d) = 0.5. Note that the initial condition of c was actually defined over a
four-dimensional space (v, u, dv, du). The three plots given here are only slices of the true
distribution at dv = du = 0.5, 1.0, and 1.5.
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Table 1: Summary of parameter dependence of final states. Rows represent different values
of cultural tolerance diversity (σ(d)) while columns represent different values of diffusion
coefficients (Dp and Dc).

stochastic nature of agents’ behaviors in this otherwise deterministic PIDE model.
If diffusion is weak, the network remains separated in the initial two opinion clus-
ters (Fig. 3 top). If diffusion is stronger, however, the two initial opinion clusters
become blurred and merge into a single cluster (Fig. 3 middle and bottom). This
corresponds to the typical social fragmentation transition that has been reported in
many earlier models.

Meanwhile, when the diversity of cultural tolerance d is high enough, a different
social state emerges. Figure 4 shows the final states of population density function
p(v, d) and connection density function c(v, u, dv, du) at t = 50 for three different
values of diffusion coefficients (Dp = Dc = 0.003 (top), 0.01 (middle), and 0.03
(bottom)) when the diversity of cultural tolerance d is high (σ(d) = 0.5). The new
social state is observed in the scenario with intermediate diffusion strength (Fig. 4
middle, Dp = Dc = 0.01), in which agents with greater cultural tolerance (d) ap-
proached the center and began connecting the two opinion clusters while agents
with smaller d remained holding their original opinions. This resulted in a “frown
(⌢)”-like shape of the p(v, d) distribution, which represents diverse yet connected
social networks. Such social states were not reported in conventional social frag-
mentation studies.

Table 1 presents an overview of parameter dependence of the model behavior
obtained from numerical simulations with selected parameter values. It shows that
social fragmentation transition occurs consistently between low stochasticity sce-
narios (= weak diffusion; Table 1 left column) and high stochasticity scenarios (=
strong diffusion; Table 1 right column). However, the third social state (“Two clus-
ters connected”) emerges in moderate stochasticity scenarios (Table 1 center) when
the behavioral diversity σ(d) is increased to 0.3 or above.

Figure 5 shows more detailed results obtained from finer parameter sweep ex-
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Dp = Dc = 0.003

Dp = Dc = 0.01

Dp = Dc = 0.03

Figure 3: Final states of p and c at t = 50 when the diversity of cultural tolerance is
low (σ(d) = 0.1). Results with three different diffusion coefficient values are shown.
As the diffusion coefficients were varied, the model exhibited typical social fragmentation
transition between two separated clusters (top) and a single unified cluster (bottom).
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Dp = Dc = 0.003

Dp = Dc = 0.01

Dp = Dc = 0.03

Figure 4: Final states of p and c at t = 50 when the diversity of cultural tolerance is high
(σ(d) = 0.5). Results with three different diffusion coefficient values are shown. In this
case, there appeared a new third state (middle; Dp = Dc = 0.01) in which agents with
greater cultural tolerance (d) approached the center and began connecting the two opinion
clusters while agents with smaller d remained holding their original opinions.
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periments in which the final states of p(v, d) (Fig. 5 top) were automatically clas-
sified into three categories using morphological image analysis (Fig. 5 bottom).
Specifically, the gray-scale image of each final state of p was binarized at a 50%
gray-level threshold and then the number of morphological components (connected
regions) was counted. The patterns that had only one morphological component
were further analyzed to assess the curvature of the bottom edge of the component.
If it was substantially concave to exhibit the “frown (⌢)”-like shape, then the pat-
tern was classified as “two clusters connected” (shown in yellow in Fig. 5 bottom).

Table 1 and Figure 5 visually represent a rough “phase space” of the developed
PIDE model with regard to the behavioral diversity and stochasticity of agents.
Interestingly, these results were also consistent with the simulation results of the
original ABM reported in [10] in that σ(d) ≥ 0.3 causes the third social state (see
Fig. 1). This quantitative agreement of the results between two completely different
modeling frameworks (ABM and PIDE) successfully demonstrates the validity and
robustness of the numerical findings obtained in these studies.

6 Conclusions

In this paper, we have developed and analyzed a continuous equation-based version
of the adaptive social network model of cultural/opinion dynamics. The developed
PIDE model’s behavior and parameter dependence were studied using a custom-
made numerical integrator, which showed consistent results with what was found
earlier using a computational network ABM. The main finding obtained in both
models is that, when the cultural tolerance levels of constituents are diverse enough
(σ(d) ≥ 0.3), the adaptive social network can self-organize into a configuration
with multiple well-established opinion clusters together with bridges that connect
them. This is a possible alternative third state of society that goes beyond com-
plete fragmentation or complete homogenization, the two only possible outcomes
studied in typical social fragmentation models. Additional insights gained from the
PIDE model include the role of stochasticity (diffusion) as the main factor of social
fragmentation transition and the overall “phase space” structure of social evolution
outcomes that depend on the agents’ stochasticity and behavioral diversity.

This work is also a successful demonstration of the possibility and practicality
of describing the dynamics of a complicated network ABM in continuous PIDEs.
Such model conversion can be a useful practice for complex systems modeling and
analysis, as the two modeling methodologies offer complementary analytical tools
and insights.

This study still has many limitations. Due to the high computational demand
from numerical integration of multidimensional PIDEs, the resolution of spatial
discretization was not high; we had to use a rather large interval, 0.1, to discretize
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Figure 5: Results of finer parameter sweep experiments. Final states of p(v, d) at t = 50
are shown for various values of σ(d) and Dp(= Dc). Top panel: Final states of p shown
as gray-scale heat maps. Bottom panel: Final states of p binarized and then classified into
three categories (red: two clusters; yellow: two clusters connected; and green: one cluster)
using morphological image analysis (see text for details).
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the v, u and d spaces. Also, the numerical parameter sweep conducted so far was
still relatively coarse. In order to obtain a better understanding of the model’s pa-
rameter dependence, we would need to carry out a greater number of numerical
integrations. These tasks would naturally require substantial computational power
and resources. Also, the characterization of final configurations remained largely
categorical and qualitative (i.e., “two clusters”, “two clusters connected”, and “one
cluster”). It would be desirable to develop and use a more objective, quantitative
measure to characterize the final state of the population density function in order
to derive more rigorous conclusions. Finally, there are still many more mathemat-
ical/algebraic analyses that need to be done on the proposed PIDE model, such as
finding (non-homogeneous) stationary solutions and conducting stability analysis
of those solutions. Such mathematical analyses may provide a deeper understand-
ing of how and why the observed model behaviors occur for specific parameter
values and settings.
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[4] Böhme, G. A., & Gross, T. (2011). Analytical calculation of fragmentation
transitions in adaptive networks. Physical Review E, 83(3), 035101.

[5] Bakshy, E., Messing, S., & Adamic, L. A. (2015). Exposure to ideologically
diverse news and opinion on Facebook. Science, 348(6239), 1130-1132.

[6] Bail, C. A., Argyle, L. P., Brown, T. W., Bumpus, J. P., Chen, H., Hunzaker,
M. B. F., Lee, J., Mann, M., Merhout, F., & Volfovsky, A. (2018). Exposure to

14

Northeast Journal of Complex Systems (NEJCS), Vol. 4, No. 1 [2022], Art. 3

https://orb.binghamton.edu/nejcs/vol4/iss1/3
DOI: 10.22191/nejcs/vol4/iss1/3



opposing views on social media can increase political polarization. Proceed-
ings of the National Academy of Sciences, 115(37), 9216-9221.

[7] Sayama, H. (2020). Enhanced ability of information gathering may intensify
disagreement among groups. Physical Review E, 102(1), 012303.

[8] Blex, C., & Yasseri, T. (2020). Positive algorithmic bias cannot stop fragmen-
tation in homophilic networks. Journal of Mathematical Sociology, 1-18.

[9] Sasahara, K., Chen, W., Peng, H., Ciampaglia, G. L., Flammini, A., &
Menczer, F. (2021). Social influence and unfollowing accelerate the emer-
gence of echo chambers. Journal of Computational Social Science, 4(1), 381-
402.

[10] Sayama, H., & Yamanoi, J. (2020). Beyond social fragmentation: Coexis-
tence of cultural diversity and structural connectivity is possible with social
constituent diversity. In Proceedings of NetSci-X 2020: Sixth International
Winter School and Conference on Network Science (p. 171). Springer Nature.

[11] Sayama, H. (2015). Introduction to the Modeling and Analysis of Complex
Systems. Open SUNY Textbooks.

[12] Yamanoi, J., & Sayama, H. (2013). Post-merger cultural integration from a
social network perspective: A computational modeling approach. Computa-
tional and Mathematical Organization Theory, 19(4), 516-537.

[13] Sayama, H., Pestov, I., Schmidt, J., Bush, B. J., Wong, C., Yamanoi, J., &
Gross, T. (2013). Modeling complex systems with adaptive networks. Com-
puters & Mathematics with Applications, 65(10), 1645-1664.

15

Sayama: Dynamics of an Agent-Based Adaptive Social Network Model in PIDE

Published by The Open Repository @ Binghamton (The ORB), 2022


	Representing and Analyzing the Dynamics of an Agent-Based Adaptive Social Network Model with Partial Integro-Differential Equations
	Recommended Citation

	tmp.1649381649.pdf.rR8pM

