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1 Toronto Metropolitan University, Toronto, Canada
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Abstract

Switched dynamical systems have been extensively studied in engineering literature
in the context of system control. In these systems, the dynamical laws change be-
tween different subsystems depending on the environment, a process that is known
to produce emergent behaviors—notably chaos. These dynamics are analogous
to those of temporal networks, in which the network topology changes over time,
thereby altering the dynamics on the network. It stands to reason that temporal
networks may therefore produce emergent chaos and other exotic behaviors unan-
ticipated in static networks, yet concrete examples remain elusive. Here, we present
a minimal example of a networked system in which temporality produces chaotic
dynamics not possible in any static subnetwork alone. Specifically, we consider a
variant of the famous Kuramoto model, in which the network topology alternates
between different configurations in response to the phase dynamics. We show under
certain conditions this can produce a strange attractor, and we verify the presence
of chaos by analyzing its geometrical properties. Our results provide new insights
on the consequences of temporality for network dynamics, and acts as a proof of
concept for a novel mechanism behind generating chaotic dynamics in networks.

1 Introduction

Most studies of networked dynamical systems focus on what are called “static”
networks, which have an immutable structure between nodes and links. In practice
however, most real-world systems (e.g. ecosystems, human societies, and financial
relationships) are naturally “temporal”—meaning that their structure changes over
time [1, 2, 3]. It is now recognized that temporality can have profound effects on
the dynamics of a system, for example enhancing network controllability [4], and
fostering the emergence of cooperation in social systems [5, 6, 7]. But despite these
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salutary examples, our understanding of the full effects of temporality on network
dynamics is still in its infancy.

In its simplest form, we can regard a temporal network as a collection of static
subnetworks or “snapshots”, each representing the system’s topology at a different
times [8]. In many contexts, the change from one snapshot to another occurs in
response to some dynamical process occurring on the network. For example, indi-
viduals in a social network may cut and reactivate social ties as a pandemic ebbs
and flows [9, 10]. Likewise, in power systems, everything from line overloads to
changing demand create a network that is constantly in flux. These forms of dy-
namics are well-studied in the engineering literature under the rubric of switched
dynamical systems [11, 12, 13]. What implications might there be for temporal
networks?

A surprising fact about switched systems is that they can produce exotic behav-
iors not possible in any subsystem alone. One particularly consequential example
is chaos, which poses fundamental obstacles to the predictability of complex sys-
tems. Chaos is possible only in nonlinear systems, but it can curiously appear by
switching between different linear systems.

Owing to their connection with switched systems, it’s plausible that temporal
networks may similarly exhibit chaos and other emergent behaviors relative to their
static counterparts. But unfortunately, almost all examples of this phenomenon
come from abstract piecewise linear systems [14, 15, 16, 17, 18, 19, 20]. As such,
the possibility of temporality-induced chaos in networked systems of practical in-
terest remains an open question.

In this manuscript, we provide a proof of principle showing how chaos can
emerge from the addition of temporality to an otherwise mundane networked sys-
tem. Specifically, we consider a network of Kuramoto oscillators, whose topology
alternates between two different configurations (snapshots) depending on the state
of the nodes, in turn changing their dynamics. We show that under certain condi-
tions, chaotic dynamics can appear, despite being impossible in any static network
snapshot by itself.

The rest of the paper is organized as follows: Section 2 introduces our temporal
network dynamics, and the specific parameters used therein. Section 3 analyzes
the dynamics of the individual snapshots, compared with the combined temporal
dynamics in the presence of switching. We demonstrate that the latter system is
chaotic, with a strange attractor characterized by a positive Lyapunov exponent
and fractal Poincaré section. In section 4, we offer some concluding remarks and
prospects for future work. Finally, details on our methodology can be found in
Section 5.
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2 Model

2.1 The Kuramoto Model

We consider the famous Kuramoto dynamics played out on a temporal network
with N nodes. At any given time, the network’s structure is described by one of M
distinct static networks we call snapshots. The state of each node i is described by
a phase angle θi, whose dynamics obey:

θ̇i = ωi +
N∑
j=1

A
(σ(t))
ji sin(θj − θi). (1)

Here, A(k) is a weighted, directed adjacency matrix representing the topology of
snapshot k, A(k)

ji represents the weight of the directed link j → i in that snapshot,
and ωi is the node i’s natural frequency. Finally, σ(t) is an integer-valued switching
signal, where σ(t) ∈ {1, . . . ,M} captures which of the M snapshots describes the
network’s topology at a given time t. We will allow for both positive and negative
link weights in the snapshots, representing synchronizing and anti-synchronizing
influences respectively. For simplicity, we set ωi = 0 for all nodes in order to focus
exclusively on the dynamics resulting from the network interactions.

2.2 Model Parameters

Our goal is to show that temporality can produce chaotic dynamics even in the sim-
plest cases. We therefore focus on only M = 2 snapshots, i.e, the minimal departure
from the static network case (M = 1). We likewise consider only N = 4 nodes,
which as argued below, corresponds to 3 dynamical degrees of freedom in the Ku-
ramoto dynamics—the usual minimum required to observe chaos in an autonomous
system. The adjacency matrices of the two specific snapshots we consider are

A(1) =


0 −1 0 0
1 0 0 0

−0.1 −0.1 0 0
−1 1 0.25 0

 (2)

and

A(2) =


0 −1 0 0
1 0 0 0

0.05 0.2 0 0
−1 1 −0.25 0

 , (3)

and the corresponding directed networks are visualized in Fig. 1.
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Figure 1 – Network Snapshots: Here, we visualize the two network snapshots comprising
our temporal Kuramoto network. Arrows represent directed links i → j, and the number
beside each denotes the corresponding link weight Aij . Each link is colored blue (red)
based on whether the associated weight is positive (negative), representing a synchronizing
(anti-synchronizing) influence of node i on the dynamics of node j.

3 Results

3.1 Dynamics of Individual Snapshots

First, we show that either snapshot of our network is incapable of producing chaotic
dynamics on its own. In particular, we can show that all trajectories converge to a
fixed point. As such, the emergence of chaotic dynamics (which we will explore
later) can be attributed only to the addition of temporality. To prove this, we first
investigate the long-term dynamics of each snapshot in isolation.

To start, note that we can always reduce the dimensionality of our system by
measuring all nodes’ phases relative to that of an arbitrarily chosen reference node,
which we take as node 4 without loss of generality. Thus, after a transformation
by θi → θi − θ4, we arrive at a reduced, 3-dimensional system for each snapshot
describing its standalone Kuramoto dynamics:

θ̇1 = sin(θ2 − θ1)− 0.1 sin(θ3 − θ1) + sin(θ1)

θ̇2 = − sin(θ1 − θ2)− 0.1 sin(θ3 − θ2)− sin(θ2)

θ̇3 = 0.25 sin(θ3)

(4)
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for snapshot 1, and
θ̇1 = sin(θ2 − θ1) + 0.05 sin(θ3 − θ1) + sin(θ1)

θ̇2 = − sin(θ1 − θ2) + 0.2 sin(θ3 − θ2)− sin(θ2)

θ̇3 = −0.25 sin(θ3)

(5)

for snapshot 2.
By inspection, we see that in both snapshots, the 2D planes defined by θ3 = nπ

are invariant for any integer n. Furthermore, between any adjacent pair of these
planes, the dynamics of θ3 is monotone. In particular, all trajectories in snapshot
1 (2) must asymptotically approach a plane θ3 = nπ defined by an odd (even)
value of n. As such, as t → ∞, the autonomous dynamics of either snapshot
is effectively two-dimensional (in θ1, θ2). This observation already rules out the
possibility of chaos in either snapshot alone, but we can gain further insight by
analyzing the effective 2D dynamics of the snapshots in their respective limiting
planes. Without loss of generality, we henceforth focus on the region of initial
conditions 0 < θ3 < π. There, all trajectories must approach the plane θ3 = 0
(θ3 = π) under the dynamics of snapshot 1 (snapshot 2). We denote these limiting
planes by P (1) and P (2), respectively.

The limiting 2D dynamics of our snapshots in these planes is visualized in
Fig. 2. Because our dynamics are invariant under translation of any θi by 2π, it
suffices to focus on the subspace −π ≤ θ1, θ2 ≤ π. In this region, each snap-
shot has 11 fixed points in its corresponding limiting plane: nine corresponding to
θ1, θ2 ∈ {−π, 0,+π}, and two more corresponding to the solutions of

sin θ1
sin θ2

= −0.9

1.1
(6)

for snapshot 1, and
sin θ1
sin θ2

= − 0.8

1.05
(7)

for snapshot 2. In either case, (θ1, θ2) = (π, 0) is the only stable fixed point (again,
up to translation of any oscillator by 2π). Additionally for either snapshot k = 1, 2,
we can identify an appropriate Lyapunov function V (k) on the corresponding limit-
ing plane P (k), taking the form of a 4th-order polynomial in {sin(θi), cos(θi)}i=1,2

(See Section 5.2). It follows that no closed orbits (such as limit cycles) exist in
either snapshot. Indeed, all initial conditions must approach a fixed point in the
limiting plane P (1) (snapshot 1) or P (2) (snapshot 2), and except on a set measure
zero, this will be the unique stable equilibrium (π, 0) identified earlier.
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Figure 2 – Limiting Dynamics of Individual Snapshots: Here we show streamplots for
the dynamics of snapshots 1 and 2 on the (θ1, θ2) plane at different values of θ3. Specifi-
cally, P (2) (a and b) represents the θ3 = π plane, and P (1) (c and d) represents the θ3 = 0
plane. In the vicinity of the origin, the dynamics of snapshot 1 spirals inward (red) in panel
(a), and outward (blue) in panel (c), with these roles reversed in snapshot 2 (b,d). The
stability of the fixed point at the origin is indicated by the purple circles, where filled and
hollow represent stable and unstable respectively.

3.2 Temporal Dynamics and Strange Attractor

We incorporate temporality into our model via a switching surface—a specific sub-
space of our defined region that, when touched, swaps the network topology from
one snapshot to the other. Specifically, we consider an approximately cylindrical
surface around (θ1, θ2) = (0, 0), i.e.:

sin2 θ1
2
+ sin2 θ2

2
= r2, (8)
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Figure 3 – Strange Attractor and Switching Surface. We show the strange attractor from
our full temporal dynamics using an initial condition of θ0 = [−0.101, 0.101, π−0.101, 0],
starting in snapshot 1 (σ(0) = 1) and integrated over 15,000 time units. The green curve
represents the trajectory of our dynamics, while the dashed black line and gradient delineate
our switching surface (Eq. 8). Whenever the trajectory touches this surface, the network
topology switches to the other snapshot, causing the dynamics to spiral back inward. The
result is a double-scroll attractor in which the dynamics shuttles unpredictably between the
planes P (1) (θ3 = 0) and P (2) (θ3 = π), depicted in gray.

where r > 0 is a parameter. Throughout this study, we will use r = 0.3, though
chaotic dynamics can appear across a range of r. Though ad hoc, this switching
condition can be interpreted as the action of a controller tasked with keeping nodes
1 and 2 in phase synchrony with node 4 (Recall that in our coordinate system,
(θ1, θ2) = (0, 0) corresponds to θ1 = θ2 = θ4). Whenever those nodes’ phases stray
sufficiently far from the origin, the controller responds by changing the network
topology to the other snapshot in which the origin is stable (cf. Fig. 2), thereby
encouraging nodes 1 and 2 to synchronize.
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The full temporal dynamics of our system is visualized in Fig. 3. We see that an
apparently strange attractor emerges in the interior of the switching surface, com-
prised of vortex-like tendrils connecting two scroll “caps” located near the invariant
planes P (1) and P (2). The appearance of this attractor, and the mechanism by which
temporality generates chaos in this case, can be understood by examining the effec-
tive 2D dynamics of each snapshot and their interaction with our switching rule.

To see this, consider an initial condition in the interior of the switching surface,
starting in snapshot 1. As argued earlier, the dynamics is drawn toward the plane
P (1). Once there, the trajectory spirals outward from the origin (Fig. 2c), eventually
touching the switching surface. At that instant, the dynamics switch to snapshot 2,
under which the origin is now a stable spiral (Fig. 2d). As such, the trajectory is
drawn back inward toward the origin, where it ultimately escapes along θ3 toward
snapshot 2’s limiting plane (P (2)). There, the origin is once again an unstable spiral
(Fig. 2b), and the process repeats. As visualized in Fig. 3, this induces a family
of unstable heteroclinic orbits between the fixed points at the origins in P (1) and
P (2), which would not exist in the autonomous dynamics in either snapshot by
itself. Indeed, the effect of temporality here is to frustrate the natural dynamics of
each snapshot, always switching to the other before a stable fixed point (outside the
switching surface) can be reached.

3.3 Poincaré Section and Largest Lyapunov Exponent

A strange attractor will generally reveal fine, fractal-like structure when subject to
an appropriate Poincaré section. Here, we consider a surface of section defined
by the plane θ3 = π/2, midway between the two scroll-like “caps” of the attrac-
tor. This cross section of is shown in Fig. 4, where a fine structure appears after
many intersections. The apparent fractal structure indicates that the attractor shown
in Figs. 3 and 4a is indeed strange, containing the dense collection of unstable
heteroclinic orbits mentioned earlier.

We further confirm the presence of chaos in our system by numerically calculat-
ing the largest Lyapunov exponent (LLE, λ) of the strange attractor in Fig. 3, details
of which can be found in the Methods (Sec. 5.3). We visualize the convergence of
the LLE in Fig. 5, and find it approaches a value of λ ≈ 0.1952 over time. The exis-
tence of a positive Lyapunov exponent reflects the exponential sensitivity to initial
conditions suggested in Figs. 3-4, i.e. the signature of chaotic dynamics. We have
confirmed that a positive LLE persists over times many orders of magnitude greater
than the timescales present in either snapshot’s dynamics (eqs. (4)-(5)), in order to
rule out the possibility of chaotic transient.
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Figure 4 – Poincaré Section: (a) The strange attractor generated by our temporal dynamics
using the same initial condition seen in Fig. 3, over a longer time of 2,400 seconds. The
plane at θ3 = π/2 (red) indicates the surface at which we compute our Poincaré section.
In (b), we show all points at which the attractor crosses this plane over 106 time units,
resulting in approximately 220,000 intersections. The fractality present in the Poincaré
section is highlighted in the inset of (b).

4 Conclusions

In this study, we have presented a minimal proof of principle showing how tempo-
rality (and temporality alone) is sufficient to produce chaos in network dynamics.
In particular, by switching between two different Kuramoto networks a strange at-
tractor can emerge, characterized by a positive Lyapunov exponent (λ ≈ 0.1952),
and showing characteristic fractal-like structure under a Poincaré section. This, to
our knowledge, is the first example of chaos arising from temporality in a canon-
ical networked dynamical system, and hints at a more general mechanism behind
the emergence of chaos in co-evolving systems. Although chaotic dynamics have
previously been produced in Kuramoto systems via continuously-varying network
parameters [21], our work is distinct in that we produce chaos through switching
between different network topologies.

The Kuramoto model was designed as a workhorse model of phase/frequency
synchronization, but is nonetheless capable of producing far more exotic behaviors.
Notable among these are “chimera states”—a form of symmetry-breaking in which
identical oscillators self-organize into phase-locked and decoherent subsets that co-
exist with one another. In finite networks, chimera states can in fact be viewed as a
form of (transient) chaos [22, 23, 24, 25]. Here, we have shown that similarly rich
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Figure 5 – Largest Lyapunov Exponent: The black curve represents our numerical
estimate of the largest Lyapunov exponent (LLE) up to a given amount of simulation time.
Specifically, each point represents the cumulative average (up to the given time) of local
LLE estimates calculated over time windows of ∆t = 0.1 (see Sec. 5.3 for details). We find
that the LLE converges to a positive value, confirming the presence of chaos. The long-term
average of λ ≈ 0.1952 (red line) was computed over 1.5× 106 time units. Here, we depict
only the first 500 time units to show convergence.

and counterintuitive behaviors are possible when one adds temporality to the pic-
ture. In particular, one can create a chaotic Kuramoto system from two non-chaotic
ones. We expect this construction to be possible in real-world systems such as
power grids and communications networks, which can be governed by Kuramoto-
like dynamical laws [26, 27] and also exhibit temporality in various forms.

The possibility of temporality-induced chaos has significant implications for
practical applications of networks, particularly in engineered systems. Though
chaos can be seen as desirable in certain biological contexts including neuronal
dynamics [28, 29], it is generally a nuisance in built systems, which are often de-
signed to operate in predictable steady states. In power-grid networks for example,
normal operation corresponds to all generators operating in a state of frequency
synchrony [30], deviations from which have been implicated in major blackouts
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[31, 32]. Accordingly, future research should seek to identify and anticipate the
exact circumstances (e.g switching conditions, link weights, dynamics, etc.) in
which temporality is capable of producing chaos and other potentially undesirable
dynamics. This may ultimately lead to new methods to control temporal systems,
allowing us to harness their demonstrated benefits [4, 7] while avoiding unintended
consequences.

5 Methods

5.1 Software Implementation

All simulations in this study were performed in Julia using the
DifferentialEquations package. To obtain trajectories of our system, we
integrate the equations of motion using a 9th-order adaptive integration scheme
(Vern9) with absolute and relative error tolerances both set to 10−12. We avail
ourselves of the event-handling functionality of DifferentialEquations to
implement the switching condition defined in Eq. 8, as well as generate the Poincaré
section shown in Fig. 4.

5.2 Lyapunov Function via Sum-of-squares

We identify a sum-of-squares Lyapunov function for each snapshot’s dynamics us-
ing MATLAB’s SOSTOOLS package for semi-definite programming [33]. This
technique can only be applied to polynomial systems, and so we consider each sub-
system (Eqn. 4-5) restricted to its corresponding limiting plane P (1) or P (2), and
re-express the dynamics in terms of the variables

u1 = sin(θ1)

u2 = sin(θ2)

v1 = cos(θ1)

v2 = cos(θ2).

(9)

This yields an equivalent polynomial system of ODEs in 4D, subject to the con-
straints that the phases lie on the unit circle i.e.

u2
i + v2i = 1. (10)

For each snapshot k = 1, 2, SOSTOOLS successfully identifies a 4th-order poly-
nomial function V (k)(u1, u2, v1, v2) that, under the snapshot’s dynamics, decreases
everywhere except at the fixed points in P (k), attaining a global minumum at (π, 0).
Accordingly, V (k) acts as a Lyapunov function for snapshot k, proving that fixed
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point’s (almost) global stability. For reasons of space and clarity, we do not include
the explicit form of either Lyapunov function here.

5.3 Lyapunov Exponent

We calculate the largest Lyapunov exponent (LLE) via the standard numerical ap-
proach [34], measuring the average exponential rate of separation of nearby tra-
jectories. Specifically, we consider two initial conditions separated by a small Eu-
clidean distance d0 = 10−8. After evolving both by ∆t = 0.1 time units, we
calculate a (local) estimate of the LLE according to

λi =
log d1

d0

∆t
,

where d1 is the separation between the trajectories after evolution. We then renor-
malize the distance be between the trajectories to again be d0, and repeat the process
for a total of T iterations. The LLE is then calculated as the long-term (T ≫ 1)
average of the local estimates, i.e.:

λ =
1

T

T∑
i=1

λi.

We stress that we regard the two trajectories as independent copies of the dy-
namical system under study, meaning they can reach the switching surface (Eqn.
8)—and hence, switch between network snapshots—at slightly different times.

References

[1] Jason M. Tylianakis and Rebecca J. Morris. Ecological Networks Across En-
vironmental Gradients. Annual Review of Ecology, Evolution, and Systemat-
ics, 48(1):1–24, 2016.

[2] Longfeng Zhao, Gang-Jin Wang, Mingang Wang, Weiqi Bao, Wei Li, and
H. Eugene Stanley. Stock market as temporal network. Physica A: Statistical
Mechanics and its Applications, 506:1104–1112, 2018.

[3] Daniel Charbonneau, Benjamin Blonder, and Anna Dornhaus. Temporal Net-
works. Understanding Complex Systems, pages 217–244, 2013.

[4] A. Li, S. P. Cornelius, Y.-Y. Liu, L. Wang, and A.-L. Barabási. The fundamen-
tal advantages of temporal networks. Science, 358(6366):1042–1046, 2017.

12

Northeast Journal of Complex Systems (NEJCS), Vol. 5, No. 1 [2023], Art. 3

https://orb.binghamton.edu/nejcs/vol5/iss1/3
DOI: 10.22191/nejcs/vol5/iss1/3



[5] David Melamed, Ashley Harrell, and Brent Simpson. Cooperation, clustering,
and assortative mixing in dynamic networks. Proceedings of the National
Academy of Sciences of the United States of America, 115(5):951–956, 2018.

[6] David G. Rand, Samuel Arbesman, and Nicholas A. Christakis. Dynamic so-
cial networks promote cooperation in experiments with humans. Proceedings
of the National Academy of Sciences, 108(48):19193–19198, 2011.

[7] Aming Li, Lei Zhou, Qi Su, Sean P Cornelius, Yang-Yu Liu, Long Wang,
and Simon A Levin. Evolution of cooperation on temporal networks. Nature
communications, 11(1):2259, 2019.

[8] Fabı́ola S.F. Pereira, Sandra de Amo, and João Gama. Evolving Centralities in
Temporal Graphs: A Twitter Network Analysis. 2016 17th IEEE International
Conference on Mobile Data Management (MDM), 2:43–48, 2016.

[9] Brennan Klein, Timothy LaRock, Stefan McCabe, Leo Torres, Lisa Friedland,
Filippo Privitera, Brennan Lake, Moritz UG Kraemer, John S Brownstein,
David Lazer, Tina Eliassi-Rad, Samuel V Scarpino, Alessandro Vespignani,
and Matteo Chinazzi. Assessing changes in commuting and individual mo-
bility in major metropolitan areas in the United States during the COVID-19
outbreak. Northeastern University-Network Science Institute Report, 2020.

[10] Brennan Klein, Timothy LaRock, Stefan McCabe, Leo Torres, Lisa Friedland,
Filippo Privitera, Brennan Lake, Moritz UG Kraemer, John S Brownstein,
David Lazer, Tina Eliassi-Rad, Samuel V Scarpino, Alessandro Vespignani,
and Matteo Chinazi. Reshaping a nation: Mobility, commuting, and contact
patterns during the COVID-19 outbreak. Northeastern University-Network
Science Institute Report, 2020.

[11] Hai Lin and P.J. Antsaklis. Stability and Stabilizability of Switched Linear
Systems: A Survey of Recent Results. IEEE Transactions on Automatic Con-
trol, 54(2):308–322, 2009.

[12] Daniel Liberzon. Switching in Systems and Control. Systems & Control:
Foundations & Applications, 2003.

[13] Robert Shorten, Fabian Wirth, Oliver Mason, Kai Wulff, and Christopher
King. Stability Criteria for Switched and Hybrid Systems. SIAM Review,
49(4):545–592, 2007.

13

Rock et al.: Temporality-induced chaos in the Kuramoto Model

Published by The Open Repository @ Binghamton (The ORB), 2023



[14] Maxim Poliashenko and Susan R. McKay. Chaos due to homoclinic and het-
eroclinic orbits in two coupled oscillators with nonisochronism. Physical Re-
view A, 46(8):5271–5274, 1992.

[15] J. C. Chedjou, P. Woafo, and S. Domngang. Shilnikov Chaos and Dynamics
of a Self-Sustained Electromechanical Transducer. Journal of Vibration and
Acoustics, 123(2):170–174, 2001.
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