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Abstract

Infectious disease emergence has become the target of cross-disciplinary efforts
that aim to understand and predict the shape of outbreaks. The many challenges
involved with the prediction of disease emergence events is a characteristic that in-
fectious diseases share with biological invasions in many subfields of ecology (e.g.,
how certain plants are able to successfully invade a new niche). Like infectious
diseases, biological invasions by plants and animals involve interactions between
agents (pathogens and plants in their respective cases) and a recipient niche. In
this study, we examine the problem of pathogen emergence through the lens of a
framework first developed for the study of plant invasions, restructured to apply
to pathogen invaders. We utilize mathematical techniques to examine how com-
plex dynamics emerge between the various actors in a multi-component pathogen
invasion process, which implies invasion frameworks can offer new insight on the
particulars of infectious disease emergence. Summarizing, we consider these re-
sults in context of their application to epidemiology, and more broadly with regards
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to modern efforts to bring the vernacular of complex systems to more real-world
systems and problems. In doing so, we demonstrate the potential power in math-
ematizing conceptual models, and connecting ideas across disparate fields, toward
a more rigorous picture of the nuances that underlie the dynamics of biological
systems.

1 Introduction

Disease emergence, the process through which pathogens arise in a species and
cause epidemics and pandemics, is one of the most important biological phenomenon
of our time. Experts form across many intellectual and professional paradigms–
ecology, evolutionary biology, epidemiology, economics, and others–have converged
on this question, aiming to disentangle the many forces that underlie how a pathogen
that is circulating in one species ends up causing a widespread epidemic in another.

Recent studies of disease emergence have contributed new perspectives about
the macroecological influences [5], pathogen population genetics [6], molecular
drivers [12], human behaviors [7] and myriad other forces that can drive emergence
events [13]. The goal of these studies is to understand the underlying mechanics
of emergence, and potentially predict outbreak events. However, prediction has
proven to be a challenging feat in epidemiology for many reasons, including the
manner in which the parameters that drive disease can change during the course of
a pandemic [8]. Further, there is a growing body of literature that applies complex
systems perspectives to public health [29].

Many models for biological invasion exist, some of which involve sequential
steps or stages, from the introduction of an invader, to competition to native species
in a new setting, to further propagation and spread [2, 9, 16, 17]. Other models
have identified the drivers of microbial invasions, describing the interactions be-
tween alien and native microbial species [10], or developed conceptual models for
epidemiological framings of invasion [27]. Despite the richness of this literature,
few studies have attempted to integrate the study of disease emergence with general
examinations of biological invasion using formal mathematical approaches. In par-
ticular, studies that incorporate multiple actors and stages of the invasion process.

In this study, we ask: can we animate qualitative models of biological invasion
using tools of mathematical epidemiology? We propose that the grammar of disease
emergence can be integrated with frameworks of biological invasions (e.g., from the
plant invasion literature), and dynamical systems modeling to consider a stepwise,
multi-component process through which an infectious pathogen (or an invading
replicator of any kind) enters a new niche defined by a novel ecology (e.g., host
biology).We find that mathematizing qualitative invasion frameworks can generate
surprising and meaningful results that may speak to underappreciated complexity

2
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in the pathogen emergence process. This includes co-existing equilibrium states be-
tween invading pathogen populations, and the importance of the carrying capacity
of the invading population, which has implications for the success of an invader and
its potential for equilibrium co-existence with a other standing (native) populations.

Summarizing, we discuss our results in terms of greater efforts to consider
timely and important phenomena in biology and biomedicine as complex systems,
with nonlinear interactions between actors and processes, and emergent patterns
that contribute to the unpredictability of epidemics and pandemics.

2 Models & Methods: A Deterministic Model Of Invasion

2.1 Description

The following system models the population dynamics of a single invading pathogen
population capable of establishment and spread within a host where-in another com-
peting native population is present. This framework defines three unique states of
invasion: introduction, establishment, and spread. The invading pathogen popu-
lation transitions through each state as it competes with an already present native
population. Below we elaborate on the characteristics of each invasive population
state:

1. Introduction: Defined as the state where-in the invading population is intro-
duced into the novel host environment. This can occur through a number of
ways: for example, a population of invading organisms can be brought into
a new niche by ”wind or wing” [18, 19]. Prior to introduction the invading
population is completely external to the model system. Once introduced, in-
vading population growth is modeled logistically. It is not guaranteed that
the invading population transitions to the next invasive state. The invading
population may not become established due to a myriad of factors including:
failure to reproduce, in ability to utilize local resources, or predation.

2. Establishment: Defined as the state where-in the invading population is able
to persist within the host environment without the introduction of additional
members of the invading population (from external to the system). Members
of the invading population more suited to the novel host environment will
have a higher probability of establishment.

3. Spread: Defined as the stage where-in the invading pathogen population is
both able to survive self-sustain in the host environment and reproduce. This
allows the invading pathogen population to spread within the host environ-
ment and move further than its initial area of introduction. At this stage, the

3
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invading population is considered invasive and undergoes competition with
the native host population. Though not explicitly modeled in the system, up-
stream of this stage, the invading population disperses to new locations and
can face additional pressure to establish in these new areas. [10].

2.2 Dynamical system for invasion

Let I(t), E(t), and S(t) represent the invading pathogen population at each stage of
the competition with a native species population N(t). The rate of change of the in-
vading pathogen population at introduction is defined as I ′(t). The invasion begins
when the invading population, previously external to the model system, enters the
novel host environment. The invading population is then said to be in the introduc-
tion state and we define its growth rate by the logistic growth function rI

(
1− I

KI

)
.

Where r is the maximum per-capita growth rate of the invading population, and KI

is the maximum population density in the introduction state that host environment
can sustain. The invading population can enter the novel host environment at a rate
βI , with some probability of survival p. Here (1− p) represents the probability the
invading population is incapable of surviving, for example, due to not being able to
reproduce. This portion of the invading pathogen population does not transition to
the establishment stage.

The rate of change of the invading pathogen population at establishment is de-
fined as E ′(t). The density of established members of the invading population
increases as members are able to independently persist within the novel host envi-
ronment. This is modeled via the terms pβI , where p is the probability of survival
within the novel host environment. At this stage, the competitive pressure from the
native host population is felt by the invading population. If the native host popu-
lation is small the now established invading population has a higher probability of
spreading. In order to model these competitive dynamics we take the product of an
invasion rate, and the probability that members of the invading pathogen population
will transition to the spread state

(
1− N

a+N

)
. Here a is a half-saturation constant.

Invading populations entering a novel host environment face sequential establish-
ment risk [10]. In order to incorporate these dynamics into the model we assume
the invading population can return to the establishment state at a rate γ to again
compete with the native host population.

The rate of change of the invading pathogen population in the spread state is de-
fined as S ′(t). At this stage the population has become self-sustaining, and its den-
sity increases as the population is able to reproduce and survive on its own without
additional members necessarily needing to transition into the spread state. How-
ever, in the spread state the invading population continues to be subject to sequen-
tial establishment risk, if for example this self-reproducing segment is destabilized

4
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be the native host population. While in the spread stage the invading population ex-
perience competitive pressure by the native host population. We incorporate these
dynamics at this stage by a density dependent competition rate c1N , where c1 de-
fines the competitiveness of the native host population. At this stage, the invading
population can die via a natural death rate of µ1.

The rate of change of the native host population within the system is defined as
N ′(t). We model the growth rate of the native host population via logistic growth
with a maximum per capita growth rate b, and a carrying capacity KN . When
the invading pathogen population is introduced into the native host environment
we model native host competitiveness via competition coefficients c2 and c3. The
natural death of the native species is modeled via the constant linear term of µ2N
with death rate µ2.

In summary, the dynamical system in equation (1) defines the deterministic
model of invasion, and Figure (1) visualizes the behavior using the compartmen-
tal model.

I ′ = rI

(
1− I

KI

)
︸ ︷︷ ︸
Logistic growth rate

− (1− p)βI︸ ︷︷ ︸
Introduced into novel

host environment
& incapable of survival

− pβI︸︷︷︸
Successful

introduction
& survival

E ′ = pβI︸︷︷︸
Successful

introduction
& survival

− αE︸︷︷︸
Transition rate

·
(
1− N

a+N

)
︸ ︷︷ ︸

Probability of
spreading

+ γS︸︷︷︸
Sequential

establishment risk

S ′ = αE

(
1− N

a+N

)
︸ ︷︷ ︸

Successful
transition rate

− c1NS︸ ︷︷ ︸
Competition with

native species

− γS︸︷︷︸
Sequential

establishment risk

− µ1S︸︷︷︸
Natural

death rate

N ′ = bN

(
1− N + c2S + c3E

KN

)
︸ ︷︷ ︸

Native population growth rate
as effected by competition with the

invading population

− µ2N︸︷︷︸
Natural

death rate

(1)
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Figure 1: The compartmental diagram of the dynamical system (equation 1). This is an
adaptation of a biological invasion model used to describe plant invasion [9].

2.3 Stability analysis

For simplicity, we assume µ1 = µ2 = 0, which leads to the system of ordinary
differential equations (ODEs) represented in the equation (2).

dX

dt
=


dI
dt
dE
dt
dS
dt
dN
dt

 =


rI

(
1− I

KI

)
− βI

pβI − αE
(
1− N

a+N

)
+ γS

αE
(
1− N

a+N

)
− c1SN − γS

bN
(
1− N+c2S+c3E

KN

)
 = F (X) (2)

where, X = (I , E , S ,N). Furthermore, notice that I ′ only depends on I . Hence,
the dynamic of the introduction phase is independent of the dynamics of the other
populations. We will use the stability theory and Routh–Hurwitz stability criterion(
[11]) to analyze the qualitative behavior of the model. The equilibrium solutions,
X∗ of the system of ODEs(equation (2) ) are given by F (X∗) = 0, and

• X∗
1 (θ) = (0, θ, α

γ
θ, 0), θ ∈ R+ ∪ 0

• X∗
2 = (0, 0, 0, KN)

• X∗
3,4 = (I∗1 , E

∗
3,4, S

∗
3,4, N

∗
3,4)

are the major categories of fixed points. Here, I∗1 = (r−β)KI

r
and N∗

3,4 can be deter-
mined as solutions to the equation (3), where

A2N
2 + A1N + A0 = 0, (3)

6
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with coefficients defined as follows:

A2 = (ac1α + pβI∗1c1c3) > 0,

A1 = (pβI∗1c3(ac1 + γ)− ac1αKN),

A0 = pβI∗1a(c2α + c3γ) > 0.

Furthermore, the values of E∗
3,4 and S∗

3,4 are determined as follows:

E∗
3,4 =

pβI∗1 (c1N
∗
3,4 + γ)(a+N∗

3,4)

ac1N∗
3,4α

and S∗
3,4 =

pβI∗1
c1N∗

3,4

.

Moreover, we use X∗
3 and X∗

4 to denote the fixed point corresponding to

N∗
3 =

−A1 −
√

A2
1 − 4A2A0

2A2

and N∗
4 =

−A1 +
√

A2
1 − 4A2A0

2A2

,

respectively.

Remark (1). For any positive parameter values, the X∗
1 family of fixed points and

X∗
2 will exist.

Remark (2). Fixed points, X∗
3,4 represent the co-existence of native and invasive

species, which makes them interesting. However, the existence of these equilibria
depend on the condition r > β and KN ≥ K∗

N . To achieve those equilibria, the
carrying capacity must be greater than a critical value which depends on other
parameters.

If I∗ and N∗ strictly positive then by analysing the discriminant of equation (3),
critical carrying capacity is given by,

K∗
N =

pβI∗1c3(ac1 + γ) + 2
√
A2A0

ac1α
. (4)

Furthermore, X∗
3 , X

∗
4 both present when KN > K∗

N and X∗
3 = X∗

4 when KN =
K∗

N . However, there is no co-existed population when KN < K∗
N . (Visual illustra-

tion is provided in the supplementary figure S1.)
The stability analysis can be discussed using the linearized system. The eigen-

values λ of the Jacobian matrix J(X∗) (see supplemental document equation 10)
of the system for a fixed point X∗ = (I∗, E∗, S∗, N∗) is given by the characteristic
polynomial of the form,(

r

(
1− 2I∗

KI

)
− β − λ

)
(λ3 +B2λ

2 +B1λ+B0) = 0 (5)

7
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where Bi, i = 0, 1, 2 will depends on X∗ and parameter values (check supplemental
document equation 11 for detail explanation). Hence, the first eigenvalue of the
Jacobian matrix J(X∗) is determined as λ1 = r

(
1− 2I∗

KI

)
−β, while the remaining

eigenvalues satisfy the cubic polynomial equation

λ3 +B2λ
2 +B1λ+B0 = 0 (6)

The Routh-Hurwitz criterion [11] can be used to determine whether the eigenvalues
of a linearized system at the fixed point X∗ are located in the left half-plane. When
applied to third-order polynomials (equation 6), the criterion requires that B1, B2

and B3 are positive and B2B1 > B0. Table (1) summarizes the existence and local
stability of each fixed point.

• Local Stability of X∗
1 : Let’s consider J(X∗

1 ) and observe that the characteristic
polynomial can be expressed as follows:

(λ− (r − β))λ(λ− b
(
1− c2S

∗ + c3E
∗

KN

)
)(λ+ (α + γ)) = 0.

This polynomial is obtained by substituting I∗ = 0 and N∗ = 0 into the equa-
tion (5). Therefore, eigenvalues for J(X∗

1 ) are given by λ1 = (r − β), λ2 =

0, λ3 = b
(
1 − c2S∗+c3E∗

KN

)
and λ4 = −(α + γ). Since it has an eigenvalue of

zero, the system is not locally asymptotically stable at X∗
1 .

• Local Stability of X∗
2 : The eigenvalues of J(X∗

2 ) are given by λ = (r − β) and
the roots of equation (6), where B2 = b+D1+D2, B1 = b(D1+D2)+D1c1KN

and B0 = bD1c1KN . Here, D1 = αa
a+KN

and D2 = αa
a+KN

. It is worth noting
that these eigenvalues satisfy the Routh-Hurwitz criterion since B1, B2 and B3

are positive (an assumption already met, given that parameters are positive) and
B2B1 > B0 (as shown in equation 7).

B2B1 −B0 = (b+D1 +D2)(b(D1 +D2) +D1c1KN)− bD1c1KN

= b2(D1 +D2) + b(D1 +D2)
2 > 0.

(7)

Hence, the eigenvalues corresponding to equation 6 (for the fixed point X∗
2 )

possess a negative real part. Therefore, X∗
2 is locally asymptotically stable if

and only if r < β.

• Local Stability of X∗
3,4: When I∗ = I∗1 , the first eigenvalue λ = −(r − β) and

X∗
3,4 is unstable if r < β. Furthermore, if r > β then the first eigenvalue is

negative and we can use the Routh–Hurwitz stability criterion for equation (6)

8
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to determine whether the real part of each eigenvalue is negative. In this case,
B0 at N∗

3,4 is denoted by B0(N
∗
3,4) and can be expressed as

B0(N
∗
3,4) =

bA2

KN(a+N∗
3,4)

(
N2

3,4 −
A0

A2

)
,

where A2, A1, and A0 are the coefficients of equation (3). It is important to note
that bA2

KN (a+N∗
3,4)

> 0 (with the assumption N > 0) and

N∗
3 ≤

√
A0

A2

=
−A1

2A2

= N∗
3,4(K

∗
N),

where N∗
3,4(K

∗
N) denotes the N∗

3,4 value at K∗
N . Therefore, B0(N

∗
3 ) < 0 for

any KN ≥ K∗
N , which violates the Routh-Hurwitz criterion. Hence, X∗

3 is an
unstable fixed point.

Since N∗
4 >

√
A0

A2
, we have B0(N

∗
4 ) > 0. Moreover, B2 is positive for any

positive N . Therefore, to determine the stability of N∗
4 , we need to satisfy only

one condition. Specifically, N∗
4 is locally asymptotically stable if and only if

B1 > B0

B2
. In the subsequent section, we will further analyze the local stability

of X∗
4 using numerical methods.

Equilibrium Existence Stability

X∗
1 (θ) = (0, θ, α

γ
θ, 0) Always

Always unstable (at least one
eigenvalue is zero)

X∗
2 = (0, 0, 0, KN) Always

LAS if and only if r < β,
otherwise it is unstable.

X∗
3,4 = (I∗1 , E

∗
3,4, S

∗
3,4, N

∗
3,4)

r > β and
X∗

3 = X∗
4 when

KN = K∗
N or

X∗
3 ̸= X∗

4 when
KN > K∗

N

If N∗
3,4 exists and is positive,

• X∗
3 is always unstable.

• X∗
4 LAS if and only if

B1 >
B0

B2
.

Table 1: Summary of boundary and interior equilibrium dynamics. LAS: locally asymptot-
ically stable.

3 Results

In this section, we investigate the long-term behavior of the populations by em-
ploying a numerical ordinary differential equation (ODE) solver, specifically the

9
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MATLAB-ode45 solver. The MATLAB-ode45 solver utilizes an explicit Runge-
Kutta (4,5) formula and employs a variable step size and adaptive algorithm to
adjust the step size accordingly [20, 21]. For our simulations, we utilize the default
settings of the MATLAB-ode45 solver. The tolerance levels are set to a relative
tolerance of 10−3 and an absolute tolerance of 10−6. The maximum step size is set
to 0.2. The simulations are conducted over a time interval of [0, 1000] or until the
results become unbounded.

The compartment model utilized in this study has a sequential structure that
leads to an independent introduction population, where I ′ is a function of only I .
Additionally, note that the introduction population follows a logistic growth model
with removal, as illustrated in Figure (S2A). Hence, as t → ∞, we have

I∗ =

{
0, if r <= β : Failed Introduction
I∗1 = (r−β)KI

r
, if r > β : Successful Introduction

(8)

For the qualitative analysis of the model, we can reduce the system to a 3D model
and replace the term pβI = pβI∗ in the E ′ equation. Furthermore, the change in
the total invasive population, in the long run (note that I → I∗ in the long run), can
be described by the following equation:

dM

dt
=

dI

dt
+

dE

dt
+

dS

dt
= pβI∗ − c1NS, (9)

where M = I + E + S is the total invasive population. In the following two
subsections, we will examine scenarios for both failed and successful introduction
of the invasive population. For a summary of these scenarios, refer to figure (11).

3.1 Failed Introduction of the Invasive population

When the removal rate (β) from the introduction compartment exceeds the growth
rate (r), the introduction invasive population will die out (I∗ = 0). This can result
in one of two outcomes (X∗

2 or X∗
1 (θ)).

If there is a native attacking population (N > 0), the invasion will fail, and the
invasive population (I , E, S) will disappear as dM

dt
= −c1NS < 0. As illustrated

in Figure (S2B), the native population will eventually reach its carrying capacity
(KN ).

If there is no native attacking population (N = 0), the total invasive population
will remain constant (M(t) = M(t0) for t ≥ t0, where t0 is the initial time), as
dM
dt

= 0. In this case, a center manifold can be observed in the ES plane, as shown
in Figure (2). Every point in the ES space is attracted to a fixed point S∗ = α

γ
E∗

for some E∗ ≥ 0. This indicates that the invasion will succeed with an initially
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positive established population, in which some invaders survive and establish before
the introduced population dies out.

Figure 2: Dynamics of the established (E(t)) and Spread (S(t)) population with I(0) =
0, N(0) = 0. This figure demonstrates that each point in ES plain will attract a fixed
point S∗ = α

γE
∗ for some E∗ > 0. Each point in the red line is a fixed point of the

system and blue curves are trajectories that approach different fixed points in the red curve.
This suggests that for some parameter values, the established and spread populations can
converge to different equilibrium values depending on the starting point.

An intriguing and non-trivial scenario arises when the introduction of the inva-
sive population is successful, which occurs when the growth rate (r) is greater than
the removal rate (β). In the following analysis, we assume r > β.

3.2 Extinction of the Native replicator population

This scenario occurs when the carrying capacity of the Native population is rela-
tively low. Specifically, if there exists a carrying capacity value KN = K1

N such that
K1

N < N(t)+c2S(t)+c3E(t) for all t within the interval (t0, T ), where T is a finite
time, and if the native population reaches extinction (N(T0) = 0) at some time T0

within the interval (t0, T ], then it follows that the derivative of the native population,
denoted as N ′, is negative in the time interval (t0, T ). In other words, the Native
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population will continuously decrease over time within this interval. Furthermore,
since the native population size N is equal to 0 at a certain time T0 within the inter-
val (t0, T ], it follows that the native population remains at 0 for all times t greater
than or equal to T0. In other words, once the Native population reaches extinction
(N = 0) at T0, it remains extinct thereafter. It should be noted that for any carrying
capacity value KN smaller than K1

N , a similar behavior can be observed. Therefore,
if such a scenario exists where the native population reaches extinction, the max-
imum carrying capacity value that leads to the extinction of the native population
is denoted as K1

N . In other words, K1
N represents the largest carrying capacity for

which the native population can become extinct.
In situations where there is no native population, or the native population dies

out, the successful introduction of the invasive population (I → I∗1 as t → ∞)
results in an exponential growth of the invasive population. Our model explains
this phenomenon through the equation dM

dt
= pβI∗1 > 0. Figure (3) depicts the

dynamics of the established and spread population in this scenario. The invasive
population will continue to grow without limit. This result is in agreement with
previous studies on invasive species and highlights the importance of preventing the
introduction of invasive species to new environments to avoid ecological damage
[24, 25].

In this study, we have observed that the KN < K∗
N leads to the extinction of the

native population. Specifically, if KN is less than K∗
N , there are no solutions to the

equations KN − (N + c2S + c3E) = 0 and KN < N + c2S + c3E for any positive
initial values of N , E, and S. Consequently, the native population decreases over
time and eventually becomes extinct, while the invasion of the invasive population
succeeds.

To further investigate and determine an upper bound for this case, we have con-
ducted a numerical analysis of the parameters KN and KI , while keeping all other
parameters fixed. We consider a specific set of parameter values represented as a
vector Ψ for reference, denoted by Ψ = (p = 0.8, β = 0.5, α = 0.3, a = 0.8, γ =
0.5, b = 4, c1 = 0.3, c2 = 0.4, c3 = 0.1, r = 3). These parameter values have been
chosen to facilitate the demonstration of our analysis results.

In the plot shown in figure (6), the black curve represents the values of K1
N for

different values of KI . This curve serves as a threshold, indicating that for any
given carrying capacity of the invasive population (KI), if the carrying capacity of
the native population (KN ) is below the corresponding value on the black curve
(K1

N ), the invasive population will undergo exponential growth while the native
population gradually diminishes and eventually becomes extinct. This observation
emphasizes the crucial role of the carrying capacity of the native population in
determining the outcome of the invasion process.
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Figure 3: Long-term dynamics of invasion in the case of native extinction. In the situation
where the native population becomes extinct (N → 0) and the introduction of invasion is
successful (I → I∗1 ) in the long run, the dynamics of the established and spread population
will be trapped within the region defined by the parallel lines that correspond to the E and
S nullclines.

3.3 Co-existing Native and Invasive populations:

The coexistence of native and invasive populations can occur when we have a suc-
cessful introduction of the invasive species and the non-extinction of the native
species. This condition is possible when the maximum growth rate of the invasive
species (r) is greater than its introduction rate (β), and the carrying capacity of the
native species (KN ) is larger or equal to the critical value (K1

N ) explained in the
section (3.2). In other words, in order to observe the coexistence of native and inva-
sive species, it is essential for the invasive species to have a higher growth potential
during the introduction phase and for the native species to have a sufficient carrying
capacity.

Due to the dependence of critical values such as K∗
N on parameters such as

p, r, β, and KI , we have deemed it necessary to conduct a more in-depth analysis
to explore the sensitivity of the parameters KN and KI . We conducted a numerical
study to explore the sensitivity of the carrying capacities KN and KI , while keeping
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all other parameters fixed. The results of our study were obtained using a set of
fixed parameter values denoted as a vector, Ψ. Specifically, we used the following
parameter values for reference: Ψ = (p = 0.8, β = 0.5, α = 0.3, a = 0.8, γ =
0.5, b = 4, c1 = 0.3, c2 = 0.4, c3 = 0.1, r = 3). These parameter values were
chosen to be consistent across our study, allowing us to demonstrate and interpret
the numerical results accurately. By systematically varying the values of KN and
KI , we examined the dynamics of the coexisting populations. This analysis allowed
us to identify the range of carrying capacity values for both native and invasive
species that lead to their stable coexistence. By studying the effects of different
parameter combinations, we gained insights into the conditions necessary for the
long-term coexistence of these species.

Stability of co-existing fixed points (X∗
3,4)

The stability analysis of the co-existing fixed points (X∗
3,4) is conducted by nu-

merically evaluating the eigenvalues of the Jacobian matrix at these fixed points.
This analysis is performed for a given set of parameters, and the sign of the maxi-
mum real part of the eigenvalues is examined. The results of this numerical evalu-
ation, considering parameter values Ψ and (KI , KN) ∈ [0, 200]2, are presented in
Figure (4). The depicted figure confirms the previous qualitative analysis presented
in Section (2.3), showing that the fixed point X∗

3 is always unstable. It is noteworthy
that the critical value K∗

N represents a limit point bifurcation point with respect to
the parameter KN , as X∗

3,4 fixed points disappear when KN < K∗
N . Additionally,

the figure reveals the critical values of the carrying capacity for the fixed point X∗
4

to be locally asymptotically stable. These critical values indicate the occurrence of
bifurcation points.

Bifurcation analysis for KN and KI

Bifurcation analysis is performed to study the qualitative changes [32,34] in the
dynamics of the system (equation (2)) as parameters KN and KI vary. To numeri-
cally estimate the bifurcation points for the given values of KN and KI , we utilize
the MatCont package [26] in MATLAB (with ODE45 solver). Figure (5B) presents
the bifurcation diagram illustrating the behavior of the system for different values
of KN for fixed KI = 100 and Ψ parameters. As discussed in the previous section,
the diagram clearly demonstrates the presence of a limit point bifurcation [26] at
the critical value K∗

N . This bifurcation marks the boundary where the fixed points
X∗

3,4 cease to exist as KN decreases below K∗
N . Similar behavior occurs as KI in-

creases for given parameters KN = 125 and Ψ. As KI increases, the bifurcation
diagram (figure (5A)) exhibits similar patterns, showcasing the influence of KI on
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(A) (B)

Figure 4: Stability of the fixed points. This figure demonstrations An illustration of the
variations in the stability of the fixed points (A) X∗

3 and (B) X∗
4 in relation to the parameters

Ψ and (KI ,KN ) ∈ [0, 200]2. The plot represents the sign of the maximum real part of the
eigenvalues obtained from the Jacobian matrix at each fixed point. In the white region (Γ1),
the fixed point does not exist. In the red region (Γ4 for (A) and Γ2 for (B)), at least one of
the eigenvalues has a positive real part, indicating instability. Conversely, in the blue region
(Γ3), the real parts of all eigenvalues are negative, indicating stability.

the system dynamics.
Moreover, the presented bifurcation diagrams (Figure (5)) provide insights into

the existence of a Hopf bifurcation, more precisely an Andronov-Hopf bifurcation
[26], in relation to the parameter values KN and KI , while keeping the remaining
parameters Ψ fixed. This bifurcation indicates the emergence of periodic solutions
or limit cycles [35, 36] in the system dynamics. To refer to the critical value of KN

associated with the Hopf bifurcation, we denote it as K(2)
N for further discussion and

analysis.

Periodic orbit

As explained in the previous section, the emergence of a periodic orbit can be
attributed to the presence of Hopf bifurcation points [35, 36]. Figure (6) illustrates
the locations of limit point bifurcation and Hopf bifurcation points in the KI , KN

parameter space with fixed parameters Ψ. The values K∗
N and K

(2)
N are functions

of KI . Additionally, it should be noted that the coexisting fixed point X∗
4 becomes

unstable within specific regions of parameter values (KI , KN), which are bounded
by the curves K(2)

N and K∗
N . Therefore, these supercritical Hopf bifurcation points

(K(2)
N ) indicate the emergence of a locally asymptotically stable limit cycle [33, 35,

36] around the unstable fixed point X∗
4 . Figure (7A) illustrates the dynamics of the

system, specifically stable periodic orbits, when the carrying capacity of the native
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(A) (B)

Figure 5: Bifurcation analysis for KI and KN . This figure demonstrates the bifurcation
points for (A) KI with KN = 125 and (B) KN with KI = 100, while keeping the other
parameters fixed at Ψ. The plot shows the occurrence of both Limit Point(LP) bifurcation
and Hopf bifurcation points for these parameters. It is evident that there is an interdepen-
dence between the effects of KI and KN , indicating the complex relationship between the
two parameters in determining the system dynamics.

population is slightly less than K
(2)
N while keeping KI fixed at 100 and using the

parameter set Ψ.
As discussed in Section (3.2), when the carrying capacity of the native popu-

lation (KN ) is below the critical value K1
N , the native population becomes extinct.

In the case where KN is already below the critical value K
(2)
N , a decrease in KN

(while keeping KI fixed) leads to an increase in the amplitude of the periodic solu-
tion N(t;KN). It is important to note that the minimum value of the periodic solu-
tion N(t;KN) decreases in this scenario (as KN < K

(2)
N decrease), and it reaches

zero when KN equals K1
N . In Figure (6), the black curve represents the values of

K1
N for the fixed parameter set Ψ. This curve indicates the critical threshold for the

carrying capacity of the native population below which the native population be-
comes extinct. The K1

N values provide insight into the parameter range where the
native population cannot survive in the presence of the invasive species. Therefore,
in the parameter space of KI and KN (with the fixed parameter set Ψ), a stable
limit cycle will be present in the system when the parameter values fall within the
region bounded by the K1

N and K
(2)
N curves, as shown in Figure (6). This region

represents the parameter range where the native population coexists with the inva-
sive species, exhibiting periodic oscillations. Figure (7B) demonstrates the change
in the dynamics around the critical K1

N with KI = 100 and Ψ.

Example: Dynamics of the system when KI = 100 with parameter set Ψ
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Figure 6: Bifurcation points for (KI ,KN ). The figure showcases the bifurcation points in
the parameter space (KI ,KN ) with the fixed parameter set Ψ. It highlights three key points:
the Limit Point (LP) bifurcation points denoted as K∗

N (KI), the Hopf bifurcation points
denoted as K(2)

N (KI), and the points denoted as K1
N (KI) that determine the extinction of

the native population. The plot provides valuable information about the system’s behavior
based on different ranges of KN and KI values. Specifically, if KN ≤ K1

N , the invasive
population will grow exponentially, leading to the extinction of the native population. If
K1

N < KN < K
(2)
N , the system exhibits a stable periodic co-existing solution. Finally, if

KN > K
(2)
N , the system reaches a stable co-existing fixed point.

To illustrate the dynamics of the system, we have chosen an example with
KI = 100 and the parameter set Ψ. We observe that with the given parameter
values, the critical carrying capacity K∗

N is approximately 77.31. It is important to
note that in the absence of the native population (N(t) = 0 for t > T0, where T0 is a
finite time), the invasive population (E(t) and S(t)) grows exponentially, as shown
in Figure (8). To prevent the extinction of the native population, we numerically
calculate the critical carrying capacity for this example, which is approximately
K1

N ≈ 123.129, as depicted in Figure (7B). This value represents the threshold be-
yond which the native population can persist in the presence of the invasive species.
The presence of the limit cycle is observed in the range of (K1

N , K
(2)
N ) for the carry-

ing capacity KN . This range represents the critical values of KN where the system
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(A) (B)

Figure 7: The sensitivity of the system to variations in the carrying capacity of the native
population. This figure displays the behavior of the system as KN varies around critical
values, while keeping KI fixed at 100 and other parameters set to Ψ. Plot (A), demonstrates
the presence of a stable periodic orbit in the region of 123.13 < KN < 125.01. This
indicates the coexistence of the native and invasive populations in a cyclic pattern. On
the other hand, plot (B) illustrates the change in dynamics around the specific value of
KN = 123.1, where the native population becomes extinct.

exhibits stable oscillations and coexistence of the native and invasive species. Fur-
thermore, we find that the fixed point X∗

4 becomes stable after the critical carrying
capacity K

(2)
N , which is approximately 125.02 for this example. All these scenarios

are demonstrated in figure (8), which shows the change in the dynamics of E and
N with the parameter KN . The native population initially attempts to reach its car-
rying capacity. However, due to the presence of invasive species, they will either
die out or decline to a lower value.

Stable periodic orbit: As illustrated in Figure (7A), when the carrying capacity
of the native population KN falls within the range (K1

N , K
(2)
N ) ≈ (123.13, 125.01),

the system exhibits a stable limit cycle. This means that the population dynamics
of both the native and invasive species oscillate periodically over time, indicating
the coexistence of the two species in a stable manner. By choosing KN = 124,
KI = 100, and the parameter set Ψ, we can illustrate the stable periodic orbit of
the system. The figure (9) demonstrates the trajectories X(t) with initial conditions
(1, 1060, 10, 20), and (1060, 13.94, 12, 250/3) are approaching (t ∈ [0, 10000])
to a periodic orbit. Furthermore, we investigate the X(t) trajectory with initial
condition (1, 1060, 10, 20) in projected spaces and demonstrate the behavior of
the system by time series data. Figure (10) (and S3)) visualize the dynamics of the
system for the parameter Ψ and K = 124 with initial condition (1, 1060, 10, 20).
Additional figures which illustrate the dynamics of the system can be found in the
supplemental document.
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(A) (B)

Figure 8: Sensitivity Analysis. This shows the sensitivity analysis of parameter KN . It
demonstrates the changes in dynamics of (A) established and (B) native populations with
carrying capacity KN . This reveals how the system of biological invasion is highly sensitive
to the carrying capacity of the native compartment. (The initial condition [1060 10 20 1] is
used to carry out the computation.)

After conducting both analytical and numerical analysis of the system dynam-
ics, the results can be summarized (see Figure (11)) into two main cases: failed and
successful introduction. In the case of a failed introduction, the native population
reaches its carrying capacity while the invasive population dies out, resulting in a
trivial scenario. On the other hand, a successful introduction leads to a successful
invasion, with three possible end scenarios determined by the carrying capacity of
the native population. If the carrying capacity is relatively low, the native popula-
tion will eventually go extinct while the invasive population grows exponentially.
If the carrying capacity is relatively high, the system exhibits a coexisting stable
equilibrium, where both populations can coexist in the long term. The third pos-
sibility occurs when the carrying capacity is in the intermediate range, resulting in
coexisting periodic behavior between the native and invasive populations.

Agent-based model

In the Supplementary Material, we have provided an agent-based modeling
(ABM) approach, that can be examined for those interested methods that allow
for the modeling of discrete states, actors, and time steps [4, 14]. In this study, the
agent-based approaches are stochastic in nature, where each agent’s next condition
is weighted by a random probability at each timestep. We emphasize, however,
that the mathematical approaches are the basis for the arguments and conclusions,
with the ABM serving a supporting role. Nonetheless, it can be useful to explore
other approaches for questions around complex biological systems. A more rigor-
ous dual-approach might be useful, but is beyond the scope of this manuscript, as
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Figure 9: The figure demonstrates the trajectories X(t) started with initial conditions (IC)
(250/3, 1060, 13.94, 12), and (1, 1060, 10, 20) are approaching to a periodic orbit. Here
t ∈ [0, 10000],KN = 124 and other parameter values are from Ψ.

the mathematical results are substantive.

Discussion

In this study, we applied concepts derived from a qualitative model of biological
invasion towards the problem of infectious disease emergence. In order to tran-
scend these past descriptive summaries, we employ mathematical methods that in-
clude compartmental models, which are standard in the study of epidemics. These
methods offer many benefits, and are especially resonant with models of biological
invasion because they offer discrete populations that are synonymous with discrete
decision points along the invasion trajectory that can allow one to design more ef-
fective disease control strategies. More specifically, we utilize ordinary differential
equations approaches, as they are standard in studying epidemiological phenom-
ena, and are effective in tracking the dynamics of populations, using continuous
state variables, and analytical, transparent descriptions of populations.

Disease emergence has been described in terms of a complex systems approaches
[3,28,29]. Our study applies a conceptual model of biological invasion to the prob-
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(A) (B)

Figure 10: Time series data of the system also shows a clear picture of the oscillatory
behavior between the populations in the invasion model. The plots visualize the long-term
behavior of the system by time series data for (A) I,N, S, and (B) E populations.

Figure 11: A summary of possible scenarios and outcomes of the mathematical model. The
figure illustrates the requirements for a successful invasion of the invaders. First, a suc-
cessful introduction must occur, and the growth rate (r) should exceed the removal rate(β).
Depending on the carrying capacity (KN ) of the native population, three different scenarios
can arise. If KN is relatively low (KN < K∗

N ), the native population will go extinct while
the invaders experience exponential growth. However, if the carrying capacity is within a
certain range, both invaders and native populations can coexist, either exhibiting periodic
behavior or stabilizing in a fixed point, determined by the specific KN values.
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lem of infectious disease emergence. This model is inspired by other models of
biological invasions, some composed of a series of steps that describe the intro-
duction of an invading species to its establishment in a new setting [2, 9]. Using
an analogous model imbued with mathematics and computational algorithms, we
reveal that the invasion process includes several nonlinear interactions.

Among the intriguing aspects of our findings include the role that the maximum
per-capita growth rate of invasive species at the introduction phase and carrying
capacity of native species play in determining whether an invasion will succeed.
In the emergence context, the “native species” concept can mean many different
things. In the case of a zoonotic pathogen, for example, the “native species” might
refer to the microbes that exist within the host. This is especially relevant in the
context of the microbiota, where microbial taxa co-exist in confined spaces, with
limited resources [30]. In viral emergence contexts, the carrying capacity of native
species may refer to existing viruses that infect a common cell type, or the activity
of host immunity which limits the population of viruses [31].

These results have several important implications. For one, the disease emer-
gence process should not be described in terms of overly simplistic steps with
non-interacting elements, but rather, should utilize methods that can responsibly
integrate actors and their dynamics. Relatedly, a complex systems approach can
aid in our efforts to model, predict, and intervene in infectious disease emergence
events and their downstream epidemiological consequences. Such dynamical per-
spectives may reveal fragilities in the disease emergence process that might be tar-
geted for intervention. More generally, we must re-emphasize that the mathematical
approaches here outlined were inspired by conceptual models from plant invasion.
This is further support for the notion that purely ecological conceptions can be an-
imated by mathematical approaches, and implores the need for continued dialogue
between disparate fields (e.g., plant biology and mathematical epidemiology). In-
deed, infectious disease emergence warrants a diversity of perspectives and tools
that can better consider how the behaviors of actors, states, parcels of information
and agents create the specter of emerging infectious diseases. In the future, we
should consider other methods that can better capture nonlinearities that may exist
in disease dynamics, Whether these be advanced mathematical methods, simula-
tions, or machine learning approaches.

Code availability

Code can be found at https://github.com/OgPlexus/complexinvasion1
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Supplemental Material

A ODE system

This section helps to visualize the stability analysis of the system of ODEs pro-
vided in the main article. Note that the Jacobian matrix at fixed point X∗ =
(I∗, E∗, S∗, N∗) is given by,

J(X∗) =


r
(
1− 2I∗

KI

)
− β 0 0 0

pβ −αa
a+N∗ γ aαE∗

(a+N∗)2

0 αa
a+N∗ −(c1N

∗ + γ) −c1S
∗ − aαE∗

(a+N∗)2

0 −c3bN∗

KN

−c2bN∗

KN
b
(
1− 2N∗+c2S∗+c3E∗

KN

)
.

 (10)

The characteristic polynomial of J(X∗) will reduce to the form in equation 5(
r

(
1− 2I∗

KI

)
− β − λ

)
(λ3 +B2λ

2 +B1λ+B0) = 0

where,

B2 = D1 +D2 −D3

B1 = D1D2 +D7D9 +D4D5 − (D1D3 +D2D3 + γD1)

B0 = D2D7D9 + γD1D3 +D1D4D5 − (D1D2D3 + γD5D7 +D1D4D9)

(11)

with D1 = αa
a+N∗ , D2 = (c1N

∗ + γ), D3 = b
(
1 − 2N∗+c2S∗+c3E∗

KN

)
, D4 =

−c2bN∗

KN
, D5 = c1S

∗ + aαE∗

(a+N∗)2
, D6 = D4D5, D7 = c3bN∗

KN
, D8 = D5D7, D9 =

aαE∗

(a+N∗)2
, and D10 = D1D4.

The dynamics of the introduction population can be found in figure (S2A). Fig-
ure (S1) demonstrate the sensitivity of the parameter KN . The behavior of native,
established, and spreading populations with no introduction population and non-
zero native species is illustrated in figure S2B. The presence of a stable periodic
orbit with a specific parameter set is further illustrated in figures S3A and S3.
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Figure S1: Figure demonstrates the critical KN for the fixed point X∗
3,4 scenario. In this

figure, f1(N) = C2S
∗ + C3E

∗ and f2(N) = KN − N where S∗ = pβKI(r−β)
c1rN

and

E∗ = pβKI(r−β)(c1N+γ)(a+N)
aαrc1N

. Note that f1 and f2 can be derived by using F (X∗) = 0.

(A) (B)

Figure S2: (A) Dynamics of the introduction population (I(t)). Introduction popula-
tion with non-zero initial condition(we used I(0) = 1) will approach to the stable fixed
point I∗1 = (r−β)KI

r with the assumption r > β. (B) Dynamics of the native(N(t)),
established(E(t)) and Spread (S(t)) population with I(0) = 0. This figure demon-
strates that each trajectory with (E(0), S(0), N(0) ̸= 0)is approaching the fixed point
(E∗, S∗, N∗) = (0, 0,KN ).
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(A) (B)

(C) (D)

Figure S3: The ODE system with parameter values Ψ and KN = 124 approaches the
stable periodic orbit shown in (A). Subsequent plots show the projection of X(t) with initial
condition (1, 1060, 10, 20) to the (B) NE, (C) NS and (D) ES planes.
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B ABM System

B.1 Agent based model

Here we offer an additional investigation of the dynamics of the system given a het-
erogeneous population varying in fitness among members of the invading species.
We present an agent based model (ABM) [22, 23] iteration of the above ODE
model. Similar to the ODE system, we continue to consider a single species invad-
ing through human-mediated dispersal in a homogeneous environment. However,
the ABM model allows us to introduce a heterogeneous distribution of ”fitnesses”
among members of the invading agent (pathogen). This is in contrast to the ho-
mogeneous populations of single species invaders in the ODE system. Within the
ABM each invader is considered an agent, and its stochastic movement among the
four population groups is uniquely simulated. Due to fundamental differences be-
tween the ODEs and ABM approach, this variant of the system is not defined by a
canonical set of equations. The ABM is implemented entirely in code (via Cython
0.29.13).

ABM facilitates the representation of a heterogeneous distribution by consid-
ering the behavior of individual agents of each population group [37, 38]. In this
work, the inclusion of the command ”shuffle(action list);” in the algorithm (Al-
gorithm 3) ensures the performance of individualized actions in each time step.
Specifically, the ABM implementation in Version 4 of the code in the notebook,
under the corresponding section, allows for modeling a heterogeneous population
distribution. This is achieved through lines 150 to 205 in code block 9, which intro-
duce functionality that enables the model to iterate over diverse agent populations
with distinct ”fitness values.” These fitness values, represented as unsigned floats,
act as weights that scale the agents’ capacity to transition between states in accor-
dance with their movement through the state space of the model. It is worth noting
that in the case of a homogeneous population, the fitness values would be uniform
across all agents. However, heterogeneity emerges when the population consists of
agents with varying fitness values. By incorporating this approach in the code, the
concept of heterogeneity is effectively acknowledged and modeled by considering
diverse fitness values within the agent population.

The ABM is initialized by defining a set number of individual agents of each
population type, IInitial = 84, EInitial = 100, SInitial = 0, NInitial = 190. Within
the ABM the same set of four population types, the same directionality of popula-
tion flow, as well as the same set of parameter types are maintained as in the ODE
system. However, the terms guiding the agent’s movements between each popula-
tion type are no longer rate terms to be integrated over, but probabilities weighted
by the model parameters. Following this, in the ABM case each parameter term is
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a probability in units of likely-hood/time step. Each agent then moves between
population types stochastically based on these probabilities. Additionally, unlike in
the ODEs case each individual agent’s movement is tracked independently (key al-
gorithms 1 to 3, and functions used in the simulation can be found in the appendix).
We recapitulate both the steady state and periodic orbit of the homogeneous ODE
system. In order to do this we set the fitness of all members of the single invader
equal, as in the ODEs case (see the Supplemental Informaton, figures S4 to S6 and
section B) for further details).

B.2 ABM Algorithm

To provide a better understanding of some of the key algorithms and functions used
within this system, below is pseudo-code(see algorithms 1 to 3) that provides an
overview of some fundamental operations and portions of the code comprising the
model.

Algorithm 1: Here we provide a course grain outline of the primary ABM
simulation loop. Each run is looped over then averaged, per run a set
amount of time steps are executed wherein an action function is called for
each time step for each agent.

Data: Number of runs, Number of time steps
begin

foreach run; averaged do
foreach time step do

action list == sum(∀ all agents ∈ all populations);
shuffle(action list);
foreach agent ∈ action list do

agent found = find which population type(agent) ;
action function(agent found);
export: each agent state per time step;

end
export: each agent state per run;

end
end

B.3 Supplemental figures for ABM

When the ABM has homogeneous agents then the system dynamics of the ABM
should demonstrate the same dynamics to the ODE model. Figures (S5) and (S5)
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Algorithm 2: Here we provide a course grain outline of the primary
find which population type function referenced in
Algorithm 1
Def - Find Which Population Type (agent):
begin

if agent ∈X population
return (’X’)

end

Algorithm 3: Here we provide a course grain outline of the primary
action function function referenced in Algorithm 1
Def - Action Function (agent found):
begin

if agent found ∈ I population
if param prob == True

move : agent found
elif agent found ∈ E population

if param prob == True
move : agent found

elif agent found ∈ S population
if param prob == True

move : agent found
elif agent found ∈ N population

if param prob == True
move : agent found

end

illustrate the system dynamics of ABM with the same fitness across all agents which
agreed with our results from ODE model.

Figure (S6) presents the system dynamics while varying fitness across the agents
within the model. We also experiment with the effects of varying fitness (as de-
fined above) on the populations of invading agents within each state as the model
moves forward in time. Notably, as fitness is increased the number of invading
agents within the established (E) population forms a peak near ˜50 days before
sharply decreasing, only to later rebound at ˜200 days (the ˜ notation indicate an es-
timate or approximation). This initial peak is a local/false maxima. The native (N )
population shows an initial (0 - ˜75 days) rapid increase before ever-more quickly
declining, as the invading agent’s fitness is increased. Inversely, the S population
appears to only increase in the later stages of the model (˜50 - ˜200) days as fitness
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Figure S4: The figure shows the time-series evolution of the ABM system, which has simi-
lar behavior to the ODE system around KN = 124.

is increased. As fitness increases the I population shows a rapid decline in the early
stages (0 - ˜50) days of the model before increasing again after ˜75 days. This is
similar to the behavior of the E population, however as fitness is increased the I
population becomes more uniform after this initial ˜50 day period.

To summarize, within the ABM as fitness increases we can see a greater number
of invading agents establish in the system initially (0 - ˜75) days, however this es-
tablishment is short lived (on the order of ˜20 days) and represents only a local/false
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Figure S5: The figure shows the time-series evolution of the ABM system, which has simi-
lar behavior to the ODE system when KN > 126.

maxima. After (˜75) days a sharp decline occurs in the established invading popu-
lation. Then it is only in the later stages of the model, ˜150+ days, that the invading
agents are able to ”regain ground” and establish once again with many reaching
the final spread (S) state, between ˜150 - ˜300 days. Additionally, we see that as
invading fitness is increased the native population is more quickly (in ˜25 days at
+90% fitness vs in ˜100 days at uniform fitness) destroyed by the invading agents
during the initial early (0 - ˜75 days) establishment peak (local/false maxima).
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Figure S6: ABM time-series evolution of the number of agents within each state as fitness
is varied within the model.
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