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Abstract

Today, the most secure steganographic schemes for digital images embed secret messages while
minimizing a distortion function that describes the local complexity of the content. Distortion
functions are heuristically designed to predict the modeling error, or in other words, how difficult
it would be to detect a single change to the original image in any given area. This dissertation
investigates how both the design and detection of such content-adaptive schemes can be improved
with the use of side-information.

We distinguish two types of side-information, public and private:

Public side-information is available to the sender and at least in part also to anybody else who can
observe the communication. Content complexity is a typical example of public side-information.
While it is commonly used for steganography, it can also be used for detection. In this work, we
propose a modification to the rich-model style feature sets in both spatial and JPEG domain to
inform such feature sets of the content complexity.

Private side-information is available only to the sender. The previous use of private side-information
in steganography was very successful but limited to steganography in JPEG images. Also, the
constructions were based on heuristic with little theoretical foundations. This work tries to remedy
this deficiency by introducing a scheme that generalizes the previous approach to an arbitrary
domain. We also put forward a theoretical investigation of how to incorporate side-information
based on a model of images. Third, we propose to use a novel type of side-information in the form
of multiple exposures for JPEG steganography.
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Preface

In Chapter 1, we introduce the notation and explain the basic concepts, tools, and algorithms this
dissertation builds on. Most importantly, we define the side-information and propose to distinguish
between private and public types of side-information.

Chapters 2 – 4 focus on the use of public side-information (available to anyone) for detection of
content-adaptive steganography. First, a heuristic modification of the SRM feature set [39] is pro-
posed in Chapter 2. In Chapter 3, the approach is generalized for use in JPEG domain, and finally,
in Chapter 4 the insight from Chapter 3 is used to improve the feature set proposed in Chapter 2.

Chapters 5 – 6 propose ways to improve the design of steganography with private side-information
(available only to the sender). Chapter 5 improves and generalizes a popular heuristic approach for
JPEG compressed images when the uncompressed original is available. In Chapter 6, we propose a
model-based solution for the same scenario and study the differences against the heuristic approach.
Next, Chapter 7 introduces an algorithm for a different situation, when multiple JPEG compressed
exposures of the same scene are available instead. Finally, Chapter 6 proposes a practical embedding
scheme that embeds the secret information in a way to pass the image as if taken with higher ISO
sensitivity.

The dissertation is concluded in Chapter 9.

All algorithms proposed and studied in Chapters 2 – 8 are contributions of this dissertation and
have been published and peer-reviewed. Only Chapter 1 describes algorithms published by other
authors.
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Chapter 1

Introduction and preliminaries

This chapter introduces the notation used through the whole dissertation and explains the math-
ematical principles of steganography and steganalysis. Steganography is the art of sending secret
messages not by obfuscation but by hiding the very existence of the communication. On the other
side of the same coin, steganalysis scrutinizes communication channels and tries to prove or disprove
the presence of steganography. Both arts have a rich history reaching into the ancient past. This dis-
sertation does not cover the history or discuss the ethics of practicing steganography or steganalysis;
an interested reader can find out more in many of the previously published works [34].

1.1 The steganographic channel

Steganography, exploits an already established communication channel between Alice (the sender)
and Bob (the recipient). The channel is observed by a third party Eve (also called the Warden).
A passive Warden is assumed in this work, meaning the Eve is allowed to monitor the channel and
analyze any communication sent through it, but can not introduce any modifications to the data
transmitted.

When no steganography is used, the messages sent through the channel are called cover objects or
covers. Depending on the steganographic algorithm and a privately exchanged key, Alice can then
modify, synthesize or select covers to create stego objects that carry her desired secret message. In
this dissertation, steganography by cover modification is assumed. Steganography can be secure only
when the cover objects are non-deterministic. While most techniques discussed in this dissertation
can work (either straight or with some adjustments) with any non-deterministic data, from now on,
unless stated otherwise, cover objects are grayscale uncompressed or JPEG images.

A steganographic system is comprised of a cover source, a message source and embedding and
extracting functions. The cover source Sc = {C, Pc} is defined by the set of all possible cover images
X ∈ C and their distribution Pc. The message source Sm = {M, Pm(Sc)} is similarly defined by the
set of all possible messages m and their distribution. Note that the distribution Pm is a function
of the cover source. Given a cover source and sometimes even a specific cover image, only some
messages can be communicated. The embedding function Emb : C ×M×K → C allows for creating
of stego images Y = Emb (X,k,m) , and its inverse, the extraction function Ext : C ×K →M, can
extract the secret message m if provided with the correct stego key k out of the set of all possible
stego keys K. The stego key has to be exchanged before any communication can be done. The
overview of all of the elements of the steganographic channel with a passive Warden can be seen in
Figure 1.1.1.

To allow for large scale experiments, randomly generated messages with independent and uncor-
related bits are assumed. This assumption is quite reasonable as the original message can be
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Emb(X,m,k)

message m
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Figure 1.1.1: Components of the steganographic channel.

compressed or encrypted. Only the length of the message is important. In the spatial domain
(e.g., bitmap images) we work with the relative payload α measured in bits per pixel (bpp). For
historical reasons, in the DCT domain (JPEG images) the relative payload is measured in bits per
non-zero DCT coefficient (bpnzac). This leads to an interesting quirk of the experiments with JPEG
steganography in contrast to spatial domain, the absolute length of the payload is cover dependent.

1.2 Steganographic security and steganalysis

When developing new steganographic and steganalytic algorithms, it is essential to be able to mea-
sure their performance, so we can fairly compare them with each other and with the state-of-the-art.
There are two main approaches to this problem; a theoretical one for the situation when the cover
source and the embedding function can be described analytically, and a practical one for the cases
when they can not.

1.2.1 Probabilistic model

The cover images are realizations of a random variable defined by the cover source, X ∼ Pc. Stego
images, being modifications of cover images, follow a different distribution, Y ∼ Ps. While different,
they should share the same support C. The steganographic scheme is fully described by the embed-
ding function and its steganographic security is defined as the statistical indistinguishability of the
two distributions. The most popular measure was proposed by Cachin [11], the Kullback–Leibler
divergence (KL divergence)

DKL(Pc||Ps) =
∑
X∈C

Pc(X) log Pc(X)
Ps(X) . (1.2.1)

Using this metric, a steganographic scheme is called ε-secure if DKL(Pc||Ps) ≤ ε and perfectly
secure if DKL(Pc||Ps) = 0. Other statistical metrics and distances can be used, for example the
Bhattacharyya distance.
If the exact cover object distribution or at least a good enough model is available to Alice, she can
optimize her embedding function to minimize the KL divergence between the cover and stego object
distributions.
Steganalysis can be formulated as a hypothesis testing problem with

H0 : X ∼ Pc, (1.2.2)
H1 : X ∼ Ps. (1.2.3)

The detector is then a binary mapping function fully defined by its critical region. The design of the
best possible detecor can be formulated as an optimization problem, Eve is trying to minimize the
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detection error. It can be shown that under the Neyman–Pearson setting the optimal detector is the
likelihood-ratio test. The problem with this approach is not only the need for accurate estimates
of the cover and stego image distributions but also the computational infeasibility due to the large
dimensionality of the cover space.

1.2.2 Machine learning approach

While heuristic, empirical assesmen of security using machine learning is much more common. Eve
uses a trained classifier to distinguish between cover and stego images and measures its performance
on a database that represents the cover source. This approach comes with its own set of problems.
As the measure of success is a performance on a sizeable database, the whole process can still be
computationally costly. Typically, the content in images is much stronger than the stego signal,
so Eve has to use heuristically designed features, and the theoretical bounds on the performance
will remain unknown. Also, the database has to accurately represent the cover source or an error
called cover source mismatch will be introduced. This leads to cat and mouse games between Alice
and Eve, overspecialization to a specific data sources. Few published papers tried to deepen the
understanding of this issue.

1.2.2.1 Databases

To fairly compare the performance of different steganographic and steganalytic algorithms, a stan-
dardized database is neccessary. Since its introduction during the HUGO BOSS competition in
2010, the most prominent standardized database is BOSSBase, specificaly the 1.01 version [7, 29].
It contains 10, 000 color RAW images taken by seven different cameras that are developed in dcraw,
resized and cropped into 512× 512 grayscale 8-bit images. Unless stated otherwise, this database is
used for all experiments presented in this dissertation.

Other databases used through out this work will be introduced when needed.

1.2.2.2 Rich models

The family of rich models are state-of-the-art features to describe the statistical properties of the
noise present in cover and stego images. The most well-known member of this family is the SRM [39]
feature set. The main idea behind of rich feature sets is to concatenate a large number of weak
features from many submodels and let the classifier find relevant dependencies between them.

Each submodel fixes a denoising filter that tries to predict a pixel value from its neighborhood
without using the central pixel’s value. This way the potential stego signal in the pixel will not
affect the prediction. The prediction is then subtracted from the pixel to get a so-called noise
residual. High-quality denoising is not a priority, but the diversity of different denoising kernels
is. Therefore, some of the SRM’s denoising filters are simple edge detectors and some are more
sophisticated. To later save on dimensionality and improve the stability of expected values, the
noise residual values are quantized and truncated. Then, a four-dimensional co-occurrence matrix
is constructed. Each bin records the frequency of specific four values occurring in sequence through
the quantized noise residual. Finally, symmetries of natural images are exploited to again save on
dimensionality and to improve robustness.

Many symmetrized co-occurrences obtained from different linear and non-linear submodels are con-
catenated to a final vector of features. Non-linear filters in the form of minimums and maximums
of residuals of rotated linear filters are also employed..

This approach was pioneered by the SPAM [74] feature set for steganalysis in spatial (bitmap)
domain. The SPAM set contains 686 features. It was later expanded into the SRM set by adding
more linear submodels and the non-linear min-max submodels to a total of 34, 671 features. The

3



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

PSRM [46, 47] improves on the performance of SRM by representing the noise residuals by colecting
histograms of the noise residuals projected on random vectors instead of co-occurrences. The gain
in security is however counterweighted by a significant increase in computational complexity.

Today, there exist numerous steganalysis features that are suitable for detection of JPEG steganog-
raphy. Old embedding schemes, such as F5 [92], model-based steganography [78], Jsteg [90], Out-
Guess [76], and Steghide [44], are best detected using statistics formed from quantized DCT co-
efficients, such as the JPEG Rich Model (JRM) [63]. Unfortunately, JRM is far less effective for
detecting modern JPEG steganography, examples of which are UED [42, 43] and J-UNIWARD [51],
which adapt their embedding changes to cover content. Such schemes are best detected with features
assembled as histograms of noise residuals split by their JPEG phase (location w.r.t. the 8× 8 pixel
grid): DCT Residuals (DCTR) [49], PHase Aware Rich Model (PHARM) [50], and Gabor Filter
Residuals (GFR) [85]. The splitting by phase is effective because the impact of the stego signal on
pixels in a decompressed JPEG image depends on the JPEG phase.

1.2.2.3 SRM

Both the SRM and the PSRM extract the same set of noise residuals from the image under investiga-
tion. They differ in how they represent their statistical properties. The SRM uses four dimensional
co-occurrences while the PSRM uses histograms of residual projections.

A noise residual is an estimate of the image noise component obtained by subtracting from each pixel
its estimate (expectation) obtained using a pixel predictor from the pixel’s immediate neighborhood.
Both rich models use 45 different pixel predictors of two different types – linear and non-linear. Each
linear predictor is a shift-invariant finite-impulse response filter described by a kernel matrix K(pred).
The noise residual Z = (zij) is a matrix of the same dimension as X:

Z = K(pred) ?X−X , K ?X. (1.2.4)

In (1.2.4), the symbol ′?′ denotes the convolution with X mirror-padded so that K?X has the same
dimension as X. This corresponds to the ’conv2’ Matlab command with the parameter ’same’.

An example of a simple linear residual is zij = xi,j+1 − xij , which is the difference between a pair
of horizontally neighboring pixels. In this case, the residual kernel is K = ( −1 1 ), which means
that the predictor estimates the pixel value as its horizontally adjacent pixel. This predictor is used
in submodel ’spam14h’ in the SRM.

All non-linear predictors in the SRM are obtained by taking the minimum or maximum of up
to five residuals obtained using linear predictors. For example, one can predict pixel xij from its
horizontal or vertical neighbors, obtaining thus one horizontal and one vertical residual Z(h) = (z(h)

ij ),
Z(v) = (z(v)

ij ):

z
(h)
ij = xi,j+1 − xij , (1.2.5)

z
(v)
ij = xi+1,j − xij . (1.2.6)

Using these two residuals, one can compute two non-linear ’minmax’ residuals as:

z
(min)
ij = min{z(h)

ij , z
(v)
ij }, (1.2.7)

z
(max)
ij = max{z(h)

ij , z
(v)
ij }. (1.2.8)

The next step in forming the SRM involves quantizing Z with a quantizer Q−T,T with centroids
Q−T,T = {−Tq, (−T + 1)q, . . . , T q}, where T > 0 is an integer threshold and q > 0 is a quantization
step:
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rij , Q−T,T (zij), ∀i, j. (1.2.9)

The next step in forming the SRM feature vector involves computing a co-occurrence matrix of
fourth order, C(SRM) ∈ Q4

−T,T , from four (horizontally and vertically) neighboring values of the
quantized residual rij (1.2.9) from the entire image:1

c
(SRM)
d0d1d2d3

=
n1,n2−3∑
i,j=1

[ri,j+k = dk,∀k = 0, . . . , 3], (1.2.10)

dk ∈ Q−T,T , (1.2.11)

where [P ] is the Iverson bracket, which is equal to 1 when the statement P is true and to 0 when it
is false. Note that the dimensionality of the co-occurrence is |Q−T,T |4 = 54 = 625. To keep the co-
occurrence bins well-populated and thus statistically significant, the authors of the SRM used T = 2
and q ∈ {1, 1.5, 2}. Finally, symmetries of natural images are leveraged to further marginalize the
co-occurrence matrix to decrease the feature dimension and better populate the SRM feature vector
(see Section II.C of [39]). For example, the 625 bins get reduced to 169 bins after symmetrization,
while two 625-dimensional co-occurrences of min and max residuals can be symmetrized to 330.

The total dimension of the SRM with three quantization steps is 34,671. A smaller version of the
SRM with a single quantization step q = x ∈ {1, 1.5, 2} will be denoted as SRMqx, and it consists
of 12,753 features.

1.2.2.4 PSRM

The predictors and residuals used in the PSRM are the same as those used in the SRM. Unlike the
SRM, which captures the statistical properties of residuals using four-dimensional co-occurrences,
the PSRM uses the first-order statistics (histograms) of projections of residuals onto multiple random
directions. Given a noise residual Z, a slightly simplified algorithm for computing the PSRM is:

1. Generate ν random matrices Π(k) ∈ Rr×s, k ∈ {1, . . . , ν}.

• r, s are uniformly randomly selected from {1, . . . , smax}, where smax > 0 is an integer
parameter,

• the elements of Π(k) are independent realizations of a standard normal random variable
N (0, 1),

• the elements are normalized so that the Frobenius norm2
∥∥∥Π(k)

∥∥∥
F

= 1.

2. For each k ∈ {1, . . . , ν}, compute the residual projections R(k) , Z ∗Π(k).

3. For linear residuals, quantize |r(k)
ij |/q with a quantizer QT with T + 1 centroids QT =

{1/2, 3/2, . . . , T + 1/2}:
r̃

(k)
ij = QT (|r(k)

ij |/q). (1.2.12)

For non-linear residuals, quantize r(k)
ij /q with a quantizer Q′−T,T with 2T+2 centroids Q′−T,T =

{−T − 1/2,−T + 1/2, . . . , T + 1/2}:

r̃
(k)
ij = Q′−T,T (r(k)

ij /q). (1.2.13)
1This is an example of a horizontal co-occurrence.
2The Frobenius norm of matrix A is defined as ‖A‖F =

√
trace(ATA).
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4. Compute ν separate histograms of the quantized values:

h(k)
m =

∣∣∣{(i, j)∣∣∣ r̃(k)
ij = m+ 1/2}

∣∣∣,
m ∈ {0, 1, . . . , T − 1},
k ∈ {1, . . . , ν} for linear residuals, (1.2.14)

h(k)
m =

∣∣∣{(i, j)∣∣∣ r̃(k)
ij = m+ 1/2}

∣∣∣,
m ∈ {−T, . . . , T − 1},
k ∈ {1, . . . , ν} for non-linear residuals. (1.2.15)

Symmetries of natural images are also used to make the histograms better populated. Depending
on the residual and the projection matrix Π(k), the PSRM utilizes up to eight symmetries (rotation
by multiples of 90 degrees, mirroring, etc.) for each random random matrix Π(k).
The standard parameter setup for the PSRM is as follows. The number of projections per residual
is ν = 55, the maximum projection matrix size smax = 8, the quantization step q = 1, and the
histogram threshold T = 3. This setup gives the PSRM the dimensionality of 12, 870, which is
similar to that of SRMqx.

1.2.2.5 Phase-aware JPEG feature sets

The DCTR [49], PHARM [50], and GFR [85] features are formed from noise residuals computed by
convolving the decompressed (non-rounded) JPEG image X (1.5.2) with kernel G ∈ Rk1×k2 ,

R(X,G) = X ?G. (1.2.16)

We note that because the convolution uses no padding (implemented with ’valid’ in Matlab),
R ∈ Rn′1×n′2 with n′1 = n1 − k1 + 1 and n′2 = n2 − k2 + 1. Next, the residual is quantized,

R(X,G, Q) = QQ(R(X,G)/q), (1.2.17)

where QQ is a quantizer with centroids Q = {0, 1, 2, . . . , T}, q is a fixed quantization step and T
a truncation threshold. Each residual is used to compute the following 64 histograms, 0 ≤ m ≤ T ,
0 ≤ i, j ≤ 7 :

h(i,j)
m (X,G, Q) =

bn′1/8c∑
a=1

bn′2/8c∑
b=1

[|r(a,b)
ij (X,G, Q)| = m]. (1.2.18)

All T +1 values, h(i,j)
0 , . . . , h

(i,j)
T , from each histogram are concatenated into a vector of 64× (T + 1)

values and these vectors are then concatenated for kernels B from some filter bank B. To reduce
the feature dimensionality, 64 × (T + 1) × |B|, and make the bins better populated, certain bins in
the concatenated histograms are merged based on symmetries of G and DCT bases. The DCTR
feature set uses a filter bank with |BDCTR| = 64 kernels G corresponding to 64 DCT bases F(k,l),
0 ≤ k, l ≤ 7. In PHARM, the kernels are obtained by convolving nine small-support pixel predictors
with 100 random projection kernels (a total of |BPHARM | = 900 kernels), while in GFR |BGFR| = 256
Gabor filters (four support sizes, two Gabor phases, and 32 orientations) are employed. We note
that the size, k1 × k2, of the kernels in all three feature sets satisfies 1 ≤ k1, k2 ≤ 15, which means
that no kernel intersects more than four 8× 8 pixel blocks.

1.2.2.6 Classifiers

The extracted features still need to be classified and the final performance meassured for a fair
comparison of different steganographic and steganalytical algorithms. While there are many choices,
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the most popular is the total probability of error under equal priors

PE = min
PFA

1
2 (PFA + PMD(PFA)) , (1.2.19)

where PFA is the probability of false alarm and PMD the probability of missed detection.
Progressively, the dimensionality of the feature sets grew to the point when state-of-the-art nonlinear
classifiers like SVM would not train in reasonable time. The ensemble classifier [64], a random forest
classifier optimized for high-dimensional input, became the classifier of choice as it is computationally
cheap and in combination with the SRM features achieved the winning performance at the HUGO
BOSS competition [7]. This classifier also offers an alternative detection performance measure,
EOOB, the out-of-bag estimate of the testing error. This value is used internally while training and
it can be shown that this value is an unbiased estimate of PE. To save on computational time,
EOOB was used in many published papers and also during earlier experiments in this dissertation.
The use of this estimate was slowly abandoned in favor ofthe testing error averaged over 10 different
random splits of the database into equally sized training and testing parts to be more inline with
the practices in other machine learning fields.
Cogranne et al. [14] have shown that the ensemble classifier is close to a linear classifier and proposed
a low-complexity linear classifier as an alternative. In some experiments in this dissertation, this
linear classifier is used instead of the slower ensemble classifier.

1.3 Content-adaptive steganography

The most straightforward way to embed a secret message in a grayscale image while introducing only
small changes is to replace the least significant bits of every pixel with bits of the secret message.
This algorithm is called the least-significant bit replacement, or LSBR for short. It modifies each
pixel by at most ±1, a change imperceptible to the human eye. However, given the naivete of the
method, modifying even a small portion of pixels in this way introduces unnatural distortion to the
histogram of the pixel values and ensures reliable detection [24, 25, 23, 54, 55, 58, 57, 68, 56, 59]. More
advanced method, the least-significant bit matching, or LSBM, randomly adds or subtracts one to
or from each pixel that needs modification. LSBR changes pixels’ mean while LSBM preserves mean
but increases variance. LSBM serves as a baseline, the simplest non-flawed image steganography.
Content-adaptive embedding schemes for digital images change individual pixels with probabilities
determined from the local pixel neighborhood in order to execute the embedding changes primarily
in regions where they are less detectable, such as textures and noisy areas where Eve experiences a
large modeling error. The first adaptive methods described in the literature were designed for palette
images [36]. One could also argue that schemes that hide message bits in non-zero DCT coefficients
are naturally content adaptive since the changes strongly correlate with complex content. In 2010,
the Edge Adaptive scheme was designed to hide data in pixel pairs with large differences [69]. The
real boom of adaptive schemes started with the introduction of the concept of embedding distortion
D : C → R. While tools for working with arbitrary distortion function exist, we will limit ourselves
to additive distortion functions

D (X,Y) =
n1,n2∑
i,j=1

ρij (X, yij) , (1.3.1)

where ρij are non-negative and bounded functions determining the costs of replacing the cover pixel
or DCT coefficient xij with yij . The process of embedding is then a optimization problem, Alice
wants to minimize the total distortion under the constraint of communicating the desired payload.
The optimal solution to this problem is known and prescribes the probabilities of change βij for each
cover element (also called the selection channel) such that

n1,n2∑
i,j=1

H (βij) = m, (1.3.2)
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where m is the prescribed message length (absolute payload), and H = H(x) is the entropy func-
tion (H(x) = −x log2 (x) − (1− x) log2 (1− x) for binary schemes and H(x) = −2x log2 (x) −
(1− 2x) log2 (1− 2x) for ternary):

βij = exp(−λρij)
1 + exp(−λρij)

(1.3.3)

if the embedding operation is constrained to be binary, and

βij = exp(−λρij)
1 + 2 exp(−λρij)

(1.3.4)

for a ternary scheme with equal costs of changing xij to xij ± 1. The parameter λ is a Lagrange
multiplier ensuring the constraint (1.3.2).

A practical embedding is then done using a coding scheme based on syndrome-trellis codes [28], that
samples stego elements carrying a specific message while minimizing the total distortion near opti-
mally. Examples of such content-adaptive steganographic schemes include HUGO [75], WOW [45],
and the UNIWARD family [51].

Such schemes are currently best detected using machine learning, such as binary classifiers trained
on examples of cover and stego images represented with higher-order statistics of noise residuals
(the so-called rich media models). We wish to emphasize that the previous sentence also applies
to modern steganographic schemes that hide messages in quantized DCT coefficients from a JPEG
file, UED (Uniform Embedding Distortion) [42, 43] and J-UNIWARD [51]. The most accurate
detection of such JPEG steganography is achieved with features that are computed in the spatial
domain [49, 50, 85, 48] rather than from quantized DCT coefficients [63].

The cost funcions of the above mentioned schemes are heuristic. A notable exception is scheme
MiPOD [82], in which the embedding probabilities βij are derived from their impact on the cover
multivariate Gaussian model by solving the following equation for each pixel ij:

βijIij = λ ln 1− 2βij
βij

, (1.3.5)

where Iij = 2/σ̂4
ij is the Fisher information with σ̂2

ij an estimated variance of the acquisition noise
at pixel ij, and λ is a Lagrange multiplier determined by the payload size. To get the costs for
practical membedding, the equation (1.3.3) or (1.3.4) can be reversed with arbitrary choice of λ.
For the ternary embedding, the MiPOD costs are:

ρij = ln (1/βij − 2) . (1.3.6)

1.4 Side-information

In this work, we will show how steganography and steganalysis can be improved with the use of the
so-called side-information. This information is not essential but can help compensate for the lack
of a perfect model or exploit the imperfections of the process. We distinguish between two types of
side-information:

• Private – information available only to Alice.

• Public – information entirely or at least partially available to both Alice and Eve.

Private side-information is helpful when designing steganography. For example, Alice may have
a high-quality representation of the cover image called precover [57] and embed her secret while
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processing the precover and/or converting it to a different format. Eve cannot fully recover the
information lost during the processing and therefore is at a disadvantage. The first example of this
technique is the embedding-while-dithering steganography [36], which embeds secrets when convert-
ing a true-color image to a palette format. By far the most common side-informed steganography
today hides in JPEG images using non-rounded DCT coefficients [37, 61, 77, 52, 43, 18, 51]. In
Chapter 5, we will introduce new steganographic schemes that exploit private side-information.
Public side-information at least in part survives the processing and the transfer through the embed-
ding channel and may betray details about the approach and processes the other party is using. The
first and possibly the most critical example of this is the assumption of the Kerckhoffs’s principle.
In the absolute majority of publications and through out this dissertation, the proposed stegano-
graphic algorithms are analyzed with the knowledge of the cover source and the specific algorithm
used as the worst case scenario. The limitations of available steganalytic approaches are also a
public side-information that led to the design of content-adaptive steganography. Alice exploits the
fact that Eve does not have a perfect model of the cover source and can not distinguish between
high frequency but deterministic content and random noise. Finally, since the embedding changes
are small and the cost functions are generally insensitive towards them, the selection channel can be
recovered by Eve and in turn used to improve the detection of content-adaptive schemes as studied
in Chapters 2 to 4.

1.5 JPEG compression

JPEG compressed images and their DCT coefficients were mentioned several times in the previous
sections. We now look at them in more detail.
For easier technical description, we only consider n1 × n2 8-bit grayscale images with n1 and n2
multiples of 8. A JPEG image will be represented with an array of quantized DCT (discrete
cosine transform) coefficients of the same dimensions as the pixel representation of the image,
X ∈ {−1023, . . . , 1024}n1×n2 . Often, it will be useful to consider a block representation of X.
The (a, b)th 8 × 8 block of DCT coefficients, 1 ≤ a ≤ n1/8, 1 ≤ b ≤ n2/8, is formed by coefficients
xkl with k, l restricted to 1 + 8(a− 1) ≤ k ≤ 8a, 1 + 8(b− 1) ≤ l ≤ 8b, and will be denoted X(a,b).
The individual elements of X(a,b) are x(a,b)

kl , this time with 0 ≤ k ≤ 7, 0 ≤ l ≤ 7, hoping that no
confusion will be created by using the indices k, l for two different purposes – when used in xkl, their
range is 1 ≤ k ≤ n1, 1 ≤ l ≤ n2 while in a block, as in x(a,b)

kl , their range is 0, . . . , 7.

The (k, l)th DCT basis, 0 ≤ k, l ≤ 7, is an 8× 8 matrix F(k,l) = (f (k,l)
ij ), 0 ≤ i, j ≤ 7:

f
(k,l)
ij = wkwl

4 cos πk(2i+ 1)
16 cos πl(2j + 1)

16 , (1.5.1)

where w0 = 1/
√

2 and wk = 1 for k > 0. By decompressing the (a, b)th block of DCT coefficients,
we obtain a corresponding block of 8× 8 pixels x̃(a,b)

ij , 0 ≤ i, j ≤ 7:

x̃
(a,b)
ij =

7∑
k,l=0

f ijklqklx
(a,b)
kl , (1.5.2)

where qkl are the elements of the JPEG luminance quantization matrix. Note that in (1.5.2), the
pixel values are not rounded. Putting all blocks into one n1 × n2 matrix, the decompressed (non-
rounded) image is represented with a matrix X̃ ∈ Rn1×n2 .
Finally, we note that a, b will be strictly used to index blocks, k, l for DCT coefficients, and i, j for
pixels with the same range and conventions applied to both i, j and k, l.
Alternatively, we can reverse the following matrix form for DCT transformation of 8 × 8 spatial
image P:

DCT(P) = A(APt)t = APAt, (1.5.3)

9
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where

A =



α1 α1 α1 α1 α1 α1 α1 α1
α2 α4 α5 α7 −α7 −α5 −α4 −α2
α3 α6 −α6 −α3 −α3 −α6 α6 α3
α4 −α7 −α2 −α5 α5 α2 α7 −α4
α1 −α1 −α1 α1 α1 −α1 −α1 α1
α5 −α2 α7 α4 −α4 −α7 α2 −α5
α6 −α3 α3 −α6 −α6 α3 −α3 α6
α7 −α5 α4 −α2 α2 −α4 α5 −α7


, (1.5.4)



α1
α2
α3
α4
α5
α6
α7


= 1

2



cos (π/4)
cos (π/16)
cos (π/8)

cos (3π/16)
cos (5π/16)
cos (3π/8)
cos (7π/16)


. (1.5.5)

Note that the multiplication by A and At comes from first transforming the columns and then the
rows of matrix A.

The JPEG compression and its properties are studied in detail in [34].
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Chapter 2

Selection-channel aware attacks in
spatial domain

A potential weakness of content-adaptive schemes is that the rule that drives the distribution of
the embedding change probabilities among individual elements of the cover is, by the Kerckhoffs’
principle, also available to the steganalyst, who can use it to improve the detection. The very
first attack of this type was described by Böhme at the rump session at the Information Hiding
Workshop in 2005 (and officially published in 2014 [12]). This pertains, however, to a rather special
case of public-key steganography implemented using LSB replacement and a specific version of wet
paper codes. While attacks derived using the theory of statistical hypothesis testing (e.g., [94, 26,
13]) can incorporate the knowledge of embedding probabilities they are generally not as effective
against modern adaptive embedding schemes as machine-learning based methods combined with
rich statistical descriptors. Modifying the latter approach to consider the knowledge of the selection
channel is, however, not easy as witnessed by the futile effort of the BOSS competition participants [7]
attacking HUGO. In 2012, it was shown that an (approximate) knowledge of embedding change
probabilities can be used to improve the accuracy of the weighted-stego attack on naive content-
adaptive LSB replacement [81]. In [86], the authors managed to utilize rather strong artifacts
in the selection channel to mount a very accurate attack on S-UNIWARD with an improperly
chosen stabilizing constant (also see [51] for more details). Recently, Tang et al. [87] proposed the
first general purpose feature set that utilizes the selection channel and is effective against modern
content-adaptive steganography methods. Their attack, which we call tSRM (thresholded SRM),
computes the residual co-occurrences from only t percent of pixels with the highest embedding
change probabilities (lowest pixel costs). The value of t that leads to the best detection depends
on the embedded payload size and the steganographic scheme. The authors reported the detection
only for the WOW algorithm.

Modern content-adaptive embedding schemes mentioned above are all based on the same principle
– the sender specifies the costs of changing individual pixels and then embeds the payload with the
minimal total expected cost. The costs are determined by the local content, which means the Warden
can estimate them from the stego image. If the Warden knows the payload size or if she can estimate
it, she can also estimate the actual embedding change probabilities used by the sender (the selection
channel) and hopefully mount an even more powerful informed attack. For an ignorant Warden,
who does not know the sender’s embedding strategy, the interaction between the Warden and the
sender can be formulated as a non-cooperative strategic game with optimal strategy at the Nash
equilibrium, which is generally a different strategy than the one that minimizes the KL divergence
between cover and stego objects [80, 16]. Other formulations are certainly possible depending on the
information available to the Warden. Ultimately, the problem of content-adaptive steganography
and selection-channel-aware steganalysis should be resolved within such game-theoretic framework
with an accurate statistical model for images and optimal Warden’s detector. Due to the high
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complexity of empirical objects [8], such as digital images, and the high complexity of solving the
ensuing game, it is however unlikely that optimal practical strategies will ever be identified.
In this chapter, we follow the established paradigm of forming joint higher-order statistics of neigh-
boring noise residuals as statistical descriptors. Our approach is reminiscent of the tSRM [87] but
incorporates the selection channel in a different way. The four-dimensional co-occurrences are formed
from all residuals rather than its proper subset, and, instead of populations, each bin holds the sum
of maximum values of the four embedding change probabilities at the corresponding residuals. Since
this model, which we call maxSRM, uses the statistic from all pixels, we obtain a more accurate
detection. Additionally, and in contrast to the tSRM, if the payload size is known or can be esti-
mated no other parameters need to be determined to steganalyze with maxSRM. Furthermore, the
detection with maxSRM appears to suffer less when the embedded payload size is unknown.

2.1 Experimental setup

The detectors were trained as binary classifiers implemented using the FLD ensemble [64] with
default settings. We evaluate the security using the PE 1.2.19 measured on the testing set averaged
over ten 5000/5000 database splits denoted as PE. The statistical spread is the standard deviation.
We selected three adaptive steganographic techniques that appear to be the state of the art as of
running the experiments (May 2014): the Wavelet Obtained Weights (WOW) [45], S-UNIWARD
implemented with the stabilizing constant σ = 1 as described in [51], and its variant that we call
S-UNIGARD (described below). All three algorithms follow the paradigm of steganography by
minimizing an additive distortion function. Assuming an n1 × n2 grayscale cover image X = (xij),
the embedding starts by computing the costs ρij of modifying pixel xij by 1 or by −1 (the costs
of both modifications are equal). An optimal embedding scheme hides the secret message while
minimizing the total cost of embedding (distortion) D(X,Y) =

∑n1,n2
i,j=1 ρij [xij 6= yij ], where [P ] is

the Iverson bracket [P ] = 1 when P is true and [P ] = 0 when P is false, and Y is the stego image.
Such an optimal scheme would modify pixel xij to xij + 1 with probability βij (and to xij − 1
with the same probability), where βij = (1 + eλρij )−1 [28] with λ > 0 determined from the payload
constraint,

∑n1,n2
i,j=1 H(βij) = Rn, where H(x) = −2x log2 x − (1 − 2x) log2(1 − 2x) is the ternary

entropy function in bits. In our tests, we used simulators of the embedding that indeed executed the
changes with the probabilities βij . Practical embedding schemes that embed messages with nearly
minimal distortion can be built using syndrome–trellis codes [28].
S-UNIGARD is built in the same way as S-UNIWARD with the three Wavelet Daubechies kernels
replaced with Gabor filters (hence the letter ’G’ replacing ’W’ in the embedding scheme name),
which are basically a set of differently oriented sinusoidal patterns modulated by a Gaussian kernel.
Each kernel is obtained by sampling the following continuous function in R2 parametrized by the
wavelength λ, the orientation angle θ, the phase offset φ, and the standard deviation σ of the
Gaussian modulation:

Gλ,θ,φ,σ,γ(x, y) = exp
(
−u

2 + γ2v2

2σ2

)
cos
(

2πu
λ

+ φ
)
, (2.1.1)

u = x cos θ + y sin θ, (2.1.2)
v = −x sin θ + y cos θ. (2.1.3)

In S-UNIGARD, we use λ = 2, two offsets φ ∈ {0, π/2}, 16 directions θ ∈ {0, π/16, . . . , 15π/16},
γ = 0.5, and σ = 1. The kernels are obtained by sampling Gλ,θ,φ,σ,γ(x, y) at x, y ∈ {−5,−4, . . . , 4, 5}
giving the filters a support of 11 × 11 pixels (see all 32 Gabor filters in Figure 2.1.1). All kernels
are made zero mean (high-pass) by subtracting the kernel mean from all its elements. Assuming the
cover is an n1 × n2 grayscale image X = (xij), 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, the cost of changing pixel
xij to xij ± 1 (obtaining an image X[i,j]) and leaving all other pixels intact is computed in the exact
same manner as in S-UNIWARD,
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Figure 2.1.1: A set of 32 Gabor filters used in S-UNIGARD.

ρij ,
32∑
k=1

n1∑
u=1

n2∑
v=1

|F (k)
uv (X)− F (k)

uv (X[i,j])|
s+ |F (k)

uv (X)|
, (2.1.4)

where F (k)
uv (X) = (X ? G(k))uv is the uvth elements of the mirror-padded convolution between X

and the kth Gabor filter G(k), and s is a positive stabilizing constant. This constant affects the
selection channel and needs to be chosen carefully to avoid introducing artifacts into the selection
channel [86]. We determined it by a grid search on the grid G = {10−15, 10−14, . . . , 100} as the value
that minimizes the out-of-bag (OOB) detection error on BOSSbase 1.01 [29] when steganalyzing with
the 12,753-dimensional SRMQ1 model [39] and the ensemble classifier. The optimum was rather flat
around s ≈ 10−2.

2.2 maxSRM

The proposed feature set is a variant of the so-called spatial rich model (SRM) described in [39].
The maxSRM is built in the same manner as the SRM but the process of forming the co-occurrence
matrices is modified to consider the embedding change probabilities β̂ij estimated from the analyzed
image. The SRM consists of multiple co-occurrence matrices formed by four neighboring quantized
noise residual samples. Let us assume that R = (rij) is one such noise residual, for example,
one that was obtained by predicting the pixel value xij as the average of its horizontal neighbors,
rij = xij− (xi,j−1 +xi,j+1)/2, quantized to Q = {−2,−1, 0, 1, 2}. The SRM uses 4D co-occurrences,
which are 4D arrays defined as1

cd0d1d2d3 =
n1,n2−3∑
i,j=1

[ri,j = dk,∀k = 0, . . . , 3]. (2.2.1)

In maxSRM, we modify this definition to

c̃d0d1d2d3 =
n1,n2−3∑
i,j=1

max
k=0,...,3

β̂i,j+k[ri,j = dk,∀k = 0, . . . , 3]. (2.2.2)

1This is an example of a horizontal co-occurrence.
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Figure 2.2.1: Four types of co-occurrence scan direction.

Type PE

hv 22.14±0.26
dm 22.22±0.33
d2 21.71±0.44
dd 21.66±0.29

Table 2.1: Effect of the co-occurrence scans on the detection error PE. WOW at 0.4 bpp, the
338-dimensional SQUARE submodel of SRM.

In other words, instead of adding a 1 to the corresponding co-occurrence bin, we add the maximum
of the embedding change probabilities taken across the four residuals. This way, those groups of
four of pixels with small probability of being changed will not affect the co-occurrence values much,
while those where at least one pixel is likely to change will. We note that the rest of the process
of forming the SRM stays exactly the same, including the symmetrization by sign and direction
and merging into SRM submodels (see [39] for details). The proposed maxSRM has thus the same
dimensionality as the SRM, which is 34,671.

To further boost the detection, we investigated another design component of the SRM, which is
the co-occurrence scan direction. The original SRM uses horizontal and vertical scans (see the case
’hv’ in Figure 2.2.1). In this section, we studied three other possibilities shown in the same figure
– diagonal and minor-diagonal directions (’dm’), and two ’oblique’ directions marked ’d2’ and ’dd’.
Because the oblique directions do not have a mirror symmetry, they allow collecting twice as much
data for the co-occurrences, making them better populated. We observed in our experiments that
the oblique directions do provide better detection across all tested algorithms. In Table 2.1, we give
a small example of this positive effect with the SQUARE SRM submodel (dimension 338) for the
WOW algorithm at 0.4 bpp. The diagonal directions are the worst while the oblique directions are
very similar and give (in this case) an improvement of 0.4% in the detection error w.r.t. the ’hv’
scan used in SRM. Thus, we decided to include in our tests the version of the maxSRM with all
co-occurrence scan directions replaced with the oblique direction ’d2’. We will call this version of
the rich model the maxSRMd2.

2.3 Experiments

As our first experiment, we provide the detection results for all three embedding algorithms (see
Section 2.1) when steganalyzing with SRM, maxSRM, and maxSRMd2 under the ideal case when
the steganalyst knows the embedded payload size. The results, shown in Table 2.2, point out several
rather interesting facts. First, while the security of WOW and S-UNIWARD appears almost the
same under the SRM, when the selection channel information is utilized, WOW becomes much more
detectable (for small payloads by more than 10%). This is most likely because WOW’s adaptivity
is stronger in the sense that embedding probabilities of S-UNIWARD are more “spread out” (see
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0.05 bpp 0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp 0.5 bpp
WOW SRM .4572 ± .0026 .4026 ± .0028 .3210 ± .0038 .2553 ± .0028 .2060 ± .0022 .1683 ± .0023

maxSRM .3595 ± .0017 .3025 ± .0033 .2383 ± .0022 .1943 ± .0015 .1623 ± .0038 .1371 ± .0028
maxSRMd2 .3539 ± .0024 .2997 ± .0023 .2339 ± .0041 .1886 ± .0036 .1543 ± .0036 .1306 ± .0021

tSRM .3765 ± .0035 .3160 ± .0032 .2574 ± .0035 .2143 ± .0027 .1815 ± .0026 .1517 ± .0027
S-UNIWARD SRM .4533 ± .0026 .4024 ± .0019 .3199 ± .0027 .2571 ± .0016 .2037 ± .0032 .1640 ± .0024

maxSRM .4209 ± .0032 .3684 ± .0033 .2981 ± .0032 .2431 ± .0016 .1992 ± .0022 .1633 ± .0028
maxSRMd2 .4180 ± .0025 .3660 ± .0040 .2886 ± .0025 .2360 ± .0022 .1908 ± .0025 .1551 ± .0019

tSRM .4391 ± .0033 .3935 ± .0013 .3199 ± .0027 .2571 ± .0016 .2037 ± .0032 .1640 ± .0024
S-UNIGARD SRM .4667 ± .0020 .4214 ± .0035 .3384 ± .0015 .2774 ± .0024 .2278 ± .0033 .1811 ± .0027

maxSRM .4195 ± .0030 .3712 ± .0027 .3002 ± .0022 .2466 ± .0022 .2062 ± .0025 .1702 ± .0027
maxSRMd2 .4170 ± .0024 .3673 ± .0018 .2957 ± .0024 .2409 ± .0035 .1985 ± .0027 .1647 ± .0028

tSRM .4335 ± .0022 .3867 ± .0041 .3205 ± .0045 .2660 ± .0029 .2183 ± .0033 .1782 ± .0025

Table 2.2: Average detection error PE for three embedding algorithms and four steganalysis feature
sets.

Figure 2.3.1). Obviously, the difference between SRM and maxSRM will diminish with a decreasing
degree of adaptivity of the embedding algorithm. Also notice that while S-UNIGARD appears
more secure than S-UNIWARD under SRM, this difference (≈ 2%) becomes negligible when the
selection channel is utilized. Finally, the maxSRM is always better than SRM, pointing to the fact
that utilizing the selection channel in the proposed manner indeed helps steganalysis. Moreover,
the comparison between maxSRM ans maxSRMd2 shows that the ’d2’ co-occurrence scan is always
better than the default ’hv’ making the detection error smaller by as much as ≈ 1%. Since the
dimensionality of both models is the same, there is no reason not to use maxSRMd2 over maxSRM.

Our next experiment was aimed at finding a fixed testing payload, α̂, used for computing the
embedding probabilities that would provide an overall good performance when the real payload α
is unknown. This will necessarily be a trade off between losing the detection for small versus large
payloads. Based on tests with all three algorithms, it appears that a reasonable trade off is achieved
when the test payload is fixed to a medium value of α̂ = 0.2 bpp for S-UNIWARD and S-UNIGARD
and to α̂ = 0.1 bpp for WOW. Figures 2.3.2 and 2.3.3 show the detection error PE and its increase
when steganalyzing with a fixed test payload as opposed to the true payload. The performance drop
averaged over payloads is below 1% and exhibits similar values and similar trends across the three
tested algorithms.

In Figure 2.3.4, we compare the maxSRMd2 with the previously proposed tSRM by showing the
improvement in detection error over the SRM under the assumption that the real payload is known
(α̂ = α). The threshold t in tSRM was optimized for each tested payload and stego algorithm.
While the maxSRMd2 feature set provides better detection for all three algorithms, the tSRM fails
to improve detection of S-UNIWARD for all payloads larger than 0.1 bpp and is only marginally
effective against S-UNIGARD for large payloads. The maxSRMd2 consistently outperforms tSRM,
sometimes by more than 3%. Moreover, when the embedded payload size is known or can be
estimated, the maxSRM can be readily used while applying the tSRM requires running potentially
expensive experiments to determine the best threshold for each payload. Also, we found out that
setting a fixed value of the threshold t in tSRM when the true payload is not known is much
trickier. It appears that one needs to either settle for a smaller improvement over the entire range
of payloads or sacrifice the improvement (or even take a penalty) for large payloads (see Figure 5
in [87]). Finally, we wish to point out that the maxSRM is a generalization of tSRM because
the tSRM feature vector can be computed using maxSRM by preprocessing the embedding change
probabilities, βij , and setting βij = 1 when the cost of pixel i, j is within the top t% of costs using
and setting it to 0 otherwise.
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Figure 2.3.1: Embedding probability for payload 0.4 bpp using WOW (top right), S-UNIWARD
(bottom left), and S-UNIGARD (bottom right) for a 128× 128 grayscale cover image shown in top
left (a 128× 128 crop of ’1013.pgm’ from BOSSbase).

2.4 Conclusion

While content-adaptive steganography is nowadays a mature subject, steganalysis that utilizes the
probabilistic selection channel is much less developed. Even though detectors built from tractable
cover models using the theory of statistical hypothesis testing can incorporate Bayesian priors in a
relatively straightforward manner, it is unclear how to adapt the detectors built by training classifiers
in heuristically assembled feature spaces. This topic is relevant as such detectors are indispensable
for detecting modern content-adaptive steganographic schemes.

In this chapter, we propose a variant of the spatial rich model (the so-called maxSRM) modified to
incorporate the knowledge of embedding change probabilities. Even though the proposed approach is
heuristic, it does bring quite an improvement over features that do not consider the selection channel
and it provides an interesting insight into the design of steganographic schemes. While the WOW
and S-UNIWARD algorithms exhibit an essentially identical level of statistical detectability when
tested with SRM, WOW is much more detectable with the selection-channel-aware maxSRM than S-
UNIWARD. This is attributed to the varying degree of adaptivity of both algorithms. Apparently,
WOW’s selection channel is “overly adaptive,” which makes this algorithm more vulnerable to
maxSRM than the other algorithms. Moreover, while S-UNIGARD appears more secure than S-
UNIWARD under SRM, this difference (≈ 2%) becomes negligible when the selection channel is
utilized. Steganography designers thus need to be aware of how the properties of the selection
channel affect statistical detectability when designing future steganographic schemes.

The maxSRM also offers the following three important advantages over the previously proposed
thresholded SRM (tSRM): 1) the detection error is always lower, 2) there is no need to determine
any parameters when the embedded payload is known or can be estimated, 3) the loss of detection
is less severe when the real payload is unknown.
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Figure 2.3.2: Detection error for all three algorithms when steganalyzing with maxSRMd2 with a
fixed test payload (α̂ = 0.1 for WOW and α̂ = 0.2 for S-UNIWARD), versus the test payload set to
the real payload, α̂ = α.
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Figure 2.3.3: Detection error increase when steganalyzing with the test payload α̂ chosen as in the
text and the true payload α. The payload (x coordinates) were shifted by a small amount to prevent
the markers and error bars from overlapping.
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Figure 2.3.4: Improvement in detection error when steganalyzing with SRM versus maxSRMd2 or
tSRM. The threshold in tSRM was optimized for each payload. From top down and from left right:
WOW, S-UNIWARD, and S-UNIGARD.
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Chapter 3

Selection-channel aware attacks in
DCT domain

The way the selection channel is incorporated in steganalysis features in the previous chapter cannot
be used for detection of JPEG steganography because the embedding and the steganalysis domains
are different. In particular, the embedding changes applied to an 8 × 8 block of quantized DCT
coefficients affect all 64 pixels and the modifications are no longer limited to ±1 changes but can
have a much larger amplitude depending also on the JPEG quality factor. Pixel change rate thus no
longer properly characterizes the distortion at a pixel. On the other hand, knowing the embedding
change probabilities of quantized DCT coefficients it is possible to compute the expected value of
the distortion at each pixel. In this chapter, we show that by accumulating such a quantity in
histograms of JPEG-phase-aware noise residuals [49, 50, 85], it is possible to construct spatial rich
features that provide more accurate detection of current content-adaptive JPEG algorithms. The
improvement appears to be the largest for small payloads and diminishes for large payloads when
the embedding algorithm loses its content adaptivity.

3.1 Residual distortion measure

To incorporate the selection channel into the feature design, we inspired ourselves with the selection-
channel-aware versions of the SRM [39] called maxSRM [21], where the co-occurrences of noise
residuals accumulated the embedding change probabilities. Porting this concept directly to the
features from the previous chapter for steganalysis of JPEG images is, however, not possible because
the embedding changes are executed in the DCT domain. The embedding modifies the pixel values
in the decompressed JPEG image by a wide range of values rather than by ±1. Instead of the
embedding change probability, we propose to use a suitable measure of the residual distortion. To
this end, we first derive the properties of the random variable representing the embedding distortion
in the residual domain and then investigate several different measures of the distortion with the goal
to obtain a quantity that can be evaluated efficiently.

We denote the quantized DCT coefficients in the (a, b)th block of the cover and stego image by
x

(a,b)
kl and y

(a,b)
kl = x

(a,b)
kl + s

(a,b)
kl , respectively, where s(a,b)

kl are the embedding changes, which are
independent realizations of random variables S(a,b)

kl attaining the values in {−1, 0, 1} with proba-
bilities {β(a,b)

kl , 1 − 2β(a,b)
kl , β

(a,b)
kl } determined by the steganographic scheme and the payload size.

We stress that this model of embedding fits all modern JPEG steganographic algorithms, includ-
ing both versions of UED and J-UNIWARD. Recalling (1.5.2), the difference between the non-
rounded pixel values in the decompressed cover and stego images, x̃(a,b)

ij =
∑7
k,l=0 f

ij
klqklx

(a,b)
kl and
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ỹ
(a,b)
ij =

∑7
k,l=0 f

ij
klqkly

(a,b)
kl , respectively, is thus:

s̃
(a,b)
ij = ỹ

(a,b)
ij − x̃(a,b)

ij =
7∑

k,l=0
f ijklqkls

(a,b)
kl . (3.1.1)

Because the embedding changes are mutually independent and because

E[S(a,b)
kl ] = 0, (3.1.2)

V ar[S(a,b)
kl ] = 2β(a,b)

kl (3.1.3)

we have

E[S̃(a,b)
ij ] = 0, (3.1.4)

V ar[S̃(a,b)
ij ] = 2

7∑
k,l=0

(f ijkl )
2q2
klβ

(a,b)
kl , (3.1.5)

where we remind that, by our convention, S̃(a,b)
ij =

∑7
k,l=0 f

ij
klqklS

(a,b)
kl is the random variable whose

realization is s̃(a,b)
ij .

From (1.2.16) and the linearity of convolution, the difference, ρ ∈ Rn′1×n′2 , between the residuals of
stego and cover images can thus be expressed as

ρ(S) = R(Ỹ,G)−R(X̃,G) = S̃ ?G. (3.1.6)

Technically, ρ also depends on the kernel G but, in order to declutter the notation, we only explicitly
write the dependence on the embedding changes S as these are the most important. Also, to be
specific, we will associate a given residual value with the position of the upper left corner of the
kernel G when performing the convolution.

Since the kernels G for the features discussed in the previous chapter never intersect more than
four different 8× 8 pixel blocks, when computing a specific value of the residual using the convolu-
tion (1.2.16) the residual value will generally depend on either one 8×8 DCT block, when the kernel
is positioned within one JPEG block, two blocks when the kernel straddles two adjacent blocks, or
four blocks. Because the inverse DCT is linear and the residual also depends linearly on the non-
rounded pixel values, the residual is thus a linear combination of 64, 128, or 256 DCT coefficients.
In principle, it is thus possible to analytically compute the coefficients α(u,v)

kl (i, j,G), 0 ≤ u, v ≤ 1,
0 ≤ i, j, k, l ≤ 7, in the linear combination of up to 256 DCT coefficients:

ρ
(a,b)
ij (S) =

7∑
k,l=0

1∑
u,v=0

α
(u,v)
kl (i, j,G)s(a+u,b+v)

kl . (3.1.7)

The coefficients α(u,v)
kl (i, j,G) depend on the phase (i, j), the kernel G, as well as the quantization

steps qkl. For example, since the DCTR and GFR features use 8× 8 kernels, for phase (0,0) only 64
values of α(u,v)

kl (i, j,G) will generally be non-zero. For phases (0, k), (k, 0), k > 0, there will be 128
non-zero values, and for the remaining 49 phases there will be 256 non-zero α(u,v)

kl (i, j,G).

Because E[S(a,b)
kl ] = 0 for all (a, b) and k, l, we have E[ρ(a,b)

ij (S)] = 0 as well. Thus, we will take
some measure, δ, of the statistical spread of ρ(a,b)

ij (S) as a quantity that should be accumulated in
the histograms of residuals (1.2.18) in a similar fashion as the embedding change probabilities are
accumulated in the selection-channel-aware maxSRM [21], 0 ≤ m ≤ T , 0 ≤ i, j ≤ 7:
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h
(i,j)
m (X̃,G, Q,β) =

bn′1/8c∑
a=1

bn′2/8c∑
b=1

[|r(a,b)
ij (X̃,G, Q)| = m] · δ(ρ(a,b)

ij (S)). (3.1.8)

In (3.1.8), h(i,j)
m stands for the selection-channel-aware version of the histograms (1.2.18) and (i, j) ∈

{0, . . . , 7}2 is the JPEG phase. Note that since the variance of ρ(a,b)
ij (S) depends on β (3.1.3), so

does h(i,j)
m .

Two natural choices for δ are the standard deviation and the expectation of the absolute value of
ρ

(a,b)
ij (S) (c.f., (3.1.7)) :

δstd(β)(a,b)
ij =

√
V ar[ρ(a,b)

ij (S)],

=

√√√√2
7∑

k,l=0

1∑
u,v=0

(α(u,v)
kl (i, j,G))2β

(a+u,b+v)
kl , (3.1.9)

δEA(β)(a,b)
ij = E[|ρ(a,b)

ij (S)|]. (3.1.10)

To clarify the above expressions, δstd(β)(a,b)
ij stands for the ijth element in the (a, b)th block in

matrix δstd(β) ∈ Rn′1×n′2 and the same applies to δEA(β). Note that both δstd(β) and δEA(β)
depend on the change rates β (the selection channel), which is an n1 × n2 array of embedding
change probabilities arranged in the same fashion as the DCT coefficients, and on the kernel G.

Neither (3.1.9) or (3.1.10) are, unfortunately, suitable for practical usage. The standard deviation
δstd(β) can be computed for all (a, b) and a given kernel G using one convolution A ?β, where A is
a 16× 16 matrix with four 8× 8 blocks A(u,v) = ((α(u,v)

kl (i, j,G))2)7
k,l=0

A(i, j,G) =
(

A(0,0) A(0,1)

A(1,0) A(1,1)

)
. (3.1.11)

However, because there are 64 phases and |B| kernels, one thus needs to compute 64×|B| convolutions,
which is rather expensive even for the smallest filter bank of DCTR and completely prohibitive for
PHARM with 900 filters.

The problem with δEA(β) is that it cannot be computed analytically and Monte Carlo estimation
requires at least 200 simulated embeddings to obtain a value accurate within 10% (determined exper-
imentally for DCTR and J-UNIWARD at 0.4 bpnzac, bits per non-zero AC DCT coefficient). This
increases the number of required convolutions by a factor of 200. One possibility is to approximate
the sum in ρ(a,b)

ij (S) (3.1.7) with a Gaussian random variable N (0, σ2) for which one can easily verify
that E[|N (0, σ2)|] = 2σ/

√
2π. Unfortunately, this brings us back to the prohibitive complexity of

evaluating the variance. Also, note that with this approximation δEA(β) and δstd(β) coincide.

To resolve the complexity issues, we turned our attention to how the JPEG-phase-aware features
are formed [49, 50, 85] . They are computed in two steps by first decompressing the JPEG image
to the spatial domain and then evaluating merely |B| convolutions. To substantially decrease the
complexity, we will strive to keep a similar two-stage process. The variance, however, cannot be
computed this way because after inverse DCT (1.5.2) the pixels’ modifications are no longer inde-
pendent, which would require computing the covariance for each four-block of adjacent 8× 8 blocks.
This problem is removed when we switch to an upper bound of |ρ(a,b)

ij (S)|. An upper bound in the
form of

|ρ(a,b)
ij (S)| ≤

7∑
k,l=0

1∑
u,v=0

|α(u,v)
kl (i, j,G)| · |w(a+u,b+v)

kl | (3.1.12)
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is, however, not useful as we still face the same prohibitive computational complexity when evaluating
the expectation of the bound. Instead, we will first bound the absolute value of the residual (3.1.6):

|ρ(S)| ≤ |S̃| ? |G|, (3.1.13)

and then further bound

|s̃(a,b)
ij | ≤

7∑
k,l=0

|f ijkl |qkl|s
(a,b)
kl |. (3.1.14)

Because E[|S(a,b)
kl |] = 2β(a,b)

kl , we have for the expectation

E[|S̃(a,b)
ij |] ≤ 2

7∑
k,l=0

|f ijkl |qklβ
(a,b)
kl , w

(a,b)
ij (β). (3.1.15)

Finally, using (3.1.13)–(3.1.15) δEA(β) can be bounded by

δEA(β) = E[|ρ(S)|] ≤W(β) ? |G| , δuSA(β), (3.1.16)

which can be efficiently evaluated by first computing t(a,b)ij = 2
∑7
k,l=0 |f

ij
kl |qklβ

(a,b)
kl by blocks (this

is as computationally demanding as decompressing a JPEG image) and then convolving W(β) with
the absolute value of the kernel. We used the subscript ’uSA’ (Upper bounded Sum of Absolute
values) for the bounding quantity.

We observed an approximately quadratic dependence between δuSA and δEA, δuSA ∝ δ2
EA, when

used within the DCTR, PHARM, and GFR features. Thus, to obtain a quantity that is more
closely related to the expectation of the residual distortion, we use the square root δ1/2

uSA(β) meaning
that it is applied to the n′1 × n′2 matrix δuSA(β) elementwise. The above claims are supported by
Figure 3.1.1, which shows δ1/2

uSA(β)(a,b)
ij versus δEA(β)(a,b)

ij across all blocks (a, b) for sixteen different
combinations of DCTR kernels G and JPEG phases. The values of δEA were obtained using Monte
Carlo simulations by embedding the image ’1013.pgm’ from BOSSBase 1000-times. The first ordered
pair above each plot shows the spatial frequency of the DCT kernel while the second ordered pair
is the JPEG phase i, j. Note that with the exception of kernel-phase combinations (4, 3), (4, 1)
and (4, 3), (6, 7), there appears to be an approximate linear relationship between δ

1/2
uSA and δEA.

Qualitatively similar results were observed for the PHARM and GFR filter banks. The square root
thus indeed makes δ1/2

uSA(β) a rather good (and much more computationally efficient!) approximation
of δEA(β).

3.1.1 Final feature design

We now summarize the final design of the features that will be subjected to experimental tests in
the next section. In the pseudo-code 3.1, β ∈ Rn1×n2 is the selection channel in the form of a matrix
of embedding change probabilities of DCT coefficients arranged in the same fashion as unquantized
DCT coefficients, f ijkl are the DCT bases (1.5.1), and qkl is the 8× 8 JPEG luminance quantization
matrix of the investigated image.

3.2 Experimental results

In this section, we subject the selection-channel-aware features described in Section 3.1 to a test on
real imagery. The experiments are conducted on the standard database BOSSbase 1.01 [7] containing
10,000 grayscale images with 512×512 pixels. We ran the experiments on JPEG images with quality
factors 75 and 95.
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Figure 3.1.1: Plot of δ1/2
uSA versus δEA for one BOSSbase image for the DCTR filter bank. The first

number pair above each scatter plot indicates the DCTR kernel (the spatial frequency of the DCT
mode) while the second pair is the JPEG phase. Note that the square root forces an approximate
linear relationship between both quantities.
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1: Select a JPEG-phase-aware feature set, which is equivalent to selecting the filter bank B ∈
{BDCTR,BPHARM ,BGFR}.

2: Decompress the JPEG image under investigation to the spatial domain (apply by blocks), denote
the non-rounded pixel values with X̃.

3: for all G ∈ B do
4: Compute the residual R(X̃,G) = G ? X̃ and quantize it R(X̃,G, Q) = QQ(R(X̃,G)/q).
5: Compute t(β) ∈ Rn1×n2 by blocks, t(a,b)ij (β) = 2

∑7
k,l=0 |f

ij
kl |qklβ

(a,b)
kl for all blocks (a, b).

6: Evaluate δ1/2
uSA(β) =

√
t(β) ? |G| (square root applied in an elementwise fashion to all elements

of the n′1 × n′2 matrix t(β) ? |G|).
7: Compute the following 64× (T + 1) values h(i,j)

m (X̃,G, Q,β), 0 ≤ m ≤ T , 0 ≤ i, j ≤ 7:

h
(i,j)
m (X̃,G, Q,β) =

bn′1/8c∑
a=1

bn′2/8c∑
b=1

[|r(a,b)
ij (X̃,G, Q)| = m] · δ1/2

uSA(β)(a,b)
ij .

Note that the histogram bins h(i,j)
m now depend on the selection channel β.

8: end for
9: Concatenate h(i,j)

m (X̃,G, Q,β), G ∈ B, 0 ≤ i, j ≤ 7, 0 ≤ m ≤ T , and form the final feature
vector using the same symmetrization rules as those used for forming the JPEG-phase-aware
features from h

(i,j)
m (X̃,G, Q).

Algorithm 3.1: Pseudo-code for δ1/2
uSA selection-channel aware JPEG features.

The steganographic algorithms tested in this section are the original version of UED [42] (UED-SC),
its improved version [43] (UED-JC), and J-UNIWARD as described in [51]. We use three JPEG-
phase-aware steganalysis feature sets: DCTR [49], PHARM [50], and Gabor Filter Bank (GFR) [85].
The detection accuracy is evaluated using the minimal total error probability under equal priors,
PE = minPFA

1
2 (PFA +PMD), achieved on the test set averaged over ten 50/50 splits of the database.

The symbols PFA and PMD stand for the false-alarm and missed-detection rates. The classifier is
the FLD ensemble [64]. To inform the reader about the statistical significance of the improvements,
we state that the mean absolute deviation of PE over the ten ensemble runs ranges between 0.0005
and 0.0046, depending on the feature set, embedding algorithm, payload, and JPEG quality factor
(also see Table 3.1 ).
Figure 3.2.1 shows the average detection error PE as a function of payload in bits per non-zero
AC DCT coefficient (bpnzac) for three steganographic algorithms and two JPEG quality factors
and payloads ranging from 0.05–0.5 bpnzac. The exact numerial values are in Table 3.1. For
easy comprehension, color is used to highlight the embedding algorithm. Each combination of the
embedding algorithm, payload, and JPEG quality factor has two partially overlapping bars with the
solid color fill showing the performance of the selection-channel-aware features computed with δ1/2

uSA

while the original features correspond to the patterned column.
The GFR feature set always offers the most accurate detection irrespectively of the feature type,
the embedding algorithm, payload, and quality factor. Making the features aware of the selection
channel generally improves the detection for payload smaller than 0.3 bpnzac. The gain is larger for
quality factor 75 than for 95. In some cases, the detection error drops by as much as 8% (UED-JC
for 75 quality factor). With increasing payload, the gain decreases, which is natural because the
embedding algorithms become less adaptive. For large payloads embedded with UED, the gain may
even become negative (the detection slightly worsens). We verified that this loss is not due to the
fact that the embedding change probabilities extracted from the stego and cover images differ as
the loss remains unchanged when computing the features with embedding probabilities of the cover.
This thus points to a small suboptimality within the quantity δ1/2

uSA accumulated in the histograms.
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J-UNI, QF 75% 0.05 bpp 0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp 0.5 bpp
DCTR 0.4769±0.0013 0.4400±0.0017 0.3412±0.0017 0.2410±0.0030 0.1553±0.0023 0.0887±0.0025

δ
1/2
uSA DCTR 0.4635±0.0028 0.4192±0.0015 0.3081±0.0021 0.2148±0.0026 0.1380±0.0019 0.0818±0.0015

GFR 0.4638±0.0019 0.4095±0.0013 0.2861±0.0037 0.1804±0.0029 0.1005±0.0021 0.0546±0.0018
δ

1/2
uSA GFR 0.4325±0.0016 0.3589±0.0025 0.2272±0.0026 0.1389±0.0019 0.0792±0.0016 0.0437±0.0008
PHARM 0.4746±0.0024 0.4284±0.0024 0.3131±0.0039 0.2096±0.0029 0.1259±0.0027 0.0720±0.0017

δ
1/2
uSA PHARM 0.4490±0.0017 0.3929±0.0023 0.2685±0.0027 0.1678±0.0034 0.0974±0.0021 0.0555±0.0016

UED-SC, QF 75% 0.05 bpp 0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp 0.5 bpp
DCTR 0.4301±0.0020 0.3497±0.0026 0.2013±0.0011 0.1034±0.0019 0.0427±0.0011 0.0120±0.0005

δ
1/2
uSA DCTR 0.3786±0.0018 0.3030±0.0024 0.1871±0.0028 0.1140±0.0027 0.0578±0.0020 0.0206±0.0008

GFR 0.4029±0.0028 0.3010±0.0036 0.1443±0.0030 0.0617±0.0011 0.0266±0.0009 0.0096±0.0006
δ

1/2
uSA GFR 0.3159±0.0023 0.2204±0.0018 0.1103±0.0018 0.0567±0.0008 0.0290±0.0011 0.0131±0.0008
PHARM 0.4168±0.0027 0.3207±0.0041 0.1580±0.0016 0.0711±0.0022 0.0296±0.0009 0.0121±0.0006

δ
1/2
uSA PHARM 0.3529±0.0023 0.2519±0.0035 0.1223±0.0024 0.0559±0.0019 0.0252±0.0008 0.0111±0.0006

UED-JC, QF 75% 0.05 bpp 0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp 0.5 bpp
DCTR 0.4358±0.0024 0.3593±0.0020 0.2192±0.0030 0.1204±0.0020 0.0593±0.0014 0.0203±0.0009

δ
1/2
uSA DCTR 0.3865±0.0020 0.3146±0.0025 0.2075±0.0032 0.1303±0.0023 0.0747±0.0026 0.0328±0.0014

GFR 0.4100±0.0023 0.3153±0.0024 0.1627±0.0022 0.0779±0.0016 0.0346±0.0018 0.0153±0.0007
δ

1/2
uSA GFR 0.3301±0.0040 0.2352±0.0028 0.1252±0.0008 0.0685±0.0017 0.0377±0.0008 0.0193±0.0010
PHARM 0.4213±0.0029 0.3376±0.0043 0.1837±0.0023 0.0895±0.0025 0.0418±0.0005 0.0187±0.0011

δ
1/2
uSA PHARM 0.3649±0.0035 0.2694±0.0036 0.1399±0.0028 0.0719±0.0015 0.0348±0.0007 0.0181±0.0008

J-UNI, QF 95% 0.05 bpp 0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp 0.5 bpp
DCTR 0.4965±0.0013 0.4826±0.0019 0.4424±0.0032 0.3820±0.0029 0.3081±0.0025 0.2310±0.0020

δ
1/2
uSA DCTR 0.4924±0.0042 0.4705±0.0026 0.4163±0.0034 0.3524±0.0036 0.2851±0.0030 0.2217±0.0027

GFR 0.4915±0.0019 0.4756±0.0013 0.4215±0.0016 0.3496±0.0018 0.2721±0.0028 0.1936±0.0023
δ

1/2
uSA GFR 0.4843±0.0015 0.4634±0.0027 0.4046±0.0024 0.3338±0.0029 0.2617±0.0038 0.1998±0.0026
PHARM 0.4953±0.0017 0.4835±0.0018 0.4416±0.0032 0.3787±0.0023 0.3079±0.0026 0.2311±0.0038

δ
1/2
uSA PHARM 0.4896±0.0024 0.4762±0.0022 0.4304±0.0020 0.3690±0.0022 0.2981±0.0014 0.2294±0.0019

UED-SC, QF 95% 0.05 bpp 0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp 0.5 bpp
DCTR 0.4826±0.0019 0.4555±0.0017 0.3829±0.0015 0.3004±0.0025 0.2095±0.0015 0.1201±0.0019

δ
1/2
uSA DCTR 0.4719±0.0026 0.4420±0.0025 0.3752±0.0026 0.3079±0.0020 0.2296±0.0017 0.1484±0.0022

GFR 0.4679±0.0018 0.4294±0.0016 0.3299±0.0022 0.2295±0.0035 0.1420±0.0027 0.0753±0.0012
δ

1/2
uSA GFR 0.4366±0.0031 0.3896±0.0019 0.2964±0.0028 0.2149±0.0031 0.1462±0.0029 0.0899±0.0031
PHARM 0.4779±0.0025 0.4455±0.0029 0.3577±0.0035 0.2605±0.0032 0.1674±0.0024 0.0982±0.0021

δ
1/2
uSA PHARM 0.4641±0.0029 0.4246±0.0035 0.3348±0.0018 0.2479±0.0021 0.1658±0.0019 0.1008±0.0022

UED-JC, QF 95% 0.05 bpp 0.1 bpp 0.2 bpp 0.3 bpp 0.4 bpp 0.5 bpp
DCTR 0.4835±0.0021 0.4598±0.0025 0.3908±0.0025 0.3095±0.0029 0.2180±0.0026 0.1216±0.0017

δ
1/2
uSA DCTR 0.4753±0.0026 0.4426±0.0039 0.3830±0.0040 0.3069±0.0025 0.2128±0.0027 0.1146±0.0030

GFR 0.4709±0.0014 0.4323±0.0016 0.3420±0.0024 0.2492±0.0028 0.1663±0.0028 0.0990±0.0027
δ

1/2
uSA GFR 0.4411±0.0020 0.3931±0.0021 0.3077±0.0025 0.2316±0.0034 0.1662±0.0035 0.1107±0.0024
PHARM 0.4994±0.0016 0.4490±0.0019 0.3708±0.0039 0.2828±0.0018 0.1947±0.0022 0.1220±0.0022

δ
1/2
uSA PHARM 0.4622±0.0025 0.4288±0.0022 0.3473±0.0021 0.2665±0.0033 0.1901±0.0014 0.1242±0.0031

Table 3.1: Average PE for three steganographic schemes for DCTR, GFR, and PHARM features
and their selection-aware δ1/2

uSA version for selected payloads, JPEG quality factors 75 and 95.
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The significant detection gain for small payloads far outweighs this small loss as it is more difficult
to detect smaller payloads.

Finally, even though the goal of this section is not to benchmark steganography, it is interesting that
the order of the three tested steganographic schemes by their empirical security does not change
when switching to selection-channel-aware features and does not depend on the feature type either.

3.3 Conclusions

Steganalysis of content-adaptive steganography needs to take into account the probabilities with
which the embedding modifies individual cover elements. However, incorporating this prior prob-
abilistic knowledge (the selection channel) within detectors built as classifiers trained on examples
of cover and stego features is quite challenging. The main complication stems from the fact that
the quantity from which steganalysis features are formed are quantized noise residuals extracted in
the pixel domain. When the embedding modifies JPEG DCT coefficients, the impact of embedding
on residuals becomes even more complicated. Fortunately, if the residuals are obtained in a linear
fashion from pixels, e.g., by convolving the image with a kernel, because the embedding changes are
independent, it is possible to derive the impact of embedding on residuals analytically.

In this chapter, we investigate several quantities that measure the expected embedding distortion
in the residual domain when embedding in the JPEG domain. In order to obtain a distortion
measure that can be evaluated with acceptable computational complexity, we consider an upper
bound on the L1 distortion and transform it in a non-linear manner to make it strongly correlate
with the true expected value of L1 distortion. The resulting quantity can be efficiently computed
using convolutions and is accumulated in residual histograms of three feature sets that are aware
of the JPEG phase: DCTR, PHARM, and Gabor Filter Residuals (GFR). These feature sets were
selected because they currently provide the most accurate detection of modern steganography in
JPEG domain. The selection-channel-aware versions of these features provide a significant detection
gain of content-adaptive JPEG steganography, especially for small payloads.
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Figure 3.2.1: Average PE for three steganographic algorithms for DCTR, GFR, and PHARM features
(patterns) and their selection-aware δ1/2

uSA version (solid fill) versus payload, JPEG quality factors
75 and 95.
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Chapter 4

Selection-channel aware attacks in
residual domain

With the insight from the previous chapter, a careful reader will realize that the design of the
maxSRMd2 feature set from the Chapter 2 is flawed. The residuals collected inside co-occurrences
depend on numerous pixels and one can no longer associate a pixel change rate with a given residual
sample. This chapter resolves this issue by replacing the change rate with the expected value of
the residual distortion as the quantity that should be accumulated in the histograms (for JPEG
phase-aware features and projection type features) and in co-occurrences (for SRM).

This extension is relatively straightforward for linear residuals since the relationship tying the em-
bedding domain and the residual domain is linear. If the embedding changes are executed inde-
pendently,1 one can easily compute the expected value of the embedding distortion in the residual
domain analytically. A major complication, however, occurs for non-linear residuals due to the
necessity to compute marginals of high-dimensional probability mass functions. This is why the
emphasis of this chapter is on rich representations formed from linear residuals.

4.1 Replacing change rates with L1 distortion of residuals

As pointed out in the introduction, there is a discrepancy in maxSRM in the sense that we accumulate
the embedding change probabilities of pixels in the co-occurrence bins of residuals. Thus, we need
to move away from pixel change rates to some measure of the residual distortion. After all, if the
features were formed from pixel values rather than residuals, the change rates are proportional to
the expected value of the L1 (and L2) distortion. This is because in most modern steganographic
schemes the cover pixel xij is modified to yij = xij + 1 and yij = xij − 1 with the same probability
βij and thus E[|xij − yij |] = E[|xij − yij |2] = 2βij .

We explain the approach only for linear residuals and then discuss the issues with non-linear residuals.

4.1.1 Linear residuals

We recall that a linear residual Z in SRM is obtained by convolving the image with a kernel, this
time we make the dependence of Z on the image explicit:

Z(SRM)(X) = K ?X, (4.1.1)
1This is true for all current steganographic schemes with the notable exception of steganography that synchronizes

the selection channel [17, 67].
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and in coordinates:

z
(SRM)
ij (X) =

∑
k,l

Kklxi−k,j−l. (4.1.2)

The specific range for the indices k and l depends on the kernel support. Note that in PSRM the
residual is additionally convolved with a projection matrix Π:

Z(PSRM)(X) = Π ? (K ?X) = (Π ?K) ?X (4.1.3)

due to the associativity of convolution. Thus, irrespectively of whether we deal with a linear residual
from SRM or PSRM, the quantity whose sample statistic is collected (either a fourth-order co-
occurrence or a histogram) is obtained by convolving the image with a kernel.

For steganographic schemes minimizing an additive distortion, message embedding is equivalent to
adding noise whose distribution depends on the pixel location:

yij = xij + ξij ,

where ξij are independent random variables attaining their values in {−1, 0, 1} with probabilities
βij , 1− βij , βij . Thus, each element of the difference Z(Y)− Z(X) is a random variable with

E[zij(Y)− zij(X)] = E[
∑
k,l

Kklξi−k,j−l] = 0, (4.1.4)

V ar[zij(Y)− zij(X)] = 2
∑
k,l

K2
klβi−k,j−l. (4.1.5)

While it is straightforward to evaluate the expectation of the L2 norm

E
[
(zij(Y)− zij(X))2

]
= 2

∑
k,l

K2
klβi−k,j−l

= V ar[zij(Y)− zij(X)]
, σ2

ij (4.1.6)

due to the independence of embedding changes, it is much more difficult to compute the expectation
of the absolute value, E[|zij(Y)− zij(X)|]. We will thus consider a simplification and assume that
zij(Y) − zij(X) is a zero-mean Gaussian random variable with variance (4.1.5). In this case, it is
easy to evaluate

E[|zij(Y)− zij(X)|] = 2√
π

√∑
k,l

K2
klβi−k,j−l ∝ σij . (4.1.7)

In our experiments, the Gaussian approximation of the expectation of the L1 distortion (4.1.7)
worked much better than the L2 distortion. This is why in the rest of this chapter, we only use σij
as the quantity that will be accumulated in co-occurrences in SRM and in histograms in PSRM of
linear residuals.

For SRM, the selection-channel-aware features built from a linear residual will be formed by replacing
the change rates β̂ij in Eqs. (1.2.10) (for the horizontal and vertical scans) and (1.2.10) (for the ’d2’
scan) with σij :

cσSRM
d0d1d2d3

=
n1,n2−3∑
i,j=1

max
k=0,...,3

σi,j+k[ri,j+k = dk,∀k = 0, . . . , 3]. (4.1.8)
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For the PSRM, the histograms of linear residuals (1.2.14) are replaced with their σ version:

h(k)σ
m =

n1,n2∑
i,j=1

σij × [p̃(k)
ij = m+ 1/2], (4.1.9)

m ∈ {0, 1, . . . , T − 1}, k ∈ {1, . . . , ν}. (4.1.10)

At this point, we remark on the dimensionality of the σ-version of the PSRM. In the original PSRM,
linear residuals are represented using only T bins because the last, T + 1-st bin with centroid at
T + 1/2 is uniquely determined by the other bins (the sum

∑
m∈Q h

(k)
m = n1n2). This is not true

for h(k)σ
m as the sum of all T + 1 bins is no longer equal to the number of residual values n1n2. In

our experiments, we did not see any statistically significant benefit in using all T + 1 bins in h(k)σ
m ,

which is why in the σ-version of the PSRM, we also skip the last T + 1-st bin to keep the same
feature dimensionality. Similarly, histograms of non-linear residuals in PSRM are represented using
only 2T bins (both the first and the last values corresponding to centroids −T − 1/2 and T + 1/2
are skipped) and we keep the same arrangement in the σ-version.

4.1.2 Non-linear residuals

The situation for non-linear minmax residuals is significantly more complicated because the residuals
whose minimum (maximum) is computed are generally dependent random variables. In the most
extreme case, which corresponds to the ’minmax41’ submodel in EDGE5x5 residual of SRM, the
minimum (maximum) is taken over four values that each depend on 15 neighboring pixel values out
of the local 5 × 5 neighborhood. Computing the expectation of the L1 or L2 norm thus requires
marginalization of a 25-dimensional probability mass function with 325 values. We were unable to
find an algorithm whose computational complexity would be sufficiently low to make the feature
extractor run in reasonable time. Out of the ideas that have been explored, we list the following.

One could work with simplifying assumptions, such as the Gaussianity of the underlying residuals
and repeatedly leverage the analytic expression for the distribution of the minimum / maximum
of two Gaussian variables [71]. The Gaussianity assumption will, however, be invalid for residuals
with a small support, such as the ’minmax54’ first-order residual, and this deviation will lead to
suboptimality.

Another possibility is to estimate the expectation E[|zmin
ij (Y) − zmin

ij (X)|] using Monte-Carlo sim-
ulation, which is a rather expensive alternative. Nevertheless, this approach will tell us how much
can be theoretically gained.

4.2 Experiments

This section contains the results of all experiments. They were conducted on the standard BOSSbase
1.01 [7] database containing 10,000 grayscale images with 512× 512 pixels. The detection accuracy
is evaluated using the minimal total error probability on the testing set under equal priors, PE =
minPFA

1
2 (PFA + PMD), returned by the FLD ensemble [64] averaged over ten 50/50 splits of the

database into a pair of training and testing sets.

Before moving to the actual experiments, we summarize the terminology. The version of maxSRM
with the quantity E[|zij(Y) − zij(X)|] accumulated in co-occurrences will be denoted σmaxSRM.
We note that for linear residuals σij is computed using (4.1.7) while for min-max residuals, it is
obtained using Monte Carlo simulations by embedding the image under investigation 500 times. For
the PSRM, we only use the ’spam’ type submodels corresponding to linear residuals. This gives our
feature set dimensionality of 1,980. This feature set will be abbreviated σspamPSRM.
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0.2 bpp 0.4 bpp
PE min PE max PE PE min PE max PE

HILL maxSRMq2d2 0.3181 0.3149 0.3228 0.2238 0.2174 0.2278
σmaxSRMq2d2 0.3075 0.3015 0.3109 0.2132 0.2104 0.2146

WOW maxSRMq2d2 0.2472 0.2400 0.2530 0.1658 0.1601 0.1732
σmaxSRMq2d2 0.2449 0.2397 0.2509 0.1620 0.1569 0.1694

MVG maxSRMq2d2 0.3291 0.3228 0.3336 0.2309 0.2287 0.2347
σmaxSRMq2d2 0.3205 0.3160 0.3239 0.2202 0.2138 0.2303

Table 4.1: Detection of three steganographic algorithms for two payloads on BOSSbase 1.01 using
the original maxSRM features and their proposed σmaxSRM form.
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Figure 4.2.1: Detection error PE for HILL with spamPSRM, σspamPSRM, and maxSRMd2.

Our first experiment demonstrates the potential of the proposed idea. We work with σmaxSRMq2d2
(d2 standing for the d2 scan of co-occurrences) with 12,753 features. Table 4.1 shows the results
for three steganographic schemes, WOW [45], HILL [66], and MVG [84] with ternary embedding
and Gaussian pixel residual model, and two payloads contrasting the detection error for the original
maxSRMq2d2 and the proposed σmaxSRMq2d2. The improvement in the detection error PE ranges
from 0.3% to almost 1.5%, depending on the embedding algorithm and payload.

The second experiment was executed with the spam part of the PSRM (with linear residuals only).
We compare the spamPSRM subset of PSRM with σspamPSRM (both dimensionality 1,980) be-
cause no other selection-channel-aware version of PSRM currently exists. The results appear in
Figures 4.2.1–4.2.4 . The improvement in the detection error is significant across all embedding
algorithms and payloads, especially for HILL and WOW where the improvement in PE ranges be-
tween 2.5% and 6%. In fact, this relatively small σspamPSRM with 1,980 features for HILL and
MVG achieves comparable or better detection error than the computationally much more expensive
maxSRMd2 (34,671 features). For HILL with payload 0.4 bpp the σspamPSRM improves on maxS-
RMd2 by 0.5% and even on PSRM by 2.3%. Only in the case of S-UNIWARD the σspamPSRM
does not significantly improve on spamPSRM.
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Figure 4.2.2: Detection error PE for MVG with spamPSRM, σspamPSRM, and maxSRMd2.

4.3 Conclusions

Detection of modern content-adaptive steganography requires detectors built using machine learning
fed with examples of cover and stego objects represented in a feature space. Currently, it is an open
problem how to choose a suitable feature representation that would incorporate the knowledge of
the embedding change probabilities of individual image elements, the selection channel. These
probabilities are approximately available to the steganalyst because the pixel costs that were used
for embedding can be relatively accurately estimated from the stego image and because the imprecise
knowledge of the payload size does not affect steganalysis accuracy much.

The maxSRM feature set described in Chapter 2 calls for accumulating the pixel change probabilities
in co-occurrences of noise residuals. However, because potentially many pixels contribute to one
residual sample, one should compute the statistical impact of the embedding changes on the residual
and accumulate this quantity instead. To this end, in this chapter we propose the expected value of
the L1 residual distortion due to embedding. For linear pixel predictors, the impact of embedding
on the residual is easily obtained from the independence of embedding changes and the assumed
Gaussianity of the distortion. For non-linear (min-max) predictors, however, the expectation of the
L1 distortion is difficult to obtain analytically due to the necessity to compute the expectation of a
minimum (maximum) of up to five dependent random variables that themselves depend on up to 25
pixels. In this chapter, we compute such expectations using Monte Carlo simulations.

The proposed idea is applied to the SRM feature set and a subset of the PSRM that is built only
from linear residuals (dimensionality 1,980). This reduction of the PSRM feature vector was needed
to keep the computational complexity low. Experiments with three embedding schemes and the
SRMq2d2 feature set showed that the proposed quantity indeed improves the detection by 0.5–1.5%
depending on the embedding algorithm and payload. In the case of the PSRM, the improvement
was quite substantial. Compared with the same subset of the original PSRM, the detection error
dropped by up to 6% and was comparable and sometimes even slightly lower (for HILL and MVG)
than using the entire (and much more computationally demanding) maxSRMd2 model.

We wish to stress that the proposed modification of the rich models does not increase their dimen-
sionality. When the models are restricted only to the subset obtained from linear residuals, the
increase in the computational complexity is negligible since the expectation of the L1 distortion for
one residual can be obtained using three convolutions.
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Figure 4.2.3: Detection error PE for S-UNIWARD with spamPSRM, σspamPSRM, and maxSRMd2.
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Figure 4.2.4: Detection error PE for WOW with spamPSRM, σspamPSRM, and maxSRMd2.
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Chapter 5

Steganography with precover

Often the cover images Alice sends to Bob undergo some processing, format conversion or even
compression. If the party performing these generally lossy operations is Alice, she can utilize the
lost information to improve the security of her embedding. This chapter talks about the history of
side-informed steganography schemes and then introduces improvements and new approaches.

In the literature, the first published scheme that utilizes the private side-information is embedding-
while-dithering [36]. This scheme improves on embedding in palette images (for example GIF) when
Alice has access to the original, uncompressed bitmap image. There exist many naive steganographic
schemes for palette image formats that for example embed the secret message by shuffling the order
of the palette [65]. These methods are, however, vulnerable to targeted attacks, as the very presence
of the shuffled palette is suspicious. A better method is to assign each color in the palette a parity
and switch each pixel to the closest color with the correct parity. If Alice has access to the original
uncompressed image, she can embed during compressing. In traditional GIF compression, to improve
the visual quality, the quantization error after quantization of every pixel is tracked and diffused
in a process called dithering. Embedding-while-dithering adds the error introduced by adding the
stego signal to the quantization error and spreads it across the whole image achieving better visual
quality and steganographic security.

An entirely different approach was introduced for the JPEG format in an algorithm called perturbed
quantization [37]. The rounding errors of the quantization after DCT transform are used to modify
the embedding algorithm. Side-informed techniques based on this idea gained on popularity and
many more quickly appeared [61, 77, 91, 52, 43]. In combination with adaptive steganography, this
approach culminated in the form of the algorithm SI-UNIWARD [51], which to this day stays as a
benchmark for state-of-the-art algorithms for JPEG images. Incorporating side-information.

In this chapter, we introduce a simple idea how to incorporate side-information in any steganographic
scheme that minimizes additive distortion. We specifically discuss two novel aspects, which include
the departure from a binary embedding operation to ternary and the computation of costs from the
unquantized cover.

We will recognize three types of images – a precover image P, unquantized cover U, and cover X.
The cover is obtained from the precover using some information-reducing operation that involves
quantization as the last step. Even though the proposed approach can certainly be applied to
color cover images, for simplicity of the exposition, we will assume that X = (xij) ∈ In1×n2

L ,
IL = {0, 1, . . . , 2L − 1}, is an L-bit grayscale image with n1 × n2 pixels. At this point, we refrain
from formalizing the concept of the precover and merely state that it is some higher quality version
of the cover. The precover may be in a different format than the cover, it may have a higher color
depth, and may be larger than n1 × n2 pixels. In this chapter, we also allow the precover to be
color. We assume that there be a transformation T that maps the precover P to Rn1×n2 such that
X = QL(T (P)) with U = T (P) the unquantized cover, where QL is a quantizer with 2L centroids
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IL. Symbolically,
P T→ U QL→ X. (5.0.1)

Furthermore, we will assume that we have a steganographic scheme A designed to embed while
minimizing an additive distortion function. This is currently the most successful paradigm for
constructing steganographic schemes in any domain, including those based on non-additive distor-
tion [27, 17]. Such steganography typically starts with computing the costs (ρ(A)

ij ) of changing each
cover element xij . In this chapter, we will use only additive schemes A where the cost of changing
the Xij by 1 and by −1 are the same. Again, most additive embedding schemes do possess this
property, e.g., S-UNIWARD, J-UNIWARD [51], HILL [66], WOW [45], and UED [42]. The cost
ρ

(A)
ij typically depends on some local neighborhood of pixel xij . At this point, we note that in all

schemes known to the authors it is possible to compute the costs from the unquantized cover U
instead of the cover X. To distinguish such costs, we will explicitly mark this dependency: ρ(A)

ij (U)
or ρ(A)

ij (X).
The side-information that our proposed general embedding scheme will utilize is the unquantized
cover U. The quantization error due to applying the quantizer QL will be denoted

eij = uij − xij = uij −QL(uij). (5.0.2)

If the cover element is modified from xij to yij , the total distortion due to quantization and embed-
ding with respect to the unquantized cover is thus

e′ij = uij − yij . (5.0.3)

The costs ρ(SI)
ij of the side-informed version of the embedding algorithmA are obtained by modulating

the original costs by the difference |e′ij | − |eij |:

ρ
(SI)
ij = (|e′ij | − |eij |)ρ

(A)
ij . (5.0.4)

Note that ρ(SI)
ij ≥ 0 because |eij | ≤ |e′ij | for all ij as eij is the smallest amount uij can be modified

to obtain a plausible cover value (a value from IL). The modulation in (5.0.4) makes intuitive
sense because the new costs reflect not only the local image complexity but also take into account
the distortion w.r.t. the unquantized cover. The hope is that by minimizing this distortion, the
embedding will disturb the statistical properties of covers less.
At this point, we make a comparison to previous art. Virtually all previously proposed side-informed
schemes were restricted to binary embedding operations. During embedding, the value uij was either
quantized to yij = xij = QL(uij) or it was rounded “to the other side” yij = xij + sign(uij − xij) =
uij + sign(eij) − eij , which means the embedding operation was inherently binary. In this case,
|e′ij | − |eij | = 1− 2|eij |.
In this chapter, we allow ternary side-informed embedding. Indeed, when eij ≈ 0, there is no reason
to restrict the embedding to a binary operation as rounding to yij = xij+sign(eij) becomes almost as
expensive (|e′ij |−|eij | = 1−2|eij |) as rounding to yij = xij−sign(eij) (|e′ij |−|eij | = 1+|eij |−|eij | = 1).
Thus, when using ternary embedding in our side-informed steganography, the costs of changing xij
by ±1 are not equal:

ρ
(SI)+
ij = (1− 2|eij |)ρ(A)

ij if yij = xij + sign(eij), (5.0.5)

ρ
(SI)−
ij = ρ

(A)
ij if yij = xij − sign(eij). (5.0.6)

The actual embedding needs to be executed with the multi-layered version of syndrome-trellis codes
(STCs) [28]. An embedding simulator will change pixel xij by ±sign(eij) with probabilities

β
(±)
ij = e−λρ

(SI)±
ij

1 + e−λρ
(SI)+
ij + e−λρ

(SI)−
ij

, (5.0.7)
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with λ > 0 determined by the payload length M (in bits):

M =
∑
i,j

−β+
ij log2 β

+
ij − β

−
ij log2 β

−
ij − (1− β+

ij − β
−
ij) log2(1− β+

ij − β
−
ij). (5.0.8)

5.1 Discussion and relationship to prior art

The modulation of costs by the difference |e′ij |−|eij | has been proposed in the past. The BCHopt em-
bedding scheme [77] for JPEG images modulates the costs in the form of the quantization steps with
this factor. The same factor also appears in EBS [91], NPQ [52], UED [43], and SI-UNIWARD [51].
Here, we note that the description of SI-UNIWARD as appeared in [51] does not correspond to the
actual implementation available on the authors’ web site (http://dde.binghamton.edu/download/
stego_algorithms/). We elaborate on this issue in the appendix. What is new in our proposal is
using the factor to modulate the costs of any additive steganography, for example, in the spatial
domain. Additionally, we propose two more innovations – the ternary embedding operation and we
also compute the costs of A from the unquantized cover U rather than the cover X. It is shown in
the next section that both further improve the empirical security.

5.2 Experiments

The precover source for all our experiments was the BOSSbase 1.01 [7] database with images in
their full resolution RAW format. We used a script that utilized ’ufraw’ to convert them to the
RGB TIFF format of the same resolution. This included gain adjustment, gamma correction, and
color interpolation. All subsequent processing was done in Matlab rather than ImageMagick to
obtain an easy access to the non-rounded values. The final quantizer QL used L = 8 for spatial
domain and L = 11 for experiments in the JPEG domain. For brevity, the transformation T will
be described symbolically by arrows between different image representations in the form (color)size

type,
where color ∈ {RAW,RGB,GRAY}, size ∈ {FULL, 5122} for full-size and 512 × 512 images, and
type ∈ {nB,DBL} for n bit integers and doubles.

A side-informed scheme based on embedding algorithm A that uses q-ary embedding operation and
computes the costs from image C ∈ {U,X} will be denoted as SIq-A-C.

All detectors were trained as binary classifiers implemented using the FLD ensemble [64] with default
settings. The security is evaluated using the ensemble’s ’out-of-bag’ (OOB) error EOOB averaged
over ten ensemble runs with different seeds. In the spatial domain, we steganalyze with the SRM
features [39] while PHARM features [50] were used for the JPEG domain.

5.2.1 Spatial domain

In this subsection, we investigate the empirical security of side-informed S-UNIWARD [51] and
HILL [66] when U represents non-rounded pixel values. The goal of the three experiments below is to
investigate the effect of the transformation T , the difference between binary and ternary embedding,
and between computing the costs from U and X. Because our cover images were obtained using
operations from Matlab instead of ImageMagick, our cover source differs from the original BOSSbase
1.01, and the detection errors will be different than the ones reported in [66] and [51]. This is not an
issue as we are primarily interested in the relative improvement of the side-informed schemes over
the original algorithms.

37

http://dde.binghamton.edu/download/stego_algorithms/
http://dde.binghamton.edu/download/stego_algorithms/


CHAPTER 5. STEGANOGRAPHY WITH PRECOVER

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

0.5

E
O

O
B

HILL
SI2-HILL-X
SI2-HILL-U
SI3-HILL-X
SI3-HILL-U

0 0.1 0.2 0.3 0.4 0.50

0.1

0.2

0.3

0.4

0.5

Payload

E
O

O
B

SUNI
SI2-SUNI-X
SI2-SUNI-U
SI3-SUNI-X
SI3-SUNI-U

Figure 5.2.1: Mean EOOB for HILL (top) and S-UNIWARD (bottom) and their SI versions with the
quantization error after resizing with Lanczos 3 kernel as the side-information when computing the
costs from the unquantized and quantized cover.

Resizing
T : (RAW)FULL −→ (RGB)FULL

8B
gray−→ (GRAY)FULL

8B
crop, resize−→ (GRAY)5122

DBL
The results for HILL and S-UNIWARD (Fig. 5.2.1 ) point out two important facts. First, the choice
between computing the costs from U and X has a small effect on the overall detection because
the costs of both algorithms are insensitive to small perturbations of the cover. Thus, in all our
subsequent experiments we use just the costs computed from the unquantized cover, ρij(U). Second,
the gain in security when using the ternary embedding over the binary is significant. Third, the
side-informed schemes achieve significantly higher security despite making more embedding changes
(Fig. 5.2.2 ) and embedding into smooth areas (Fig. 5.2.3 ). This means that the security of SI
schemes solely hinges upon the difficulty of estimating the rounding errors from the quantized (and
embedded) image. Finally, Table 5.1 shows the effect of the resizing kernel in Matlab’s ’imresize’ for
SI-HILL and SI-S-UNIWARD at 0.4 bpp. The filter ’nearest’ is missing as it does not produce any
rounding error.

Color conversion
T : (RAW)FULL −→ (RGB)FULL

8B
crop, resize−→ (RGB)5122

8B
gray−→ (GRAY)5122

DBL
In Fig. 5.2.4 , we compare HILL and S-UNIWARD and their side-informed variants when utilizing
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Figure 5.2.2: By rows: cover image, its detail, embedding changes for HILL and SI3-HILL-U at 0.4
bpp for resizing with Lanczos 3 kernel.
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Figure 5.2.3: Change rate for HILL and S-UNIWARD and their SI versions when resizing with
Lanczos 3 kernel. The values are averages over all 10,000 images in our source.

the color conversion rounding error. The images are first resized so that the smaller side is 512 pixels
and then cropped to square. The conversion used a linear combination of individual RGB channels
with coefficients [0.2989, 0.5870, 0.1140]. This experiment again shows a strong positive influence of
the ternary embedding operation, increasing EOOB by almost 10%.

Quantization
T : (RAW)FULL −→ (RGB)FULL

16B
crop−→ (RGB)5122

16B
gray−→ (GRAY)5122

DBL
In this case, the transformation T does not include resizing, which makes the cover images smoother
than in the previous experiments. Thus, the steganographic algorithms adapt to the acquisition
noise naturally present in the image rather than the content. It is rather interesting that for this
source HILL and S-UNIWARD have almost identical performance (Fig. 5.2.5 ). The gain of ternary
embedding is mostly pronounced for medium payloads.

5.2.2 JPEG domain

The precover source for all experiments in this subsection was the BOSSbase 1.01 database with
images compressed using Matlab’s ’imwrite’ with 75% quality factor. Here, the unquantized cover
U are the non-rounded DCT coefficients divided by the corresponding quantization steps.

Fig. 5.2.6 shows the security of J-UNIWARD and its side-informed variants. Note that the SI embed-
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bilinear bicubic box triangle cubic Lanczos2 Lanczos3
HILL 0.0978 0.1564 0.2038 0.0981 0.1543 0.1539 0.1684

SI3-HILL-U 0.1731 0.2411 0.2899 0.1738 0.2421 0.2462 0.2652
SUNI 0.0646 0.1092 0.1249 0.0651 0.1072 0.1081 0.1233

SI3-SUNI-U 0.1261 0.1941 0.2562 0.1262 0.1916 0.1935 0.2061

Table 5.1: Mean EOOB for HILL, S-UNIWARD and their side-informed variants when utilizing the
quantization error after resizing with different kernels at 0.4 bpp.
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Figure 5.2.4: Mean EOOB for HILL, S-UNIWARD and their SI versions with the quantization error
after RGB to grayscale conversion as the side-information.

ding in JPEGs exhibits very different properties than in the spatial domain. The difference between
the costs ρij(U) and ρij(X) is now more influential while the choice of the embedding operation
(binary vs. ternary) is small with the ternary embedding giving a slightly worse performance. Both
observations can be attributed to the much larger quantization step. Indeed, the harsher quantiza-
tion removes more information about the cover source, which makes the costs computed from the
unquantized cover more tightly related to detectability. On the other hand, the larger quantization
step makes the cost of ternary embedding also higher than in the spatial domain. Finally, note that
the actual implementation of SI-UNIWARD [51] corresponds to SI2-JUNI-U (Appendix A).

5.3 Conclusions

Side-informed steganography has been studied in the past but was limited only to JPEG and palette
images. In this chapter, we formalize a general principle for utilizing side-information in any stegano-
graphic scheme that minimizes distortion, further enhance security by allowing ternary embedding,
and investigate the impact of computing embedding costs from quantized and unquantized covers.
The investigation is experimental and carried out for resizing, color depth reduction, and color to
grayscale conversion in the spatial domain and for quantization during JPEG compression. The gain
in empirical security and the effect of the proposed measures appears to depend mainly on the ratio
of the quantization step used for the final quantization and the image dynamic range. In the spatial
domain, this ratio is small, which makes the effect of computing the costs from the unquantized
cover rather than the quantized cover negligible. This is also because the selection channel of mod-
ern spatial domain embedding schemes is insensitive to small perturbations. On the other hand, the
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Figure 5.2.5: Mean EOOB for SRM for HILL, S-UNIWARD and their SI versions with the quanti-
zation error after color depth reduction as the side-information.

effect of allowing a ternary embedding operation is quite significant because rounding “to both sides”
is less expensive due to the fine quantization step. The situation is exactly the opposite for JPEG
images. There, the ternary embedding does not bring any improvement due to the large amplitude
of embedding changes while the costs computed from the unquantized precover give better security
as more information about the precover source is lost due to the much harsher quantization.
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Figure 5.2.6: Mean EOOB for J-UNIWARD and its side-informed variants when utilizing the quan-
tization error after JPEG compression when computing the costs from the unquantized cover and
the cover. The used quality factor is 75%.

42



Chapter 6

Model based side-informed
steganography

Digital media files are extremely complex objects that are notoriously hard to describe with suffi-
ciently accurate and estimable statistical models. This is the main reason for why current steganog-
raphy in such empirical sources [9] lacks perfect security and heavily relies on heuristics, such as
embedding “costs” and intuitive modulation factors. Similarly, practical steganalysis resorts to in-
creasingly more complex high-dimensional descriptors (rich models) and advanced machine learning
paradigms, including ensemble classifiers and deep learning.

Despite the success of side-informed schemes, there appears to be an alarming lack of theoretical
analysis that would either justify the heuristics or suggest a well-founded (and hopefully more
powerful) approach. In [35], the author has shown that the precover compensates for the lack of the
cover model. In particular, for a Gaussian model of acquisition noise, precover-informed rounding
is more secure than embedding designed to preserve the cover model estimated from the precover
image assuming the cover is “sufficiently non-stationary.” The Natural Steganography approach
discussed in Chapter 8 is also worth mentioning.

Inspired by the success of the multivariate Gaussian model in steganography for digital images [82,
40, 84], in this chapter we adopt the same model for the precover and then derive the embedding
rule to minimize the KL divergence between cover and stego distributions. The side-information is
used to estimate the parameters of the acquisition noise and the noise-free scene.

6.1 Modeling acquisition

An image P acquired using an imaging sensor has two components – the true scene T and acquisition
imperfections (noise) N:

P = T + N(T,θ). (6.1.1)

While the scene T is deterministic, the acquisition noise N is stochastic in nature. It depends on T
because, for example, the variance of the photonic (shot) noise linearly depends on light intensity
(the so-called heteroscedastic noise model [30]). Other random components of N, including readout
and electronic noise depend on the particular sensor. We exclude from N imperfections that are
consistent from picture to picture (of the same scene under the same conditions and camera settings),
which include the photo-response non-uniformity and dark current. Demosaicking, color correction,
and additional filtering applied to the acquired image either in the camera or during post-production
introduce dependencies into spatially neighboring samples of N, turning it into a random field
parametrized by θ, a vector encompassing the properties of the imaging hardware, camera settings,
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as well as the processing pipeline. Note that following the notation from (5.0.1), the uncompressed
coverU and precover P are identical.

Fundamentally, the steganographic capacity of P is the entropy H(N). However, embedding a pay-
load of this size undetectably is generally possible only in very special cases when the processing
pipeline is drastically simplified. Recently, Bas [3] has showed that RAW images acquired using
a monochrome sensor (a sensor not equipped with a color filter array) with no spatial filtering ap-
plied to them can carry a rather large payload with a very low level of empirical detectability. The
method is called “steganography by cover source switching” because the stego image statistically
resembles an image acquired with a higher sensor gain setting (ISO). In general, however, construct-
ing a steganographic method capable of embedding H(N) bits is likely infeasible in virtually all
practical situations because of the daunting complexity and non-stationarity of the random field N.
More seriously, many elements of the processing pipeline are unknown to the sender as most digital
camera manufacturers use proprietary demosaicking algorithms with local content-dependent rules
for interpolating the missing colors as well as proprietary content-adaptive algorithms for denoising
and sharpening.

6.2 Side-informed steganography with multivariate Gaussian
acquisition noise

It is intuitively clear that incorporating even partial information about the noise-free scene T and
the statistical properties of N at the sender should improve security. Indeed, the sender has a fun-
damental advantage because, in contrast to the Warden, she may have access to the acquisition
oracle (the digital camera) as well as the scene being imaged. For example, she can utilize the RAW
sensor capture or multiple acquisitions of the same scene or even “manufacture” the side-information
prior to embedding by subjecting the precover image to an information-reducing operation, such as
quantization, downsampling, format conversion, and/or reduction of the dynamic range.

In this chapter, we adopt a tractable model of the acquisition noise estimated from the available
side-information and derive the embedding rule by minimizing the KL divergence between cover and
stego images. The precover is modeled as an array of n = n1 × n2 independent but not necessarily
identically distributed random variables P , i = 1, . . . , n1, j = 1 . . . , n2. The error introduced by
color interpolation is also included in the acquisition noise since we view demosaicking as part of
acquisition. Therefore, pij will naturally have a larger variance in textured and noisy regions where
color interpolation algorithms are less accurate. Since a commonly adopted model of acquisition
noise inherent to the sensor is the Gaussian distribution (the heteroscedastic model [30, 89]), we
adopt this model in this chapter as well:

pij ∼ N (tij , σ2
ij), (6.2.1)

where tij is the precover value that would be registered by the sensor in the absence of acquisition
noise. Finally, we assume that the ijth cover element xij is obtained by rounding a specific realization
of pij . This is a simplification because in practice pij will be constrained to a finite dynamic range.
Note that the rounding encompasses more general uniform scalar quantizers.

We constrain ourselves to the simplest case when the sender has one precover pij , which will be used
to obtain an estimate of the true scene, t̂ij , as well as the acquisition noise variance, σ̂ij . We note
that the methodology proposed here can be extended to more general types of side-information, such
as multiple precovers / covers.

The embedding operation considered is binary, meaning that each precover element pij will be either
rounded to xij = [pij ] or to x̄ij = [pij ] + sign(pij − [pij ]) with the convention that when pij is an
integer, x̄ij ∈ {xij − 1, xij + 1} is chosen uniformly randomly.
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Denoting the stego image elements with yij , the embedding will change xij to xij with probability
βij :

Pr{yij = xij} = 1− βij (6.2.2)
Pr{yij = x̄ij} = βij , (6.2.3)

effectively embedding h2(βij) nats, where h2(x) = −x ln x− (1− x) ln(1− x) is the binary entropy
function.

Denoting the closed interval Iij = [xij , x̄ij ] when x̄ij > xij and Iij = [x̄ij , xij ] when x̄ij ≤ xij ,
the embedding is designed to minimize the KL divergence between cover and stego distributions
conditioned on precover values pij ∈ Iij . WLOG, in what follows we will assume that x̄ij > xij .
This conditional probability for the cover xij = [pij ] is

Pr{[pij ] = xij |pij ∈ Iij} = fij(xij)
fij(xij) + fij(x̄ij)

(6.2.4)

Pr{[pij ] = x̄ij |pij ∈ Iij} = fij(x̄ij)
fij(xij) + fij(x̄ij)

(6.2.5)

where

fij(xij) = Q

(
xij − t̂ij
σ̂ij

)
−Q

(
xij + 1/2− t̂ij

σ̂ij

)
(6.2.6)

fij(x̄ij) = Q

(
xij + 1/2− t̂ij

σ̂ij

)
−Q

(
xij + 1− t̂ij

σ̂ij

)
(6.2.7)

with Q(x) the tail probability of a standard normal random variable N (0, 1).

The ijth pixel in the stego image is modeled as a discrete random variable yij with range {xij , x̄ij}
with pmf

Pr{yij = xij |pij ∈ Iij} = gij(xij)
gij(xij) + gij(x̄ij)

, (6.2.8)

Pr{yij = x̄ij |pij ∈ Iij} = gij(x̄ij)
gij(xij) + gij(x̄ij)

, (6.2.9)

where

gij(xij) = (1− β(SI)
ij )fij(xij) + β

(SI)
ij fij(x̄ij) (6.2.10)

gij(x̄ij) = β
(SI)
ij fij(xij) + (1− β(SI)

ij )fij(x̄ij). (6.2.11)

Denoting for compactness hL
ij = fij(xij) and hR

ij = fij(x̄ij), a straightforward derivation gives the

45



CHAPTER 6. MODEL BASED SIDE-INFORMED STEGANOGRAPHY

following KL divergence between ijth cover and stego elements conditioned on pij ∈ Iij :

dij = DKL

(
xij

∥∥∥yij∣∣∣pij ∈ Iij) (6.2.12)

=
hL
ij

hL
ij + hR

ij

log
hL
ij

(1− β(SI)
ij )hL

ij + β
(SI)
ij hR

ij

(6.2.13)

+
hR
ij

hL
ij + hR

ij

log
hR
ij

β
(SI)
ij hL

ij + (1− β(SI)
ij )hR

ij

(6.2.14)

= −
hL
ij

hL
ij + hR

ij

log
(

1− β(SI)
ij + β

(SI)
ij

hR
ij

hL
ij

)
(6.2.15)

−
hR
ij

hL
ij + hR

ij

log
(

1− β(SI)
ij + β

(SI)
ij

hL
ij

hR
ij

)
(6.2.16)

.=

(
β

(SI)
ij

)2

2(hL
ij + hR

ij)
×

hL
ij

(
1−

hR
ij

hL
ij

)2

+ hR
ij

(
1−

hL
ij

hR
ij

)2
 (6.2.17)

=

(
β

(SI)
ij

)2

2
(hL
ij − hR

ij)2

hL
ij + hR

ij

(
1
hL
ij

+ 1
hR
ij

)
(6.2.18)

.= 1
2

(
β

(SI)
ij

)2
I

(SI)
ij , (6.2.19)

where

I
(SI)
ij =

(hL
ij − hR

ij)2

hL
ijh

R
ij

(6.2.20)

is the Fisher information obtained by expanding the logarithms using Taylor series w.r.t. β(SI) at
β(SI) = 0 and keeping only the leading term.

The total KL divergence between the cover and stego objects X = (xij), Y = (yij), i = 1, . . . , n1,
j = 1 . . . , n2, is the sum

DKL(X||Y) =
n1∑
i=1

n2∑
j=1

dij
.=

n1∑
i=1

n2∑
j=1

1
2β

(SI)
ij I

(SI)
ij . (6.2.21)

The actual embedding change rates β(SI)
ij are determined by minimizing DKL(X||Y) under the pay-

load constraint
n1∑
i=1

n2∑
j=1

h2(β(SI)
ij ) = αn, (6.2.22)

where α is expressed in nats per pixel. Similar to MiPOD [82], the proposed scheme minimizes the
sum of pixels’ Fisher information weighted by squared change rates as in this case the embedding
“cost” relates to statistical detectability. Note that minimizing the KL divergence makes the design
optimal only against an omniscient Warden who knows the exact actions of the embedder, including
the rounding errors eij . When the problem of embedding and detection are formulated withing
a game-theoretical framework when both the sender and the Warden randomize their strategies of
how to distribute (detect) the payload, the sender should also minimize a weighted sum of squared
change rates to operate at the Nash equilibrium of a zero-sum game when the payoff is defined as
Warden’s test power for a bounded false alarm [60].

The optimization problem can be approached in a standard manner using the method of Lagrange
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multipliers by solving the equations ∂L/∂β(SI)
ij = 0, where

L =
n1∑
i=1

n2∑
j=1

1
2

(
β

(SI)
ij

)2
I

(SI)
ij − λ

(
h2(β(SI)

ij )− αn
)
. (6.2.23)

This leads to n non-linear equations for β(SI)
ij

β
(SI)
ij I

(SI)
ij = λ(SI) log

1− β(SI)
ij

β
(SI)
ij

, (6.2.24)

for each ij, which can be solved numerically, for example, by a binary search over λ(SI) ∈ [0,∞]
in a similar manner as described in [40]. This embedding algorithm will be called side-informed
MiPOD (SI-MiPOD).

6.2.1 Extension to JPEG domain

The proposed scheme is extended to work with JPEG images in a straightforward manner. The
independence imposed on the noise N and linearity of the DCT allows us to easily compute the
variance of each non-rounded DCT coefficient given the estimated variances of pixels σ̂ij . Thus, the
same MVG model of acquisition noise can be applied to non-rounded DCT coefficients.
Given an 8 × 8 block of pixel values pij ∈ {0, . . . , 255}, 0 ≤ i, j ≤ 7, in an uncompressed image P,
the klth DCT coefficient Dkl, 0 ≤ k, l ≤ 7, before rounding is a linear combination of pixel values

Ukl = 1/Qkl
7∑

i,j=0
f

(k,l)
ij pij , (6.2.25)

or in matrix form symbolically U = DCT(P), where

f
(k,l)
ij = wkwl

4 cos πk(2i+ 1)
16 cos πl(2j + 1)

16 , (6.2.26)

w0 = 1/
√

2, wk = 1 for k > 0, and Qkl is the JPEG quantization matrix. With the adopted
acquisition model (6.2.1), the unrounded DCT coefficients ukl are independent samples from an
array of Gaussian variables N (µkl, σ2

kl). The parameters of the Gaussian acquisition noise can be
estimated as

σ̂2
kl = 1/Q2

kl

7∑
i,j=0

(
f

(k,l)
ij

)2
σ̂2
ij , (6.2.27)

where σ̂2
ij are pixel variances estimated in the spatial domain using, e.g., the variance estimator used

in MiPOD. With a single precover, the mean is estimated as

µ̂kl = ukl. (6.2.28)

Having estimated the MVG parameters, the proposed side-informed embedding rounds ukl to either
[ukl] or [ukl] + sign(ekl), ekl = ukl − [ukl] as described above. This embedding algorithm will be
called side-informed J-MiPOD (SI-J-MiPOD).

6.3 Connection to heuristic schemes

We now contrast the derived embedding rule with heuristic binary side-informed embedding with
precover (see Eq. (5.0.4)). When only the precover value pij is available as side-information, t̂ij = pij
is a minimum variance unbiased estimate under our acquisition model. To obtain a closed-form
expression, we work in the limit of small and large values of σ̂ij for both schemes.
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6.3.1 Model-based SI-MiPOD

Without loss on generality, we will assume that eij ≥ 0. Recalling the formula for fij (6.2.6) and
Taylor expansion of Q(x) ≈ 1

2 −
1√
2πx+ 1

6
√

2πx
3 +O(x5) at x = 0, for large σ̂ij

hL
ij = Q

(
[pij ]− pij

σ̂ij

)
−Q

(
[pij ] + 1/2− pij

σ̂ij

)
,

= Q

(
−eij
σ̂ij

)
−Q

(
−eij + 1/2

σ̂ij

)
(6.3.1)

.= 1
2σ̂ij
√

2π
− 1

6σ̂3
ij

√
2π

(
3
2e

2
ij −

3
4eij + 1

8

)
(6.3.2)

and

hR
ij = Q

(
[pij ] + 1/2− Pij

σ̂ij

)
−Q

(
[pij ] + 1− pij

σ̂ij

)
,

= Q

(
−eij + 1/2

σ̂ij

)
−Q

(
−eij + 1
σ̂ij

)
(6.3.3)

.= 1
2σ̂ij
√

2π
− 1

6σ̂3
ij

√
2π

(
3
2e

2
ij −

9
4eij + 7

8

)
. (6.3.4)

Thus,

(hL
ij − hR

ij)2 .= (1/2− eij)2

16σ̂6
ij2π

(6.3.5)

and
1/hL

ij
.= 1/hR

ij
.= 2σ̂ij

√
2π (6.3.6)

for large σ̂ij . Finally, the Fisher information (6.2.20) becomes

I
(SI)
ij

.= 1
4σ̂4

ij

(1/2− |eij |)2
. (6.3.7)

This expression for the FI (6.3.7) has been written for the general case when eij can be both negative
and positive. It informs us that, for large noise variance, the rounding error should modulate the
Fisher information by (1/2−|eij |)2, which achieves a similar effect as multiplying the costs by 1−2|eij |
in heuristic cost-based side-informed embedding schemes. We remark that the approximation (6.3.7)
is fairly accurate as long as σ̂ij & 2 for all values of eij .

For a small σ̂ij , the terms hLij and hRij in (6.2.20) can be simplified using the asymptotic expression
for Q(x) ≈ 1√

2πxe
−x2/2 for large x:

hL
ij = Q

(
[pij ]− pij

σ̂ij

)
−Q

(
[pij ] + 1/2− pij

σ̂ij

)
, (6.3.8)

.= 1−
exp

(
−(−eij)2/(2σ̂2

ij)
)

√
2π (eij/σ̂ij)

−
exp

(
−(1/2− eij)2/(2σ̂2

ij)
)

√
2π ((1/2− eij)/σ̂ij)

, (6.3.9)
.= 1. (6.3.10)

Following the same steps,

hR
ij
.=

exp
(
−(1/2− eij)2/(2σ̂2

ij)
)

√
2π(1/2− eij)/σ̂ij

, (6.3.11)
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and finally

I
(SI)
ij =

(
hR
ij − hL

ij

)2

hL
ijh

R
ij

.= 1
hR
ij

(6.3.12)

.=
√

2π 1/2− eij
σ̂ij

exp
(
(1/2− eij)2/(2σ̂2

ij)
)
. (6.3.13)

For small σ̂ij , we will derive an approximate solution to (6.2.24) by taking its logarithm

ln β(SI)
ij + ln I(SI)

ij
.= lnλ(SI) + ln

(
− ln

(
β

(SI)
ij

))
, (6.3.14)

from which β(SI)
ij

.= λ(SI)/I
(SI)
ij and thus

β
(SI)
ij

.= λ(SI)

I
(SI)
ij

= 1√
2π

σ̂ij
1/2− eij

exp
(
−(1/2− eij)2/(2σ̂2

ij)
)
. (6.3.15)

When σ̂ij � 1/2− eij , the value of β(SI)
ij will rapidly approach zero.

6.3.2 Heuristic SI-MiPOD

To obtain closed-form expressions, we will again consider the case of a small σ̂ij and large σ̂ij . The
heuristic side-informed MiPOD starts with MiPOD’s embedding costs ρij derived in (1.3.6), which
are then modulated by the rounding error ρ(SI)

ij = ρij (1− 2 |eij |). The side-informed embedding
probabilities are

β
(SI)
ij = e−λ

(SI)ρ
(SI)
ij

1 + 2e−λ(SI)ρ
(SI)
ij

= 1
2 + eλ

(SI)ρ
(SI)
ij

, (6.3.16)

where λ(SI) is a Lagrange multiplier determined from the payload constraint
∑
ij h2(β(SI)

ij ) = αn.
The embedding can be reinterpreted as MiPOD with Fisher information

I
(SI)
ij = λ(SI)

β
(SI)
ij

ln
(

1/β(SI)
ij − 2

)
,

= λ(SI)(2 + eλ
(SI)ρ

(SI)
ij )λ(SI)ρ

(SI)
ij . (6.3.17)

First, we carry out the analysis for large σ̂ij . To this end, we rewrite Eq. (1.3.5) determining
MiPOD’s embedding change rates as

exp(βijIij/λ) = 1/βij − 2. (6.3.18)

Recalling that Iij = 2/σ̂4
ij� 1 for large σ̂ij , the left side can be approximated using Taylor expansion

as
1 + βijIij

λ
+
β2
ijI

2
ij

2λ2 = 1/βij − 2 (6.3.19)

which is equivalent to
1

2λ2 y
3
ij + 1

λ
y2
ij + 3yij = Iij (6.3.20)

where yij = Iijβij . For small Iij , the first-order solution to this cubic equation is y(1)
ij

.= Iij

3 and the
second-order solution

y
(2)
ij = Iij

3 −
1

3λ

(
Iij
3

)2
, (6.3.21)
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which gives us βij
.= 1

3 −
Iij

27λ . Substituting this approximation to Eq. (1.3.6) and keeping only the
leading term gives ρij

.= Iij

3λ and for the Fisher information (6.3.17)

I
(SI)
ij ∝ ρ(SI)

ij = ρij(1− 2|eij |)
∝ Iij(1− 2|eij |). (6.3.22)

For small σ̂ij , Iij will be large and βij
.= λ/Iij small, as derived in the previous section, and therefore,

ρij ≈ ln(Iij/λ− 2). Substituting this result into (6.3.16) and recalling that Iij = 2σ̂−4
ij :

β
(SI)
ij = 1

2 + exp(λ(SI)ρ
(SI)
ij )

.= exp(−λ(SI)ρ
(SI)
ij ) = exp(−λ(SI)ρij(1− 2|eij |))

.= exp
(
−λ(SI) ln(Iij/λ− 2)(1− 2|eij |)

)
= C(λ, eij)σ̂4λ(SI)(1−2|eij |)

ij , (6.3.23)

where C(λ, eij) does not depend on σ̂ij .

6.3.3 Comparison of model-based and heuristic MiPOD

Let’s compare the properties of heuristic SI-MiPOD and model-based SI-MiPOD using the above
approximations and experimentally.

For σ̂ij & 2, the Fisher information in model-based SI-MiPOD is modulated by (1− 2 |eij |)2 (6.3.7)
while in the heuristic SI-MiPOD by (1− 2 |eij |) (6.3.22). Therefore, model-based SI-MiPOD embeds
a higher payload in pixels with large noise variance.

For small σ̂ij , the embedding probabilities β(SI)
ij for model-based SI-MiPOD rapidly approach zero for

all values of eij (6.3.15), while for the heuristic SI-MiPOD the behavior of the probabilities β(SI)
ij (σ̂ij)

depends on the exponent 4λ(SI) (1− 2 |eij |) (6.3.23). As eij → 1/2, the exponent approaches zero
and the embedding probability as a function of σ̂ij should become concave. Summarizing both
observations, we conclude that the model-based SI-MiPOD is more adaptive to the acquisition noise
variance σ̂2

ij than heuristic SI-MiPOD.

All quantitative conclusions reached above are now confirmed on an artificial precover Pij with 5×64
pixels with all 5× 64 combinations of values of five rounding errors ei ∈ {0, 0.125, 0.25, 0.375, 0.495}
and 64 variances linearly spaced between 0.01 and 64. WLOG, we set the precover values to Pij =
T̂ij = ei.

First, the embedding change rates βij were computed for payload α nats [82, 40], converted to costs
ρij using Eq. (1.3.6), and modulated ρ(SI)

ij = (1−2ei)ρij as in Eq. (5.0.4). The modulated costs were
then used to obtain the change rates via β(SI)

ij = exp(−λ(SI)ρ
(SI)
ij )/(1 + exp(−λ(SI)ρ

(SI)
ij )) with λ(SI)

determined by the same payload α.

Figure 6.3.1 shows the embedding change probability β
(SI)
ij for α = 0.3 nats as a function of the

variance σ2
j for each ei with the five curves corresponding to five values of ei, i = 1, . . . , 5. The

image on the left is for the heuristic binary SI-MiPOD (see [18] and Eq. (5.0.4)) while the image
on the right corresponds to the model-based SI-MiPOD. The lines positioned lower correspond to
lower ei. Note that both schemes embed maximum possible entropy when e → 1/2. In agreement
with our analysis, for small variance, model-based SI-MiPOD is more conservative (embeds with
smaller change rates) than heuristic SI-MiPOD. On the other hand, for large variance, the model-
based version embeds with larger change rates. In other words, model-based SI-MiPOD is more
content adaptive than its heuristic counterpart. While this may make the model-based approach
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Figure 6.3.1: Embedding change probability β(SI) as a function of variance σ2 on a synthetic cover
for α = 0.3 nats using heuristic side-informed binary MiPOD (left) and model-based binary MiPOD
(right).

more vulnerable to attacks utilizing the selection channel, such attacks are much more difficult to
implement for the Warden because she does not have access to the rounding errors. More on this
topic appears in Section 6.5.

6.4 Experiments

In this section, we provide the results and interpretation of all experiments in both spatial and JPEG
domains. We start with the description of our image sources. To contrast the performance of heuris-
tic side-informed schemes with the model-based versions, we include experiments on uncompressed
as well as JPEG images.

6.4.1 Image sources

Two primary data sources will be used: BOSSbase 1.01 with 10,000 512× 512 color images, called
BOSSColor, and the same database of grayscale images, which will be addressed as BOSSbase. All
images were all taken in the RAW format by seven different cameras, downsampled and cropped to
the final size of 512× 512 pixels. The script used for the conversion and processing is also available
from the same web site as the database itself [1]. To create BOSSColor, we modified the script to
skip the conversion from RGB to grayscale applied when creating BOSSbase.

6.4.2 Spatial domain (BOSSColor)

Figure 6.4.1 shows the results of our first experiment on real imagery. BOSSColor images were
converted to grayscale using the formula P = 0.2989R+0.5870G+0.1140B, producing non-rounded
precover values pij , which would then be rounded to 8bit integers xij = [pij ] to obtain the cover
source of 8-bit grayscale 512×512 images. Estimates of pixels’ noise variance σ̂2

ij were obtained from
precover grayscale values pij using the same variance estimator as in MiPOD (Section V in [82]).
Because the selection channel depends on the rounding error eij , it is not clear how to utilize
selection-channel-aware feature sets. Thus, we carry out steganalysis using the spatial rich model
(SRM) [39] with the low-complexity linear classifier [14] as a classifier. The empirical detectability
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Figure 6.4.1: Security of MiPOD and its heuristic and model-based SI versions with side-information
in the form of precover obtained by converting BOSSColor images to grayscale.

was measured using the minimal total probability of error, PE = minPFA(PMD +PFA)/2, where PMD
and PFA are missed-detection and false-alarm rates.

Alongside the above proposed side-informed technique with t̂ij = pij and σ̂2
ij , we also tested the (non

side-informed) MiPOD itself on grayscale cover images with pixel values xij = [pij ] and variances
σ̂2
ij , and its binary side-informed version with costs modulated as described in (5.0.4). We note that

all three embedding schemes were simulated using an embedding simulator.

The model-based binary SI-MiPOD improves the (ternary) MiPOD by 3–5% and the heuristic
SI-MiPOD by up to 2%. No improvement over the heuristic method was observed for payloads larger
than 0.3 bpp. We expect that further gain may be obtained by searching for the best parameters of
the variance estimator in our model.

6.4.3 JPEG domain

We start with a note that with the introduction of model-based side-informed JPEG steganography
(SI-J-MiPOD) as described at the end of the previous section, there now exists an equivalent em-
bedding algorithm that does not employ side-information, which we call J-MiPOD. It starts from
a JPEG cover image that is decompressed to the spatial domain (without rounding or clipping),
pixel variances are estimated in the spatial domain using MiPOD’s variance estimator, and the
corresponding variances of DCT coefficients are computed using (6.2.27). MiPOD is then directly
applied as described in [82] to quantized DCT coefficients of the cover JPEG. That is, the coeffi-
cients are changed by ±1 with equal probabilities that are computed to minimize the KL divergence
between cover and stego DCT coefficients under a payload constraint.

In this section, we thus compare the empirical security of five embedding algorithms: two that do
not use side-information and start with a JPEG cover (J-UNIWARD and J-MiPOD) and three side-
informed schemes, SI-UNIWARD, heuristic SI-J-MiPOD and model-based SI-J-MiPOD as described
at the end of the previous section. The detector was built with the Gabor Filter Residuals (GFR) [85]
features and the low-complexity linear classifier.

Figure 6.4.2 shows the detection error PE as a function of payload in bits per non-zero AC DCT
coefficient (bpnzac) for four JPEG quality factors while Figure 6.4.3 shows the same detection error
but as a function of JPEG quality factor for two payloads. Neither figure contains error bars for
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Figure 6.4.2: Security of two non side-informed and three side-informed embedding schemes as
a function of payload in bpnzac on BOSSbase for JPEG quality factors 65, 75, 85, and 95.

70 80 900

0.1

0.2

0.3

0.4

0.5

QF (0.2 bpnzac)

P
E

70 80 900

0.1

0.2

0.3

0.4

0.5

QF (0.4 bpnzac)

J-UNIWARD
SI-UNIWARD
J-MiPOD
Heu. SI-MiPOD
MB SI-MiPOD

Figure 6.4.3: Security of two non side-informed and three side-informed embedding schemes on
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better readability. The average statistical spread of the results in terms of the standard deviation
across ten database splits was 0.0029 with 91% of all spreads falling into the range 0.0010–0.0040.
It is comforting to confirm that the model-based SI-J-MiPOD is more secure than the heuristic
SI-J-MiPOD, which supports the proposed theoretical approach to side-informed embedding. The
gain increases with increased JPEG quality factor and becomes up to almost 7% for QF 95 and pay-
load 0.5 bpnzac. For small payloads, all three side-informed schemes are nearly undetectable across
all quality factors as evidenced in the left graph of Figure 6.4.3. For larger payloads, the Model-based
SI-J-MiPOD clearly becomes the most secure tested scheme, outperforming SI-UNIWARD as well. It
is also interesting to point out that the non side-informed J-MiPOD is on par with J-UNIWARD for
lower quality factors (up to 75) but then J-MiPOD starts losing w.r.t. J-UNIWARD. We attribute
this to the effect of compression on estimation of pixel variance because when both algorithms are
fed costs and variances estimated from the precover, J-MiPOD is more secure than J-UNIWARD
across all tested payloads and quality factors. We thus hypothesize that J-MiPOD might benefit
from fine-tuning the variance estimator to decompressed JPEG images. Since this topic does not
concern side-informed steganography, it is left to our future effort.

6.5 Public vs. private side-information and adaptivity

The selection channel in side-informed steganography is determined by both content complexity via
the pixel variance σ̂2

ij and by the side-information, the rounding error eij . The pixel variance is only
slightly changed by the embedding itself and thus constitutes a public side-information available
to the Warden. On the other hand, the rounding error eij is extremely difficult to estimate from
the cover/stego image even for images with simple content, such as blue sky images. Although
we cannot cite a source for this claim, this finding is based on our previous unpublished effort
and should be entirely plausible considering the fact that, for example, it is generally impossible
to obtain an accurate estimate of unquantized values of DCT coefficients in a JPEG file. The
only publications related to improving the quality of JPEG decompressed images relate to visually
suppressing blockiness artifacts, which is a task that is already difficult and much less demanding
than estimating the unquantized DCT coefficients. In short, it is a reasonable assumption that the
rounding error is a private side-information unavailable to the Warden.
Thus, ideally an embedding scheme should be less adaptive to content (σ̂2

ij) and more strongly
adaptive to the rounding error eij . Since we designed the model-based SI-MiPOD to minimize the
KL divergence between cover and stego distributions, we are essentially assuming an omniscient
Warden who knows both σ̂2

ij and eij . Based on the analysis in the above section on comparison
between heuristic and model-based SI-MiPOD, the latter is more strongly adaptive to content (the
acquisition noise variance) than the former. While the experiments in the previous section show that
the model-based approach is less detectable when steganalyzed with the selection-channel-unaware
SRM (GFR) features (an ignorant Warden), the situation reverses when the steganalyst utilizes the
public selection channel (content). However, the model-based approach is indeed by design much
less detectable w.r.t. the hypothetical omniscient Warden as long as the adopted model is good
enough. Table 6.1 summarizes the results for side-informed embedding in the spatial domain (when
converting an RGB image to grayscale) and in JPEG domain when steganalyzing with SRM (GFR)
features, which corresponds to an ignorant Warden, maxSRMd2 and selection-channel-aware GFR
features (SCA-GFR) [15], which simulates Warden aware of the public side-information, the content,
and the omniscient Warden fully informed by both content (σ̂2

ij) and the private side-information,
the rounding error eij .
In the spatial domain, strangely enough maxSRMd2 detects worse than SRM. On the other hand,
in the JPEG domain the GFR seems to detect the embedding as reliably as the SCA variant of the
features.
We note that there are really no other options for any realistic Warden who does not know the
rounding errors eij . Fixing eij at some medium value is virtually the same as fixing it at any other
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Experiment Payload Scheme Ignorant Aware of σ Aware of σ, e

RGB
0.2 bpp Heu SI-MiPOD 0.4104±0.0031 0.4402±0.0033 0.2306±0.0020

MB SI-MiPOD 0.4203±0.0024 0.3951±0.0072 0.3466±0.0029

0.4 bpp Heu SI-MiPOD 0.3002±0.0022 0.3317±0.0025 0.2065±0.0026
MB SI-MiPOD 0.3012±0.0029 0.2696±0.0031 0.2572±0.0031

JPEG
0.2 bpnzac Heu SI-J-MiPOD 0.4740±0.0034 0.4761±0.0029 0.4529±0.0031

MB SI-J-MiPOD 0.4787±0.0022 0.4751±0.0023 0.4630±0.0020

0.4 bpnzac Heu SI-J-MiPOD 0.3868±0.0040 0.3953±0.0031 0.3618±0.0015
MB SI-J-MiPOD 0.4182±0.0022 0.4210±0.0018 0.4038±0.0026

Table 6.1: Detection error when steganalyzing heuristic SI-MiPOD and model-based (MB)
SI-MiPOD with SRM and maxSRMd2 and their JPEG counterparts with SRM/GFR (ignorant
Warden), selection-channel-aware maxSRMd2/GFR (Warden aware of content, σ̂2

ij), and omniscient
Warden aware of both of content σ̂2

ij and rounding error eij .

value. This is because the rounding error is only in a multiplicative factor that modulates the costs
(Eq. (5.0.4) or (5.0.5) and (5.0.6)) in the heuristic schemes as well as the Fisher information (6.3.7)
in the model-based scheme.

6.6 Conclusions

Steganography with precover at the sender has come a long way. The main progress has been due to
advanced coding techniques coupled with a heuristic incorporation of the precover in the embedding
algorithm. The typical heuristic calls for modulating costs by 1− 2|e|, where −1/2 < e ≤ 1/2 is the
rounding error. Despite the success of side-informed schemes, such as SI-UNIWARD or UED, little
has been done to design the embedding algorithm from general principles. This chapter attempts to
rectify this situation.

We start by adopting a multivariate Gaussian model for the precover, modeling thus the process
of acquiring a digital image using an imaging sensor. By constraining the embedding rule to be
binary, the embedding change rates are derived to minimize the total KL divergence between cover
and stego models estimated from the available precover while enforcing the payload constraint. In
contrast to heuristic schemes, in our model-based approach the rounding error e modulates the
Fisher information by multiplying it by (1 − 2|e|)2. The resulting embedding is shown to be more
adaptive to content than heuristic side-informed embedding schemes. On experiments with images
represented in the spatial and JPEG domain, we demonstrate that the newly derived model-based
side-informed steganography enjoys a higher level of empirical security than heuristic embedding
schemes when detecting with selection-channel-unaware features (ignorant Warden). The same
holds when steganalyzing with selection-channel-aware features fully informed by the rounding error
(omniscient Warden). This is because the model-based schemes were designed to minimize the KL
divergence, which implicitly assumes an omniscient Warden. With features that incorporate the
knowledge of the content adaptivity, however, the model-based approach is more detectable than
heuristic schemes at least in the spatial domain. Optimal embedding should thus be designed within
a game-theoretic framework in which both the sender and the Warden randomize their strategies.

The framework introduced in this chapter lends itself to more general forms of side-information,
such as multiple acquisitions of the same cover.
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Chapter 7

Multiple exposures

Most consumer electronic devices, such as cell phones, tablets, and low-end digital cameras save
their images only in the JPEG format and thus do not give the user access to non-rounded DCT
coefficients. In this case, Alice can utilize a different type of side-information – she can take multiple
JPEG images of the same scene. This research direction has not been developed as much mostly due
to the difficulty of acquiring the required imagery and modeling the differences between acquisitions.
Prior work on this topic includes [31, 33, 32] where the authors made multiple scans of the same
printed image on a flat-bed scanner and then attempted to model the acquisition noise. Unfortu-
nately, this requires acquiring a potentially large number of scans, which makes this approach rather
labor intensive. Moreover, differences in the movement of the scanner head between individual scans
lead to slight spatial misalignment that complicates using this type of side-information properly. Be-
cause this problem is especially pronounced when embedding in the pixel domain, in this chapter we
work with multiple images acquired in the JPEG format as we expect quantized DCT coefficients to
be naturally more robust to small differences between acquisitions. Since our intention is to design a
practical method, we avoid the difficult and potentially extremely time consuming task of modeling
the differences between acquisitions [31, 33, 32] and make the approach work well even when mere
two images are available to Alice. In another relevant prior art[73], the authors proposed embedding
by stitching patches from multiple acquisitions in a predefined pattern. The individual patches are
not modified and are therefore statistically indistinguishable from the original images. However,
as the authors discussed in their paper there are likely going to be detectable differences between
individual patches and inconsistencies at their boundaries. Furthermore, the required number of
acquisitions quickly grows with the length of the secret message. By using 150 acquisitions of the
same scene (scans), the authors were able to embed only 0.157 bits per non-zero AC coefficient on
average.

7.1 Preliminaries

For simplicity and WLOG, we will work with 8-bit n1×n2 grayscale images with pixels P = (pij) ∈
Rn1×n2 , R = {0, . . . , 255}, with both n1 and n2 multiples of 8. During JPEG compression, P is
divided into disjoint blocks of 8 × 8 pixels, p(a,b)

ij , 1 ≤ i, j ≤ 8, 1 ≤ a ≤ n1/8, 1 ≤ b ≤ n2/8,
where (a, b) is the block index. Discrete cosine transform (DCT) is then applied to each block,
resulting in 8 × 8 blocks of DCT coefficients u(a,b)

ij , U(a,b) = DCT(P(a,b)), where U(a,b) and P(a,b)

are 8 × 8 matrices of DCT coefficients and pixels in the (a, b)th block, respectively. The next step
in JPEG compression involves dividing u(a,b)

ij by quantization steps qij , and rounding to integers
x

(a,b)
ij = Q1(u(a,b)

ij /qij), where Q1(·) quantizes to {−1023, . . . , 1024} and Q = (qij) is the luminance
quantization matrix. The quantized DCT coefficients x(a,b)

ij are then losslessly encoded, appended
with a header, and saved as a JPEG file.
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Figure 7.2.1: Relative number of correctly and incorrectly determined embedding directions for
steganography informed by the values of non-rounded DCT coefficients (precover) and by two JPEG
images. See Section 7.4 for details.

Throughout this chapter, we will use indices i, j to index DCT coefficients in an image as well as in
a specific (a, b)th block. Thus, in xij , the range of indices i, j is over the entire n1 × n2 image while
in x(a,b)

ij it is restricted to 1 ≤ i, j ≤ 8. We believe that this switching from global to block-based
indexing is natural, it simplifies the language, and should not become a source of confusion.

A generalized Gaussian distribution with density

fGG(x;µ, α, b) = α

2bΓ(1/α) exp
(
−
∣∣∣∣x− µb

∣∣∣∣α) , (7.1.1)

where µ, α, b are the mean, shape, and width parameters, will be denoted G(µ, α, b).

Images acquired using an imaging sensor are noisy measurements of the true scene T by which we
understand the image rendered by the camera lens. The randomness in the form of noise or imper-
fections is introduced by several separate mechanisms [53], which include the shot noise (photonic
noise), dark current, and electronic and readout noise. Note that defective pixels and the photo-
response non-uniformity are deterministic imperfections that are fixed for a given camera. Formally,
P = T + N ∈ Rn1×n2 , where N is the acquisition noise and T is a parameter that is unknown
to both Alice and the Warden but technically not random. An additive white Gaussian (AWG)
model nij ∼ N (0, σ2

a) is rather accurate for RAW sensor capture of a uniformly lit scene but only
an approximation for images with natural content where the variance is a linear function of pixel
intensity (the heteroscedastic noise [30, 89]). For a sensor capable of registering color, color inter-
polation and correction introduce dependencies among neighboring values of nij and across color
channels. Additional local dependencies are introduced by filtering that may be applied inside the
camera, such as denoising and sharpening, and by lens distortion correction, making the statistical
properties of the random field nij extremely complicated.

7.2 Steganography with precover

With the exception of YASS [79], all modern embedding schemes for JPEG images, whether or not
they use precover, are implemented within the paradigm of distortion minimization. The steganog-
rapher first specifies the cost of modifying each cover element (DCT coefficient) and then embeds the
payload so that the expected value of the total induced distortion (the sum of costs of all changed

58



CHAPTER 7. MULTIPLE EXPOSURES

65 75 85 90 950

0.2

0.4

0.6

Quality factor Q

M
od

ul
at
io
n
m

(Q
)

65 75 85 90 950

0.2

0.4

0.6

Quality factor Q

R = 0.2
R = 0.4
Ramp fnc. fit

Figure 7.2.2: Optimal modulation factor m(Q) as a function of the JPEG quality factor Q. Left:
BOSSbase 1.01 images with simulated acquisition noise. Right: BURSTbase.

cover elements) is as small as possible. Syndrome-trellis codes [28] can achieve this goal near the
corresponding rate–distortion bound.

The costs of changing the quantized JPEG coefficient x(a,b)
ij by +1 and −1 will be denoted ρ(a,b)

ij (+1)
and ρ(a,b)

ij (−1), respectively. The total cost (distortion) of embedding isD(X,Y) =
∑
xij 6=yij

ρij(yij−
xij), where yij ∈ {xij − 1, xij , xij + 1} are quantized DCT coefficients from the stego image. An
embedding scheme operating at the rate–distortion bound (with minimal D) embeds a payload of
R bits by modifying the DCT coefficients with probabilities [28]:

β±ij = P{yij = xij ± 1} = e−λρij(±1)

1 + e−λρij(+1) + e−λρij(−1) (7.2.1)

where λ is determined from the payload constraint

R =
∑
ij

h3(β+
ij , β

−
ij), (7.2.2)

with h3(x, y) = −x log2 x− y log2 y− (1−x− y) log2(1−x− y) the ternary entropy function in bits.
One of the most secure schemes for JPEG images called J-UNIWARD [51] uses symmetric costs
ρij(+1) = ρij(−1) for all i, j. Alice can prohibit the embedding from modifying xij , e.g., by +1, by
setting ρij(+1) = Cwet, where Cwet is a very large number, the so-called “wet cost” [38].
Side-informed steganography relates to embedding schemes where the sender has some additional
information that is used to adjust the costs. For JPEG steganography, the side-information may be
in the form of an uncompressed image or, equivalently, the unquantized precover values uij . Since
uij are not available to the Warden, Alice has a fundamental advantage. As shown in [35], uij
partially compensates for the lack of knowledge of the cover model when it is highly non-stationary.
While it is currently not known how to use side-information in an optimal fashion for embedding,
numerous heuristic schemes were proposed in the past [61, 91, 52, 43, 18, 77, 51]. Typically, the
rounding error eij = uij/qij − xij , −1/2 ≤ eij ≤ 1/2, is used to modulate the embedding costs ρij
by 1− 2|eij | ∈ [0, 1]. In SI-UNIWARD [51], for example, the costs are:

ρij(sign(eij)) = (1− 2|eij |)ρ(J)
ij (7.2.3)

ρij(−sign(eij)) = Cwet, (7.2.4)

where ρ(J)
ij are J-UNIWARD costs. In other words, SI-UNIWARD is a binary embedding scheme that

either leaves a DCT coefficient unmodified (rounds uij/qij to xij) or rounds it to the “other side” in
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Figure 7.2.3: Empirical security, PE, as a function of the JPEG quality factor for relative payload
R = 0.4 bpnzac for J2-UNIWARD, J-UNIWARD, and SI-UNIWARD. BOSSbase with simulated
acquisition noise, low-complexity linear classifier trained with GFR.
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Figure 7.2.4: MSE between X(1) and X(k), k = 2, . . . , 7 from each burst averaged over all 9, 310
bursts from BURSTbase. See Section 7.5 for notation and further details.
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the direction of xij , in which case the J-UNIWARD cost associated with this change is modulated.
The intuition behind the modulation is clear: when |eij | ≈ 1/2, a small perturbation could cause
uij/qij to be rounded to the other side. Such coefficients are thus assigned a proportionally smaller
cost. On the other hand, the costs are unchanged when eij ≈ 0, as it takes a larger perturbation to
change the rounded value.
In [18], a ternary version of SI-UNIWARD was studied where the authors argued that, as the
rounding error eij becomes small, the embedding rule should be allowed to change the coefficient
both ways. This ternary version of SI-UNIWARD uses the following costs:

ρij(sign(eij)) = (1− 2|eij |)ρ(J)
ij (7.2.5)

ρij(−sign(eij)) = ρ
(J)
ij . (7.2.6)

7.3 Steganography with multiple JPEGs

In this section, we describe the proposed scheme for embedding in JPEG images when the sender
possesses more than one acquisition of (approximately) the same scene. We start with the embedding
algorithm for two acquisitions and then discuss the possibilities for its generalization to more than
two acquisitions. The main embedding algorithm is explained with a pseudo-code to allow faster
understanding of the main concept and ease the implementation for practitioners.
Before we start, we wish to discuss some important philosophical issues. In reality, it is in principle
impossible to obtain two independent samplings of one object (Heraclitus’ “You could not step
twice into the same river” by Plato in Cratylus, 402a) because of small differences in exposure time,
physical shaking of the camera, and small differences in the scene itself, e.g., due to wind and the
amount and direction of illumination. In this chapter, for brevity we nevertheless abuse the language
a little while being aware of the fact that in reality the images will inevitably contain differences
other than those due to acquisition noise. One mission of this chapter is to investigate whether,
despite these obvious limitations, it is possible to make use of the other acquisitions to improve
steganographic security.
The proposed method can be applied to any cost-based scheme that embeds in quantized DCT
coefficients of a JPEG file. In fact, it is not limited to the JPEG format and could be applied to
other lossy formats, such as the JPEG 2000. We restrict ourselves to JPEG images in this chapter
because it is by far the most ubiquitous image format in current use.

7.3.1 Two exposures

First, we describe the embedding algorithm when two JPEG versions of the cover image are available.
We denote the quantized DCT coefficients in both images by x

(1)
ij and x

(2)
ij and pronounce, for

example, the first image as the cover JPEG and consider x(2)
ij as side-information.

Pronouncing x
(1)
ij as cover and x

(2)
ij as side-information, the sender first computes from x

(1)
ij the

costs of changing the ijth DCT coefficient by −1 and +1: ρij(−1) and ρij(+1). The costs can
be computed using, e.g., an existing cost-based embedding scheme, such as J-UNIWARD or one
of the versions of UED. The proposed embedding scheme keeps these costs when x

(1)
ij = x

(2)
ij and

modulates the costs otherwise. This can be explained by finding the new costs ρ(SI)
ij (±1) via the

following two-step procedure:

Step 1 : set ρ(SI)
ij (±1) = ρij(±1) (7.3.1)

Step 2 : x(1)
ij 6= x

(2)
ij ⇒ ρ

(SI)
ij (sij) = m(Q)ρij (sij) , (7.3.2)

where sij = sign(x(2)
ij − x

(1)
ij ) (7.3.3)
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where m(Q) ∈ [0, 1] is a modulation factor that depends on the quality factor 1 ≤ Q ≤ 100. To
ease the understanding of the embedding method and its implementation, Algorithm 7.1 shows the
pseudo-code for the embedding algorithm.

The value of the modulation factor m(Q) will be determined experimentally for each tested quality
factor Q and cover source by a search over m(Q) ∈ [0, 1] to obtain the smallest minimal total
probability of error, PE = minPFA(PMD + PFA)/2, where PMD and PFA are missed-detection and
false-alarm rates of a detector implemented using a low-complexity linear classifier [14] with the
Gabor Filter Residual (GFR) features [85] on the training set. The GFR features were selected
for the design because they are known to be highly effective against modern JPEG steganography,
including J-UNIWARD and all versions of UED [42, 43]. Experiments show that m(Q) should
generally be increasing in Q. The experimental Sections 7.4 and 7.6 and the appendix contain
further details on the specific form m(Q).

Our final note of this section concerns a naming convention. An embedding scheme with two JPEGs
with J-UNIWARD (UED-JC) costs will be abbreviated as J2-UNIWARD (and UED2-JC).

7.3.2 Multiple exposures

In this subsection, we discuss several possibilities for extending the embedding algorithm to the case
when Alice acquires k > 2 JPEG images of the same scene, x(1)

ij , . . . , x
(k)
ij .

With increased k, it may become possible to obtain a more accurate estimate of the noise-free scene
Tij (Section 7.1), for example, as a maximum-likelihood t̂

(ML)
ij = (x(1)

ij + · · · + x
(k)
ij )/k or a MAP

estimate by leveraging a prior on x(u,v)
ij , 1 ≤ i, j ≤ 8, with u, v the 8× 8 block index, estimated for

the given source. The estimates, however, will likely be biased since spatial misalignment between
exposures and differences other than due to the acquisition noise will likely increase with k, making
it not clear whether the additional exposures are an asset.

Moreover, it is not clear how the embedding should incorporate such estimates. Using t̂ij as a “high-
quality precover” and applying standard side-informed steganography, such as SI-UNIWARD, is
questionable because the rounded values [t̂ij ] form a different source with a suppressed acquisition
noise. On the other hand, using t̂ij as a “high-quality precover” for one of the JPEGs, e.g., x(1)

ij ,
would lead to “rounding errors” eij = t̂ij − x(1)

ij out of the range [−1/2, 1/2] and would thus require
a revisit of the established cost modulation (7.2.3) and (7.2.5).

In the end, and based on our experiments in Subsections 7.6.1 and 7.6.2, it appears that the best
way to use multiple images in practice is to simply select a pair of two closest images among the k
exposures and apply the algorithm described in the previous subsection.

7.4 Study with simulated acquisition noise

Our first experimental evaluation involves tests on images with simulated acquisition noise. These
are included because they constitute the “ideal” (and unachievable in practice) situation when no
other differences between the exposures exist besides a very simple form of the acquisition noise.
These results will be contrasted with real multiple exposures.

The mother database was BOSSbase 1.01 [7] containing 10,000 8-bit grayscale 512 × 512 PGM
images. Two different realizations of Gaussian noise N (0, 1) were added to the images, producing
two simulated acquisitions p(l)

ij , l = 1, 2, which were subsequently compressed with a range of JPEG
quality factors to obtain the values of rounded DCT coefficients x(l)

ij , l = 1, 2, for each image in
the database. Each JPEG image x(1)

ij was then embedded with relative payload R = 0.4 bits per
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1: Input: Two quality factor Q JPEG images with quantized DCT coefficients x(1)
ij and

x
(1)
ij , 1 ≤ i ≤M , 1 ≤ j ≤ N

2: Output: Stego JPEG image with DCT coefficients y(1)
ij

3: Compute costs ρ(0)
ij (−1), ρ(0)

ij (+1) of DCT coefficients from JPEG x
(1)
ij (the cover)

4: for i = 1, . . . ,M do
5: for j = 1, . . . , N do
6: ρij(±1) = ρ

(0)
ij (±1)

7: sij = sign(x(2)
ij − x

(1)
ij )

8: IF x
(1)
ij 6= x

(2)
ij THEN ρij(sij) = m(Q)ρ(0)

ij (sij)
9: end for

10: end for
11: Embed message in x

(1)
ij using costs ρij using STCs to obtain stego JPEG file with

DCT coefficients yij
12: Recipient reads the secret message using STCs from the stego JPEG file yij

Algorithm 7.1: Pseudo-code for side-informed embedding with two JPEGs.

non-zero AC DCT coefficient (bpnzac) using J2-UNIWARD. The values of the optimal modulation
factor m(Q) as a function of Q for this source are shown in Figure 7.2.2 left.
Figure 7.2.3 shows PE, which is the detection error PE averaged over ten random splits of the
database into training and testing parts as a function of the JPEG quality factor. We do not show the
statistical spread of the detection error as it is very small and in most cases covered by the markers.
In all experiments in this manuscript, the largest encountered standard deviation of the detection
error was 0.0122 and the average was 0.0042. The classifier was a low-complexity linear classifier [14]
and the feature set is the Gabor Filter Residual (GFR) [85] rich model known to be highly effective
against modern steganographic schemes. For comparison, the figure also contains the detection
error for J-UNIWARD (with x(1)

ij as covers) and SI-UNIWARD (with p(1)
ij as side-information ). For

a simulated acquisition noise, the side-information in the form of two JPEG images significantly
increases empirical security w.r.t. embedding with a single JPEG (J-UNIWARD). It seems even
more valuable for quality factors Q & 80 than non-rounded DCT coefficients (SI-UNIWARD). We
next shed some light on why this is the case.

The value p(2)
ij can only be useful to Alice when p

(2)
ij 6= p

(1)
ij , which will happen increasingly more

often with smaller quantization steps qij (larger JPEG quality). This type of side-information is
different from the non-rounded values u(1)

ij . It informs Alice about the direction along which the
costs should be modulated and less about the magnitude of the rounding error e(1)

ij = u
(1)
ij /qij−x

(1)
ij .

To better understand the difference between these two types of side-information, we conducted the
following experiment.
A generalized Gaussian model G(0, 0.4, 0.1) was adopted for the distribution of DCT coefficients
of the noise-free scene T. These parameters roughly correspond to medium spatial frequencies in
BOSSbase 1.01 [7] images. Then, we generated 2×NMC independent realizations from G(0, 0.4, 0.1),
t
(1)
k and t

(2)
k , k ∈ {1, . . . , NMC}, NMC = 106. Next, NMC independent realizations from N (0, 1)

were added to both vectors,1 divided by q ∈ {1, . . . , 15} and rounded to integers, p(l)
k = t

(l)
k + n

(l)
k ,

x
(l)
k = [p(l)

k /q], l = 1, 2. We then counted how often the different side-information correctly informed
us about the sign of the rounding error (direction of the stego changes).

We will say that side-information p(1)
k correctly determines the direction of steganographic changes

with respect to the noise-free scene if the embedding modifies the quantized cover value x(1)
k towards

1σa = 1 approximately corresponds to acquisition noise with 1/60th sec. exposure at 100 ISO with Canon 6D.
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the noise-free scene t(1)
k , which will happen when the rounding error e(1)

k = p
(1)
k /q−x(1)

k has the same
sign as t(1)

k /q− x(1)
k , or when (

(
p

(1)
k + n

(l)
k

)
/q− x(1)

k )(t(1)
k /q− x(1)

k ) > 0. It determines the direction

incorrectly if this product is negative.2 Similarly, we will say that side-information x(2)
k determines

the correct direction with respect to the noise-free scene if (x(2)
k − x

(1)
k )(t(1)

k /q − x(1)
k ) > 0. When

this product is negative, it determines the direction incorrectly. When it is zero (x(2)
k = x

(1)
k ), the

side-information is not useful.

Figure 7.2.1 shows the relative number of correctly and incorrectly determined embedding directions
based on side-information in the form of one non-quantized DCT coefficient c(1)

k (Precover) and two
quantized coefficients x(1)

k and x(2)
k (Two JPEGs). The most interesting part of the figure is for small

values of q. Two quantized images are much more conservative in the sense that they determine the
direction incorrectly much less frequently than from one non-rounded value. On the other hand, with
increasing q, the two quantized images find fewer correct directions. For small values of q = 1, 2, 3
(more generally, for large values of σa/q), two JPEG images provide more useful side-information
about the preferred changes compared to the non-rounded DCTs. This is in qualitative agreement
with Figure 7.2.3 that shows that J2-UNIWARD indeed outperforms SI-UNIWARD for high quality
factors (small q).

Note that for side-information with precover values p(1)
k , the sum of the relative number of correctly

and incorrectly determined directions is one while this is not the case for two quantized coefficients
because “ties” x(1)

k = x
(2)
k occur with non-zero probability.

7.5 Datasets for experiments

In general, it is difficult to acquire two images of the same scene because the camera position may
slightly change between the exposures even when mounted on a tripod due to vibrations caused by
the shutter. Another potential source of differences is slightly varying exposure time and changing
light conditions between exposures. To test the real-life performance of the proposed side-informed
steganography in Section 7.6, we prepared two new datasets: BURSTbase with images obtained
with a camera mounted on a tripod and BURSTbaseH with images shot from hand.

7.5.1 BURSTbase

To eliminate possible impact of flicker of artificial lights, all images were acquired in daylight, both
indoor and outdoor, and without a flash. Canon 6D, a DSLR camera with a full-frame 20 MP CMOS
sensor, set to ISO 200 was used in a burst mode. The shutter was operated with a two-second self-
timer to further minimize vibrations due to operating the camera. To prevent the camera from
changing the settings during the burst, it was used in manual mode. All images were acquired in
the RAW CR2 format and then exported from Lightroom 5.7 to 24-bit TIFF format with no other
processing applied.

We acquired 133 bursts, each containing 7 images. To increase the number of images for experiments,
the 5472× 3648 TIFF images were cropped into 10× 7 equidistantly positioned tiles with 512× 512
pixels. This required a slight overlap between neighboring tiles (7 pixels horizontally and 35 pixels
vertically). These 70×133 = 9, 310 smaller images were then converted to grayscale in Matlab using
’rgb2gray’ and saved in a lossless raster format to facilitate experiments with a range of JPEG
quality factors. We call this database of 7× 9, 310 uncompressed grayscale images ’BURSTbase’.

For each pair of different images from each burst, we computed the mean square error (MSE) between
them and then selected the pair with the smallest MSE, denoting one of them randomly as x(1)

ij and

2We can ignore the zero-probability event t(1)
k
/q = x

(1)
k

.
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Figure 7.5.1: Gray dots: MSE(X(1),X(2)) vs. average grayscale of X(1) across images from BURST-
base. Circles: acquisition noise variance estimated from images of gray wall. Both at ISO 200.

the other x(2)
ij . The remaining five images from the burst were denoted x(k)

ij , k = 3, . . . , 7, so that
the MSE between x

(1)
ij and x

(k)
ij forms a non-decreasing sequence in k. We analyzed images from

BURSTbase sorted in this manner to determine how much the differences between images are due
to acquisition noise or slight spatial misalignment. Figure 7.2.4 shows the MSE between x

(1)
ij and

x
(k)
ij , k = 2, . . . , 7, averaged over the entire BURSTbase. For the closest pairs, MSE(X(1),X(2)) ≈ 5,

which would correspond to σ2
a = 5 if the differences were solely due to AWG noise with variance σ2

a.
This closely matches the variance estimated from a single image of content-less scenes with medium
gray. This reasoning indicates that X(2) and X(3) are on average reasonably well aligned with X(1)

while X(k), k ≥ 4, are increasingly more affected by small spatial shifts.
To obtain additional evidence that the differences between the two closest images from each burst are
due to acquisition noise rather than slight spatial misalignment, we conducted another experiment
in which we studied the MSE as a function of luminance. This was done to capture the dependence
of the acquisition noise variance on luminance – it follows the heteroscedastic model further modified
by tonal curve adjustment. To map out the dependence, we took RAW images of a uniform gray
wall in the exposure priority mode with a wide range of exposures while all other settings were kept
unchanged (at ISO 200). These flat-field images were then exported from Lightroom to 24-bit TIFF
images, converted to grayscale using Matlab’s ’rgb2gray’, and cropped to the central 512 × 512
region. To isolate only the acquisition noise, a third-degree polynomial fit for each pixel on a sliding
32 × 32 block was subtracted from the pixels to remove any leftover gradual fall-off of luminance
towards the image edges due to vignetting. Figure 7.5.1 shows the MSE as a function of the average
image grayscale across BURSTbase, with the circles corresponding to variance–grayscale pairs from
images of gray wall. The data is in qualitative agreement with the maximum variance for pixels
with grayscale around 100. The decreased variance for grayscales below 100 is most likely due to
the tonal adjustment done by cameras to avoid magnifying noise in underexposed areas.

7.5.2 BURSTbaseH

Since most casual photographers do not shoot from a tripod, we prepared a second dataset with
images shot from hand to see whether the proposed modulation of costs still provides a boost under
this more realistic and less ideal conditions. A different set of images was acquired using the same
Canon 6D camera on a different day, this time with the camera being hand-held instead of mounted
on a tripod. A total of 154 bursts of 7–13 images were obtained that were processed and then
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γ 1 0.5 0.2 0.1
max MSE 3790 100.1 25.42 12.94
avg MSE 254.23 39.10 13.32 7.81

Table 7.1: Maximum and average MSE between two closest exposures from each burst in BURST-
baseH when constraining it to a fraction γ of best bursts.

cropped into 10,780 smaller 512 × 512 images in the same manner as described in the previous
subsection. To distinguish this source from BURSTbase, we call this database BURSTbaseH (H as
in Hand-held).

The average MSE between the two closest images from each burst was 254.23, which is significantly
larger than for BURSTbase (5.05). This tells us that the images are on average misaligned by a
large amount, which is likely to have a significant impact on the security of the proposed scheme.
The steganographer, however, can reject bad bursts and/or take another one and only embed in
images from bursts that are not grossly misaligned. In fact, many mobile devices today are capable
of taking bursts, such as for HDR photography or to reduce high-ISO noise. The authors envision a
mobile app that would leverage this capability for the purpose of increasing the security of stegano-
graphic communication. Another possibility to obtain well-aligned multiple exposures is to extract
consecutive frames from short M-JPEG video clips. This, too, could be achieved with a mobile app.

Based on the considerations spelled out in the previous paragraph, in the next section we experiment
with subsets of BURSTbaseH consisting of a fraction γ ∈ [0, 1] of images with the smallest MSE for
the closest pair. For example, in BURSTbaseH with γ = 0.5, we selected 10,780/2 = 5,390 bursts
with the smallest MSE, eliminating thus half of the bursts with the worst misalignment. Table 7.1
shows the average MSE between the closest pair of images when constraining BURSTbaseH to the
fraction of γ ∈ {0.1, 0.2, 0.5, 1} best bursts. Note that the average MSE between the two closest
exposures from each burst in BURSTbaseH with γ = 0.1 is rather close to the MSE between the
closest images of BURSTbase.

7.6 Experiments

In this section, we first study the empirical security of J2-UNIWARD on BURSTbase across a
range of quality factors and payloads and contrast it with J-UNIWARD and SI-UNIWARD. We also
assess how the security boost of the second exposure changes with increased differences between
exposures. In the second round of experiments, we assess the performance of the proposed scheme
in more realistic conditions when the bursts are taken with a hand-held camera instead of mounted
on a tripod (BURSTbaseH). On tests with J2-UNIWARD and UED2-JC, we show that when bad
bursts are rejected embedding with two JPEGs still provides a significant performance boost with
respect to embedding in single JPEGs despite rather large spatial misalignments.

Since the feedback from a detector utilizing the GFR feature set was used to determine the modula-
tion factor, it is essential that we test J2-UNIWARD with other feature sets to evaluate its security.
Thus, all experiments in this section were executed with a low-complexity linear classifier trained
with the merger of the GFR features, the spatial rich model (SRM) [39], and the cartesian-calibrated
JPEG Rich Model (ccJRM) [63].

7.6.1 BURSTbase

The modulation factor m(Q) (7.3.3) found experimentally as described in Section 7.3 is shown in
Figure 7.2.2 right. All our experiments in this subsection were executed with m(Q) approximated
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by a following ramp function:

m(Q) = max{0.075, 0.02167×Q− 1.55}. (7.6.1)

The appendix contains a simple qualitative argument explaining why the modulation factor follows
a ramp function.

Figure 7.6.1 left shows PE as a function of the JPEG quality factor for payload 0.2 bpnzac to-
gether with the results for J-UNIWARD (with x

(1)
k as covers) and SI-UNIWARD (with c

(1)
k as

side-information). For real acquisitions, the side-information in the form of two JPEG images signif-
icantly increases empirical security w.r.t. embedding with a single JPEG (J-UNIWARD). In contrast
with the experiments with simulated acquisition noise, however, the empirical security is not better
than when non-rounded DCT coefficients are used as side-information (SI-UNIWARD). For com-
pleteness, in Figure 7.6.1 right we report the detection error as a function of the quality factor for
five payloads and in Table 7.2 we report all numerical values, including the results obtained with
STCs with constraint height h = 10 rather than with an embedding simulator to see the coding loss.

To assess how sensitive J2-UNIWARD is w.r.t. small differences between exposures, we implemented
it with x(1)

ij as cover and x(k)
ij , k = 3, . . . , 7 as side-information, essentially using the second closest

(k = 3), the third closest (k = 4), etc., image instead of the closest image. As apparent from
Figure 7.2.4, with increasing k the MSE increases and thus the security boost should start diminish.
Figure 7.6.3 shows PE as a function of the quality factor across k = 2, . . . , 7 together with the value
of J-UNIWARD. While the gain of the second image indeed decreases with increased MSE, this
decrease is rather gradual and very small for higher quality factors. This experiment proves that the
second exposure provides useful side-information even when small spatial shifts are present opening
thus the possibility to improve steganography even when multiple exposures are acquired with a
hand-held camera rather than mounted on a tripod, a topic studied in the next subsection.

7.6.2 BURSTbaseH

To investigate the security of the proposed technique under more realistic setting, we experimented
with J2-UNIWARD and UED2-JC on BURSTbaseH with γ ∈ {0.1, 0.2, 0.5, 1} for a range of quality
factors and payloads. For J2-UNIWARD, we reused the modulation factor m(Q) determined on
BURSTbase (Eq. (7.6.1)). Although we did perform a search for the best modulation factor for
UED2-JC, the detection error was rather insensitive to m(Q) as long as it was sufficiently small.
In all our experiments with UED2-JC, the modulation factor was set as m(Q) = 0.01 for all tested
payloads and quality factors.

Figure 7.6.4 shows the detection error PE for two payloads for JPEG quality factor 75 for all four
values of γ for J-UNIWARD, J2-UNIWARD, and SI-UNIWARD with the same steganalysis detector
as in the previous subsection. Figure 7.6.5 contains the detection error for the same three embedding
schemes as a function of JPEG quality factor for γ = 0.1. Both figures demonstrate a substantial gain
in security of J2-UNIWARD w.r.t. J-UNIWARD. While this gain is understandably smaller for the
images of BURSTbaseH, it becomes substantial in comparison with embedding with a single JPEG
image as the number of rejected bursts increases. The numerical values of PE of all experiments are
provided in Table 7.3.

In Figure 7.6.6, we display the detection error as a function of γ for two payloads and two quality
factors for the UED-JC embedding algorithm. Here, the bad burst rejection is even more effective
than for J2-UNIWARD. For quality factor 95, UED2-JC even outperforms UED informed by the
precover (SI-UED-JC) for all γ < 1. Substantial security gain is observed even for γ = 0.5, e.g.,
when every other burst is rejected on average, across all payloads and quality factors.
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Quality factor Q
R M 65 75 85 87 90 92 95
0.1 SI 0.4991 0.4973 0.4897 0.4892 0.4952 0.4984 0.4525

J 0.3508 0.3541 0.3766 0.4892 0.4121 0.4087 0.4421
J2 0.4897 0.4659 0.4610 0.4633 0.4560 0.4523 0.4433
J2c 0.4550 0.4591 0.4326 0.4289 0.4149 0.4138 0.4155

0.2 SI 0.4815 0.4811 0.4761 0.4753 0.4812 0.4811 0.4498
J 0.1946 0.1953 0.2258 0.2301 0.2840 0.2787 0.3622
J2 0.4620 0.4275 0.4178 0.4128 0.4161 0.4100 0.3796
J2c 0.4146 0.4186 0.4179 0.4119 0.4103 0.3959 0.3695

0.3 SI 0.4501 0.4456 0.4406 0.4437 0.4506 0.4520 0.4200
J 0.1010 0.0975 0.1179 0.1256 0.1771 0.1660 0.2647
J2 0.4245 0.3827 0.3729 0.3723 0.3733 0.3560 0.3196
J2c 0.3740 0.3709 0.3626 0.3524 0.3569 0.3346 0.2990

0.4 SI 0.4056 0.3989 0.3976 0.3963 0.4118 0.4037 0.4201
J 0.0528 0.0469 0.0592 0.0627 0.0980 0.0906 0.1776
J2 0.3734 0.3394 0.3144 0.3084 0.3218 0.2932 0.2647
J2c 0.3356 0.3244 0.2949 0.2862 0.2976 0.2649 0.2380

0.5 SI 0.3552 0.3446 0.3392 0.3361 0.3571 0.3491 0.3779
J 0.0280 0.0234 0.0289 0.0291 0.0506 0.0444 0.1076
J2 0.3062 0.2989 0.2501 0.2383 0.2569 0.2168 0.2043
J2c 0.2777 0.2815 0.2210 0.1991 0.2231 0.1848 0.1779

Table 7.2: Empirical security PE of embedding schemes,M, J-UNIWARD (J), J2-UNIWARD (J2),
J2-UNIWARD implemented using STCs (J2c), and SI-UNIWARD (SI) on BURSTbase for a range
of payloads, R, and quality factors.

Quality factor Q
R M 65 75 85 87 90 92 95
0.2 SI 0.4788 0.4706 0.4744 0.4697 0.4736 0.4739 0.4541

J 0.2596 0.2600 0.2729 0.2769 0.2769 0.2996 0.3887
J2 0.3786 0.3963 0.4084 0.4163 0.4250 0.4176 0.4260

0.4 SI 0.4372 0.4305 0.4186 0.4275 0.4442 0.4541 0.4363
J 0.1267 0.1131 0.1000 0.1043 0.1356 0.3887 0.2399
J2 0.2583 0.0075 0.3020 0.2956 0.3274 0.4260 0.3518

Table 7.3: Empirical security PE of embedding schemes,M, J-UNIWARD (J), J2-UNIWARD (J2)
and SI-UNIWARD (SI) on BURSTbaseH for a range of payloads, R, and quality factors for γ = 0.1.
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Quality factor Q
R M 75 95
0.2 SI 0.2185 0.2893

U 0.0462 0.1318
U2 0.1995 0.3547

0.4 SI 0.0970 0.2477
U 0.0250 0.0706
U2 0.1032 0.1884

Table 7.4: Empirical security PE of embedding schemes, M, UED-JC (U), UED2-JC (U2), and
SI-UED-JC (SI) on BURSTbaseH for two payloads and two JPEG quality factors for γ = 0.1.
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Figure 7.6.1: Empirical security PE of J2-UNIWARD as a function of the JPEG quality factor Q
on BURSTbase. Comparison with previous art for R = 0.2 bpnzac.
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Figure 7.6.2: Empirical security PE of J2-UNIWARD as a function of the JPEG quality factor Q
on BURSTbase. J2-UNIWARD PE for R ∈ {0.1, 0.2, 0.3, 0.4, 0.5} bpnzac, embedding simulated at
rate–distortion bound.
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Figure 7.6.3: Empirical security PE of J2-UNIWARD when the kth closest image from each burst
from BURSTbase was used as side-information. Payload R = 0.4 bpnzac.
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Figure 7.6.4: Empirical security PE of J-UNIWARD, J2-UNIWARD, and SI-UNIWARD as a func-
tion of γ best bursts from BURSTbaseH. JPEG quality factor 75, left column 0.2 bpnzac, right
column 0.4 bpnzac.
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Figure 7.6.5: Empirical security PE of J-UNIWARD, J2-UNIWARD, and SI-UNIWARD as a func-
tion of JPEG quality factor Q for γ = 0.1 best bursts from BURSTbaseH. Left column 0.2 bpnzac,
right column 0.4 bpnzac.
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Figure 7.6.6: Empirical security PE of UED-JC, UED2-JC, and SI-UED-JC as a function of γ best
bursts from BURSTbaseH for two JPEG quality factors and two payloads.

7.7 Conclusions

We introduce a novel steganographic method with side-information at the sender in the form of a
second JPEG image of the same scene. The second exposure is used to infer the preferred direction
of steganographic embedding changes in the first exposure (cover). This information is incorporated
in any cost-based steganography by decreasing the embedding costs of such preferred changes with
a multiplicative modulation factor.
The proposed methodology is first studied on J-UNIWARD costs with multiple exposures simulated
by adding AWG noise to BOSSbase 1.01 images. This experiment revealed that, under such ideal
conditions, the proposed method with two JPEG images of the same scene exhibits empirical security
comparable with and sometimes even better than SI-UNIWARD informed by the uncompressed
precover. This observation was attributed to the fact that for larger quality factors two JPEGs
better inform the sender about the preferred embedding change direction than one uncompressed
image.
To evaluate the proposed method in real-life conditions, we created two new datasets: BURSTbase
with multiple exposures obtained by a tripod-mounted camera and BURSTbaseH with images shot
with a hand-held camera. Detailed analysis of the differences between the two closest exposures
from BURSTbase confirmed that they differ mostly by the acquisition noise, while images from
BURSTbaseH are generally significantly much more spatially misaligned due to camera shake.
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Figure 7.6.7: Modulation factor versus average quantization step q (real acquisitions).
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Figure 7.7.1: Optimal modulation factormij(q,R) as a function of the quantization step q for relative
payload R = 0.4 determined by minimizing the Bhattacharyya distance between cover and stego
distributions on generalized Gaussian models of DCT coefficients. Left: low frequency DCT modes
(i, j), 3 ≤ i + j ≤ 4 (second and third minor diagonal), Middle: medium frequency DCT modes
(i, j), 5 ≤ i+ j ≤ 10, Right: high frequency DCT modes (i, j), 11 ≤ i+ j ≤ 16.

For BURSTbase, we observed a quite significant increase in empirical security with respect to
steganography with a single cover image that gracefully decreased with increased spatial misalign-
ment between images. On the other hand, because of the comparatively larger misalignments be-
tween images shot with a hand-held camera the security improvement on BURSTbaseH was under-
standably smaller. However, we demonstrated for both J-UNIWARD and UED-JC, that the sender
can still significantly gain on empirical security by rejecting a portion of “bad bursts”, which testifies
about the practicality of the proposed embedding scheme.

Finally, the dependence of the experimentally determined modulation factor on the quality factor
is justified using Monte Carlo simulations by adopting generalized Gaussian model for DCT coef-
ficients and measuring the impact of cost modulation on statistical detectability in terms of the
Bhattacharyya distance between cover and stego distributions. Optimal modulation derived from
this model qualitatively matches the modulation obtained experimentally on real multiple exposures.

Further improvement is likely possible by optimizing the embedding cost modulation for the average
grayscale of the DCT block because the acquisition noise amplitude depends on luminance. We
plan to further study how the embedding should utilize more than two (quantized and unquantized)
acquisitions of the same scene, possibly by extending the approach proposed in [22]. We anticipate
that the proposed methodology will also work with multiple exposures obtained as consecutive frames
from video clips. Finally, we note that the proposed approach is not limited to JPEG domain and
will likely work for side-informed embedding in other domains [18].
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Natural steganography

Recently, Natural Steganography (NS), that relies on the concept of cover-source switching, has
showed a great promise for constructing practical secure steganographic systems [5, 4]. The author
showed that a high-capacity steganographic scheme with a rather low empirical detectability can
be built when the developing process of a RAW sensor capture is sufficiently simplified, e.g., after
gamma correction, bilinear downsampling, and 8-bit quantization of RAW images coming from a
monochrome sensor. The impact of embedding is masked as an increased level of photonic (shot)
noise due to a larger sensor gain (ISO setting). This is possible because in the raw domain the
distribution of the shot noise is well approximated with the heteroscedastic model independently
distributed on each photo-site. For a sufficiently simple developer, one can thus arrange the statistical
properties of the stego signal to mimic the increased heteroscedastic noise and make the stego image
statistically resemble an image taken at a higher ISO setting (a switch in the cover source). The
feasibility of this concept was shown in [4] with raw images taken with a Leica M Monochrome Type
230 camera. In a follow-up work [5], the same author extended NS to more complex developers that
involved gamma correction and bilinear downsampling as these processes allowed analytic derivation
of the acquisition noise properties in the developed domain. In this chapter, we make NS more
practical by introducing JPEG compression and also by treating the developer as a black box.
Similarly to [20, 19], we use multiple instances of developed images in order to design our embedding
strategy for each DCT coefficient.

8.1 Natural steganography in JPEG domain

In this section, we introduce the heteroscedastic noise model and study its properties after applying
block Discrete Cosine Transform (DCT) as in JPEG compression.

8.2 Model in the spatial domain

In natural steganography, the stego signal added to the cover image acquired at ISO1 is constructed
to mimic the additional shot noise to make the stego image look like it was acquired at ISO2 > ISO1.
The shot noise values in the spatial domain are assumed to be independent realizations of random
variables Ni,j that follow the heteroscedastic model

N
(1)
i,j ∼ N (0, a1µi,j + b1) (8.2.1)

where µi,j is the noiseless photo-site value at photo-site i, j, while (a1, b1) only depend on the ISO1
sensitivity and the specific sensor.
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The acquired photo-site sample x(1)
i,j is thus a realization

x
(1)
i,j = µi,j + n

(1)
i,j , (8.2.2)

of a Gaussian variable
X

(1)
i,j ∼ N (µi,j , a1µi,j + b1). (8.2.3)

Because the sum of two independent normally distributed random variables is also normally dis-
tributed with the mean and variance the sum of means and variances of both variables, we can write
that at ISO2 the photo-site value is given by x

(2)
i,j = x

(1)
i,j + si,j where Si,j is a random variable

representing the stego signal necessary to mimic the image captured at ISO2:

Si,j ∼ N (0, (a2 − a1)µi,j + b2 − b1). (8.2.4)

Assuming that the observed photo-site is close to its expectation, µi,j ≈ x
(1)
i,j , the photo-site of the

stego image is distributed as:

Yi,j ∼ N (µi,j , a1µi,j + b1 + (a2 − a1)µi,j + b2 − b1)

∼ X(2)
i,j . (8.2.5)

The distribution of the stego signal in the continuous domain takes into account the statistical model
of the shot noise estimated for two ISO settings, ISO1 and ISO2, using the procedure described in [4].
The work presented in [5, 4] shows that for monochrome sensors, this model in the spatial domain
can be used to derive the distribution of the stego signal in the spatial domain after quantization,
gamma correction, and image downsampling using bilinear kernels. We next study the properties of
the acquisition noise after DCT.

8.2.1 Model in the DCT domain

We now compute the joint-distribution of the heteroscedastic noise in the DCT domain. This
mathematical derivation can be used for a specific practical scenario of image development when a
RAW image coming from a monochrome sensor is directly transformed into a JPEG image. To a
certain extent, the derivations are also valid when gamma correction is performed before the DCT
transform.
Since the stego signal in the spatial domain follows the normal distribution 8.2.4 and since the DCT
is linear, the stego signal in the DCT domain, SDCT, follows a 64-dimensional multivariate normal
distribution

SDCT ∼ N (0,CDCT). (8.2.6)

In order to compute the covariance matrix CDCT of the stego signal S, it is convenient to use vector
notation by transforming the matrix S ∈ R8×8 into a vector s ∈ R64 by concatenating the columns.
The transpose operation St is then equivalent to the multiplication Ts, by T given by:

T =



1 0 . . .
0 . . . . . . 1 0 . . .

1 0 . . .
...

...
...

...
...

...
...

...
0 1 . . .

0 1 . . .
0 1 . . .

...
...

...
...

...
...

...
...


. (8.2.7)
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Consequently, the 8 × 8 matrix DCT tranformationA (1.5.4)is transformed into a 64 × 64 matrix
Av given by:

Av =



A 0 · · ·
0 A 0 · · ·
... 0 A 0 · · · 0

· · · 0 A 0
...

... 0 A 0
...

0 · · · 0 A 0
...

· · · 0 A 0
· · · 0 A


. (8.2.8)

The vector form of the DCT (1.5.3) finally becomes

DCTv(s) = AvTAvTs = Bs, (8.2.9)
where B = AvTAvT.
Now

CDCT = E[BSStBt] = B Cov(S) Bt, (8.2.10)
and Cov(S) denotes a diagonal matrix with diagonal elements equal to Var(si,j) = (a2 − a1)xi,j +
b2 − b1.

8.2.2 Discussion

Even though the stego signal (the sensor noise) is independent in the spatial domain, it follows a
general multivariate normal distribution in the DCT domain. Thus, ideally the embedding should
take into account dependencies that exist between DCT modes within each 8× 8 block. Note that
in this setting, no dependencies exist between DCT blocks. This model consequently enables us to
explicitly compute the variance of the stego signal for each DCT mode and the covariance between
DCT modes.
To better understand the nature of the dependencies between DCT coefficients, we sample the stego
signal directly in the DCT domain and observe the dependencies before and after JPEG quantization.
In Figure 8.2.1, we visually compare sampled blocks before (even columns) and after quantization
(odd columns) with the standard JPEG quantization matrix corresponding to quality factor 95.
Note that the quantization process is here quant(x) = ∆× round(x/∆), where ∆ is the quantization
step.
For different spatial cover blocks represented in the first row, blocks of stego signals are sampled
in the DCT domain (the second row, S) using (8.2.6) or in the spatial domain (the third row, Ss)
using (8.2.4) and then transformed.
While the first two spatial blocks with horizontal/vertical directions produce vertical/horizontal
correlations in the DCT domain, neither the checkerboard or the constant block produce significant
correlations (for the constant block, the signal must be i.i.d. since it is the DCT of an i.i.d. signal).
The diagonal blocks produce slightly correlated stego signals which are more pronounced for the
minor-diagonal block. Comparing the second and third rows enables us to verify that the sampling
either in the spatial domain or directly in the DCT domain exhibits similar dependencies. The odd
columns illustrate the effect of JPEG quantization, which tends to reduce the dependencies between
coefficients by nullifying high frequencies.
This experiment also shows that the dependencies in the DCT domain, contrary to the spatial domain
(see [17, 67]), heavily depend on the cover block content. However, we shall see in Section 8.5 that
for large quantization regimes not taking into account the dependencies does not significantly impact
the detectability of embedding.
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Figure 8.2.1: First row: spatial 8 × 8 blocks. The second and third rows are samples where, for
the purpose of comparison, the signal S is sampled directly in the DCT domain by sampling a 64-
dimensional multivariate Gaussian distribution while Ss is sampled in the spatial domain and then
converted to DCT coefficients.

8.3 Overview of the algorithms

We remind the reader that our goal is to develop a NS method capable of embedding messages in
JPEG images by utilizing a cover source switch from ISO1 to a larger ISO2. The first step in
building such a steganographic method is to estimate the parameters of the heteroscedastic sensor
noise for the specific camera that will be used for communication and for both ISO settings: (a1, b1)
and (a2, b2). This has been executed by taking images of a gray gradient as explained in [5, 4] and
in Section 8.4.2. Having estimated these four parameters, from Eqs. (8.2.2)–(8.2.5) the stego photo-
site is obtained from the cover photo-site X(1)

i,j ∼ N (µi,j , a1µi,j + b1) by adding to it a realization of
Si,j ∼ N (0, σ2

i,j), where σ2
i,j = (a2 − a1)µi,j + b2 − b1 ≈ (a2 − a1)xi,j + b2 − b1.

In order to perform a cover-source switch on a raw pre-cover image, we adopt special rules for
photo-sites saturated at 2r, where r is the dynamic range of the sensor, typically 12 or 14 bits.
Our strategy is similar to the one presented in [83]. The photo-site value y(2)

i,j after the cover-source
switch mimicking sensitivity ISO2 is:

y
(2)
i,j =


2r if x(1)

i,j = 2r or x(2)
i,j > 2r

0 if x(2)
i,j < 0,

x
(2)
i,j else.

, (8.3.1)

To obtain a better insight into the role of our simplifying assumptions and the effect of estimating
the noise in the DCT domain and to establish upper bounds on the detection error, we investigate
five different approaches explained below. The security of these approaches is evaluated by building
a classifier distinguishing between the images from both classes after JPEG compression. To get
closer to a practical scheme, we added the case when the developer is treated as a black box and
the noise distribution is estimated from quantized DCT coefficients in the developed domain using
Monte-Carlo (MC) sampling.

1. Pure, unmodified images. As a baseline experiment, no modifications were introduced to
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the ISO1 images and a classifier was trained to recognize between these and ISO2 images
after JPEG compression.

2. Simulated noise. Before any developing, we added a simulated heteroscedastic noise to
the raw images at ISO1 using the clipping rule 8.3.1. Provided the parameters of the het-
eroscedastic noise at each ISO setting were precisely estimated and under the assumption that
we steganalyze using the best possible detector, this result could serve as an upper bound on
the security of the method – the detection error. Note, however, that it does not correspond
to any practical embedding.

3. Monte-Carlo estimate of the variance. We add 300 independent realizations of the het-
eroscedastic noise estimated as in Approach 2 to the raw pre-cover image acquired at ISO1,
x

(1)
i,j , employing again 8.3.1, develop the images, and apply the DCT. Then, we independently

estimate the mean and the variance of each DCT coefficient from the MC samples. To obtain
the stego JPEG file, we add independent realizations of such random variables to the unquan-
tized DCT coefficients of the developed pre-cover and round to integers to obtain the JPEG
DCT coefficients of the stego image.

4. Monte-Carlo estimate of the pmf. To remove the Gaussianity assumption, we use the MC
samples to directly estimate the probability mass function of each rounded DCT coefficient.
Then, we sampled from this distribution for each coefficient to obtain the final quantized DCT
coefficient from the stego image.

5. SI-UNIWARD. For comparison with the current state of the art, we embedded all images
also with SI-UNIWARD [51] with the same average embedding rate or lower if the embedding
rate was over 1 bit per DCT coefficient, the maximal payload of SI-UNIWARD.

We now proceed with a formal description of the NS method that hides messages in the JPEG file
given a pre-cover in a RAW format. The sender basically uses the pre-cover in the RAW format to
estimate the Gaussian variance from MC samples (Approach 3) and then compute the pmf of the
quantized stego DCT coefficient, or to directly estimate the pmf of each quantized DCT coefficient
from the stego image (Approach 4). The advantage of Approach 4 is that it can be applied for realistic
(i.e., complicated) developers that output more complex (non-Gaussian) shot noise distribution.
Denoting the pmf of a fixed quantized stego DCT coefficient as qk, the payload that could embed at
this coefficient is

−
∑
k

qk log2 qk bits, (8.3.2)

the entropy of the pmf. For Approach 3, given the variance ω2 of a specific unquantized stego
DCT coefficient with quantization step ∆, qk corresponds to the kth bin in a quantized Gaussian
distribution N (0, ω2/∆2):In contrast, in Approach 4 the pmf qk is estimated directly from the 300
MC samples by computing an empirical histogram.
The actual message embedding can be implemented in practice using the multi-layered version of
syndrome-trellis codes [28], which essentially allow embedding payload close to the entropy (8.3.2)
at each DCT coefficient. We would also like to stress that the total payload that can be embedded
is determined by the two ISO values and is equal to the sum of entropies (8.3.2) over all DCT
coefficients in the JPEG image. The payload size also depends on the JPEG quality factor and the
content of the image. Should the sender need to embed a shorter payload, the message could be
padded with random bits. Alternatively, the sender could also switch to a smaller value of ISO2.
On the contrary, if the payload to be embedded is larger than the admissible payload offered by the
cover-source switch, the sender would have to use a larger value of ISO2 or split the payload across
multiple images.
Note that the proposed NS method may, depending on the ISO settings, embed more bits in an
image than SI-UNIWARD. For a fair comparison, for SI-UNIWARD we therefore embedded the
same relative payload in each image (in bits per pixel rather than per non-zero AC DCT coefficient)
obtained by averaging the payload embedded by Approach 3 over the whole database.
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Figure 8.4.1: Comparison between distributions of shot noise coming from different sensors. His-
tograms are computed from the photo-site values of one given channel (for color sensors) on a
uniform patch. Dash lines represent Gaussian distributions with the same mean and variance as the
histogram.

8.4 Database acquisition and shot noise distribution

In this section, we describe how we acquired the image databases needed to benchmark Natural
Steganography, and discuss the statistical properties of the photonic noise distribution for different
sensors.

8.4.1 Acquisition process

In contrast to the widely used BOSSBase [1] used in steganography and steganalysis, for bench-
marking Natural Steganography the datasets need to be built with special care. Because the goal of
the embedding is to mimic a shot noise at ISO2 from images captured at sensitivity ISO1 < ISO2,
two sets of images have to be acquired: one set at ISO1 that will be used for the embedding and
another set at ISO2 that will represent the set of cover images. The steganalyst will then compare
stego images coming from the set at ISO1 and cover images acquired at ISO2. We assume here
that the sender will modify or remove the ISO setting from the stego images because the steganalyst
could potentially utilize the discrepancy between the noise level in stego images and the ISO setting.

It is important to mention that in order to build a classifier that will only detect the steganographic
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embedding, the two sets of images have to represent identical content.

During our acquisition campaign, we consequently paid attention to use constant acquisition param-
eters: the same focus, the same scene with the use of a tripod, the same white balance, and the same
aperture to have only the sensitivity and the exposure time fluctuating. We realized the importance
of this step when at one point we slightly modified the focus between the two sets, which resulted
in increased classification accuracy due to the ability of the classifier to distinguish between content
sharpness rather than the steganographic changes.

To alleviate the labor associated with the acquisition of these databases, we took around 200 raw
images1 at each setting and subsequently cropped each picture to non-overlapping 512× 512 images
to generate around 10,000 crops in each set. The development of the raw image was done using the
’dcraw’ Linux command line with the parameters ’-k 0’ to obtain the same darkness level for
each set, ’-g 1 1’ to disable gamma correction, ’-W’ to obtain the same white balance for each set
and ’-6’ to generate 16-bit ppm/pgm images instead of 8-bit images.

We ran these acquisition campaigns on three sensors: one monochrome CCD sensor from the Leica
M Monochrome Type 230 camera, one color CCD sensor from the Leica M9 camera, and one CMOS
sensor from the Z CAM E1 action camera. Note that the Leica M Monochrome and Leica M9
cameras have identical sensors but the Monochrome does not have a Bayer CFA. The databases
built from Leica cameras are images from different scenes, shot using a tripod at different ISO
settings (320, 1000, and 1250 for the Monochrome), the databases from the E1 sensor have been
captured using a rotating platform in a room filled with different objects.

8.4.2 Shot noise distribution

We were very surprised to notice that, using exactly the switch 8.3.1, the detectability of the M9
sensor was extremely high compared to the detectability of the Monochrome sensor. After some
investigations, we noticed that the shot noise on the M9 sensor does not have a Gaussian distribution
at high ISO sensitivities.

This phenomenon is illustrated in Figure 8.4.1, where we compare the shot noise distributions for
both different sensors. To estimate the distribution of the sensor noise, we used here a simple but
robust technique: we shot a white wall at a distance of 1m from the sensor and out of focus in
order to obtain an image with average constant illumination. We then computed the histogram
from the RAW image, using the photo-site values2 of a 100 × 100 patch centered on the image
to avoid vignetting for one given color channel (we checked that our observations were consistent
for all channels and for different patches). While the histogram of the noise taken at ISO 160
(Figure 8.4.1a) corresponds to a Gaussian signal, as soon as the ISO sensitivity is increased, the
shot noise distribution becomes strongly non-Gaussian. For example, at ISO 2000 (Figure 8.4.1b)
the distribution has heavy tails and the Gaussian assumption is rejected. The sensor capture from
another M9 camera (see Figure 8.4.1c) shows that this artifact does not come from the specific
camera. It is also not specific to the manufacturer since Figure 8.4.1e depicts a Gaussian distribution
for the Leica Type M262 CMOS sensor. What is even more surprising is the fact that the Leica M
Monochrome Type 230 camera (an M9 version without Bayer CFA) does not exhibit this artifact
(Figure 8.4.1d).

In the end, we selected two sensors:

1. Leica M Monochrome camera to directly acquire grayscale images because this sensor does
not have demosaicking applied during the development process and it also exhibits normally
distributed shot noise,

1The exact number depends of the sensor resolution.
2They are, for example, easily accessible using the Rawkit Python module [72].
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2. Z CAM E1 to acquire color images because of a Gaussian shot noise distribution at high ISO
(Figure 8.4.1f). This action camera has a time-lapse mode, which enables fast acquisition of
new images.

Note that the M9 Leica was the only camera for which we observed a rather peculiar non-Gaussian
shot noise.

8.5 Experiments

In this section, we subject the proposed natural steganography algorithms to tests on images taken
with the CCD sensor from the Leica M Monochrome Type 230 and the CMOS sensor from the Z
CAM E1 action camera. Images coming from the monochrome sensor are named MonoBase and are
composed of 10,320 512× 512 images in 16-bit PGM format developed using the command “dcraw
-k 0 -6 -W -g 1 1”. Since there is no demosaicking on this sensor, this format is very close to the
RAW format. Images coming from the E1 sensor are named E1Base and are generated from 200
DNG images that are developed and cropped to provide 10,800 512× 512 images. Both E1Base and
MonoBase can be downloaded from [2] and [6].

The switches used for MonoBase are from ISO 320 to ISO 1000 and for E1Base from ISO 100 to ISO
200. Because the E1 sensor is smaller and cheaper, the power of the stego signal for both sensors is
of the same order of magnitude. The parameters (a, b) used to realize the switches are (4.3, 3801)
for the MonoBase and (0.9,−800.0) for the E1Base. Note, however, MonoBase images use values
coded between [0; 216 − 1] due to the PGM format while E1Base values are between [0; 214 − 1] due
to the sensor dynamic range. We believe that the negative value of b for E1Base is due to a bias
correction that is ISO dependent and coded inside the chipset.

The detection error is evaluated as the minimal total classification error probability under equal
priors, PE = minPFA

1
2 (PFA + PMD), with PFA and PMD standing for the false-alarm and missed-

detection rates, using a low complexity linear classifier [14]. The JPEG images were steganalyzed
with the SRM [39], GFR [85], DCTR [49] and cc-JRM [62] feature sets. For improved readability,
we report only the best detection (lowest error) over these four feature sets. All reported errors
are averaged over ten different splits of the database into equal sized training and testing sets. The
largest measured standard deviation over the ten splits was 0.0097.

8.5.1 Results on MonoBase

In Figure 8.5.1, we show the detection errors for Approach 1, 2, and 5 (Pure, Simulated, and SI-
UNIWARD) as a function of the JPEG quality factor. SI-UNIWARD embeds into each image
the same payload obtained as the average payload over the whole database for Approach 4 using
Eq. (8.3.2) (see Table 8.1).

In Table 8.2, we list the detection errors for all five approaches. The fact that the detection errors
for Approach 3 and 4 are very close to the errors of Approach 2, the simulated acquisition noise that
should preserve all dependencies among DCT coefficients, validates the simplifications of ignoring
the dependencies during embedding used by Approach 3 and 4.

Our method clearly has a great promise, particularly w.r.t. the current state of the art in side-
informed steganography, the SI-UNIWARD. For a JPEG QF of 95, the practical security of NS
using MC-pmf (Approach 4) leads to PE ' 40% for an average embedding rate of 2.36 bpnzac when
PE ' 0% for SI-UNIWARD. Note, however, that when making this comparison, it should be taken
into account that NS needs the RAW file while SI-UNIWARD only needs the non-rounded values of
DCT coefficients that are computed from the developed image, which is a substantially less extensive
side-information.
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Figure 8.5.1: Detection error PE for the pure, simulated noise, and SI-UNIWARD (Approaches 1, 2,
and 6) for a switch from ISO 320 to ISO 1000 on MonoBase as a function of the JPEG quality factor.
Approaches 3–5 exhibit security that is approximately equal to that of Approach 2 (simulated noise),
see Table 8.2.

QF Average embedding Average embedding
rate (bpp) rate (bpnzac)

55% 0.0158 0.2315
65% 0.0277 0.3474
75% 0.0462 0.4734
85% 0.1127 0.8607
95% 0.5300 2.3650

Table 8.1: Average payload in bits per pixel per MonoBase image embedded by Approach 3.

It is also interesting to note that taking into account the dependencies between DCT coefficients
within the same block has virtually no impact on the empirical security for this particular sensor.
This is probably due to the fact that the DCT tends to generate uncorrelated coefficients whose
dependencies are rather weak and/or not captured by the employed steganalysis features in this
case. The analysis performed in Subsection 8.2.1 also shows that dependencies have to be taken into
account only when the content inside a block is structured (edges, patterns). Such blocks will not
be as common in high-resolution images investigated in this subsection.
Another important point is that Approach 4, which treats the developing process as a black box and
has access only to rounded DCT coefficients, is basically as secure as the other approaches. This
indicates a path that can be taken for other, more advanced and more realistic developers for this
sensor.

8.5.2 Results on E1Base

We now evaluate the empirical security of NS in the JPEG domain for images coming from a color
sensor. In contrast to monochrome sensors, after development the stego signal becomes dependent
due to demosaicking.
Table 8.3 contains the detection results for all five embedding approaches for the E1 sensor. Com-
pared to images from the monochrome sensor, the empirical security of Approach 2 (Simulated
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QF Pure Sim. MC var. MC pmf SI-UNI
App 1 2 3 4 5
55% .3414 .4659 .4672 .4716 0.2514
65% .2932 .4617 .4610 .4601 0.2139
75% .2207 .4534 .4511 .4486 0.1502
85% .1467 .4399 .4449 .4438 0.0694
95% .0624 .4090 .4112 .4093 0.0042

Table 8.2: Minimum detection error when steganalyzing the NS in MonoBase with SRM, GFR,
DCTR, and cc-JRM feature sets for five different approaches and a range of JPEG quality factors
for a switch from ISO 320 to ISO 1000.

Noise) decreased by about 10% but the PE remained above 30% for all QFs. However, the security
of Approaches 3 and 4 (’MC var’ and ’MC pmf’), is much lower especially for high QFs. We recom-
mend using NS with Approaches 3 and 4 only for quality factors lower than 65 for which PE ≥ 25%
while the average embedding rate is still high with 2.5 bpnzac, see Table 8.4. The fact that the em-
pirical security of ’MC var’ is slightly larger than for ’MC pmf’ is probably due to the fact that the
number of samples used during Monte Carlo sampling (300), it not enough to accurately estimate
the theoretical pmfs.

Note that Approach 1 (pure images) is also more detectable than for the monochrome sensor despite
the gap between the two ISO sensitivities being similar. This is likely due to the dependencies
introduced by demosaicking for images from the E1 sensor.

Comparing the embedding rates in bpnzac for the two databases (see Tables 8.1 and 8.4), while for
MonoBase the rates increase from 0.2 to 2.36 bpnzac with increasing QF, they are nearly constant for
the E1Base and always larger than 2 bpnzac. This can be explained by the fact that the demosaicking
applied to E1 images increases the number of small DCT coefficients before quantization, especially in
high frequencies. Thus, after quantization the number of non-zero coefficients is larger for MonoBase
than for E1Base and the rate in bpnzac is correspondingly smaller.

QF Pure Sim. MC var. MC pmf SI-UNI
App 1 2 3 4 5
65% 0.1168 0.3426 0.2433 0.1920 0.1168
75% 0.0937 0.3385 0.1757 0.1473 0. 0957
85% 0.0732 0.3350 0.0881 0.0715 0.0752
95% 0.0595 0.3077 0.0056 0.0023 0.0032

Table 8.3: Detection error PE when steganalyzing the NS in E1Base with SRM, GFR, DCTR, and
cc-JRM feature sets for different approaches and JPEG quality factors for ISO switch 100 to 200.
Note that the embedding capacity of SI-UNIWARD is limited to 1 bpnzac.

8.5.3 Discussion

In this subsection, we attempt to explain the striking difference in empirical security of NS (Approach
4) when applied to the monochrome sensor and the color sensor. As analyzed in Subsection 8.2.1,
depending on the block content, intra-block dependencies exist between DCT coefficients of the stego-
signal. Furthermore, inter-block dependencies also exist between DCT coefficients from neighboring
blocks due to the demosaicking process. Note, however, that the natural dependencies among
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QF Average embedding Average embedding
rate (bpp) rate (bpnzac)

65 0.0330 2.5556
75 0.0618 2.2849
85 0.1493 2.3336
95 0.5671 2.8488

Table 8.4: Average embedding rate for Approach 4 (MC pmf), E1Base.
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Figure 8.5.2: Experiment with a synthetic RAW image: co-occurrences of pixel pairs of adjacent
pixels belonging either to adjacent blocks (a), to the same block (b), to adjacent blocks (c) or same
block (d) after simulating noise that preserves dependencies only at the block-wise level.

neighboring pixels do not impact per se the dependency of the stego signal since the shot noise is
independent from the photo-site values.
In order to determine whether the loss of security is due to not preserving intra or inter-block
dependencies among DCT coefficients, we conducted two experiments:
Experiment 1: We generated the stego images to preserve intra-block dependencies of the stego
noise in each each DCT block. In particular, each block came from one specific realization of
Approach 2 but different blocks came from different realizations. Calling this strategy ’Sim block-
wise’, its practical security is compared with Approach 2 in Table 8.5, which shows that the empirical
security is even lower than the security of ’MC-pmf’ (Approach 4). This means that the loss of
security of ’MC-pmf’ and ’MC-var’ must be due to violating inter-block dependencies rather than
not preserving intra-block dependencies.
Experiment 2: To confirm this hypothesis, we next used a synthetic RAW image with all photo-
site values from even columns equal to 8192 and the values of odd columns equal to 5461 (see [41]).
This content was selected purposely with harsh high-frequency discontinuities in order to magnify
the errors the interpolation algorithm will introduce. The demosaicking has to predict the missing
color components. After adding stego noise with arbitrary (a, b) parameters, we then apply both
Approach 2 and Approach ’Sim block-wise’ without considering the JPEG quantization step. Since
co-occurrence matrices are sensitive to steganographic embedding – they are for example the basis
of SPAM or SRM feature sets [39, 74] – we plot in Figure 8.5.2 the co-occurrence of the red color
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component of adjacent pixels after development. These sets of pairs of adjacent pixels are either
located on the boundaries of two adjacent DCT blocks for Approach 2 (Figure 8.5.2a) and for
Approach ’Sim block-wise’ (Figure 8.5.2c), or in the middle of one DCT block for Approach 2
(Figure 8.5.2b) and for Approach ’Sim block-wise’ (Figure 8.5.2d). Note that the demosaicking
process has a profound effect on inter-block dependencies. After Approach 2, which does not violate
the demosaicking step, the co-occurrences are nearly identical for different pixel locations but if
we compare Approach 2 and Approach ’Sim block-wise’ for pixels located across the boundaries of
DCT blocks (Figure 8.5.2a vs Figure 8.5.2c) the co-occurrences become very different because ’Sim
block-wise’ only preserves intra-block dependencies.

QF Sim. MC pmf Sim block-wise
65 0.3426 0.1920 0.1511
75 0.3385 0.1473 0.1093
85 0.3350 0.0715 0.0274
95 0.3077 0.0023 0.0005

Table 8.5: Comparison between Approach 2 (simulated noise), which preserves intra-block depen-
dencies, Approach 4 (independent embedding at each DCT coefficient), and simulated noise sampled
independently for each DCT block.

We conclude from these two experiments that the low empirical security of Approach ’MC pmf’ is
due to the fact that it does not preserve inter-block dependencies between DCT coefficients. This
conclusion is supported by the fact that preserving intra-block dependencies but not inter-block
dependencies does not improve security (Experiment 1), and also by the fact that discrepancies
form in co-occurrences of adjacent pixels from neighboring blocks (see Experiment 2).

8.6 Conclusions and prespectives

Natural steganography is an embedding paradigm in which sensor noise is added to a RAW (cover)
image capture to embed the secret message, making thus the stego image look as if it was acquired
at a higher ISO setting. The novel idea explored in this chapter is extending NS to allow embedding
of the message in quantized DCT coefficients in a JPEG file and with more complex RAW format
developers. The most promising embedding algorithms studied in this chapter estimate the distri-
bution of quantized stego DCT coefficients using Monte-Carlo sampling by adding sensor noise to
the RAW cover capture, developing the images, and then JPEG compressing. This approach is free
of any modeling assumptions on the distribution of stego image DCT coefficients and can also be
used with more complex (e.g., more realistic) developers.

Our findings can be summarized as follows:

• For images acquired by monochrome sensors, such as the Leica M Monochrome Type 230, when
adopting a linear development, NS can embed large payloads (more than 2 bpnzac) with high
empirical security (PE > 0.4) for a wide range of JPEG quality factors. We experimentally
verified that making independent embedding changes to DCT coefficients does not significantly
impact the security.

• When the same strategy (independent embedding in each DCT coefficient, linear development)
is applied to images from a color sensor, the empirical security of NS becomes low. Further
analysis showed that this loss of security can be attributed to the failure of the embedding
algorithm to preserve inter-block dependencies between DCT coefficients introduced by the
demosaicking process.
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In our future work, we plan to address the problem of statistically modeling and better preserving
inter-block dependencies between DCT coefficients for color sensors and move towards more ad-
vanced development pipelines. To this end, generative models, such as the PCA or the Generative
Adversarial Networks using strategies similar to [88], could be used.
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Chapter 9

Conclusion

Modern steganography does not hide information only in the non-deterministic part of digital images.
This is evidenced by the success of content-adaptive approaches that directly exploit steganalyst’s
inability to model the signal well enough, and hide a part of the message in sufficiently complex but
deterministic signal.

This dissertation gives some power back to the steganalyst. The same local complexity estimator
used to hide the message can be used to focus rich-model style feature sets on the areas most likely
affected by steganography and improve the detection. While the idea itself is quite straightforward,
the proper implementation is not. The steganalyst should correctly propagate the information about
the selection channel to the same domain where the detection statistic is computed – the residual
domain. This can prove computationally expensive but improves the detection of content-adaptive
schemes. The success of the statistics describing the impact of embedding on residuals proposed in
Chapters 3 and 4 is proven not only in the experiments presented in this dissertation, but also in
the fact the state-of-the-art convolutional network based detectors [93, 10] also use these statistics.

The absence of a quality model is one of the most significant challenges for not only steganalysts
but also for steganographers. New schemes that introduce novel, better performing models are rare
and difficult to find. In this dissertation, we introduce several ways how to utilize different types
of private side-information to improve the models and also show that the previously popular cost
modulation is not, in fact, optimal and propose new, model justified approach.
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Appendix A

SI-UNIWARD as published

In this appendix, we point out that the costs of SI-UNIWARD as defined in [51] are incorrect, state
how the costs are computed in the SI-UNIWARD implementation, how they should be defined, and
how they are related to the costs of J-UNIWARD.
Denoting the block-wise DCT with J , the (non-rounded) DCT coefficients of the uncompressed
precover image will be denoted as J(P) = U ∈ Rn1×n2 . The 2D array of quantized DCT coefficients
is X = Q11(U). Eqs. 5 and 6 in [51] define the cost of changing Xij to Yij = Xij + sign(eij) as

ρ
(SI)
ij (X) = D(SI)(X,X∼ijYij), (A.0.1)

where X∼ijYij stands for the matrix X with only Xij changed to Yij and J−1 is the block-wise
inverse DCT (without rounding to I8). The non-additive distortion D(SI) is defined as

D(SI)(X,Y) = D(P, J−1(Y))−D(P, J−1(X)), (A.0.2)

D(A,B)=
3∑
b=1

n1,n2∑
u,v=1

|W (b)
uv (A)−W (b)

uv (B)|
σ + |W (b)

uv (A)|
, (A.0.3)

where W (b)
uv (X) is the uv-th wavelet coefficient in subband b in image X, σ is a stabilizing constant,

and A,B ∈ Rn1×n2 . Using the wavelet kernel in bth subband, W(b), the wavelet coefficients are
computed using a convolution, W (b)

uv (A) = (W(b) ?A)uv.
According to this definition, and in contrast with the claims made in [51], the costs (A.0.1) defined
this way may become negative, which can be easily verified by implementing the formulas. The
implementation of SI-UNIWARD available from the authors’ web site uses a different formula,
which always gives non-negative costs. The formula that exactly corresponds to the implementation
of SI-UNIWARD should have been

ρ
(SI)
ij (X) = D(SI)(U∼ijXij ,U∼ijYij). (A.0.4)

We now show that the costs defined this way follow the paradigm introduced in Chapter 5, where
we propose to modulate by the factor 1 − 2|eij | the costs of an additive scheme, which in this
case is J-UNIWARD computed using the precover. Recalling that Xij = Uij − eij and Yij =
Uij + sign(eij)− eij , we use the Dirac delta δij to express

J−1(U∼ijXij) = J−1(U− δijeij) = P + eijJ
−1(δij), (A.0.5)

J−1(U∼ijYij) = P + (sign(eij)− eij)J−1(δij). (A.0.6)

The linearity of convolution allows us to write (A.0.4)
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ρ
(SI)
ij (X) =

∑
b,u,v

|sign(eij)− eij |
∣∣(W(b) ? J−1(δij)

)
uv

∣∣
σ +

∣∣(W(b) ?P)uv
∣∣

−|eij |
∣∣(W(b) ? J−1(δij)

)
uv

∣∣
σ +

∣∣(W(b) ?P)uv
∣∣ (A.0.7)

= (1− 2|eij |)
∑
b,u,v

∣∣(W(b) ? J−1(δij)
)
uv

∣∣
σ +

∣∣(W(b) ?P
)
uv

∣∣ (A.0.8)

= (1− 2|eij |)ρ(J)
ij (P), (A.0.9)

which is the cost of changing the ijth DCT coefficient in J-UNIWARD with the precover (rather
than cover) in the denominator modulated by 1 − 2|eij |. When the denominator uses the cover X
instead of the precover, we will denote the J-UNIWARD costs with ρ(J)

ij (X).
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Cost modulation as a function of
quality factor

In this appendix, we provide some insight into why the experimentally-found optimal modulation
factor follows the ramp function (7.6.1) depicted in Figure 7.2.2. First, in Figure 7.6.7 we redraw
the modulation factor shown in Figure 7.2.2 right as a function of the average quantization step
q = 1/15

∑
i+j≤5 Qij instead of the quality factor Q. We only average the first five diagonals of the

quantization matrix because this is where the vast majority of differences between two JPEG files
occur (x(1)

ij 6= x
(2)
ij ). This figure tells us that the modulation factor should be smaller for larger quan-

tization steps and vice versa. This important observation is validated via the following experiment.

A total of 100 random images from BOSSbase 1.01 were selected. A generalized Gaussian distribu-
tion (7.1.1) was fitted using the method of moments [70] to each AC DCT mode (i, j) across all 100
images, obtaining thus 63 values of the shape and width parameters aij , b, 1 ≤ i, j ≤ 8, i + j > 2.
For each AC DCT mode (i, j) and for each quantization step q, we twice generated NMC = 108

independent realizations from G(0, aij , bij), denoting them t
(1)
k and t(2)

k , k ∈ {1, . . . , NMC}, and NMC

independent realizations ξ(1)
k and ξ

(2)
k from N (0, 1), the acquisition noise. The non-rounded DCT

coefficients and their rounded values were computed and denoted c(l)
k = (t(l)k +ξ(l)

k )/q and x(l)
k = [c(l)

k ],
l = 1, 2. Next, we simulated J2-UNIWARD with x(1)

k as the cover and x(2)
k as the side-information

with ρ(J)
ij = 1 for all i, j modulated as in (6.2.14). The embedding was simulated with change prob-

abilities as explained in Section 7.2 for a fixed relative payload R = 0.4 measured w.r.t. the number
of non-zero coefficients, N0 =

∣∣∣{k|x(1)
k 6= 0}

∣∣∣, giving us the stego object yk ∈ {x(1)
k −1, x(1)

k , x
(1)
k + 1}.

The impact of embedding on the cover model was measured by computing the complement of the
Bhattacharyya coefficient1 between the sample cover and stego distributions, p(x),p(y):

B(p(x),p(y)) = 1−
∑
r

√
p

(x)
r p

(y)
r where (B.0.1)

p(x)
r = 1

NMC

NMC∑
k=1

[x(1)
k = r], r ∈ Z (B.0.2)

p(y)
r = 1

NMC

NMC∑
k=1

[yk = r], r ∈ Z. (B.0.3)

1Since the Bhattacharyya distance is Bdist = − log(1−B), B reaches its minimum exactly when Bdist does.
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Above, [P ] denotes the Iverson bracket, [P ] = 1 when P is true and 0 when P is false. The exact
range of index r depends on the specific realizations generated. The Bhattacharyya coefficient was
selected for its good numerical stability w.r.t. unpopulated bins.

Since the quantized cover and stego DCT coefficients x(1)
k and yk depend on the DCT mode (i, j), the

quantization step q, and relative payload R, the sample distributions p(x),p(y) and thus B(p(x),p(y))
also depend on these parameters. The optimal value of the modulation parameter, mij(q,R), was
determined for each DCT mode (i, j) by minimizing B(p(x),p(y)) over m ∈ [0, 1]:

mij(q,R) = arg min
m∈[0,1]

B(p(x),p(y)). (B.0.4)

The optimal values of the modulation parameter as a function of the quantization step q are shown
in Figure 7.7.1 for low, mid, and high-frequency DCT modes for payload R = 0.4. The error bars are
across the DCT modes from the frequency band. We observe that the modulation mainly depends
on q and stays approximately constant over DCT modes for each frequency band. The dependence
on the quantization step q is qualitatively and quantitatively similar to Figure 7.6.7, validating thus
our design choice.
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