Binghamton University

The Open Repository @ Binghamton (The ORB)

Research Days Posters 2021

Division of Research

2021

Evaluating Sustainable and Cost-Efficient Alternative Processes for Dye Application and Adherence in the Fashion Apparel Industry

Jane Dexter Binghamton University-SUNY

Follow this and additional works at: https://orb.binghamton.edu/research_days_posters_2021

Recommended Citation

Dexter, Jane, "Evaluating Sustainable and Cost-Efficient Alternative Processes for Dye Application and Adherence in the Fashion Apparel Industry" (2021). *Research Days Posters 2021*. 48. https://orb.binghamton.edu/research_days_posters_2021/48

This Book is brought to you for free and open access by the Division of Research at The Open Repository @ Binghamton (The ORB). It has been accepted for inclusion in Research Days Posters 2021 by an authorized administrator of The Open Repository @ Binghamton (The ORB). For more information, please contact ORB@binghamton.edu.

Evaluating Sustainable And Cost-Efficient Alternative Processes For Dye Application And Adherence In The Fashion Apparel Industry

PRESENTED BY: Jane E. Dexter FACULTY MENTOR: Pamela G. Smart

BACKGROUND: The Problem

Sustainability: eco-friendly, ethical, & economically sustainable production¹⁴

Environmental & Health Issues

The fashion Industry is the 2nd most polluting industry on Earth next to oil²

• It contributes to 3-10% of CO2 emissions, 1 35% of microplastic pollution in the ocean, 1 and more

Textile dyeing procedures

- Cause water shortages and produce contaminated wastewater^{3,5}
- Utilize dyestuffs & additives containing chemicals harmful to human and animal health^{3,5}

Socioeconomic Challenges

- Economic challenges including financial burden on producers,⁵ extra time and resources required,⁵ lack of profitability,^{4,6} consumer preferences,⁷ and lack of visible supply chains⁷ make transition to sustainable production difficult
- Sociological challenges including the additional emotional labor required of sustainable fashion producers⁵ & lack of consumer awareness and concern⁸ add difficulty to transition

DISCUSSION: The Solution

Sustainable & Cost-Efficient Alternative Dye Application & Adherence Methods

- Sustainable & cost efficient alternative dyeing methods are evidently available (see table 1)
- Such methods can be profitably adopted & used individually or in combination to create sustainable and profitable dyeing processes in the fashion textile supply chain
- Methods are not limited to those in table 1— Table 1
 highlights some promising methods— other
 alternative processes exist but many need more
 research

FINDINGS FROM ANALYSIS OF LITERATURE

Table 1: Attributes of Sustainable and Cost-Efficient Alternative Dye Application and Adherence Processes

Dyeing Method	Water Use		Energy Use	Cost- Efficiency	Outcome	Industrial Viability
Ultrasonic Energy Assisted Dyeing	Waterless ³	Reduction in dye & chemical concentrati on used 10	Less energy; Renewable energy ³		color depth, Reduced processing time; ⁹ improved quality ¹⁰	Cost- efficient; Already used industrially in other industries; Viable for industrial use in dyeing ¹⁰
Super- critical Carbon Dioxide Assisted Dyeing	Waterless ³	Nontoxic; ¹¹ No wastewater 3	Less energy ³	Lower cost ^{3,11}	High dye uptake; high color yields ^{3,12}	Cost- efficient; Easily obtainable; 11 Potential for industrial use ¹²
Enzymatic Pre-treatment	Conserves water; Cleans wastewater ;3 Could use 0 water used with scCO2	Less effluent toxicity ¹³	Less energy ¹³		Improved dyeability on industrial scale; ³ Reduced fiber damage ¹³	Already applied to industrial scale at different processing stages; ³ Potential for industrial use ¹³
Liposome Applicatio n	Waterless when used with super- critical fluid	Nontoxic ³	Less energy ³		Enhanced textile quality; ³ Enhanced color yield ³	Cost- efficient; Potential for industrial use ³

REFERENCES

Socioeconomically Viable Transition To Sustainable Production Methods

- The reDesign canvas facilitates viable sustainable production from start to finish: it is a tool to be used by sustainable fashion entrepreneurs which lays out a comprehensive design plan accounting for everything along the apparel life cycle needed to produce sustainably¹⁴
- Demand must be increased for sustainable fashion in order to increase profitability— involves raising consumer awareness and concern, marketing clothing strategically¹⁴— there is already notably high and growing awareness and demand¹⁵
- A transparent and traceable supply chain following sustainable procedures must be established^{6,14}
- Working with stakeholder clusters interested in resolving sustainability issues should be prioritized for funding^{6,14}

Circular Design & Economies

Have you **considered all components** (e.g. zippers, labels, buttons etc.), **raw materials** & how they are **manufactured?**

What are the **material flows** of all considered components including textiles? Have you considered the **biological and technical cycles** that the **materials &/or components** belong to?

Can you avoide or **eliminate hybrids**?

Are materials **toxic** or going to **waste?**Do **better alternatives** exist & are feasible?

What are the best available technologies (BAT)?

Do materials add value to bioshere as biological nutrient?

Are materials **returned** to business & **cycled?**

Can materials be used by other others to create value?

Does the circular opportunity reinforce the brands aspired value?

Can you turn a product into a service?

3 Strategies:

Slowing resource loops Closing resource loops Narrowing resource flows or resource effciency

Circular cycles:

Technical cycle Biological cycle

Figure 1: The Circular Design & Economies Section on the reDesign Canvas¹⁴