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Abstract

A boundary decay condition, called vanishing to infinite logarithmic order is intro-
duced. A pseudodifferential calculus, extending the b-calculus of Melrose, is proposed
based on this modest decay condition. The mapping properties, composition rule,
and normal operators are studied. Instead of functional analytic methods, a geo-
metric approach is invoked in pursuing the Fredholm criterion. As an application, a
detailed proof of the Atiyah-Patodi-Singer index theorem, including a review of Dirac
operators of product type and construction of the heat kernel, is presented.
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Introduction

In 1975, M. Atiyah, V. Patodi and I. Singer succeeded in extending the celebrated
index theorem([4]) to the setting of a manifold with boundary. A Dirac type operator
of product type, D , namely, a first-order elliptic differential operator such that the
principal symbol of D* D is the metric for all cotangent vectors, and over a color

neighborhood of the boundary,
D =T(0s + Dy),

where Dy is a self-adjoint Dirac type operator on the boundary, and where I' is a
unitary isomorphism of the the vector bundles in question, is never Fredholm on its
natural (Sobelev) domain([5]). To obtain a good index theory, a non-local boundary

condition

where P is the spectral projection of Dgy corresponding to eigenvalues > 0, was in-
troduced in [1], and the following index formula for the boundary condition problem
was proved

IndD — JKAS B dlmkerDzo —H](Do), )




where K g is the Atiyah-Singer integrand as in the local index formula([8]), and

n(Dy) the n-invariant of Dy: let {\;} < R be the (discrete) spectrum of Dy,

sign \;

A #0

Note that (1) can be viewed as providing information about the function 7(z); in
particular that 1n(Dy) is finite and measures the “spectral asymmetry” of Dy. For
applications in Riemannian geometry, see [1] and [2]; For more general operators, see
3].

To give an alternative description of the boundary value problem, Atiyah, Patodi
and Singer also considered a related non-compact manifold with an infinite cylindrical
end, and the non-local boundary value condition was interpreted as L2-integrability
conditions on the non-compact manifold. In 1993, R. Melrose picked up this underde-
veloped idea, and extended it into a systematic approach, called b-calculus, to study
and generalize the index problems on manifolds with boundaries or corners([25]).
Further developments in this direction were obtained in [29], [12], and [16]. The
b-calculus can be further embedded into a more general framework called boundary-
fibration structure([26]). Various analytic problems on spaces with singular structures
can be studied under this framework, for example, see [23], [6], [11] and [28] and many
others.

In the b-calculus, the pseudodifferential operators are described by their Schwartz
kernels as conormal distributions living in the stretched double product of the original
manifold, which is obtained by “blowing up” the product of the boundary in the
(ordinary) product of the manifold. To get a good theory, some decaying properties
have to be imposed near the left and right boundary of the stretched product. In the
classical setting, the condition was specified to be vanishing in Taylor series. This

choice of decay condition is natural in that it induces nice mapping properties on



(b-)Sobolev spaces, and techniques from functional analysis can be applied.

In this work, inspired by a more geometric approach manifested in [17], [12],
[22], or the unpublished manuscript [20], we propose a calculus, called bi-calculus, by
replacing the vanishing in Taylor series condition by the vanishing to infinite logarith-
mic order condition. The major attention was paid to the discussion of the Fredholm
property: On one hand, the bl-calculus is larger than the b-calculus, inclusive enough
to incorporate the process of inverting normal operators (when possible); on the other
hand, the function spaces involved in the mapping properties are neither Hilbert nor
Banach spaces, hence the usage of functional analysis is required to be minimized.
We adapt the “finite rank remainder” method initiated in [19] and developed in [20]
to tackle the Fredholm problem. To illustrate the application of this calculus, we
include a heat kernel proof of the Atiyah-Patodi-Singer index theorem for a Dirac

operator.

Outline

In Chapter 2, we develop the bl-calculus in detail. In Section 1.1, we study the
notion of vanishing to infinite logarithmic order. In Section 1.2, we describe the
properties of the local bl-symbols and give the definition of the calculus. In Sectionl.3
- Section 1.4, we describe the mapping properties and the composition rules. Detailed
computations are given in a fashion mixing up the geometric and analytic aspects of
Melrose’s blow-up techniques. In Section 1.5, explicit computation is demonstrated
to establish the algebra homomorphism from bl-pseudodifferential operators to their
normal operators. In Section 1.6, a substitute of the analytic Fredholm theory is
constructed and applied to study the Fredholm problem.

In Chapter 3, we review the Dirac operator of product type on a manifold with

cylindrical end. In Chapter 4, we construct the heat kernel of a Dirac operator via the



heat calculus. A brief comparison of b-calculus and bl-calculus is included in Section
3.2.

In the appendices, we collect some technical facts needed. In Appendix A, basic
notions of conormal distributions with bl-symbols are recovered. This formulation is
required in our definition of the calculus. In Appendix B, we describe the b-geometry
and the blow-up techniques of Melrose’s, on which the numerous calculi associated to
different boundary-fibration structures rely heavily. In Appendix C, we introduce a
unconventional approach to establishing Fredholm property observed by P. Loya. In
Appendix D, we review the fundamental properties of the n-invariant that we need
in the proof of the index theorem. We also present some useful, well-known results in
spectral theory, which are not readily available in the literature though. To enhance

readability, most of the proofs are included.



Chapter 1

bl-pseudodifferential operators

1.1 The logarithmic decay

We fix the notion of logarithmic decay at boundary hypersurfaces of a manifold with
corners in this section. We also familiarize the readers with the various coordinate
systems we use when studying the stretched double product X7 of X, that is, the
blown-up space of X? along 0X x 0X. Note that X? is a typical example of manifolds
with corners in Melrose’s sense ([25]).

Recall that R™! := [0, 00) x R""!. Denote the interior of R™! by R™!. A function
u(r,s,y) = (18,91, - - -, Yn_z) € CP(R™) is said to be (b-)Schwartz in s within {r <

a}, if given any (multi-)indexes «, 5, and ¢ € N,

sup (1 + [s])(ro,)* 02 0)u(r, s, y)| < . (1.1.1)

r<a

For simplicity, assume that X = [0,0). We first look at the left and right bound-
ary of X?. Note that they are a pair of disjoint boundary hypersurfaces of X?. Away

from both (b and rb, we may use the “global” coordinates

(r,s) == (z+2',In %) (1.1.2)



Then X2\lb U rb =~ R*!. Note that Ib (resp. 7b) is correspondent to {s = —c0} (resp.

{s = 4+00}). Near [b, we may use the coordinates

T

(2';t) := (2/,In E> (1.1.3)
We will, with a bit abuse of language, denote a function in various coordinate systems

by the same name. For example, given u(r,s) € C*°(R*!) =~ C*(X2\lb U rb), the

restriction of u near (b can be represented via (1.1.3) by
u(2',t) == u(a' (1 +e"),t) = u(r,s).

Under this recognition, we can express the transition rules of (first order) b-derivatives

between (1.1.2) and (1.1.3) as

ro, = x'0y 20y =10,
and . (1.1.4)
o O =0, + 10,

t

85 :8t— £

1+et

_e®
1+e®
Also, we can study the transition rules for higher order b-derivatives.

Lemma 1.1.1. Given any index o, 0% = pa (0, 20y, lfr—tet), where po(¢,n, &) = (* +
PL(¢,n, &) is a polynomial with the degree of ¢ in pl((,n,&) less than «. Similarly,

0p = qa(0s, 70y, 155) with qa(¢,1,€) = C* + ¢, (¢, 0, €).

Proof. We use induction on a. The base case o = 1 was just (1.1.4). Assume that



the claim is true when o = k. Then we compute

et et

- ' 0y )i (O, €' Oy, ——
1+ et 0 )P0, 1+et)
t t

€ / € o / (e Pale %}
= (875 — 1 n et L @U,) <8f + zl(laha%oé3 <m) (l’ 833/) ﬁt >

et

=0 - —— . 20,0
¢ 1+et v

t ai
e / o
+ Z Qay,az,03 X1 < ) (l‘ aw’>a25t ’

é’f“ = (@g -

1+ et
t

e ar+1
— > ay 0501 (1 n et) (20,0 ) 200
et “ /a a2 3a3+1
+ Za’ahaZ,C‘lS 1+ et (SE IB’) Oy

t

e a1+1
/ ag+1 nas
_Zaal,amaa (1 I et) (2"0w) 0

hence the first claim follows from induction principle. The second claim is proved in

the identical way. O]

Similarly, near rb, we may use the coordinate

/

(z,¢) = (z,In 1), (1.1.5)
X
then
0, = T0, x0p =710,
and ) (1.1.6)
0 =19 20, — O N N )

and results similar to Lemma 1.1.1 also hold.

Proposition 1.1.2. Let u be a function in C'OO(XO',?). The following statements are

equivalent:

(i) Let u(r,s) be the coordinate representation of u under (1.1.2). Then u(r,s) is

Schwartz in s within {r < a} for any a, that is, given any indexes o, 3 and



leN,

sup [ (1 + [s])(ro,)*u(r, s)| < . (1.1.7)

r<a

(i1) Let u(x',t) and u(x,t’) be the coordinate representation of w near lb under
(1.1.3) and rb under (1.1.5), respectively. u(z’,t) is (left-)Schwartz in t within

{2’ < a} for any a, that is, given any § € R, indexes o, B and £ € N,

sup | (1 + [¢))i(a'0p) 0 u(a’, t)| < oo, (1.1.8)
z'<a
t<é

and u(z,t') is (left-)Schwartz in t' within any {x < a} either.

Proof. (i)=(ii). Consider (1.1.8) first. According to (1.1.2), (1.1.3), (1.1.4) and

Lemma 1.1.1, we have

S

(14 [t)i(a'dp) P u(z' 1) = (1 + |s|)*(rd,)“qs(0s, 70, —)u(r, s).

e
1+e
Since |e*(1 +e*)"!| < 1, by (1.1.7), we have (1.1.8) holds. To see that u(z,t') is

Schwartz in t’, just observe that

(1+ \t'|)e(x(3$)°‘(35u(x,t’) = (1 + |s))(ro,)*qs(0s, 70, 1 j_e_s)u(r, s)

for some polynomial §5(¢,n, €), and |e™*(1 + e™*)7!| < 1 as well, then apply the same
argument as above.
(7)=>(7). Just “reverse” the process in the last paragraph via (the first part of )

Lemma 1.1.1. O

Away form the right and left boundary in X?, we could also use the projective

coordinates. Near [b, they are given by

(z,0) = (&, 2); (1.1.9)



near rb, by

x/

(w,7) = (:c,;) (1.1.10)

The transition rules for b-derivatives between (1.1.3) and (1.1.9) are

between (1.1.5) and (1.1.10),

Recall that u € C’OO()é 2). Let u(z,w) be the coordinate representation of u away from

rb under (1.1.9). Then (1.1.8) is equivalent to

sup | (1 + |Inw|)*(20,)*(wd,) u(z,w)| < 0. (1.1.11)

w<e?

Note that (1.1.11) simply means that all b-derivatives of u(z,w) decay faster than
any negative power of |Inw| when approaching the left boundary of X?. Hence, we

introduce the following definition.

Definition 1.1.3. A function u € C’OO(Xl?) is said to be vanishing to infinite logarith-

mic order at the left boundary, if (1.1.8) or (1.1.11) holds.

The condition of vanishing to infinite logarithmic order at the right boundary is
defined accordingly. Proposition 1.1.2 implies that u vanishes to infinite logarithmic
order at both the left and right boundary if and only if (1.1.7) holds. We denote the
collection of functions satisfying (1.1.7) by 'Sf, ,(X7).

Note that in (1.1.11), w is just a boundary defining function for [b. In fact,

the decaying condition in question can be defined at any boundary hypersurface of



a manifold with corners. Roughly speaking, a function is said to be vanishing to
infinite logarithmic order at a boundary hypersurface if all b-derivatives decay faster
than any negative power of the logarithm of a (hence any) correspondent boundary
defining function.

When studying collections of boundary hypersurfaces with non-empty intersec-
tion, we will impose jointly decaying conditions near the intersections. For example,

ue'Sh (X?) c C*(X?) if given any a > 0,

sup ((1+ Inz|)(1 + [Ina’|)"|(x0,)* (20 ) ulz, 2')]) < o0 (1.1.12)

T, x'<a

for any index «, 3, and ¢ € N. However, it is easy to see that one might as well just

require decaying at each boundary hypersurface separately.

Proposition 1.1.4. Let ue C*(X?). ue \Sh.rs(X?) if and only if given any a > 0,

sup ((1+ [Inz|)* ‘(:U&x)a(x'éx/)ﬁu(x,x’)b < o,

T, ' <a

sup ((1+ |Ina/|)* [(20,)*(2' 0w ) u(z, 2)]) < .

T, r’'<a

(1.1.13)

for all indezes o, 8 and ¢ € N.

Proof. If (1.1.12) holds, then (1.1.13) holds, since (1 + |Inz|), (1 + |[lna’|) > 1.
Assume that (1.1.13) holds. Note that when z < 1, |Inz| is decreasing, thus when

both x and 2’ are less than 1,

(14 [Inz|)(1+ |In2’|) < max{(1 + [Inz|)?, (1 + [In2’|)?}.

Since (1.1.13) is valid for arbitrary ¢ € N, (1.1.12) follows. O

Another example that plays a fundamental role in the rest of this work is the

collection of functions that vanish to infinite logarithmic order at the entire boundary

10



of X?.

Proposition 1.1.5. Assume that u is a function in C’OO(XZ?) with u(r, s) the coor-
dinate representation of w under (1.1.2). u € 151%,#7%()(1?) if and only if given any

indexes o, 3 and £ € N,

sup (1 + [Inr|)*(1 + |s)*(ré,)*00u(r, s)| < . (1.1.14)

r<a
for any a > 0.
Proof. Assume that (1.1.14) is true. Observe that, near Ib within {t < ¢},
(14 [Ina'))“(1 + [t])“(2' 0 )P ula’ 1)

S

[§]
V(L4 15D (rer) s, 700y 5 )l 5)

In

=(1+

1+es
S

=(1+|Inr —In(1+e%)))(1 + |s])(r0,)*qs(0s, 70, Toe i Yu(r, s),
eS
hence by Peetre’s inequality,

[0+ /) (1 + ) (@' 2) 3l )|

<1+ |Inr))(1 4+ In (1 + )51 + |s])*

(ra'r') qﬁ(asa ra?”a m)U(T, S)

< (1+1In(1+e%) (1 + nr])(L+ |s])’

a e
(ror)*qs(0s, 1oy, T es)u(r, s)‘

<Dy (1+In(1+¢%) =l

By the equivalence between (1.1.8) and (1.1.11), u € 'S (X}). Similarly, near rb

11



within {t' < ¢},

(1 I a]) (1 -+ [¢)" |(20,) oz, ¢)

—S8

an~ e
In (Tar) qﬂ(657 ra?“? 1 +4es )U(T, S)

~(1+ (14 [=s1)’

—S

—S

<(1+In(1 + e N1+ [Inr))(1 + [s))"|(r0,)*Gs(0s, 7y, #)u(r, s)

<Cl,,
hence, u € 'S% ,(X7). Therefore we have u € 'S, 5(X7) NS ,(X7) =S}, 5,0 (X7).
That u € 'Sf, 4 ,,(X7) implies (1.1.14) is proved essentially in the same way. [

Recall that Xb2 ~ X2, hence C’OO(XbQ) can be identifies with C*(X?2). The tran-

sition rules for b-derivatives between (1.1.2) and the natural coordinates on X? i.e.,

(x,2') are
vy = 1ie 70+ 0s ré, = 20, + 20y
and : (1.1.15)
l‘lax/ - % ’ 7’5,, - 63 as = #;/ : l‘ax - wfa:’ : .’L'/ax/

Lemma 1.1.6. Given any indexes o and [3,

e’ e ®

14+es’14es
(rar>a(68)ﬁ = (qap (x&x, x/ax’a

(xax)a(x/a;)ﬁ = paﬁ(rara asa

), (1.1.16)

T i

_— 1.1.17
x+x”x+x’> ( )

for some polynomial pas(C,n,§, A) and qas(C, 1, &, A).

Proof. The idea of the argument is essentially the same as Lemma 1.1.1. We use
double induction.

Fix o = 0 first, and apply induction on . The base case § = 1 is just (1.1.15).
Assume that the result holds when 3 = k, that is, (2/0,)* = pox(rd,, 0s, 15, 75 ),

14+e5? 1+4e~s

12



where po ((,n,&,A) is a polynomial. Then

—S S —S

e
1+es

e e

/aa:/ k—i-l: 7
(2w) ( l1+e5'1+e8

10y — 0Os)Po i (70r, Os,

S

)

e e ®

14+es’'14+es

),

= po,k+1(7“5r, Os,

where pg x+1(¢,n, €, A) is clearly a polynomial. Hence by induction principle, (1.1.16)
holds for a = 0 and all .
Now we apply induction on « for an arbitrary fixed 8. The base case o = 0 was

handled in the last paragraph. Assume that the result holds when o = k, then

S S —S

e e
1+es’'14es

)

(ajax)k-i_l(x,a;/r)ﬁ = ( : Ta’r‘ + as)pkﬁ(raﬂ a87

)

1+4e®

S —S

e e
l4+es’1+es

= pk+1,5(7"ar, Os,

with pri1((, 1, €, A) a polynomial. By induction principle, (1.1.16) holds for any «a,
and since [ is arbitrary, it holds in general.

(1.1.17) is proved in the identical way. O

The transition rules for b-derivatives between the projective coordinates (1.1.9)

and the natural coordinates on X? are

10, = wo, 20, = 10y + 2’0y
and :

20y = 20, —wi, w0, = TOy

between (1.1.10) and the natural coordinates on X?

20y = WOy — Y0y WOy = X0y + X' 0y
and .

20y =0, YOy = &' Oy
Thus, the transitions of higher order b-derivatives between projective coordinates and

13



natural coordinates are very simple to describe:

Lemma 1.1.7. Given any indexes o and [3,

20,)%(2'0)" = pas(20,,wd,
B
= ﬁaﬂ (wawa 7(%)7

(z&z)o‘(wﬁw)ﬁ = g0y, 2'0y),

and

(waw)OL(Pya’Y)ﬁ = aaﬁ(xamax/am’)7
where pog, Das, Gap and Gap are polynomials in two variables.

Proposition 1.1.8. With respect to the natural identification,
ISI%,ﬁ,rb<XI?) = ISl(;),rb(Xz)'
Proof. Let u €'Sp, 5 ,(X7) . Given any indexes a, 3 and £ € N, by (1.1.16),

(1+ Inz))’(1 + Inz’))* !(x&x)a(x’(?;)ﬂu(x,x’)‘

)é

e’® e’

14+es’1+es

Yu(r, s)| .

In paﬁ (Tara asa

—(1+

1+es

Applying Peetre’s inequality, we have

(1+ |In )C < (14 [Inr) (1 + [In(1 + e*)])"

14 ets

<C(1+ |lnr|)£(1 + |s|)%,

—s

_e -
1+e—s

thus from Proposition 1.1.5 and that !% < 1, it follows that for any a > 0,

9

sup (1+ [Inz)) (1 + Ina'|)" |(20,)*(2'0,) u(x,2")| < .

r,x'<a

14



Now let v € 'S}, ,(X?). Fix an arbitrary a > 0. Note that when z,2’ < 1/2,
(1+ Inz|)™'(1+ In2’|)~! < (1 + [In(z + 2')|)~", thus there exists some constant C,

such that when z, 2’ < a,
(14 |Inz)) "1+ Ina2'|)™" < C(1 + [In(z + 2")|) .
Also note that from the Peetre’s inequality again,

-1 -1 Z -1 -1
1+ Inz))7"(1+ Inz'|)~" =(1+ ln; +Ina'|)7H(1 + [Inz'|)

<(1+ ln%‘)_l(l + lna))(1 + [lna))~2
L y-1

As a consequence, when z, 2’ < a, we have
}(m&x)a(x'agc)ﬁv(x,x’)‘ < Difg(l + [Inz|) "% + [Ina’|)~2

)72
>

< DZ,C,(1+ |In(z + 2/)) (1 + ‘m%

< DLy(1+ [In(x + 2))) (1 + ‘m%

Therefore, from (1.1.17), and noting that | < 1, we conclude that

| Z,
P z4a!

_Z
x+a!

|(r0,)°(0:)%0(r, 5)| = |Gap (20, 2/, ——, —

/
:U—i—x”:v—i—x’)v(x’x)

< Cop(L+ [Inr) = (1 + [s]) ™,

for some constant when C%; when r < a, which implies v € 'Sf, » ,(X7?). O

In the rest of this section, we study 'S, (X), the subspace of C*(X) consisting of

functions that vanish to infinite logarithmic order at the boundary, i.e., u € '3y (X)

15



if given a > 0,
sup ((1 + [Inz|)*|(2d,)u(z)|) <
r<a
for any index «, and ¢ € N, and its relation with some previously studied examples.

Lemma 1.1.9. Given any ke R, (1 +In?2)* 159, (X) < 199 (X).

Proof. Let u€'S9,(X). Note that
20, [(1 +In® 2)*u(z)] = k(1 + In*z)* ' (In2)u(z) + (1 + In® z)* (2d,u(x)),
and by induction one could show that in general

(zd,)* [(1+ In? x)ku(x)] = Z agys(1 + 10 2)F P (In 2)? (20,) u(x)
o,BeN

with ag,s # 0 for finitely many terms. Now the claim follows immediately from the

definition of 1S9, (X). O
Proposition 1.1.10. Under the natural identification,

IS((?)X(X> ®152X(X) - 15101;,rb(X2) = ISl%,ﬁ,rb(Xl?) - OO(XZ?>’
where Co(X}) is the collection of continuous functions on X? that vanish at the bound-

ary.

Proof. The second equality was established in Proposition 1.1.8. The last inclusion
follows immediately from the definitions. It is only left to show the first inclusion.

Recall that 199, (X) ® 1S9y (X) is the collection of functions which can be written as

ulw,a’) = Y u(@)v ()

j=1

16



for some wu;, v; € 'S (X). By linearity, it suffices to just prove the case with N = 1.

Fix an a > 0. Note that

(20,)(2'02)” (ur ()01 (7)) = (202) w1 () - ('00r) 01 ("),

hence for any ¢ € N, we have

|(202)* (2 0w) (wa (2)v1(2))| = [(200)"wa(2) - (2/0w) 01 (7))
< CL(1+|Inz) D51 + [Ina'|)~*

< Cls(1+ [Inz|) (1 + |Ina'|)~

when 7,2’ < a, and the first inclusion follows. O

We conclude this section with the general definition of vanishing to infinite loga-

rithmic order at boundary hypersurfaces in manifolds with corners.

Definition 1.1.11. Let W be a manifold with corners, and M;(WV) the collection
of boundary hypersurfaces of W. Let 5 < M(W). w is in 'S%, (W) if u vanishes
to infinite logarithmic order at each H; € S, that is, in any product decomposition
D =1[0,0)y;, x -+ x[0,00)y; % [0,00)u, x - x[0,00),, xV, near a boundary face
M < H; with V, € M a coordinate patch, where {z; = 0} = H,, € ¢, where

G, = {w; = 0} is a boundary hypersurface not in ¢, and M = (), H;, n (), Gi, we

have
N L
sup H (1+|Inzj,| EH j, 0, O‘PH 'Bq(? u(zj,y)| <o (1.1.18)
Kk p=1 4=1
for any compact set K < D, indexes aq,...,an,B1,...,05,7, and £ € N.

Observe that this definition is not too restrictive. By Corollary B.2.1, u is in

159, (W) if and only if (1.1.18) holds for a local product decomposition cover of 7.

17



Moreover, this decay condition can be imposed for functions defined only near #’; in
particular, for distributions conormal to some p-submanifold disjoint from JZ. See

Section 1.2 and Appendix A.

1.2 Symbols and kernels

We follow the geometric approach to define pseudodifferential operators via their
Schwartz kernels. The type of operators is determined by the type of their symbols.
We begin with a detailed review of our symbols. We follows the approach in [21]

closely.
Definition 1.2.1. A function ¢ € Cm(ﬂo%?fy)) is in S°(R™*) if for any multi-indexes
a and B3, and compact set K < R™*,

sup ‘(m@x)aé’yﬂgo‘ < o,
K

where (20;)* = (2104,)*" ... (T£0, ).

It follows immediately from the definition that 'Sy, ., (R*?) < S°(R*?), for instance.
Recall that o < 8, where o = (o), = (f;) are multi-indexes, if o; < f; for

every j.

Lemma 1.2.2. Given any o and f3,

(xs)0)) = > Coa7a]d),
v

18



where C3 is a constant, such that

Cy=0, frv<a

109 =0, ifvy;=0<aj for some j;

Proof. Let k be the number of variables of a. We prove the claim by induction on k.
When k = 0, the claim is trivially true. In particular, C) = 1. Assume that the
claim holds when k& = m. Let a = (/, a,41) be arbitrary, where ¢ is an index of m

variables. By induction principle, it suffices to show that

(xax)aag = (xm+1amm+1)am+1 2074 Lm+1 $m+1< /)762’657

where (', x,41) = x, where C{, ¢ is a constant such that C¢, ) = 0 if (7,0) € a,

Cty =0if v =0 < aj for some j or £ =0 < vy, and CF = 1

(1.2.1)

which will be proved, in turn, by induction on «,, ;. From the inductive hypotheses
on k, clearly statement (1.2.1) holds when a,,11 = 0. Assume that (1.2.1) is true

when ;11 = p, then

(xm-&-lame)p+1(x/aﬂf’)al(95 = xm""laxmﬁ [(xm-‘rlaﬁvmﬂ)p(x/al")alag]

= Tyt 1024, [Z C(f:éf) iwlaﬁmﬂ( /)7(9;,55]

v,¢

DC6H (sl ¥ ML) 0200

207€p+1 m+la:€ +1( )762857
4
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where

/

C(o/,p+1) — gc((a

ey ey (1.2.2)

(’Y?f_l) ’

in which we take the notational convention that C = 0 when (0) £ 7. In particular,
we see that C% = C'((z,/ 5 111)) = C((z,/ ’;:)) = 1 from the inductive assumptions. The other

assumptions can be verified easily via (1.2.2) as well, and the proof is completed by

induction principle. O

Lemma 1.2.3. ¢ € S°(R™') if and only if given any «, 8 and compact set K < R™!,
sup |xo‘8§‘65g0‘ < 00. (1.2.3)
K

Proof. We argue by induction on a. If ¢ € S(R™!), then clearly (1.2.3) holds when

a < 1. Now assume that (1.2.3) holds when o« < m, then by Lemma 1.2.2, we have

‘xm+la;n+165¢‘ _ (Jfam)m+185(,0 _ Z Cv]zn-&-lxkalzaggp
k=1

< [(wap)" 1okl + > Ot [ak ko]
k=1
Thus,

m
sup |z or ol | < Sup |(z8,)™ 10| + ];OI?HS?(P |2*0505| < 0.

Conversely, if (1.2.3) holds for ¢ € C®(R™!) with all o, 8 and K, then by Lemma
1.2.2, we have

sup |(20,)*0% | < Csup |2FoFoPo| < .

Kp’( ) y@’ ’;) k Kp‘ x ygp’

Therefore, ¢ € S°(R™1). O

Remark. In fact, this characterization of S°-type symbols can be generalized to R™*

for any k£ < n. The proof is almost identical but with a double induction. The details
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are left to the interested readers. We do not need this generalization in this work

though.

Lemma 1.2.4. Assume that

F:R™ — R™!
('T7y) - (l’f(.f(],y),g(l’,y))
with f > 0 is smooth on R™'. Let p € S°(R™!), then ¢ o F € S°(R™!).

Proof. Denote the variables of ¢ by (u,v), and the those of ¢ o F' by (z,y). For

example, we have

o F(x,y) =w(xf(z,y),9(z,v)),

and

Oy, (o F(x,y)) =wdup(xf(x,y), 9(x,y))0y, f(2,y)

o Z avk90<£€f<£lj', y)v g(:lj', y))angk(x7 y)

We first observe that

oo Flry) = >, a7 (010%) (wf(x,y), g(x,y))h5s(x,y) (1.2.4)

Y+18I<IB]

where hfé e C*(R™'). To see this, we proceed by induction on |3|. It was just seen
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that (1.2.4) holds when || < 1. Assume that (1.2.4) also holds for |3| = m. Then

51/]‘&590 o F' = 0y, Z 2 (0400p) (o f, g)hfa

Y+181<IB]

- X (e @) o, 0

y+51<8]

+ 207 (@10 01) (2,90l + 2 (01750) <xf,g>ayjh§5)

= ) () (zf.9)

Y+I8I<[Bl+1

< > (0y,9) hjg+(ayj FY Ry 5+ 0,12

(6,k)=5
= > 27 ()3) (af, g)ny”
y+5|<|B]+1

where (5~, k) = 5+ (Ow), (B,7) = B + (6;) with J,, the Kronecker delta, and hfé =0
if |y| + |6 > |B]. Since j is arbitrary, (1.2.4) holds for |5| = m + 1, and the claim

follows from induction principle. Arguing similarly, we conclude that

(20:)0) 0o Flz,y) = Y, a7 (0100p) (xf (z,y), g(w,y))h35 (z,v),

y+8<a+8]
where h2j € C*(R™!). Since f > 0,

he?
(xda)* oo F = > (xf) (210%0) (xf. 9)

5

Y+d|<a+|8| (Fn
Now let K = R™! be an arbitrary compact set. Note that every hf’;f (f)~7 is bounded
over K, and by Lemma 1.2.3, (zf)7 (0705¢) (zf, g) is also bounded over K. Therefore,

we observe that

04,3

(f)

sup ‘(m&w)o‘&ygo o F‘ < Z sup ‘(If)7 (éﬂé"sap) (xf,g | sup <. O
K

Y+l <a+|B]
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Proposition 1.2.5. If F' : R — R™! is a diffeomorphism, then F*(S°(R™')) =
SOR™1).

Proof. Just recall that F(z,y) = (xf(x,y),9(z,y)) for some f,g € C*(R™) with

f >0, then apply Lemma 1.2.4. ]

Let W be a manifold with corners. A function ¢ € C®(W) is in S°(W) if given any
coordinate patch U = R™* of W, |y, € S°(R™*). Clearly, 'S}, ,(X?) < S°(X?) and
Sy g.o(Xi) © SU(XP). In general, we have 'S3, (W) < S°(W). We now introduce

the most important function space in this work.

Definition 1.2.6. A function € 'Sp, ., (X7) n C(X}) is in Sy (X}) if near the front
face, k can be written as

K = Ko + K1,
where rg € 1S, 4, (ff) and k1 € 'Sp, 5 o (X7).

Following the tradition in study of the b-type calculus, pseudodifferential oper-
ators are described by their Schwartz kernels. The first category of operators to be

defined is the kind of residual operators. They are just the operators with Sp-kernels.

Definition 1.2.7. K is called a residual bl-pseudodifferential operator, denoted by
K € U *(X), if K is in Spy(XZ, Q. r), that is, if 4 is a trivialization of O p(X7),

then there is a k € Spj(X?) such that K = - /.

A bl-pseudodifferential operator of order m with m € R is identified with its
Schwartz kernel as well, which is presumed to be a distribution on X7 conormal to
Ay. In particular, a residual bl-operator is ought to be an m-th order bl-operator for
any m € R. To understand what local growth/decay behavior of the symbols of the
Schwartz kernels of a bl-operator should be expected near the front face of X7, we

take the residual operators as models.
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Suppose that x € S9(X?). Let U = R

x R” be a coordinate patch near
(z,y) z

ff n Ay, such that Ay nU = R™ x {0}, and ff nU = {z = 0} x R"* x R". Pick
a1 € CP(U). Continue to write the coordinate representation of ¥kl as k(x,y, z).

Then by definition of Sp(X?), we can write

H([E,y,Z) = I{O(yv Z) + Iil(ZL’,y7Z>,

where ko(y, 2) € CP(R"! x R"), and k(z,y, 2) € 'SYR™! x R") n C.(R™ x R") with
0 := 0(R™! x R™). Since the functions in question are compactly supported in z, they

can be expressed in terms of Fourier (inverse) transform:

[ e htwv.0) d = Kap2)

= "10(3/72) + "il(xvya Z)

~ [ Rl + [ el 6
From the uniqueness of Fourier transform, in particular we have
k(l’, Y, é) = RO(Z/v g) + //%1('7:7 Y, 5)

Note that kg is Schwartz in both variables. Also, observe that

[+ M af)(1 + [y))E] (20.)" 0y 0 R, y, €)|

- |[ote s o D o o0, 2)

<C.

2 J (@D [(1+ [Ina) (1 + [y)] (20,) 0002 k(. , =) d=
Li+la=1

The following definition is motivated thereby:

Definition 1.2.8. Let m € R. Assume that a(x,y,2,§) € C“(]f%aly)

x R? x RZ) n
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C(R?;y) x RY x RQ) a is in SJF(R™! x R™; R") if a can be written as

(I(ZE,’y,Z,f) = aO(yv 275) + al(x,y,z,f),

such that ag € S™(R"! x R"; R"), and a; satisfies the following condition: given any

multi-indexes «, 8,7 and k € N, there is some constant C{jm, such that

|(26,)%(8,0.) 6 ar (., y, 2, )| < CFa [(1+ IIna) (1 + [y| + [2)] " (1 + |g))m1".
(1.2.5)

Denote the collection of functions satisfying (1.2.5) by S7*(R™! x R™; R").

Proposition 1.2.9. Let ) € C*(R™! x R") such that v = 0 near R™! x {0}. Given

any a € ST(R™ x R™; R™) with m € R, define a distribution u by
u = Jeiz& a(x,y, z,§) dE,
then Yu € SH(R™ x R"), that is, Yu can be written as
vu(z,y, 2) = uo(y, 2) + wa(z,y, 2),

where ug € SO (R™™! x R") = C°(R"! x R"), and u; € 'S3(R™! x R").

Proof. Let p e S(R™) with p(0) = 1. Define

Up o= Jeizf ar(xaya Z:f) déa

where a,.(z,y,2,£) = p(r)a(z,y, z,&) with 0 < r < 1. Note that by the continuity
principle, u, 2% 4 and UV, =9, Yu as distributions. We will show that yu,

converges to a function satisfying the desired properties. In what follows, we denote
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Zj ﬁgj by |85|2. Given any z # 0, we compute
1

Uy = T
2|
1

’Z|25

;%f«n%W(W$fwm%aa)&

1
)
~CE

(1227 % a, (2, y, 2, €) de

| 0 () ) a2 )

~—

fp&ﬁmﬁww&xmxaw@y¢5>g

[01]+]d2|=26
01+2€(2N)™

where Ds, 5, is some constants, hence

(w0,) 0y dtu, = (=1)° ) JS” #(0gp)(r€) ((w0,) 0,02 0% a) (,y, 2,€) A€

[61]+]|d2|=26
jh2lylonl
X D51,52831 | |26 . (126)
V4

d1+d2€(2N)™
T+r2 3=y
Now fix an integer § > %’HM Observe that

rlol ffw eizé(ﬁglp) (rg)((:cax)“afazga?a)(w, Y, 2,§) df‘

fr|61|

r

Jf% (02 p) () ((w0,)* 000702 a) (x, Y, 2, é) dg‘

rl | (A0 €] e
<Clajislhlo—— | L+ 1€)" (3¢ p)(€)] (1 + 7) d¢

Clal. 18119~ T7m f! (@2 p) ()] (1 + [&))™ =2 dg, if m — 6y =0

rr| 1|
C 5
lal,|B],171, ’

I
A

f \(921/))(5)\ (14 [e)y™M=e=ag, if —2n—|y| <m—d; <0,

Clal 816 ™" J (02 p)(rE)| (1 + [y =22 g, if m — 6y < —2n — |9/,
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thus all terms in (1.2.6) with |d;| > 0 vanish as r approaches 0, and consequently,

lim |(20,)°00 20w, | <20 Y )agl |z|_25‘

Y1+y2+v3=y

ez taraer (o) a0
<260|a|,ﬁl,lv|76f(1 +lENTrdEx Y

Y1t+y2tY3=Y

Y

N E

which implies that Yu, converges to a function in C’O‘j(f&’7”1 x R™) whose b-derivatives
are bounded over any compact set, since ¥y = 0 near {z = 0}, that is, Yu =
lim, o Yu, € SO(R™! x R™).

Now write a = ag + a; with ag € S™(R"™' x R";R") and a; € 'ST(R™ x R";R").
Then correspondingly (ug), € S°(R"! x R") and (uy), € 'SY(R™ x R"). Note that
(x,y,2) = (0,y, 2) + z1(x,y, 2) = Yoy, 2) + z1(x,y, 2) for some Y (z,y,z €) €
C®(R™! x R™), hence

qu<xa Y, Z) = ¢0(y’ Z)(u[))T(yv Z) + CL’¢1 (JI, Y, Z) (UO)R(y, Z)

+Po(y, 2) (), (2, 2) + 2z, y, 2) (W), (2, y, 2).

Define Uy = hmr—»O ¢0(y,z)(u0)r(y, 2) and Uy = hmr—>0[x¢l(xay7Z)(UO)R(yv Z) +
oy, 2) - (w)r (2,9, 2) + 21 (2,9, 2)(u1)-(x,y, z)]. Then similar arguments like above

show that u; and wuy satisfy the desired properties. O

Remark. 1t can further be shown that ¢u(z,y, z) is Schwartz in z. The reader should
be advised that this observation is, in fact, the motivation for the notion of vanishing

to infinite logarithmic order.

We denote the collection of conormal distributions associated with Sg?(anl X
R™; R™) by I}(R™! x R",R"). Note that in particular Sp(R™! x R™) =~ I;*(R™! x
R") := I;*(R™! x R",R").
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Example 1.2.10. Let m € N and

a(z,y,&) = Y, iag(x,y)E,

lal<m

where a, € CP(R™!). Then a € SJF(R™'; R"), since

a(w,y,€) = Y i (aa(0,y) + wal(z,y)) &

|a|<m
= Y, iag (0,96 + ). il¥wal (z, y)¢"
|aj<m lo|]<m

= Clo(y, 5) + al(xa Y, g)?

where a/, € C*(R™!) by the Taylor’s theorem. We will see that

U= Je”f a(x,y, &) d¢

vanishes outside {z = 0}. In fact, with the same notations as in Proposition 1.2.9, we

compute
v [ pre) 3} ilaale )" a8
=¥ |az<:m aa|ag|c+1y (—)
< Z aa|a]|;+1y 1+‘ ’ —|a|-2
la|<m
“5 Y] Cuaeuirte + A
la]<m
Hence

Yu = liH(l) Yu, = 0.

The claim then follows from the arbitrariness of .
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The following lemma is proved in the same way as Lemma 1.2.3.

Lemma 1.2.11. Assume that a(z,y, 2,§) € C’OO(R;Lvl(x’y) xR xRE)nC(R; < RY x

n,1l
(z,y)

RY) such that a(0,y,2,€) € S™R" x R R"). Then a € Sjf(R™" x R™;R") with
m € R if and only if given any multi-indexes o, B,y and ¢ € N, there is some constant

Cﬁﬁw such that
|2°02(0,0.) 0 an (2, y, 2, €)| < Clgy [(1 + ] (L + Jy| + 2] (1 + €)™,

where ay(x,y, z,&) = a(z,y, 2,£) —a(0,y, z,£).

The next result is an adaptation of the coordinate invariance in the standard

theory of conormal distributions.

Proposition 1.2.12. Assume that

F:R" xR" — R™! x R”

(I’, y’ Z) = (:L‘f(x7 y’ 2)7 g(x7 y7 Z)’ h/(x’ y’ Z))

is a diffeomorphism with h(x,y,0) = 0. Let a € SF(R™!'xR™;R"), ) € CP(R™'xR"),
and define v € IT'(R™! x R" R™ x {0}) by

u(u, v, w) = ¢feiv~£ a(u, v, w,§) dg
Then
Fru(z,y,z) = feiz'g da(x,y,2,€)d.
where o/ =G+ r, with @ defined in (1.2.7) and r € S;;”(R™! x R™;R").

Proof. Let p(§) € S(R™) with p(0) = 1 and

S f e p(r€)alu, v, w, €) d,

29



then u, € I,;”(R™! x R™). Note that f(z,y,z) > 0 and h(z,y,2) = h(z,y,z)z, where
iNL(x,y, z) is a matrix-valued function with ﬁ(m, y,0) = 0,h(x,y,0). In addition, B is

invertible in a neighborhood of {z = 0}. We compute

Frup(2,y, 2) = woFf R@vE o (re)a(F(x,y, 2), €) dE
_3 f oM@ (1) o(F(z, y, 2), £) dE
_¢J zzh(xyz f) ( (LL’,y,Z),g)df,

where 1) = 1) o F. Now let ¢ € C*(R™! x R") such that ¢ = 1 near {z = 0} and
supported inside the set where I is invertible. Write F*u, = OF*u, + (1 — ¢)F*u,.
With the change of variables ¢ — h'¢,

o= h@v )T oo (r€)a(F(, y, 2), €) dE

oiz€ p((ﬁT)‘lré)cblZ
‘det ﬁ‘

QbF*UT(I', Y, Z) =

a(F(z,y,2), (h")71¢) &

eiz{ ﬁ(x; Y, z, T’f)&(l’, Y, =, 5) d§

—_—

where p(z,y,2,€) = p((h7) " (2, y, 2)€) (defined over supp ¢), and

~

P
‘det h‘

a(r,y,2,§) = (., 2)a(F(z,y,2), (") €) . (1.2.7)

Let G = supqu N supp ¢, then in particular G is compact and suppa(-, &) < G. Note
that @|,_o is in S™(R™! x R™; R"), since aly,_o € S™(R"L x R";R"), ¢ is compactly

¢ < Ol

supported and (h7)~! is an invertible matrix, in particular ¢ |¢| < ‘(TLT)

over the support of 1. Let

51(557%2’75) = a(xayvzag) - &(07?47 276)
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Arguing similarly as in Lemma 1.2.4, we have

(202)(0,0.) 00 = Y. HydNQe)'x°3(0,0,) 0tar (F, (RT) 1)

[Al=Ivl
S+et+0=a+|a]

aByA TT\—
= ) BlaR (0T,
Al=h
S+et+0=a+|8]

where Q¢ = 33, . &0, and H9™ ¢ 0*(R™ x R"). By Lemma 1.2.11, that (A7)~
an invertible matrix and that ming |f| > 0, we have
o

sup |[(L+ [nz|)(1+ |(y, 2))I*(L + [ghH ar(F, (A7) 76)| < oo,

(z,y,2)eG

and consequently, @ € Sj7'(R™! x R"; R"). In addition, we define

OoF*u := lim ¢ F*u,

r—0

=J (e, y, 2, ) dE

The reason for choice of notation above will be clear momentarily. On the other

hand, note that (1 — ¢)F*u = F*(1 — a)u where ¢ = ¢ o F~'. Since F preserves

R™! x {0}, 1 — ¢ vanishes near R™! x {0} as 1 — ¢ does. Hence by Proposition 1.2.9,

(1—¢ue I;*(R™! x R™), then by Proposition 1.2.5, (1 — ¢) F*u € I;”(R™! x R™).

Since lim,_o(1 — ¢)F*u, = lim,_o F*(1 — qg)ur = F*(1 — 5)u = (1 — ¢)F*u, we

conclude that

F*u = hH(l) F*u, = lir% OF*u, + limo(l — @) F*u, = ¢F*u+ (1 — ¢) F*u.

Lemma 1.2.13 (Asymptotic completeness). Given a sequence a; € S:;_j(Rk’l;R”),
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j €N, there exists an a € ST(RM;R™), such that for all N € N,
a— 2 a; € Sy~ N(RELRM.

Proof. The argument is standard. We give a formula for a and leave the verification
to the reader.

Assume that a; = a} + a] with a) € S (Ry~'; RY) and al €185 ]( ; RY) Let

)
1 € C*(R™) such that ¢ > 0 and

0, if || <1
1, if [¢] =2
Let
1
€ = 0,
2(1 + 5])
where

0; = max{ sup [0gy| - sup |(L+ |y[)?(1 + [yl oday),
|l < 1B, 1v[<i

sup }&g‘w’ . sup ‘[(1 + [Inz| + |y|)]P(1 + |§|)j+|v|_m(x8$)q553ga{’}.

|a|<] pva'BH’ﬂgj

Then
a:= Z P(€;€)a,

j=0

satisfies the desired condition. O
We are now prepared to present the precise definition of our operators.

Definition 1.2.14. Let m € R. K € ¥}}(X) if K is a distributional right b-density

on X7 satisfying the following conditions:
1. Given ¢ € CP(XA\Ap), YK is in U,,*(X).
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vanishing to infinite log order

smooth

log-controlled growth

smooth

Figure 1.1: Schwartz Kernel of ¥} (X)

2. Given any coordinate patch U near Ay, 1 € CP(U) and a local trivialization p/

of g over U,

(a) if U = R? x R? away from the front face such that A, = R” x {0}, then

UK = [ aw, &) d¢ o

for some a € S™(R™;R™);

(b) if U = Ry = x R” near the front face such that A, =~ Rz;ly) x {0}, then

(z,y)
UK = e €ate.y.€) i

for some a € SjF(R™!; R").

Elements in U} (X) are called bl-pseudodifferential operators of order m. As
a distribution right b-density, K € W}}(X) defines a continuous linear map K :

C*(XZ, %) — C. Note that we have WM (X) < I[N X2, Ay, Q. 1), where

INXE ANy, Qo r) = I (XE, Ay) @ CF(XE, Q).
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See Figure 1.1 for a diagrammatic description.

Theorem 1.2.15. For any m € R, there is a linear map o, : V7 (X) — Sgn](bT*X)

such that the sequence
0 —— W H(X) —— WR(X) =2 SPICTTX) —— 0

18 exact.

Proof. Given any K € Uy (X), there exist finitely many u; € I} (X2, Ay) and p; €
C*(XZ,.r) such that

KIZU]®/LJ
J

Note that the pullback of Qy p(X?)| , to N*A, is isomorphic to Qp(N*Ap) (see

A
(B.2)). Fix a representative of o,,(u;) for each j and denote it by &,,(u;), then by

Theorem A.8, (B.3), and Corollary B.3.1, we have

"o (K) = ) [Fm (1) ® (5],,)']

J
€ SIEZTL] (N*Aby Qf(N*Ab) ® Qb,t<N*Ab))
~ SIMNEA,, Q(N*A,))
< sipler)
where (1,

"is the lifting of y1;| , to N*Ay. Thus we obtain the map %a,, : ¥I7(X) —

[a,) a,

Slglm] (°T*X). The exactness of the sequence follows from the correspondent property
of the (principal) symbol map o, of I[}(X?, Ay). H
bom(K) is called the (b-)principal symbol of K € W (X). K is called (partially)
elliptic if ®o,,,(K) is invertible for all £ # 0 in *T*X.
For m € N, an element P € I"™(X?, Ay, U r) < IT(XZ, Ay, Q) is said to be in

Diff)"(X) if P satisfies condition 2 in Definition 1.2.14 such that the local left symbols
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vanishing

vanishing

Figure 1.2: Schwartz Kernel of a b-differential operator

are polynomials in £ of total degree m with compactly supported, smooth coefficients,

that is, for example, when U N ff n A, # &, then

a(x7y7 5) = Z i'alaa(x7y)§a7

lal<m

where a, € CP(U). Recall that P is supported in A, (Figure 1.2, see also Example

1.2.10), hence the following result is immediate.
Proposition 1.2.16. For any m € N, Diff;"(X) < U7(X).

Diff}"(X) is called the collection of b -differential operators of order m by Melrose.

1.3 Mapping properties

In this and the next section, we will review how to interpret elements in W} (X)
as linear maps on certain classes of nice (scalar) functions, hence justify the term
“operators”.

We will go over a model scenario in relatively plain terms first. Let X = [0, 1).

Denote a point of X? as (z,2’) . Let (s,p) € (—0,0) x [0,1) be coordinates of X?
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near the front face such that in the interiors of X? and X2,

Then the blow-down map is given by

2. N P pe®
5 5.0) — (o )

Hence, the Jacobian is

1 pe?
e, )| |y l+es (I+e)2 || pe”
= |det i =
(s, p) e —pe (1+e)?

(I1+e°) (14e)2
and consequently the pull back of b-density via 57 is

—S

(B)* (R @) = Y(——) (L

1+ e 1+es

)+%®
p

Wherez/J,goeC’go(X,Qé) and 1 X ¢ = ¥ (z)o( |d“d” € zx' - CP(X?, Q%)

Let k € C*(X?,Q2) supported near ff(X?), then

pe™® [ dp
<n@reae = [ [ oot Las

Making the change of variable -2— «<— 7 or p «— r(1 + e7°), we can write

J—O:c fol w5 ) 1 +pe—s)90( 1p+e:_s)% ds
= [):O L”es k(s,r(1+ e )U(r)p(re)—ds

B J01 { Jjn(i_l) R(s, (1 +e7"))p(re™) ds}me.
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Thus, we may define the action of K, the operator associated to x, on ¢ by

Ko(r) = JOO K(s,T(1+e %)p(re™®) ds- :

— ln(%fl)

dr

; (1.3.1)

1
Now assume that ¢ € S°(X) and k € C°(X?, Q) such that x vanishes to infinite
logarithmic order at the left and right boundary. Then (1.3.1) still makes sense. More

precisely, we have the following computation

1o, (Kp(r)) = — #(—In(2 — 1), 1)p(1 — r)—

T 1—r

0
+ f r(14+e %)0,k(s,m(1+e7%))p(re™®) ds
71n(%71)

0
+ f k(s,r(1+e®))re ¢ (re™®) ds
—ln(%—l)

=— k(- ln(% = 1), 1)(rd,) (1 - rPi(3 1

+ JOO R(s,r(1+e %)p(re?) ds

- ln(%fl)

+ JOO K(s,r(1+e %))p(re™®) ds

- ln(%—l)

,T)

where ¢ and j are both 0, p;;(x, y) a polynomial in (z,y), (s, p) = pd,k(s, p) Schwartz
in s, and ¢ = rd,(r) in S°(X), hence ro.(K¢) is bounded over X. Moreover, by
induction, it could be shown that in general (rd,)*(K(r)) is a summation consisting
of the above three types of expressions. In conclusion, we have Ky € S°(X).
Before move on to the general case, we make a remark on simplification. Suppose
1

in addition that ¢, € C2([0,4/2/2),9Q72) and recall that & is supported near the

front face, then we could extend every object to X = [0,00) or X2 by zero. Still
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denoted with the same notations, we obtain

Kop(r) = Jm k(s,r(1+e %)p(re ®) ds-

—00

(1.3.2)
= J/@(s, r(1+e®)p(re?®) ds-

r

via the same computation leading to (1.3.1). Since in general we are interested in
compact manifolds, assumptions similar to this setting could always be achieved by
employing partitions of unity.

In the rest of this section, we will invoke the formulations of the mapping properties
and compositions in terms of pullbacks, products and pushforwards of b-densities (see,
e.g., [15], [24], [27], [26]). For more details of this (b-geometry) point of view, see

Appendix B. First, we look at the mapping properties.
Lemma 1.3.1. If K4 € U, *(X), then it defines linear maps
(a) A:S(X) — SUX);
(b) A:'S2(X) — 185 (X); and
(c) A:Sy(X) — Sp(X).

Proof. We first derive a local formula for

pAp = (Tpp)s (77 im0 - Ka)

with € C%®(X,), which is essentially the same as (1.3.2). For simplicity, we
assume that K4 is supported near the front face of X2. Let V =~ R""! be a coordinate
patch on Y. Then X = [0,1), x V, near Y, X* = [0,1)¢, ;) x V{, ) near Y? and

X2 ~10,1) x V? near ff. We may use the coordinates

T
(pvwv Y, Z) = (ZE + l’l,lﬂ(;), Y,y — y/)
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on X? near ff. In particular, we have

5 X X
p p
(p,w,y,2) (1+e,w,1+ew,y,y z),
hence
7TL7bZXb2—>X
(p,w,y,Z)H(lJre,w,y)
and
WRyb:X§—>X
p
(p,w,y,2) (1+ew,y z).

Now, by employing a partition of unity, we may further assume that K4 € C*([0, 1) x

V?). Them, with a bit of abuse of language, we write

KA = KA(p,W,y, Z) ’ ,U/,

where Ka(p,w,y,z) € S5([0,1)? x V?). As a consequence,

% %
TLoHTRP Ka

p
1+ev

= u( y)e(

d
1+ ew’y - Z)KA(P7W;CU, 2) : 'fdwdydz
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Suppose that x € C*(X2, Q) with X2 = [0,1)2 x V2. Then for any ¢ € C*(X),

d
</{aﬂ-z,b¢> = JK(PM},?J’ Z)Qb( 7[)

_ Hjﬁ((He%w,y,z) dwd2}¢<7‘7y>%d%

dwdydz

1+e—‘”’y)

thus,

d
(TLp)sk = in((l +e “)rw,y, 2) dwdz - —Tdy‘ )
r

Now we compute

(ML)« (ﬂi,bwé,b@ ‘ KA)

L+e™ .y dr
= JM(T’ y)e( Trow Y™ 2)Ka((1 4+ e “)rw,y, z) dwdz - Tdy‘
d
= JKA((l + e_"")rawa Y, Z)SD(T e—w’ Yy — Z) dwdz - IU(T', y) ’Trdy’ X

In summary, to establish the various mapping properties, we need to demonstrate

that
h = JKA((l +e ) w,y, 2)p(re ™ y— z) dwdz

satisfies the corresponding characterizing properties of the function spaces in question.

The following notations will be of convenience: we write

Ky (L +e™)r,w,y, 2) = 0y(p0,) Kalp, w,y, Z)‘p:(lJre_“’)r’

U rey —z) = o) (x0.) p(x,y — 2)

r=re %
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In particular, we have

5;(7“&)5 (Ka((1+e™)rw,y, 2)p(re™,y — 2))

= Y CoreaKE (L + )0,y 2)" (e y — 2) (1.33)
a+b=~
c+d=4

for some constant Cgyp.q. Let 19 > 0 be arbitrary.

(a) Let ¢ € S%(X). We must show that h € S°(X).
pAp = (mrp)e (L pumh e - Ka) € SU(X, ),

where p € C*(X,€),). Since K5 is of O ((1 + |w|)™*) for any ¢, and compactly

supported in z, and " is bounded, from (1.3.3), we in fact have

sup ’(?J(T@T)éh(r, y)}

r<ro

= sup f&;(r&.)‘; (Ka((1+ e “)rw,y, 2)p(re ™,y — 2)) dwdz

r<ro

= sup f Z Coapea (1 + ), w,y, 2)" (re ™™,y — 2) dwdz
r<ro a+b=vy
c+d=9

<J Z Cleag(1 + |w]) ™2 dw < 0.
a+b=~
c+d=§

(b) Let ¢ € 193(X). We shall show that h € 'S (X). Note that, by Peetre’s

41



inequality, we have

’foff((l +e “)rw,y, Z)gpbd(r e ¥ y—2) dwdz

<C’J (1+|nre )" dw
(1+ o)™
:CJ (1+|Inr+ —w|)™" dw
(1+ )™
<CJ (14 7)) (1 + |w])’ dw
(1+ o))

—D(1+ [Inr])".
for some constant C' and D = C {(1 + |w|)~? dw. Thus, also from (1.3.3),

sup |(1 + [In T|)£8;(T5T)5h(r, y)| < 0. (1.3.4)

r<ro

(c) Let p € SH(X). We will demonstrate that h € S5 (X). To this end, we write

o(r,y) = poly) + 1(z,y),

Ka(p,w,y,2) = (Ka)o(w,y,2) + (Ka)i(p,w, vy, 2).

Let

holy) = f (K )o(, 9> 2)poly — 2) dwdz,
and hl = hn + ]’L12 + h13, where

r
hll(n y) = (KA)()(wa Y, Z)gploﬂ e—w7 y— Z) deZ7

J
r
hia(r,y) = | (Ka)1(1+e7¥)r,w, y, 2)po(y — 2) dwdz,

J
r
h13(r7 y) = (KA>1<(1 + e—w)r’ w,Y, 3)901(7" e—w’ Yy — Z) dwdz.

J
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Since 00 (K 4)o(w,y, z) decays faster than (1 + |w|)~2 for any j3, we have ho(y) €

SO(X). We study hyj, j = 1,2, 3, respectively. Nevertheless, the readers should

note that the analysis on these three terms is similar. We compute

sup |(1+ [In 7)) (rd,) 20 hui (r,y))|

r<ro

=sup |(1 + |Inr|)* Z JCglﬁfl(KA) (w,y,z)(r&r)aaf%pl(re’”,y — z) dwdz

= Br+p2=p
=sup [(1+ [Inr|)* Z JCﬁlé’Bl (Ka)o(w,y, 2 )(x&x)o‘852g01(:13,y - z)‘
=T B1+B2=

<Csup (14 flnrl)! (14 flare )0+ o) 2 do

r<ro

r=re %

<Csup (1+ |1nr|)ff(1 )+ e+ o) 2 dw < oo,

r<ro

sup [(1+ [In 7)) (rd,)* ) haa(r, y)|

r<ro
5 f Cnp0n) 0 (Kaa(ps0,9 )|,y oo 00y — 2) oz
— su B1+B2=
oo (1 + [nr]) "

<Csup (14 lnr) [ (14 ) (0 + a1+ e))(1+ fol) 7 da

r<ro

in which we use the fact that

dwdz

(1+In(1+ e""')) < (14 1n(2e‘“")) = (I+m2+ lne""') <(14+mIn2)(1+ |w|).

Thus, both hy; and hig are in 1S9, (X). That hi3 € 1S9 (X) follows the same

argument leading to (1.3.4). In conclusion, we recognize that h = hg + h; €

S (X).
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Example 1.3.2. Let ¢y € C*(R) such that ¢, =1 on (—o0, —2] U [2,0) and ¥; =0
on [—1,1]. Let ¢, € C*([0,1)) such that 15(0) = 1 and 1, = 0 on [v/2/2,1). Let
v =|4%| and v/ be its lift to X7 under mpp. Then Ky = ¢ (w)e I/ e ¥,*([0,1)7)

and () = y(z)z € CF(0,1) = S°(0,1). Note that

Ap(z) = foo Y (w) e ¥y (ze )z e™ dw e S°([0,1)).

However, Ap ¢ C*([0,1)), since lim,_,o(Ap)'(z) = .

Theorem 1.3.3. Let me R. If K4 € V}}(X), then it define linear maps
(a) A:S%X)— SY%X);
(b) Ay (X) — 1By (X); and
(¢) A: Su(X) — Sy(X).

Proof. We only prove (c). For simplicity we assume that K 4 is supported near ff(X?).
Write K4 = K4, + K4, such that Ky, is supported away from (b and rb, and Ky,
is supported away from A,. Immediately from the definition of U}7(X) and Lemma
1.3.1, K4, define a linear map A, : Sp(X) — Spy(X).

Let V = R"! be a coordinate patch on Y = ¢X. Then X = [0,1), x V, near Y,
X2~ 0, l)ém/) X V?y’y,) near Y2 and X? =~ [0,1)? x V? near ff(X?). We may use the

coordinates

X
(z,w,y,2) = (xvln(;),y,y —y').

We further assume that K4, is compactly supported in this coordinate patch. More
explicitly,

K = 0,3) [ 7 g €

where ¢ € CP (R, x R?™1) and a € S7'(R™!; R"). Note that

WL,b(l'7w7 Y, Z) = (ZE, y)
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and

—w

WR,b(xuwuyVZ) = (xe 7y_2)7

thus, given any ¢ € Sp(X) and pe C*(X, ),

* *
TLoMTR P - Ky,

o d
= [ S ate o e, pteey - 2) arde -ty ‘—xdwdydz
T

o d
- Je’w“zf a(x,y,7,&)drds - p(z,y) ’—xdwdydz
x

where
a(x,y,7,§) = fa(x,y, L)@, T — Ly, € —n) dudn,
with
(7, w,y,2) = Y(w,2)p(re ™,y — 2)
and

@(l‘, 727 Y, é) = Jeiam-iz-f (,5(.1’, w, Y, Z) dwdz.

See (A.2). Therefore, by (A.7),

(7o) (75 pbm e - Kay)

o d
— Je“”“/z'5 a(z,y,7,&) drdédwdz - p(x,y) ’ﬁdy’
x

- dz
= a(z,y,0,0) - p(z,y) ?dy' :

45



It is left to show that a(z,y,0,0) € Sp(X). Write

ez, y) = po(y) + ¢1(,y),
a(x, Y, 7, 5) = ao(y,’]’, 5) + a’l(mv Yy, T, 5)7
(T, w,y, 2) = Y(w, 2)po(y — 2) + P(w, 2)p1(ze ™,y — 2)

= (150(0‘)7?/7 Z) + (,51(33,w,y,z).

Note that
0] L Po(T, Y, f U&‘Sé’z e wTmizE 0 Go(w, y, 2) dwdz
- \ [eerscamopon ) qwa 039
< 0/375,
17967 (20,) 01 (1,0, y, 2)| = \ [eerecaamoraatmy. .
1.3.6

< 03/375(1 + [Inz))~*

Then we compute

oy Jao(y, L) @o(T — 1y, € — 1) Mn’

> Gy Jaﬁ ao(y, 1,12 Go(T — 1.y, € — 1) dudy
B1+B2=p

<Cp(1+|r])* (L +Igh™

Therefore, we have

do(y70,0) = fCLO(ya L777)950( LY, — )abd—n € SO( )
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Similarly, one can verify that

o~ o~

a (l'a Yy, 0, O) = Ja0<ya Ly 77)@1 (1:7 —Y, :77) +ax (I’, Y, Ly 77)950(:\% Y, _77)
+ al(x7 Y, L, 77)(751('17’ :\La Y, :77) deﬂ € ngX(X)
via the estimates (1.3.5), ((1.3.6) and the definitions of Sy (X), S5 (R™!;R"). Con-

sequently, we have a(z,y,0,0) = ao(y,0,0) + a1(z,y,0,0) € Sp(X), and the proof is

completed. O

Example 1.3.4. Suppose that Kp € Diff}"(X) is compactly supported in some co-

ordinate patch near A, N ff:
Kp = ¢(w, 2) fei‘””zf (z,y)i*riPle8 arae

with a + || = m and 1) = 1 in a neighborhood of 0. We will derive a local expression

of P: S%°X) — S°%X). Given any ¢ € S°(X), by Theorem 1.3.3,

Py

a(z,y,0,0)

f a(z,y)i® i I’ @(z, =1, y, —n) dudy
~ alany) [ (@029 @, Tiy. o) g
= a(z,y)(0500¢)(x,0,y,0)

= a(z, y)(x0,)*o(z,y).

1.4 Compositions

We now study the compositions of bl-pseudodifferential operators. In what follows,
we will use A, B, et cetera, to denote the operators acting on functions, and Ky,

Kp, et cetera, to denote the Schwartz kernels as distributional right b-densities. The
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Step 1.

notations for the collections of both types of objects will not be distinguished, though.
Lemma 1.4.1. We have ¥, (X) o ¥, *(X) < ¥,,*(X).

Proof. Let A, B € ¥,;*(X). We must show that

1K ap = (7c)s (w8 ,umiy Kaw§ Kp) € Sp(Xi, ).

By using a partition of unity, it suffices to assume that K4, Kp are supported in
some coordinate patches of X?.

If V =~ R* ! is a coordinate patch on Y = 0X, then near the boundary we
can decompose X = [0,1), x V,. Note that X? =~ [0,1)7 x V* near ff(X}) and
X3P >~ [0,1)} x V3 near ff(X}). Let £ be an arbitrary natural number. Assume that
w= ’dfdy| e C* ([0,1) x V,€). We will continue to denote the lift of u to X? via
7rp by p, while the lift via mg, is denoted by p/. We break the analysis into a couple
of steps according to various coordinate patches involved. The explicit coordinates

used below are collected in Appendix B.

We analyze ;1K 4B near the intersection of mb, ff and fs of X. With a little abuse
of notations, we write

Ka=Ku(z,w,y,y) - 1/

near 7b(X?), and

Kp = KB(fYa :Ula y??/) ’ NI
near [b(X?). Then

dl‘”

Tl Kamsy Kp = Ka(z" e t,y, 9 ) Kg(s + t,2",y/,y") | dsdt—-dydy'dy"| .

x//

We recall how to derive the local formula for the pushforward via 7¢ . Suppose that

k€ C®(X2, Q) supported near the intersection of mb, ff and fs, then given any
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pe CP(XP),

((mep)sk, ) 1=k, (Top) @)

d
= fﬁ(& t,a",y, 9y )e(s, 2" y,y) dsdt ;, dydy'dy”

d /
= J{Jﬁ(s,t, "y, ") dtdy”} o(s, 2", y,y) ds dydy
Hence we have
(Tep)«h J (s,t, 2" y,y,y") dtdy”,
and consequently
K ap = (Tcp)« (T8 um iy Kams y K p)
dx//
Ka(z" e t,y,y ) Kp(s +t, 2"y, y") ditdy”- | ds i dydy’
d '
= Kc(s,2",y,9) - |ds Jf,dydy’ :
x

Clearly K¢ is well defined. In fact, we will show that K¢(s,2”,y,y') € Sp(X?). To

see this, recall that we can write

Ka(2"e' t,y,y) = KS(t,y,v) + Ki(2" e, t,y,y),

Kp(s+t, 2"y, y") = Ki(s +t,y,y") + Kp(s + t, 2",y y").
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We will use Peetre’s inequality (A.5) a couple of times.

‘fﬁﬁ@ﬁ%@+wd4<JCH1+MY“71+E+HY“R
S e
<[ ar (e foy

= Dy(L + |s])~*
for some constant Cy and Dy = Cy { (1 + [t])

Cy (1 + ‘t’

<J@u+m
<D

e [(1+[s)(1 + [In2"])]

'JKA VKL (s +t,2") dtdy”| < [(1+ s+ t)(1 + Inz"])]*

)
)77t [(1+ [s])(1+ a”])]~*

—/

‘Jkgxﬂftk@@+¢)d‘<fcu1+unﬁ’ﬂ)(1+u04“%1+b+¢pﬂf&

S Cp(1+ |Ina” +s)) 741+ [¢)272(1 + |s + t) 2 dt

<y J(l + )7L+ s+ [¢]) 222 d

< Dy [(1+ [na”)(1 + |s])]~
With the exact same argument as above, we also have

\ [ e 0o+ 100 @ < ol 4 o + jo

Define

KO (s,a" /) = f KOty /) KO (s + 1,4/, 3") dedy,
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and

Ki(s, 2" y,y) = JKﬁ(t,% Y)Kgp(s+t,2",y,y")
+ Ky (2" ety y ) Kp(s + .y, y")

+ Ky (2" ety o ) Kp(s + t,a", ") didy”,
Then Ko = K@ + K}. We have seen that

|K2(s,9.9/)] = O ((1+]s])")

and

K& (s 2", y,9)] = O (101 + Ima” (1 + Js)])
for an arbitrary £ € N.

Observe now that for any «, 3, , the b-derivative
(8y§y/)7(x”8m~)a(§s)ﬂ (Ka(x" e t,y,y ) Kp(s+t, 2"y, y"))
is a sum of terms in the form of

(ayay’)él ({Ea$)ZKA<CC, tv Y, y/> : (ayay’)(S? (x”ax”)ja'];KB (’77 I'”, y/7 y”) ‘x=$”es

y=s+t

:<ayay’)6l ('xaﬂﬁ)l (Kg(t7 Y, y/) + K}{(CL’, Ly, y/)) ‘z:x”es

y=s+t

. (ayay,)éz (x//ax//)jas (K%(% y/7 y//) + [(119(,y7 :L“”, y/’ y//)) ‘z=x’:f:
y=s

:myay’)&l (93(71)1[(,%(757 Y, y/) ‘m:x/if: + (ayay’)él (Ia&vyK‘k (1:7 t7 Y, y/) ‘m:m’f:
=S Y=8

+ (ayay/)52 ($,/6x’/)jK% (,}/7 y,> y”) ‘x:x’fts + (ayay/)(sz (l’”ax”)ng (77 ZL’”, y/7 y”) ‘:fy:x’;ftsa
v=s =s

hence the same argument as to K2(s,y,y’) and K} (s, 2”,y,y’) themselves shows that
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their b-derivatives also decays in the same way. Since / is arbitrary, K¢o(s, 2", y,9') €

S (X5)-

Step 2. Near fs nlbn ff < X}, we have

* * *
Ty K aT s, KB

dx//

= Ka(s,2"e',y,y)Kp(t,2",y',y") | dsdt— dydy'dy"| .

xl/

Note that
</£7 Wé,b90>
r‘ dx//
= | k-o(s+t,2",y,y") dsdt— dydy'dy”
J T
r‘ " / " n " / dx” /
= clu—tt,2" yy',y") dtdy” ¢ o(u, 2", y,y') du —rdydy
J
r\ n" / n " " / dx” /
= k(s,u—s, 2" y,y' y") dsdy” ¢ o(u, 2", y,y") du —rdydy’,
J
hence
(Tep)sh = fﬁ(s —t,t,2",y,y,y") dtdy”
= Jﬂ(s,t —s,2" y,y,y") dsdy”.
Therefore, we compute
K ap = (mcp)(TE 1y, Kams, Ki)
d "
= JKA(S - ta z” eta Y, y/)KB (ta xlla 3//7 y”) dtdy” ds l,‘, dydy/
x
d n
= Kco(s,2",y,9) - ‘ds ~dydy’
x

Following the same lines as in Step 1, one could show that Kc(s,z”,y,y') € SH(X?).

52



Step 3. Near cs N lbn ff < X}, we have

* * *
7Tc,bl“TF,bK AWS,bK B

da’
= Ka(s + 1,2y, y ) Kp(a' .y, y") | ds—dtdydy'dy”) .

Note that
< K, Wé’bgp >
!t / dx/ ! "
= | k- 80(87 re,yy ) dS—/dtdydy dy
T
d

= f U k(s,ue™ ty,y' y") dtdy”} o(s,u,,9') ds—;dydy’,

thus,
(Tep) sk = JI@(S, a'e " ty,y,y") dtdy”.

Consequently,

K ap = (mop)« (e, Kams , Kp)

dx

ds—dydy’

= JKA(S +t,2e "y, ) Kp(2'e  t,y,y") dtdy”

l,/

d /
= Ko(s,2',y,9y) ‘ ds%dydy/

The proof to that K¢ (s, z”,y,y') € Sp(X?) is the same as Step 1.

In summary, away from the faces ss and rb, 7, unt, K475, Kg pushes forward under
Y Yy » TepH T Ep S,b

Tcy to define the kernel of an element in Sy (X7, Q). Similarly arguments show the

same thing away from fs and [b. Note that the interior of X} is isomorphic to the

interior of X?, so the analysis for the case when nf,,un}, Kan§,Kp is supported

away from the front face is identical to that of closed manifolds and consequently the

kernel of AB is clearly smooth there. Since p is a (local) trivialization of Q 1(X?),
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Step 1.

in conclusion, we have AB € ¥, (X). u
Theorem 1.4.2. If m,m’ € R, then Uy (X) o U (X) \IJZZWI(X)-

Proof. Let K, € Uy(X) and Kp € U} (X). For simplicity, we assume that K, and
Kp are supported near ff(X?). Write K4 = K4, + K4, and Kp = Kp, + Kp,, where
K,,, Kp, are both supported away from (b and rb, and where K 4,, Kp, are both

supported away from Ay, thus, by definition, are elements in W,,(X). Then,
AB = A1By + A1By + A3 By + A3 Bs.

By Lemma 1.4.1, Ay B, € ¥, (X). We will analyze the other three terms. As before,
we work with local coordinates. Let ¥V =~ R™ ! be a coordinate patch on Y = 0X.
Then X =~ [0,1), x V,, X7 =~ [0,1)7 x V? near ff(X}) and X} =~ [0,1); x V? near

Jf(X?). We break the proof into a couple of steps.

We consider first A1 B;. In X?, near Ay(X?) n ff(X?), we may use coordinates
(z,8,y,2) == (z,Ina’/z,y,y — y'), then Ay(X?) = {(s,2) = (0,0)}. Denote w = (s, 2)
and n = (), §), we can write

KA1 = (,0(0&)) Jeiw-n CL((L', Y, 77) d’l’] : Mla
(1.4.1)

Kp, = feiwn b(z,y,n)dn - W,

where a € S7(R™1;R"), b e Si (R R"), ¢ € CP(R™) with ¢ = 1 on a sufficiently
large neighborhood of 0, and where we may assume that y = ‘dfdy| € C*(X, () and

' = 75, (1). Moreover, we can write

CL((L’7 Y, 77) ZGO(y7 77) + CLl(ZE, Y, 77):

b(x,y,m) =bo(y,n) + bi(z,y,n).
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Note that ¢, ,um, Ka, 7§, Kp, is supported near Ty (Ay) N g (Ay) N ff(X7), hence,

in X2, we may use coordinates

/ "

(xasvtvyazaw) = (x7ln§71n;7yay - y/7y - y”)'

Denote v = (t,w). According to B.8 and B.9, we have

where

Denote

KA B, = (Tow)« (T imEy Ka, 75, KB, )

( . .
= [ plw)e™ ™ a(x,y,m) O™ b(ze*, y — z,my) dpydnpdw - s’

ro ,
= | e al g, m) € ) p)blaet, y — 2, mo) gy - s

r :
= | e a(x,y,m + ng) ™ p(w)b(xe®, y — 2z, my) dwdnidng -

[ .
= | ez, y,m)dy -

c(x,y,n) = | e“Calz,y,C+n)p(w)b(ze’,y — z,1) dwdC (1.4.2)

" ag(y, ¢ + n)e(w)bo(y — z,m) dwdC

(

J e ag(y, ¢ + m)p(w)by(2¢°, y — 2,7) dwdC
v

= co(y,n) + c1(z,y,n).

™ Cay(z,y,¢ +n)e(w)bo(y — z,n) dwd(

+ [ e Cai(z,y, ¢+ n)p(w)by (e’ y — 2,1) dw‘K>

Bolys . €) = f e o(w)boly — 2,1) du,

then by standard approach in Fourier analysis, for any ,6,¢, and k € N, there is
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some constant C;,, such that
0, 00¢b(y, . )| < Chscl(L+ [y (L + [CHT (L + |n)™ L. (1.4.3)

Hence, for any ¢ € N, | by (1.4.3) with § = § = € = 0, k = |m| + 2n, and Peetre’s

inequality (see (A.5)),

eolyn)l < |

< f DO+ )™ (1 + [C + 0™ (L + [¢) 20 (1 4 )™ g

ao(y, ¢ + 77)50(%7770‘ d¢

< (L4 [y~ j D/(1+ ¢ d¢

= D"(1+ [yl) (1 + o)™+
for some constant D’ and D" = D' {(1 + |¢])*" d¢. Similarly, one can show that
sup |(1+ )= (1 )05 oy m)| < o0

for any 3,4, and ¢ € N, therefore co(y,n) € S™(R" 1 R").

To analyze ¢1(x,y,n), we write

~

sy, ) f e o)y (xe,y — 2,1) dw.
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Observe that

¢ (20,) 052301 (2,4, C)|

_ j (85 ) (P p(w) (20,) 000 (2" y — 2,7m)

dw

S

- J 05 " wip(w) ((20:)*0)03b) (w,y,m)

Tr=xe
y=y—z

| Y Do [ €O ) (00°00000) ()

o1+02=0 y=y—=z

= Z Dy, 5, Jei“'c O (wp(w)) ((m&x)a+”21é’5+‘m@f]b1) (z,y,1m)

o1+0o2=0
o2=(021,022)

in which we used the fact that 0, f(ze®) = (20, f)(z)] es Since

xr=

((x(?m)aﬁgﬁzh) (z,y,m)

=00 e (1 = )+ )

y=y—=z

_ CLA+ D + =D)L+ |n)™ "
b [T+ a1+ [y)]f

we obtain an estimate similar to (1.4.3), namely,

(2022250502, ,1, Q)| < Cla L1+t (1+ [y ) (1+ )] (-4 ™ 1. (1.4.4
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Consequently, we have the following estimates:

(14 1¢ +nD)™ (1 + [n))™
1+ Ilnfvl)(1 +lyD]* (L + [¢])tmi+2m
(L + [+
(1 + I z)(1 + |y[)]*

< Dif(1+ [af)(L+ fy)] (L + )™,

Uao <+n)b1(fvyn§d<’ fc ac

<cju+mr%«-

(1.4.5)
[t it | € Dafl1 4 a0+ DT+ ™ (10)
[t e . 06| < Dal(1 4 nal) 1+ BT+ . (1

Furthermore, observe, for example, that

(20,)*080ay (2, y, ¢ + n)bi (2, 9,1, C)

2 Ooq az,B1, 51 alaalaﬂladlal)(x Y, C+ 77) a26a2862862b1(x Yy, 1, C)
a1 tas<a

B1+pB2=p
01+02=0

hence

Dy s (1 + [])
(1 + Iz ])(1 +[y)]*

Uu@w%%m@yc+mmwync>c

and same symbol-type estimates hold for § ay(y, C+77)El(ar, y,m,¢)d¢ and §a;(x,y, (+
n)go(y, n,¢) d¢ as well. In summary, we have ¢;(z,y,n) € 'ST(R™Y R"), and c(x,y,7n) €
S (R™1; R™).

Step 2. Now we analyze A;B,;. We first assume that By is supported away from rb(X?).

Hence we look at X} near 73 (Ay(X2)) N fs and we may use the coordinates

($//ay787w7t72): ( 797111 ,,’y y ln_,’y y)
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Note that Xj’ = X7 x R, ,, and Tip(Ap) = X7 x {0} In X7 near ff(X}) N b, we use

(t,z

the coordinates
/

(x/ay>’772) = (93,7%111;,9 - y/)a

then we can write

Ka, = ¥(v,2) Jei“’z)'(“) a(x',y, 7, &) drdé -

KBQ = b(x,7 Y7, Z) ’ M/7
where a € SP(R™LR), be SY([0,1)7 x V?), ¢ € CP(R") and p = |9 dy|. Write

a('rlu Yy, T, 5) = aO(ya T, f) + al(xl) Yy, T, 5)7 b(l‘l, Y,7, Z) = b()(yu e Z) + b1<xl7 Y,7, Z)‘
According to (B.10) and (B.11), we have

KA B, = (T0p)« (TC T Ey K 4, 75, KB, )
= Jei”'”w(a)a’(ar’ﬁy? s,o,nb' (2", y, s,w,0) dodn - ' (1.4.8)
= C<$”a Y, s, ’LU) : lj’,ul7

where o = (t,2) and n = (7,§), and where

/N s—t

a(a",y,s,0m) = a(z" e, y,n)
= ao(y,n) + ai(z" ey, n)
= ag(y,n) + ay(z",y,5,0,1),
V(" y,s,w,0) =bz"y—z2s—t,w—2)
=by(y—z,s—t,w—2)+b (2", y—z,s—t,w—2)

= bo(y, s,w,0) + by (2", y,s,w,0).
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Given any indexes «, 3,6, ¢,0, k and ¢ € N, we have the following estimates:

sup [(1+ [y) (1 + o))" epa(y. m)| <

sup | (1 + |s — t]) 000508, by (y, s, w, 0)| < o0,

ysYw o

sup [[(1 + [Ina”e ") (1 + [y)]*(1 + |n)) =" (2" 0un)* 0] 005 0d) (" y, 5,0,m)| < 0

ysan )

sup |[(1 + [Inz”|)(1 + |s — ¢))]" (2" 0ur)* 00 050, 05, (2" y, s, w, 0) | < .

ysYw o

Hence we have, for instance,

0" (2" 0 )0‘85620{‘1)[ e (o)) (2" y, s, 0,0y (y, s, w, o) do

U (05 €™) p(0)0y 0503, (2" 0ur) i (2", y, 5,0,1)) By (y, 5, w, 0) do

- U &' 0500y 0500, (2" ) ay (2" y, 5, 0,1)) by(y, s, w, 0) do

< [0 [e1a+ mae P+ 1s — )21 6(o) do ) - (1 4+ 1)~ (1 + "
H1</€J
\ i Y (1 + )
= &) closls = e ”) 0+ DR+ e (T o))
< (3 [ea s o) da> O SN+ )1+ )+ bl

< D[+ [s) (@ + a1+ [y~ (L + )™,

and consequently,

( "0 ”)aaga;ag;gewnw ) ( Y, 5,0, T])b (y787w70) do
[+ [sD + a1+ [y[)(1 + [n])]~*

sup < 0.

Therefore,

Jei‘”’ p(o)ay (2" y, s, 0.mby(y, s,w,0) dody €Sy, g, (XF).
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Proceed similarly, we see that ¢ € Spj(X?).

Secondly we assume that By is supported away from [b(X?), and work near w;’})(Ab) N

rbe X?. We use the coordinates

" /
/"

(x,y,s,w,t,z):=(x,y,In %,y —y ,lng,y —1). (1.4.9)

in X and the coordinates

/

T
(Ia?J,W,Z) = (x7y71n;7y o y/)a
in X7 near ff nrb. We can write

KAI = w<w7 Z) fei(w,z)-(r,f) &0(%, Y, T, 6) d—T(Tf ! ,u/a
(1.4.10)

!/

KB2 = bO(‘TJvavZ) T

where ap € SJ(R™R"), by € SY([0,1)7 x V?), ¢ € CP(R") and p = | dy|. Then

according to (B.12) and (B.13), we have

K 4,8, = (T0w) e (TE Ty K, 75, KB,

= co(x,y, s, w) - '
where o = (t,2), n = (7,§) and
co(z,y, 5, w) = fei"'W(t, 2)ag(z, y,mby(2",y, s, w, t, z) dodn,

with (@, y, s, w, t,z) = bo(xe', y—z, s—t,w—=z). Observe then that also ¢y € Sp(X?).
In summary, we have

AlBQ S \IJI;ZOO(X>
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Step 3. Lastly we study Ay B;. We first assume that A, is supported away from [b(X?), then

KA2 = al(x7 y’w’ Z) : Ml7

Kp, = f @ b (2,y,7,€) drde 1.
Making use of (B.14) and (B.15), near W;})(Ab) N ss we have

/J“KAZBl = (Wc,b)* (ﬁz’,buW;beb ﬂ-;,bKBl )

- f =20 4y (2, t — 5, 2)bi(w ety — 2,7,€) dtdadrde -yl

= Cl(xa Y, S, U)) ’ ,LL/L/
Secondly, assume that Ay is supported away from rb(X?), and

/

KAz = G’Q(x,a Y, 7, Z) T

KBl = Jei(%Z).(T,g) b2 (xlv Y, T, g) (TTdf ’ M/'
By (B.16) and (B.17), we have

:U’KA2B1 = (WC,b)*(Wz’,b/“LW;‘,bKAQ ﬂ-;,bKBl)

= fei(t’w_z)'(ﬁf)) as(x" ey, s —t, 2)bo (2", y — 2,7, &) dtdzdrde - pp

co(2” y, s, w) -

Note that both ¢; and ¢y have very similar structure to ¢ in (1.4.8), thus with ar-
guments comparable to those in Step 2, one can show that ¢, co € S5 (X?), hence

AgBl € \Ill;OO(X) also.
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In conclusion, we have obtained that
AB e U™ (X). O

Corollary 1.4.2.1. %0, (AB) = %0,,(A)0,.(B).

Proof. Recall that the m-th principal symbols are obtained by first gluing up the local
total symbols, then projecting onto SIEE"J(I’T*X ). Thus it suffices to work in local
coordinate patches. Assume that both K4 and Kp are supported in a coordinate
patch over the b-diagonal. Assume further that they are supported near the front

face of X7, for simplicity. Then by the discussion leading to (1.4.2), we have

Ka = p(w) Jei“'" a(x,y,n)dn -,

KB = feiw-n b(l’, Y, 77) dT] : /’Llu

and

Kap = Jeiwz c(z,y,m) dn
= e ([ < atenc + mptiptaet.y — ) ducc) an.
where ¢ = 1 on a neighborhood of 0. We must show that a - b and ¢ determine the

same equivalent class in S,E?Hm/] (R™1; R"™). Applying Taylor expansion to a(x,y,{+n)

at the last variable, we have

alz,y.C+m) = ), (83@)(2,'?;,7;)@ + D (=1 (k + 1) Rs(x, 4,7, )

' Y
la|<k ’ |8|=k+1 p!
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where Rz = C'BS (1 —t)*(0Pa)(x,y,n + t¢) dt. Observe that

J e Z @ S AN p(w)b(z e’y — z,7) dwd(

laf <k

= 3 @)@y f [(=D.)" e Jp(wib(a e’y — z,m) dwdg

|al<k
= 3 D5 ) [ €908 [plblrety - 2] due
|o| <k
= 3 S Dga)ym) f C[ S Can@ @) (@b e’y — z,m) | dwdC
lal<k : altaz=a
_ é(D?a)(a: v, ) ((20,)°00) (2, y, ),
(e

since p(0) = 1 and 0%¢(0) = 0 for any a # (0). Note that one can also check that

J iw-C Z k+l(k+ 1)‘R5<JZ Y51, C) (w)b(xes,y—z,n) dwd(¢
|B|=k+1 A

is in Syt RL(R™LR™) (see also Corollay A.4.1). In particular, we have

c(z,y,m) — alz,y,n)b(z,y,n) € SpT™ " HR™ R™). O

The next result now follows from the well-known symbolic calculus of pseudodif-

ferential operators.

Theorem 1.4.3. If A e V}}(X) is elliptic, then there exists By, € W,;"(X) such that

Ao By =1d — R,

B,oA=1d -85,

where R, S5 € V,,*(X). Moreover, By is unique modulo ¥, (X).
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1.5 Normal operators

In this section, we will study the normal operator associated to a bl-pseudodifferential
operator. The normal operator captures the behavior of the pseudodifferential op-
erator near the boundary, or, in the geometric point of view, at the infinity. It will
play an essential role in the study of the Fredholm property and, moreover, the index
formula.

Let R e ¥,,”(X). There is a family of linear operators depending on a parameter
7 € R, N(R)(7), at the boundary Y = 0X, induced by R via applying Fourier
transform along the boundary fiber to the restriction of Kp at the front face of X7.

That is, the Schwartz kernel of N'(R)(7) is obtained by
N(R)(T) = fe_“” KR|ﬁ dw, (1.5.1)

where w denotes the boundary fiber variable. Note that by definition Ky is Schwartz
in w, hence (1.5.1) makes sense. N (R)(7) is called the normal operator of R. Tt
follows immediately from the definition that N(R)(7), as a function on R x Y, is
Schwartz in 7.

The normal operators share an important feature with the principal symbols,

namely, they induce algebra homomorphisms. Here is a preliminary version.

Lemma 1.5.1. Let R, S € U, *(X). Then
N(Ro S5)(r) = N(R)(1) o N(5)().

Proof. Recall that near ff(X?), X7 =~ [0,1)? x Y2. We use the coordinates

ﬂj/

(pyw,y,y) = (z+ w’,ln(g),y,y’)-
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Let v be a trivialization of Qy, and u' be the lift of |%} v to X7 via mgy. Assume

that near the front face,

/
?

KR = a(p7w7yay,) T

KS = b(pvw7y7y/) ' :U’,'

We first compute

N(R)(7) o N(5)(7) = Je_m a(0,w,y,y") e™77b(0,7,y",y') dwdyr(y") - v(y)

= Je‘““”)T a(0,w,y,y")b(0,7,y",y) dwdyv(y") - v(y').

To compute N (R o S)(7), we first recall that the Schwartz kernels of R and S as dis-

da’

tributional right-density on X? are given by a(x, 2',y,y') !7 v(y') and Z(x, 2y, y)-

}d_x’
x/

v(y') respectively, where

&\

&(xaxlayay/) = a(x + iL'/,h’l( )7y7y/>

~

b(x, 2’ y,y") = ble+ 2, In(=),y,y)

88 5|

Moreover, the kernel of R o S is given by ¢(z, 2, y,y') - |dx—3f/ v(y'), where

dx//
‘r// V<y”) *

&z, o'y, y) = fa(:c, 2y, y" (" 2y )
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Lifting ¢ to X7, we have

p_ b v,y
l4+ew’ 1 4ew’?’

c(p,w,y,y') =¢(

~ e¥ dz”
x// " b x” p
4,y )b(a”, 7 apert

p
1+ ew’

With the change of variable v = ln((1+iJW)$,/),

(1+eM)p
14+ ev

(e“ +e")p

n
Y 1Y I b
¥, 9, y")b( T+ o

yW =7, y/la y/) drﬂ/(y”)' (152)

c(p,w,y,y') = Ja(

Thus,

.
N(RoS)(t)= [ e ™ ¢(0,w,y,y) dw - v(y)

r

= | e a(0,7,y,4")b(0,w — v, y",y) dyv(y")dw - v(y')

r

= | eI a(0,w, y,y")b(0,7, ", ¥) dwdyv(y") - v(y)
J

— N(R)(r) o N(S) (7). 0

Now consider A € Uj3(X). Write K4 = Ka, + K4, such that Ky, is supported
away from lb U rb € X7 and K,, is supported away from A, € X?2. Recall that

Ky, € U, *(X), and locally near ff,

K = [0 afr,y. ) dr

where (r,s,9,2) = (x +2',In 5,y,5 — ¢'). The normal operator of A is the family

of operators N(A)(7) € ¥™(Y) , with 7 € R, defined by N (A)(7) := N(A)(7) +
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N (Ay)(7) where, locally,

N(A)(7) := Jei(y_y/)g a(0,y,7,&) d¢.

Note that N'(A;)(7) is also obtained by applying Fourier transform along the bound-

ary fiber to the kernel of A; restricted to the front face of X7, that is,

Jeifs (J eis)\Jri(y*yl)'& CL(O, Y, )\’ f) dA df) ds - | dy/|

- fei(y_y/)'ga((lym £)de - |dy'l.

Note that the continuity principle endows us with a good notion of restriction of
conormal distributions to certain submanifolds. In combination with above mentioned
point of view, we see that the normal operators are well defined, in the sense that
they are independent of the ways how conormal distributions are decomposed into

sums of compactly supported ones and smooth ones.

Remark. We also use the notation A(7) interchangeably with A(A)(r).

Theorem 1.5.2. Let Ae U (X), Be VW (X). Then
N(Bo A)(1) = N(B)(1) o N(A)(7).

Proof. Due to the close relation, we will use the same set of notations and settings as

in Theorem 1.4.2. In particular, we write A = A; + Ay and B = B; + B>. Note that

2

N(AoB)(r) = > N(A o B;)(7)

and

It suffices to show that N'(Ay o B;) (1) = N(Ag) (1) o N(B;)(7) for j, k = 1,2. Imme-
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diately, N'(As o By)(7) = N (A2)(7) o N(By)(7) follows from Lemma 1.5.1.
Step 1. We begin with j,k = 1. Under the same assumption as in (1.4.1), we

compute

A) (TN (B1)(7) = (m¢)s (mepmpN (Ar)(T)msN (B1) (7))

- ( (5,9 —¢) MW 0(0,y,X,€) WV H(0, ¢/, 7, ¢) ANIEdsdCdy’ - | dy”|
= [ s,y — ) € (0, , 5, )Y VI B0, 7, ) dsdEdmdcdy - |y

(0, y, K, &) @EETITTIEV D (5 — 1y )b(0, 4/, 7, () dsdy'drded( - | dy”|

:J WV C (s 2)a(0,y, k + 7, § + (b(0,y — 2,7, ) dsdzdrd{dC - | dy”|

_ J G€ (0, y, 7, €) e - | dy/|

where

c(0,y,7,€) = fe“”)"'“@ 0(s,2)a(0,y, K + 7,6 + b0,y — 2,7,() dsdzdrdé.

(1.5.3)

Comparing (1.4.2) and (1.5.3), we have N(A4; o By)(7) = N(A1)(1) o N (B1)(7).
Step 2. Next we consider k = = 2. Recall that, near ¥V x V < 0X x X,

X? ~[0,1)? x V? with the coordinates (z,2’,y,y’). In X2, we may use the coordinates

(r,y,8,2) = (x + o, yaln Y=Y
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Assume that the kernels of A; and By in X7 are

Ka, = (s, 2) fe“s’”“’f) a(r,y, 7€) drde - 1
) J IOy, 7, ) drde -, (1.5.4)

KBQ = b(T,y, S, Z) : /1'/7

where a(r, y, 7, &) = (7 — ¢, f/—\n)a(r, y, t,n) dedn, then their kernels as living in X?

are

Z x : Y ay—' ) (T
Ka, = ¢(In it y') Jez(ln(x/x)’y VIO oz 4+ 2y, T, &) drde -

_ dz’
KB2=b(x+x’,y,ln%,y—y')- =

Consequently, the compositional kernel is

Az, 2y, y) = Je“lnf’“”ﬂ)"“g’ Yn =y -y )a(z+a",y, 7€)
T
/4

d
X b(x”—l—l’/,y”, ln %) y//_ y/) xa; //d—Td—f.

Lifting back to X7 and restricted to r = 0 (the front face), we have

C(Ou S, Y, y/) = Jei(t,yyn)-(ﬂf) w(t7 Y- y”)a(ov Y, T, f)b(ov ylla s —t, y” - y/) dtdy”d—Td§7
and moreover,

—18T

N (A1 By)(T e e(0,8,y,y) ds - [ dy|

-
f iy Oty — 4")a(0,y, 1, €)

0(0,y", s —t,y" — ) dtdy"dudéds - | dy/|.
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On the other hand, also by (1.5.4), we have

N (A1) (7) = f S WVVEG(0,y, 7, €) d - | dyf|

N(By)(r) = f T B0, g, 8,y — ) ds - | dy],

and

N(A) (TN (B,)(7)

— | T (T €= )0,y 1, )b(0, 1" 5,y — o) dudndedsdy” - | dy|

r

— ei(y,y//)n—isq—fit(TfL) w(t’ Y — y//)CL(O7 Y, L, T])b(o, y/l) s, y/l . y/) dtdbdndey// . ’ dy/|

[ . " .
= | eIty — y")a(0,y, ¢, m)b(0,y", s — t,y" —y) dtdedndsdy” - | dy|,

hence N (A1) (T)N(Bs) (1) = N(A1Bs)(7).
Step 3. Lastly, we look at k = 2,5 = 1. We use a same set of coordinates as in

Step 2, and assume that

Ka, = a(r,y,s, z) -1,

Ko = [0y, dr o

Therefore,
_ d !
Ka, = a(z +2',y,In E,y —y)- ' —dey/ :
X e
. i(n(z/z') y—y)- (7€) / dz’
Kgp, = |e ’ S b(x + 2y, T, &) drde - 7dy ,
and

, ) , d
o, 2y, y) = Jez(ln(w/’”)’”y)'(T’g) a(z+w,y,In(z/w),y—v)b(w+z' v, T, §)—wdvd’7'd§
w
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is the compositional kernel of A;Bj as living in X?. Lifting to X7, we have

N (e S _

c(r,y, s, 2) Je af L1 WY v)
« b(%, v, 7,€) dudvdrdt.

Thus,

N(A281>(T) = e_iST 0(07 Y,8,Y — y,) dS : ‘ dy/’

e~ eismur Y)W (0, y, u, y — v)b(0, v, ¢, €) dudvdidéds - | dy|

eTITHISL o7 g (0, gy u, y — v) €YD, 0, 1, €) dudidsdude - | dy|

—iut

a(0,y,u,y — v) e Vb0, v,¢,€) dudvde - |dy'] .

Recall that

—iST

a(0,y,s,y —y') ds-|dy'],

N(As)(r) = f
N(By)(r) = f W€ (0, y, 7, ) dE - | dy |

thus,

=

=
&
3
T

f T 40,1, 5,y — ) €CTYIED(0, v, 7, &) dsdude - | dy|
N

(A2 By)(7),

and the proof is completed. n

Example 1.5.3. If P € Diff}’(X), then P() € Diff(Y). In particular, if over
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U= [07 1)9[: X Vyv P‘u = Z\(a,ﬂ)\gm aaﬁ(xay)(xax>aag7 then

PA’(T)‘Vz Z aaB(O,y)(iT)O‘@g.

|(c,B8)|<m

Another feature shared by both principal symbol (maps) and normal operator

(maps) is surjectivity. We first classify the range of the normal operator maps.

Definition 1.5.4. A function a(y, 7, &) € C*(R" x R x R") is in 5™ (R"; R") if given

any multi-indexes «, § and k € N, a satisfies the following symbolic estimate

sup [(1+ || + [n)"=™(1 + |y|)*oc(0,0,) aly, ,n)| < .

A~

Define S—*(R"; R) := N S™(R™; R™).

In particular, if a € :SLOO(R”; R™), then a is Schwartz in 7. (In fact, a is Schwartz
in all variables.)
Recall that symbols in S™(R™;R™) induce smooth family of pseudodifferential

operators on S(R™), the space of Schwartz functions on R”, via the formula

A(r)p = f S afy, 7, )oly) dyde, (1.5.5)

where a € §m(R”;R”) and ¢ € S(R"). The collection of families of operators
with symbols in S™(R™ R") is denoted by U™(R"). We review the derivation of

the composition formula of pseudodifferential operators. Let A(1) € \/I\Jm(R") and
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B(7) € U™ (R"), then

(A)B@) @) = | 0 a(y, 7, m) C0€b(z, 7, €)o(y) dyf dedady

[ . . .
= | eV e a(y, mon)b(z, T, E)p(y') dzdndy'dé

[ . , )
— | et~y € g—izn a(y, 7,n + &bz, 7,&)e(y) dzdndy'd¢

:”awﬂ%(fzw @nww+@<m7@wm)wwvdy&,

(1.5.6)
where b(#}, 7,€) = (e 7 b(z,7,€) dz. Note that b(}, 7, &) € S™ (R™; R")
Lemma 1.5.5. If a € S™(R™;R"), be S™ (R™;R"), then
(.7 1= | M aly. n+ 077 €)
is in Sm™ (R™: R™).
Proof. Just observe that
|0y 070l cly, 7,€)]
S| Y Conn | OO a2 T
Bitoa=p
Y1ty2=Y
1 —[Bil+m’ B2 (1 Il m'—[ya|
<C Z J : |T|1 + |n|)~led(1 _£ |+ |771+ Sk 2n+|£l+—(tn’§|v)1l) !
w n yD(1 + |nl)
B1+B2=
Y1+v2= ’Y
cp [ L A gy
T (L + o)
(1 + ey =21 + gy
<D |1+l dn- ,
(1+ |y
for any indexes «, 3,7 and ¢ € N. O

74



A parameter-dependent pseudodifferential operator R(7) is said to be in \T/*OO(Y),
where Y is a closed manifold, if R(7) is locally defined by (left) symbols in
§’°°(R”; R™). Observe that the (kernels of) operators in \TJ’OO(Y) can be identified

with density sections in C*(Y? x R, Q) that are Schwartz in 7.

Definition 1.5.6. A parameter-dependent operator A(7) is said to be in \Tlm(Y) if

the Schwartz kernel K 4 satisfies
1. for any ¢ € C2(Y2\A), $K 4 € U=(Y);

2.1 U = Ry x R} is a coordinate patch of Y? such that 4 n A =~ R" x {0},

e CP(U) and V' a local trivialization of (g, then

PR Aty = f ¢ ay, 7€) dE -/

for some a € S™(R™; R").

The following results are extensions of (1.5.5) and (1.5.6), whose proofs are adap-
tations of the standard approaches in the theory of pseudodifferential operators on

closed manifolds.

Proposition 1.5.7. 1. If A(T) € \T/m(Y), then

A(T) : CP(Y) —> C*(Y).

~

2. Um(Y) o U™ (Y) < Umtm'(y).

Clearly if A € ¥}}(X), then 121\(7') € \Tlm(Y) We now demonstrate the passage from
parameter-dependent pseudodifferential operators on Y = 0X to bl-pseudodifferential
operators on X. Let A(7) € \/I}_OO(Y). Recall that A(7) is just a smooth family

of right densities on Y? that is Schwartz in 7. In particular, the Fourier (inverse)
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transform with respect to 7 is well defined for A(7). Choose a cut-off function ¢ €

C*([0,1), x Ry) such that ¢» = 1 in a neighborhood of {r = 0}. Define

Ka(r,s,y,y") i=U(r, s) JG“TA(T)(y,y') dr = (r, s)a(s, y,9').

By Taylor’s theorem, 1/ can be expanded near r = 0 as

P(r,s) =1(0,s) + T’QZ(T, s)=1+ 7’1;(7’, s),

where 1 € C*([0,1) x R). Consequently,

Ku(r,s,y,y') = (1 + 7’1;(7’, S)) a(s,y,y)

~

=a(s,y,y") + r(r,s)a(s,y,y)

= (KA>0(57 Y, y/) + (KA)I(Tv S, Y, y,)
Clearly (Ka)o(s,y,y") is Schwartz in s. Observe that, e.g., by L’Hospital’s rule,

lir%r ~(Inr)t =0

for any £ € N, hence (K4)1 € 'S}, 5 ,4(X3). In a word, we showed that K4 € Spj(X7) =
U, (X). Note that the restriction of K4 to ff(X?) is just the Fourier inverse trans-

form of A(7) along the parameter. Immediately from the definition of A, we have

A(r) = Je_iST Kal, ds = f e T ( J e A(k) d/@) ds = A(7).

In general, we have the following result:

Theorem 1.5.8. The normal operator map N (-)(7) : ¥H(X) — \/I\fm(Y) is surjective.
Moreover, R € W, (X) nnull(N(-)(7)) if and only if KR‘ﬁ = 0.
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1.6 Full ellipticity and Fredholm property

We will first construct a full parametrix of a fully elliptic operator in W} (X) with
the help of normal operators. Fredholm property will be studied afterwards. Recall
that Y = 0X. Let v be a global trivialization of Q(Y), and ¢/ the lift of v to Qr(Y?).
Fix a global trivialization p of Q,(X) such that in a collar C = [0,1), x Y near the

boundary, '“‘c = |d7z| ® v. Denote the lift of u to Qp r(X?) by 1.

1.6.1 Construction of full parametrices

Definition 1.6.1. A € U7(X) is called fully elliptic if A is elliptic and A(7)~! exists
for all 7 € R.

We will rely heavily on a special technique developed by Paul Loya, called finite-
rank-operator method, to construct most of the arguments in this section. See [19],
or Appendix C for a fairly detailed user guide. To familiarize the readers with the

finite-rank-operator technique, we retrieve a well-known fact first.

Proposition 1.6.2. Let Y be a closed manifold, and v a global trivialization of Q(Y').
If Ae v™(Y) is elliptic and invertible, then A~ € U~™(Y).

Proof. Recall that there exists a parametrix B € U~ (Y") of A, such that
AB =1d +F,
where F' € U~*(Y") is of C*(Y)-finite rank. Note that
A'=B-AT'F.

Assume that F' = Zj f; ®g; - V', where /' is the lift of v to Qr(Y?), then given any
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p e C?(Y), we have

(AF)) = XA ) [ 560w
J
Since A™! maps C*(Y) to C*(Y), A7'F is in fact a C®(Y)-finite rank operator,

hence A™'F € U=*(Y'). Consequently, A=' = B— A7'F e U="(Y). O

Note that the result above is valid no matter whether Y is the boundary of a
manifold or not. An immediate consequence is that if A is fully elliptic, then A\(T)_l €
U=(Y") for every 7. In fact, we will demonstrate that a much stronger result holds.

We now introduce our replacement of the analytic Fredholm theory.

Lemma 1.6.3. Let I < R be an open interval and F(1) € V=°(Y) depending on

7 € I smoothly. Assume that

an

(v (Y, 7) (1.6.1)

for some smooth functions ¢;,v;, and that (Id —F(7))~! exists for every T € I, then

(Id—F(7))™' = Id+S5(7) with some S(7) € ¥~*(Y) depending smoothly on T € I.

Proof. Applying Gram-Schmidt process to rewrite (1.6.1) if necessary, we henceforth
assume that {¢;} is orthonormal with respect to the L*-inner product against v. Let
V' = span({®,}), where ¢; denotes the complex conjugate of ;. Let 7 stand for the

orthogonal projection onto V. Then we have

vy, T ij LBy P = Y, aj(T) (1.6.2)

k

a;(7) is smooth in 7 for all 4, j, hence so is myf (7). Thus we can write
Zajk %@Wﬁ'Z% (Id =7y )4;(7) = A(T) + B(7).
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Now let W = span({g;}). Note that the images of F(7), A(r) and B(7) are all
contained in W for any 7. Given any u € C*(Y), it can be uniquely written as
u = mwu + (Id —mp)u = v’ + u”, where v’ € W and u” € W+, then consequently we
have

F(r) = A(T)u' + B()u".

In other words, with respect to the decomposition C*(Y) = W @ W+, we can write

A(T) B(r
riy - [0 BO)
O @)
and thus
Idy —A(T) B(r
(14— F(r)) (1) B(7)

O Idwl

Henceforth we will continue to denote the restriction of A(7), B(7) and Id on W by
the same names. Therefore, (Id —F(7))~! exists if and only if (Id —A(7)) ™! exists, in
which case,
Id—A(r)™' —(Id-A(7)"'B(r
(Id—F(r))' = ( ) ( Y : (1.6.3)
@) Id

Since Id —A(7) is a linear operator on a finite dimensional vector space, the inverse
of Id —A(7), if exists, is just an algebraic expression of its entries, hence also smooth

in 7. Therefore, the claimed form of (Id —F(7))~! and the smoothness in 7 follows

from (1.6.3). O

Lemma 1.6.4. If A € W(X) is fully elliptic, then A(T)™* € U=™(Y) depends

smoothly on .

Proof. Assume that A is supported near ff(X7?). By the ellipticity, there exist B €
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U, "(X) and R € V,,*(X), both supported near ff(X?), such that
AB =1d —R.

Near the front face of X2, with the coordinates (p,w,y,y’) = (z + 2/, ln(f), v, y'), we
have X7Z\(rb u 1b) = [0,1), x R, x Y2 and R = R(p,w,y,y) - ' Schwartz in w and
vanishing identically in {p > €} for some € > 0. By Stone-Weierstrass theorem on

locally compact Hausdorff space, there exists

G(p,w,y,Y) (y);(p,w, y)

HMZ

with ¢; € CP(Y) , ; € C*([0,1) x R x Y') Schwartz in w and vanishing in {p > €},

such that S(p,w,y,y) = (R — G)(p,w,y,y’) satisfies

(L+eM)p , :
”S( T o 9| dywv(y') <6 < 1

Observe that

(1+€e")p e’ +¢e7)p
1% (p,w,,9)| = U +—3>%y,y”)5(%,w -7,9"y") dyw(y")

(1+¢7) "
<isl, | |52 )| )

<9151,

In general, we have
1+€e7)p e’ +¢e7)p
1S (p,w,y,9/)] —f (%,7 Y.y )Sk(%,w —7.y"y) dyw(y")

(1
<1541, [ st )| vt

< 8" (ISl
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Hence, according to (1.5.2), we have

(Id—-8)" =1d+ > " =1+Q,

k=1

and Q(p,w,y,y’) is continuous in all variables. Note that

Q(p,w,y,y)
=S(p,w,y,y) + S*(p,w,y,y") + (SQS)(p, w,y,y)

N / (L+e")p oo (€7 +€7)p
—5(p,w,y,y)+f5( T+ e 74, 4")S( T+ o

(1+¢€")p e’(1+e)p
S " ! n
J T+ o By )Q<—1+ew YY)

cw—"y"y) dyw(y")

e’(e ™ +e')p

S( 1+ev

y W =79 — y”lﬂ y/> dLV( ”/)d'yy( )

Thus, Q(0,w,y,y’) is smooth in all variables and Schwartz in w. Denote the Fourier
transform of Q’ﬁ along w by Q(7), then Q(7) is a smooth family in W=*(Y). Let
By=B(1+Q), H=G+ GQ, then ABy = 1d—H, and

A~

A(r)By(r) = Id —H (7).

Note that H(7) is in the form of (1.6.1). Fix an arbitrary point 75 € R, and let
By, () = Bo(r) + A(r) "' H(), then

Id—F(r) == 1d —(H(r) — A()A(ro) " H(r)) = A(r)B,.(7),

hence Id —F(1y) = Id is trivially invertible. Since F(7) is smooth in 7 and satisfies
(1.6.1), by Lemma 1.6.3, there is an open interval I < R over which Id —F(7) is
invertible, and Id +7(7) := (Id —F(7))~" is smooth in 7 € I, hence so is A(T)"! =

~

E:O(T)(Id +T(7)). Since 7y is arbitrary, A(7)~! is smooth in 7 € R. O
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Lemma 1.6.5. If A U (X) is fully elliptic, then A(T)"' € U=™(Y).

Proof. Recall that there exist B(r) € U=™(Y) and R(r) € U=*(Y) such that
A(T)B(r) = Id—R(7).
Since fAZ(T) is Schwartz in 7, for sufficiently large 7, (Id —}A%(T))*l exists and
(Id—R(7))™" = Id+T(r),

where

Consequently, we have

~

A(r)™' = B(r) + B(r)T(7)

for sufficiently large 7. Since 2(7‘)*1 is smooth in 7, é(T)T(T) € U=*(Y) is smooth
in 7 wherever it is defined. Even though T'(7) is not necessarily smooth in 7, we will
show that 7'(7) maintains some fairly rapid decay at infinity.

Denote {, v by vol, (V). Given any g € N, let C; > 0 be a constant such that

AR <G+ 1) j<a

Note that

angz(T)’f\ < k9 vol, (V) 1R (1 + |7]) 7",

Hence, when |7| > 2vol,(Y)C,, we have

Z 83.@(7)’“’ < vol, (V) ™! Z — < .

k=1 k=1

Therefore, when 7 is sufficiently large, 02T(7) = >}, 09R(7)* exists and uniformly
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bounded. Now recall that

~

T(r)(y,y') = R()(w,y) + | R()(y,m)

=

(7) (w1, v )v(y)

jny)

T j RO (s )T (50, 90) RO (s Y (30 (),

hence for any index «,

005,0°T (1) (y, ) = 505,02 R(T)(y, /)

yy-T vy y-T

NN f 2505 () (s 10)0%35, R(7) (. o (1)

B1+B2=c

T Omfagarz%(r)(y,y1>azQT<T><y1,y2>

Y1+7v2 3=

07005, R(7) (2, 4 )V (51w (1)

Consequently,
0303 2T (T)(y,y)| < Cage(1 + |7])7"

yy-T

for some constant C%;_, and thus,

yy-T

with some constant 5’£56. Therefore, near the diagonal of Y2, we have

Ay = f ¢ aly, 7, ) de,

25050 (BIT()(.y))| < Clanl1 + I7)~ (1.6.4)

such that when 7 is sufficiently large, a = b + r where b € §*m(R"*1;]R”*1), and

r(y, T, &) satisfies the symbolic estimate at where it is defined, hence a is also in

S=m(R"=1:R"~1). Similarly, away from the diagonal, A(r)~' € U=*(Y). In conclu-

sion, we have 11(7')*1 € \Tf*m(Y).
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Proposition 1.6.6. If A € U} (X) is fully elliptic, then there exists a B € ¥, (X)
such that AB = Id—R, where R € U, *(X) with R(r) = 0. In particular, R €

ISl(g;,ﬁ,rb(Xl?) :

Proof. Since A is elliptic, there exists a B’ such that
AB' =1d-R,

where R’ € U, *(X). On the other hand, since f/l\(r)_l € \/I}_m(Y), by Theorem 1.5.8,
there exists a C'e W, (X)) such that C(r) = A()"'. Now define

B:=B +CR.

Note that B € ¥,;""(X). Then

~ —~

A(r)B(r) = A(r)(B'(r) + C(r)R/(1))

which implies that if R = R'(Id —AC), then R(r) = 0.
Write R(T) 5 Y, y/) = RO(SJ Y, y/) + Rl (T’, $Y, y/)7 then R0(87 Y, y/) = R‘ﬁf(sﬂ Y, y/) =
0. Therefore, we conclude that R = Ry € 'S}, 5 ,(X7). O

The operator B in Proposition 1.6.6 is called a full parametriz of A.

1.6.2 Fredholm

For an arbitrary manifold X with boundary, denote the collection of continuous func-
tions that vanish at dX by Co(X). Clearly 1S9, (X) = Cy(X). Note that if E(T) =0,

then R € Cy(X?). In this case, R can be identified with a function, still denoted
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by R, in Cy(X?). Let F =189(X) ® 152 (X). Recall that by Proposition 1.1.10,
gf = ISl%,rb(X2> = ISZ%,Tb<XI?) M CU(XZ?)
Proposition 1.6.7. If o < Cy(X) is a subalgebra containing CX(X\0X) and closed

under complex conjugation, then o ® < is dense in Co(X?) in the uniform conver-

gence topology.

Proof. The idea is to apply Stone-Weierstrass theorem on the quotient space X2 =
X2/0X2.
Given any p = (p1,p2),q = (q1,¢2) € X?\0X?, there exist bump functions u; €

CP(X\(0X v g;)), j = 1,2, with u;(p;) = 1, and consequently
ur @ uz(p) = ur(pr)ua(pz) = 1 # 0 = ur(q1)ua(qe) = w1 @ ua(q). (1.6.5)
Also, given any ¢’ = (¢}, ¢5) € 0X?, since either ¢} or ¢} is in 0X,
u @ua(p) =1 # 0 =u; @ualq). (1.6.6)

Now pass onto the quotient space X2. Note that Co(X?) determines a subset Co

of C ()?2), since elements in Cy(X?) have identical values at 0X?. In particular,
Co = {f € C(X?) | J([2X7]) = 0},

Similarly, &/ ® o/ determines m c 6’0. Clearly m is a subalgebra that is

closed under complex conjugation, since &/ ®.<7 satisfies the same property. Moreover,

(1.6.5) and (1.6.6) together implies that o/ @ o separates points in X2, since .o/

contains C*(X?\0X?). Therefore, by Stone-Weierstrass theorem, o @ o is dense in
CN’O in the uniform convergence topology.

Pulling back to the original space X?, we conclude that &/ ®.« is dense in Cy(X?).

0
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Corollary 1.6.7.1. % is dense in Co(X?) in the uniform convergence topology.

Proof. Clearly 159y (X) is closed under complex conjugation and contains C(X\0.X).
To see that 'S9y(X) is a subalgebra, one can employ an obvious adaptation of the

argument to Lemma 1.2.3. L]

Lemma 1.6.8. If R €S} ,(X?), then there exists an F € F such that

supf\R—F\u’<1.

Proof. Let R' = (1 + |Ina’|*)R. Then R’ is also in Cy(X?). Thus there is an F' € &

1 -1
R — F'||, < J— :

Note that F := (1 + [In2/|)"*F’ € %. Hence

such that

J|R_ Fl |(1+ |Inz'|)*?R — (1 + \lnx’])2F|M,
1+ [Inz/?

1
< R/_F/ f— /
| oo T

<6 < 1. O]

Lemma 1.6.9. 1. 'S} ,(X?) o C(X?) 0S5} ,(X?) < Sf, ,(X?).

2. If Q € 'Sy, ,,(X?) and f € 'S (X), then

Jf(x)Q(w, ) (), JQ(% ) f(2)u(a') € 'Sox (X).

Proof. 1. Let u,v €S}, ,(X?) and f € C(X?). Given any indexes a, and £ € N,
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we have

U (202) u(x, 1) f (21, 22) (' 00 ) 0 (@, &) (1 ) p(2)
J’ (20,) u(x, z1) f (21, 22) (2" 0 )P0 (29, 2 |,u x1)p(za)
<D [ fllo [(1+ [Inz])(1 + |1D$'|)]_€f[(1 + [ [) (1 + [Inao])] 72 () ()

<CLsl(1+ a])(1 + [Ina’|)]~*
for some constant CY,;, hence (20,)*(#'0y ) u o f o v(x,z) exists and

|(20,)° (2" 0u) w0 f ov(z,2')] < CLy [(1+ [Ina])(1 + [lna'])]

2. Given any index o and ¢ € N, we have

[ ot

f @) () Q') ()

< jDé(l + Inz)2(1 + |Ina’|) " u(x)
<CL1+ Ina’|) 7,
hence |(2'0,)* § f(2)Q(z, ' )u(z)| < CL(1+|Ina’|)~". The other claim is proved
identically. O]

Theorem 1.6.10. If A € V7 (X) is fully elliptic, then A : S°(X) — S°%X) is
Fredholm.

Proof. For simplicity, we assume that A is self-adjoint. Let ® = S%(X), ¥(X) =
(X)), Ug™(X) = 'S} y.(X7) and B = S35 (X). Then the hypotheses in Lemma
C.1 are satisfied. Hence, by Corollary C.3.1, A is Fredholm. m

Remark. The general case can be proved by applying Theorem C.4.
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Chapter 2

Dirac operators and product-type

structures

2.1 Infinite cylindrical end

The non-compact manifolds with a cylindrical end was considered in [1] to give an
alternative interpretation of the non-local boundary condition introduced in the same
paper. We review the geometric setting in this section.

Let M = M, [Iy M be a manifold with a cylindrical end (Figure 2.1), where
M, = (—0,0];xY =Ry xY, and M a closed manifold with boundary and 0M =Y.

The subscript ¢ stands for “cylinder”. We will review a few notions that behave nicely

M, = (-0,0]; xY

A

A

Figure 2.1: Manifold with a Cylindrical End
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with the product structure of M., and they will be labeled as product type.

e Bundle. Denote 7y : M, — Y as the projection onto the second factor. Let EY — Y
be a Zy-graded Hermitian bundle. Define E := 7} E°, that is, the pullback bundle

of E° via my. Then E is said to be of product type.

e Metric. Let gy be a Riemannian metric on Y, then the metric g = ds? 4 go on M, is
of product type. Note that ds? is the natural (Euclidean) metric on (—o0,0], and

this notion of product metric is classical.

We discuss the A—genus of M.. Let (s,y) be alocal coordinate chart at an arbitrary
point of M.. Let R be the Riemannian curvature operator associated with the
product metric g. Under the local frame {ds, d,} of T M., R can be represented by
an anti-symmetric, matrix-value 2-form, [R;;]. Observe that R;; = 0 if either i = 1

or j = 1. Consequently, the dim(M,)-th degree component of

) R /i
A(TM,) = det V2 [ 270
(TMe) = det <sinh7z/4m)

is 0.

e Clifford multiplication. Assume that
oo : C®CT;Y — hom(E))

such that oo(§) : (E))* — (E))T, 0o(§) is self-adjoint and o¢(§)* = £]>. Here
§=2@neC@CT;Y and €12 = |2 + |n|” with the metric on CT*Y induced by

g. Let p = (s,y) € M,. Since
T*M, ~ T,R; @ TY ~R@T}Y,

we can induce a Clifford multiplication on E from o( as follow. Given any ¢ =

90



zds +n e CTM, with n € CT;Y and v € E), we define

o(&)v = op(z®n)v

in which we identify the elements in £, and Eg in the canonical way. o is called a

Clifford multiplication of product type.

Connection. Let

Vo: C*(Y,E%) — C*(Y, T*M ® E°)

be a connection such that it is Zs-graded, unitary and compatible with the Clifford

multiplication oy, by which we mean

Vo(oo(&)v) = 00(V5E)v + 00(£) Vov

where VFC¢ = dz®1 + VECSy with € = 2®n e COCT*Y and V£€ the Levi-Civita

connection on T*Y . Define
V:i=ds®d, + V.

We recall how V acts on section of E precisely. Let {ex(y)} be a local frame of E°

and {ey(s,y)} be its pullback frame of E over M., namely,

er(s,y) = myer(y).

For any fixed s, Vheg(s,y) is identified with/defined as Vyer(y), viewing 7Y as a

subset of T*"M,. ~ R@®T*Y. For any section f of E, locally we have

f = Z fk(57 y>ek
k
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and hence

V=Y 0frds®@er+ ), (d,fr ®ex + fiVoer)
k k

= dek ® ey + fiVoer.
2

In addition, we will use the notation

0f =)0 frex
k

freely. Since the bundle FE is of product type, dsf has an unambiguous meaning,
as long as the frame {ex} is a pullback frame. We will show that the following

properties hold for V.

(i) V is Zs-graded. Assume that v € C* (M., E™), then locally
v=) e
J
where {e]'} is a local frame of E™. Since
Vo =) df;®e] + f;Voe]
J

and Vj is Zs-graded, we have Vv € C®(M,, E™) as well. Same argument

works for sections of E~.

(ii) V is unitary. Pick a local orthonormal frame {e;} of E. Since the original V

is unitary on E°, given any v € C°(M,, TM.), we have

((Vo)vei e )+ (ei, (Vo)ve;) =0,
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hence, for any f,g e C*(M,, E),

v(f,g)= ’U<Zfi€z',zgjej>
= <Z flgz) = Z vfi)gi + fi(vg;)

= (Z(’Ufz)gz + fi(vgs ) + Z fzgj (Vo)ves, €; )+ e, (vo)vej ))

7

:<vvfug>+(f7vvg)'

(iii) V is compatible with the Clifford multiplication o. That is, we want to show
that

V(o(§)v) = o(VF€w + 0 (§) V.

Note that

V(o (§)v) = ds® ds(a(§)v) + Vo(o(§)v)
So we compute

ds ® ds(a(§)v) = ds ® (a(0:&)v + (&) 0sv)

and
Vo(o(&)v) = a(VEC)v + o (£) V.
Since
ds ® (0(0:6)v) + (Vg v = o(V<E)w
and

ds®a(§)dsv + V(o (&)v) = 0(§) Vo,

93



the claim follows.

e Dirac operator. Define

0:= laov

1

with ¢ and V given above. Then 0 is called a Dirac operator of product type.

Lemma 2.1.1. Over M., the Dirac operator 0 has the following product type struc-

ture

5 %a(ds) (0, + Do)

where Dy : C*(Y, E°) — C*(Y, E°) is
a) self-adjoint;
b) such that —o(ds)Dy = Dyo(ds); and

c) even with respect to the Zy-grading of E°.

Proof. Computing directly, we have

1
0=-00V

(4

= %ao (ds® ds + Vo)
1
== (o(ds)ds + o o V)

= ~o(ds) (2 + o(ds) 7 0 7).

Hence, we define Dy := o(ds) o o V. To complete the proof, we will show that

D, satisfies conditions (a) - (b).

a) Note that Dy = (io(ds)™!) (ito o V). Since i~'o oV, is a Dirac operator on
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E°, it is self-adjoint. We go onto compute

Di = (i"'o o Vp) o (—io(ds)™)

= —coVyoo(ds)™! (2.1.1)
= -—coco(ds) oV, (2.1.2)
=o(ds) ooV (2.1.3)
= D.

Note that from (2.1.1) to (2.1.2), we used the compatibility of V;, with the Clif-
ford multiplication, and from (2.1.2) to (2.1.3) we used the anti-commutativity

of Clifford multiplications.

b) It is the exact same argument as the one from (2.1.1) to (2.1.2) with o(ds)™*

replcaed by o(ds).
c¢) Recall that
50V = 0(p;) 0 (Vo)

J
with {¢;} alocal frame of 7*Y and {v;} its dual frame, then the claim follows

from that both (Vp),, and o(ds)~'o(p;) are even in the grading. O

2.2 Melrose’s compactification

In 1993, the underdeveloped idea of Atiyah, Patodi and Singer was picked up by R.
Melrose, and extended into a full-fledged theory and framework for analysts to work
with singular spaces of various sorts. The first step is to pull the attention back to
the compact universe.

S

We consider the change of variable x = e®. The non-compact manifold M is

compactified to a manifold with boundary, X = [0, 1], x Y [ [,- M, under this process.
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Figure 2.2: Melrose’s Compactification

See Figure 2.2.
We will work out how 9, transforms. Note that f(z) < f(s) := f(e*). By chain

rule,

of o . .
o5 (8) = 5./
(e
of

In other words, 0y < xd,. Therefore, instead of studying 0 = %a (0s + Dy), it is
equivalent to study the b-differential operator %0 (0, + Dy), still denoted by 0, and
the machinery developed in Chapter 1 can be applied. In particular, as have seen in

Example 1.5.3, we have

N(@@)(r) = la(ir + Dy).

]

We discuss the invertibility of A(9)(7). Since o is an isomorphism, it suffices to
study i7 + Dy. Recall that Dy is self-adjoint, hence i7 + Dy is invertible when 7 # 0.
Consequently, N (9)(7) is invertible for all 7 € R if and only if Dy is invertible.

Now recall that 0 is Zy-graded, we can write d = 0T @0, where 0* : S°(X, E*) —
S9(X,E¥). Note that et @ e™ € kerd if and only if e™ € kerd" and e~ € kerd~.
Hence 07 is Fredholm if and only if 0 is Fredholm. We summarize the discussion as

follow.
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Proposition 2.2.1. 0 is an elliptic, self-adjoint, Zo-graded, first order b-differential
operator of product type. Ifd =i *o(x0, +Dy) along [0, 1] x Y with Dy € Diff' (Y, Ey)

and Dy is invertible, then both ® and O are Fredholm over the S°-sections.
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Chapter 3

The heat kernel

3.1 Essentials of heat calculus on closed manifolds

Heat calculus is an approach to construct the heat kernel of a generalized Laplacian
on a manifold modeling the Fourier transform technique in Euclidean spaces. We
follow [19]. The standard reference is [25], in which the blow-up technique is applied

and formulations are in higher generality.

Definition 3.1.1. A function ¢(s,z,w) € C* (Ryx R?x R™) is in the partial heat
symbol space . (R x R™;R™) if ¢ is Schwartz in w, that is, given any ¢ € N, multi-

index «a, and compact set K < R x R",

sp (1 + ) (2,200 (5,2, 0)] < .
(s,z,w)eK xR™

Remark. Readers are advised that the choice of terminology here is not standard. On
the other hand, in the rest of this work, we will just call the function ¢ a heat symbol

or simply a symbol, when no ambiguity arises.

Definition 3.1.2. A linear operator @ : C(R") — C*(R* x R") is in ¥4 (R"),p €
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Z, if there exists a function g € . (R x R™; R™) with

q(—t,z, —w) = (—1)Pq(t, z,w),

such that, given any ¢ € C°(R"),

IS z—y
Qp(t,x) =t~ 7P 1fq(t1/2,:v, 7 )P ().

Remark. One could think of the function sPq(s, z,w) as the “full heat symbol” of @Q,
analogous to the standard theory of pseudodifferential operators, with p serving as the
delimiter of the orders. Nevertheless, as already mentioned, the word “heat symbol”

was reserved for the partial heat symbol ¢(s, z,w).

Observe that for ¢ > 0, the integral kernel of Q) € ¥W—HP(R™), denoted by Q(¢, z, y),
is smooth in all variables. In particular, the partial derivatives with respect to ¢ of
Q(t, z,y) are sums of terms in the form of

o r—y
13 ((« —y) - 0,) at"? 2, — 157,

Hence, given any compact set K < R"” x R" and index 9, there exists some constant
k, such that

sup ‘tkan(t,x,y)‘ < 0. (3.1.1)
Rt xK

Proposition 3.1.3. Let @ € ¥} (R").

1. If p is even, then

Q: C*(R") — t #2710 ([0, 0), x R").
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2. If p is odd, then

Q : CX(R™) — tP2712C* ([0, 00), x R™)..

Proposition 3.1.4. Let pe Z, m € N and P € Diff™(R"™).
1. U (R") < U5 (R,
2. 0;: WP (R") —> WEF2(RM);
3. P:UE(RY) — WL ™(RM).

Let W5 *(R") := Nz V5 (R™). The following result gives a characterization of

Uo7 (R™).

Proposition 3.1.5. If(Q) € \If;loo (R™), then there exists a (unique) function k(t,x,y) €
C*(R+ x R"x R") with
0;'k(0,2,y) = 0

for all m € N, such that
Qo(t.) = | (t.2.)el) dy
Hence, we define
U (R™) := {k(t,z,y) € C*(R* x R"x R")|¥Ym e N, /"(0,z,y) =0}, (3.1.2)

the collection of residual/negligible operators in heat calculus.
Definition 3.1.6. Let ) € ¥4 (R") with

o x—y
Qp(t,x) =t~ IJCJ(t”Q,x, 7z )e () dy,

101



then ¢(0, z,w) is called the normal heat symbol of ). The normal symbol map is thus
defined as

ol U (R") — & (R";R")

Q+— q(0,z,w).
Proposition 3.1.7. The following sequence is exact:
O.'H
0 —— V' (R") —— W) (R") —— 7 (R, R") —— 0,

where .7 (R™;R™) := {q(z,w) € C*(R"x R")|q is Schwartz in w.}.

Theorem 3.1.8. Let L be a generalized Laplacian on R™ equipped with a Riemannian

metric. Then there exist Q € U;*(R") and R € U5 (R") such that

We now move on the manifolds. The residual space is defined similarly as in

(3.1.2):
U0 (Y) o= {k(t,z,y) € C*(R* x Y?)|[Vm € N, 0]"s(0,z,y) = 0} .

Definition 3.1.9. A linear operator @ : C*(Y) —» C*(R*xY) isin ¥4 (Y),p € Z, if
given {U,} a cover of coordinate patches of Y, {¢,} a partition of unity subordinate
to {Us} and {1hq € C*(Uy)} with 1hy = 1 on supp ¢, there exist {Q, € Ul (R™)} and
R e U, *(Y), such that

Q = Z¢a@a¢o¢ + R.
We have a variant of Theorem 3.1.8.
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Theorem 3.1.10. Let L be a generalized Laplacian on Y. Then there exist () €
U2(Y) and Re Vo °(Y) such that

(+L)Q =R
Q‘t:O =1d
Proof. Assume that the collection of triple {(Us, @u, )} satisfies the hypotheses in

Definition 3.1.9. Write L, = L|y,. Then by Theorem 3.1.8, for each «, there exists
some Q, € V. 2(R") and R, € U3 °(R"), such that (d; + Lo)Qu = Ra. Define

Q = Z%%@a% = ZQ@)

then @ € ¥, (V). We will show that R := (¢, + L)Q € V(Y.
Recall that R(t,z,y) € C*(R* x Y?), since every Q, is smooth in all variables

when ¢ > 0. When = # y, note that

0} 01 Qulrs xeiz (t, 2, y) = 0000 (2)Qa(t, 7, y)Pa(y)

= Y (@) Qult ., y)Pa(y),

Y1+7v2="7

hence, 656¥Q0|R+Xu3(0,$,y) — 0, and as a result d/R(0,z,y) = 0 either. When

x =y, we consider the following two cases.

case 1. x € supp¢@,. Then there exists a neighborhood of z, denoted by N2,

such that ¥, = 1 over N%. Consequently,

(at + L)Qa|R+x(N§‘)2 = w(at + La)©a|R+x(/\/g)2¢ = wRa¢|R+x(/\/§‘)2a

thus 07 (6, + L)Qu(0,z,y) = 0 on (N2,
case 2. x ¢ supp ¢,, then there exists a neighborhood /\N/'J?‘, such that ¢, =0 on
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N Therefore, Qalg+ x (37a): = 0, and hence 02 (0,4 L)Qu(0,,y) = 0 on (N)2.

Since @7 R(t, z,v) is a sum of finitely many terms of 0/ (8, + L)Q4(t, z, y), we conclude
that 0 R(0,,y) = 0 for all 8, that is R € W5 *(Y).

To complete the proof, just observe that

Q|t=0 = Zwaéagba‘t:() = Z@%cﬁa = ZQba =1d. ]

Remark. Indeed, the theorem above does not require Y to be compact. This fact is

used in Section 3.3.

Theorem 3.1.11. Let L be a generalized Laplacian on Y. Then the heat operator

et exists and e7'L e W2 (Y).

By (3.1.1), the partial derivatives of the heat kernel of L with respect to ¢ are
bounded by 0t*, where # > 0 and k € R are constants depending on the order of the

partial derivatives.

3.2 Fundamentals of b-calculus

We give a brief review of the Melrose’s classical b-calculus. For more details, see [25],
[20], [13] or [22].
Foe each m € R, the space of b-pseudodifferential operators of order m is the space

of distributional right-density
V(X)) = {AeI™X}, Ay, Q) | A=0at Iburb},

where, in general, = 0 at a submanifold, means that the Taylor series vanishes at the

submanifold, see Figure 3.1. Note that

Ui (X) 0 WY (X) = W (X).
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smooth

smooth

Figure 3.1: Schwartz Kernel of a b-Pseudodifferential Operator

Vanishing in Taylor series is a natural boundary decay condition to consider. This
is reflected in the mapping properties of b-pseudodifferential operators. For example,
given A € ¥'(X),

A:C*(X) — C*(X),

where COO(X ) = {f € C*(X) ‘ f vanishes in Taylor series at 0.X}. More generally,

for any s € R,

At HY(X) — Hy™(X),

where H(X) is the b-Sobolev space of order s.

The normal operator 121\(7') of A e ¥};*(X) may or may not be invertible for a given
7 € C. However, even if A\(T) is invertible for all 7 in a strip 2, there may not be a
B e ¥, ™(X) such that B(r) = A(r)"! for all 7 € Q. To incorporate the inverse of
the normal operator into the theory, one needs to enlarge the (small) b-calculus into
the “calculus with bounds”, which we now describe briefly.

If @ = (€1, €2,0) is a multi-index with § > 0, then we define

- a €1 € 5
Wy, _Pzz;pr%U/)ZbPrbSO (X3, r),

e>0
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vanishing up to order v + €

smooth

smooth

Figure 3.2: Schwartz Kernel of a b-UDO with bounds

where p;, and p, are total boundary defining function for [b and rb respectively, and

where u € S%;‘s(Xg) if for any product decomposition X7 = [0,1), X ff(,,.,) near ff,
U(T', w) = UO(M, Y, y/> + ruy (w? Y, y/) +oeee rkuk(wa Y, y/) + 7aaukJrl(r? w, Yy, y/)a

where 0 < a — k < 17 ui(wayay/) € SO(ﬁ)? and ukJrl(rawayay/) € SO([Ovl) x ﬁ) 18

continuous with all b-derivatives up to ff. For any m € R (Figure 3.2),
(X)) = W (X) + 0,0 (X)

Let py be a boundary defining function for ff and assume that |, + /[ = 0. Then
the following composition result holds: Provided that alp + o/, = v + 9" + |y,

where o| g := min{a|g + /| 5},

’ "

Py (X) 0 pp Uyt (X) < pi T (X),

where |y, := min{ap, &' + 7}, | = min{c’ |4, | + 7'}
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Observe that, if u(x,y) = x°f(x,y), then

(20, u(x, y) = Z Ciz“ (20, ) f(z,9). (3.2.1)

Also, note that, if ¢ > 0, then

by L’Hospital’s Law. From (3.2.1) and the definitions, it follows that, when €, €5 > 0,

UP(X) S UP(X) S U (X).

In comparison, vanishing in Taylor series is a “super” decay condition, while vanishing
to infinite logarithmic order is relatively modest. The title of this work was derived
from this viewpoint.

We conclude this section by remarking that the b-calculus with bounds can be
characterized by the holomorphic extendibility of (local) symbols. In what follows,
we identify the multi-index (a, a, &) with the real number o > 0. Following from

elementary complex analysis (see, e.g., [30]), we have (Figure 3.3)

&
a(r7 s? y7 Z? 7_7 )

«

dmmmmm e mmee oo e mmmm e mmmmeo oo N
Te
R

PEN NN NN NN NN N SN NN NN HH NN NN NHHNH NN N

—«

Figure 3.3: Holomorphic Extension of Local Symbol
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Proposition 3.2.1. A e U"*(X) if and only if, over any coordinate patch near Ay,
the kernel of A is

felSTJ’_ZZg a(T7 87 y’ Z? 7_7 5) de&’

with a a symbol of order m in (1,§) holomorphically extendible in T to a strip Q, =

{reC| Im7| < a}.

On the other hand, the local symbol of an operator in W}}(X) is not necessarily

holomorphically extendible beyond 7 € R.

3.3 Heat parametrices

Definition 3.3.1. A generalized b-Laplacian on a vector bundle 7 : F — X is a

b-differential operator A e Diff} (X, F) with

"o (0)() = I€I.
A is said to be of product-type on the collar C' = [0,1), x Y if

A‘ = —(x(?w)Q + AO

C

where A € Diff?>(Y, Ey) is a generalized Laplacian on F.

Example 3.3.2. By Lemma 2.1.1, 82 lifts from M to a generalized b-Laplacian of

product-type on X.

The idea of constructing the heat kernel of A over the whole X is gluing up the
heat kernels on the collar and on the interior. To be precise, let ¢ € CF([0,0)) such
that ¢ = 1 on [0,1/2], » = 0 on [3/4,0) and ¢ > 0. Pick a 1)y € C*([0,0)) such
that 1o = 1 over [0,7/8) and 1)y = 0 over [1,0). Lastly, choose a 11 € C*([0,0))
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Figure 3.4: Supports of the Gluing Functions

such that 1; = 1 on (3/8,0) and ¥; = 0 on [0,1/4]. These three functions will be

serving as the "gluing” functions. See Figure 3.4.
Remark. Note that )y = 1 over the support of ¢ and ¢; = 1 over the support of 1 —¢.

We first derive an expression for the heat kernel of —(z0,)? over [0,1). Observe
that, making the change of variable r = In z, we have (0, 1), < (—00,0), and 0, = 0,.
Note that for any ¢ € 2°C*([0,1)), (") could be viewed as a function in C°(R)
by extending beyond 7 = 0 by zero. Now recall that the heat kernel of —0? over R is

given by
1 ,
ol |2 /4t

At ’

thus, changing back to variable z, we obtain:

1 :
L hn(e/anPra

At

We will verify that this is just the heat kernel of —(xd,)? on [0,1). In fact, we will
put it in a more general context. Recall that Y is a closed manifold, hence the heat
kernel of Ay exists. Denote both the heat operator and the heat kernel of Ay by

e Ao,
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Theorem 3.3.3. The function

1 2
_ —|In(z/z")|7 /4t —tLo
= e e
0 VAart
1
e e 3.3.1)

where z = In(z/z'), can be lifted to Sy(C}), where C' = [0,1) x Y, for every t > 0. In

particular, it defines a map

HO : Qb ’ Sl(;)l([()? 1)m X Y) - Slg)l([()?OO)t X [07 1):1: X Y)

Moreover, given p € ¢ - S3([0,1), x Y), u = Hyp solves the initial value problem

(0 — (x0,)* + Do)u =0
(3.3.2)

u(0,7,y) = ¢(r,y)

That is, the heat kernel of —(xd,)? + A\g is just given by (3.3.1).

Proof. Note that for any fixed t > 0, e~ 1#°/4 ig Schwartz in z and smooth up to the
front face of C?, hence Hy(t) € Sy(C%). Therefore, Hy(t) : ¢ - Sy([0,1), x Y) —

S9([0,1), x Y). Extend ¢ beyond z = 1 by zero. Under this recognition, we compute

(1 o—In(@/a)|? /4t —tDo dz’
13/, / ~ /
LJO 7 Pl y) —v(y)
(0 o—IIn(z/a") /4t o=t dz'
— f/, / v /
Lm 7= o', y') p &)
ploe] 7|w|2 —t/N\g
|| S etae ) dunty)
Y J

o AT

=u(t,z,y).

Let g(t,s,2,y,w) = /7§, e e p(ze 2w o) (y) € CP(RF xR x (0,1) x Y x

R). Note that by the properties of heat kernels on closed manifolds, ¢ is smooth in
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all variables. Also, observe that

u(t,x,y) = Jg(t7 \/E,x,y,w) dw7

and

g(t,—s,z,y,—w) = g(t, s, z,y, w). (3.3.3)

Applying the Taylor expansion on s, given N € N, we have
N oop
g(t, s, z,y,w) = ZO %ﬁgg(t, 0,z,y,w) + sV gn(t, s, 2,9, w)
for some gy € C°(RT x R x (0,1) x Y x R). By (3.3.3), we have
Pg(t,0,z,y,w) = (—=1)P%g(t,0, x,y, —w).
As a consequence, when p = 2¢ + 1, € N,
J&ﬁ’g(t,o,x,y,w) dw = 0,
therefore, assuming N = 2N’ for definitiveness,
Jg(t, Vi, oy, w) JZ i 9. 0,2, y,w) + (V)N gn(t, VE, 2, y,w0) dw
JZ 5 'aiq (t,0,2,y,w) + t" gy (t, vV, 2, y, w) dw.

By the arbitrariness of N, u(t,x,y) is smooth up to ¢ = 0.

Lastly, we will verify that u solves (3.3.2). To see this, note that

|2 /4t |27 /4t 1 E 1 2|
B 9\ € _e I L T
(81; (x0,) ) o il ( o + (41)? + SYRRNETE 0.
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Consequently,

S RS LT

(é’t — (l’(?x)g + Ao)HO = e_m“ (ﬁt - (x@m) ) \/m + \/@

Meanwhile, setting t = 0, we have

2
e_‘w‘

u(0,2,y) = f ——pley) du = ¢a.y).

which is equivalent to

H0g0|t:0 = . O
Lemma 3.3.4. Let Hy be defined by (3.3.1). Then Hy=0 att =0 when x # «'.

Proof. Recall from heat calculus that e =40 e \I/;f(Y), hence any given partial deriva-
tive with respect to t of e7* is bounded by 6t* for some constant # and k. We will
see that

1

—|z\2/4t _
—e =0 (3.3.4)
VAt

at t = 0 when x # 2. In fact, give any (x,2’) with © # 2/, there exists a bounded
neighborhood N that does not intersect {z = z'}. Note that over N, given any «, 3

and v, the partial derivative

o~ lin(x/z")[?/4t

opal oY, 3.3.5
t YxVx /47Tt ( )
is a sum of terms in the general form
—[In(z/z")|? /At La;—b, .—c —d
C e~ m(@/=l/ ln(;) =2 ~¢(2") (3.3.6)

for some constants C' and a, b, ¢,d = 0. Since (3.3.6) converges to zero uniformly over

N ast — 0, so does (3.3.5), which implies (3.3.4).

112



Lastly, the claim follow from the product rule of differentiation. O]

Proposition 3.3.5. The operator defined by 1¥oHop maps Sy (X) to Sy ([0,0) x X),

and

boHod|,_, = ¢1d.

Proof. Let u € S§(X). Then ¢u is supported in the collar C' = [0,1) x Y, ¢u € Sp(C)
and ¥gpu = ¢u. On the other hand, given any p € Sy ([0,0) x C), ¥g(x)p can be
identified with a function in S§([0,0) x X) by extending beyond x = 1 by zero. Now

the claim follows from Theorem 3.3.3. O

Let X’ = X\[0,1/4) x Y. Note that X’ is a manifold without boundary. We recall
the following result from heat calculus, which is a immediate consequence of Theorem

3.1.10 applied to X".

Theorem 3.3.6 (Interior heat parametrix). There exists an Hy € W, 2*(X') such that

(O + A

) = By e 02 (X0).

and

Hy|,_,=1d.

Also, recall that if R € W3, *(X’) then its Schwartz kernel Ky is in C*([0.00) x
X'x X')and Kp=0att =0.

Proposition 3.3.7. The operator ¢ H,(1 — ¢) maps Sy(X) to S ([0,0) x X) and

Ui H (1 —9)|,_, = (1—¢)1d.

Moreover, the Schwartz kernel of 11 Hy(1—¢) is smooth and vanishing near the bound-

ary of X2,
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Now we “glue” Hy and H; up. Precisely, we define

Q = YoHop + Y1 Hi(1 — ¢). (3.3.7)

We shall show that @ is a heat parametrix of A. More precisely, we have the following

result:

Theorem 3.3.8. (0; + A)Q = R, where R € C*([0,00) x X?) such that R = 0 in

Taylor series at t = 0 and 0X?. Moreover, Q|i—o = Id.

Proof. Observe that Ql;—g = ¢Id+(1 — ¢)Id = Id. The liberty in the choice of the
gluing function suggests that those two parts of () could be handled separately.
Step 1. We analyze the 1)gHy¢ part first. Since ¢0H0¢‘ xe = 0, we will restrict

on the collar and hence 0; + A = ¢; — (20,)* + /\g. We compute

(0 = (28.)* + Do) YoHoop = (0 Hod) — (20:)* (o Hod) + vo(LoHo)
= Po((0 — (£02)* + Do) Hoo)
— ((20,)*00) Ho¢ — 2(20.400) (0, Ho))
= —((202)*1ho) Hop — 2(x0,300) (20, Ho )

= R07
since (0 — (20,)? + No)Hy = 0. The kernel of ((x0,)%1)o)Hoo is

k0,1<t7 z, Il? Y, y/) = ((Iar)2¢0(x>>
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where z = In(x/2"), and the kernel of 2(20,10) (20, Ho¢) is

z e_|2‘2/4t

2|24t

/) e—t YAG)

koo(t, =, 7', y,y') = 2((20x)1o())(

ze"

IRl

= —(z0¢o(2))( e too
Then the kernel of Ry is ko = ko1 + ko2. We claim that kq is supported away from the
diagonal of C'x C. In fact, note that both the supports of (20,)%*1y(z) and 20,10 (z)

are contained in [7/8, 1], and the support of ¢(z’) is in [0, 3/4], hence both

o122/t

VAt

(20s)*b0(x)) o)

and
z ef|z‘2/4t

_% \/m )¢(I/)

are supported in [7/8,1] x [0,3/4]. In particular, kq is supported away from {z = z'}.

2((202)t0(2))(

Now by a similar argument as Lemma 3.3.4, we see that Rg =0 at ¢t = 0.
We also observe that kg vanishes identically near {x = 2’ = 0}. In fact, it vanishes
identically near the left boundary of X2, and near the right boundary when z is

sufficiently large. Since
o lel?/at

=0
VAt

and
z e7|2|2/4t

A —
t drt
at 0X?\{z = 2/ = 0}, we have Ry = 0 at 0X?.
Step 2. Now we look at the 11 H;(1 — ¢) part. Since ¢; = 1 beyond z = 1/2, we

have

(O + D) 1 Hi(1 = ¢) = 1 (0 + A) Hi(1 = ¢)
when x > 1/2. On the other hand, over the collar part, the computation is similar
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to that in Step 1, and we also recall that 1 is supported outside [0,1/4). Putting

together, we conclude that

(0 + &) i Hy (1 — ¢)

) Hi(1 =) = (20,)*01) Hi (1 = ¢) — 2(x0,¢n) (20, Hi (1 = ¢))
=1 Ry (1 = ¢) — ((202)*1) Hi (1 — ¢) — 2(20,¢n) (20, Hi (1 — ¢))

~iRi(1 = ¢) + Rl = Ri,

21/11 (& + A

where R = —((x0,)*1)Hi(1 — ¢) — 2(x0,91) (20, Hi (1 — ¢)). We remark that the
analysis of the kernel of R; is even simpler than Ry. Note that supp(1—¢) < [1/2, o0),
supp 1 < [1/4, ) and supp(z0d,)*y, U supp 2,41 < [1/4,3/8], hence the support of
the kernel of R; is away from 0X?2. In addition, since R} € ¥ *(X’), 1 R{(1—¢) =0
at t = 0; since the kernel of R} is supported away from the diagonal and H; € ¥,*(X"),
the same property holds for R} as well. In conclusion, we see that Ry =0 at ¢t = 0

and 0X?2. O

3.4 Construction of the heat kernel

We finish up the construction of the heat kernel with the Volterra series argument in
this section.

Recall the Duhamel’s principle.
Theorem 3.4.1. The following statements are equivalent.

1. There exists a linear map

H:C*(X) — C*(R* x X),
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such that

(3.4.1)
H|,_,=1d.
2. There exists a linear map
G: C*(R* x X) — C*(R* x X),
such that
(0 + AN)G =1d
(3.4.2)
G|,_, =0
Proof. Assume that (3.4.1) holds. Define
t
Gult) = J H(t — s)us) ds (3.4.3)
0

for any u € C*(R¥ x X), then G satisfies (3.4.2).
Suppose that (3.4.2) is true. Note that C*(X) can be canonically identified with

a subspace of C®(R* x X). With this recognition, given any u € C*(X), define
Hu(t) := 0;Guf(t).

Then H satisfies (3.4.1). O
Proposition 3.4.2. There ezists a G satisfies (3.4.2).

Proof. Consider the function space

HP([0,0) x X) == {av e a® C*([0,0) x X))

Vk € N, P e Diff} (X), 0 Pv e Lo, ([0,t) x X)}.
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Given u € H?([0,00) x X), define

Cou = L Q(t — s)u(s) ds,

where Q was given by (3.3.7), then Cg : H?([0,0) x X) — HP([0,00) x X). Observe
that
(0r + A)Cou = (Id +Cg)u,

where R = (0; + A)Q. Note that if (Id +Cg) is invertible on H?([0,0) x X), then
Co(Id +Cg) ! satisfies (3.4.2). Therefore, we will first derive a formula for the inverse
of (Id +Cg) with a Neumann series argument.

Fix € > 0, let ¥ = 2°(2')°C([0, to] x X?). Define a norm on ¥ by

[ull == {lvll

if u=2(2")v,v e C(]0,ty] x X?). Then ¥ is a Banach space with this norm. Given

f,g €V, define

dw

—v(z)ds,t < to,
w

t
f*g = J ff(t_ S, r,w,Y, Z)g(s,w,x',z,y/)
0

Note that R|jg)xx2 € #. Write xR? = R+ R, and in general R = R+ R’ { € N.

Then (Cg)* = Cyge. Denote Cy = §2%* %y (y). Given f € ¥, by induction, one can

show that
0] < e
for any £ € N, hence
sl < S g (3.44)
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Now define S := Y}, _; *(—R)", then by (3.4.4), S converges in ¥. Furthermore, since
S=-R+R+R—-R=+S=*R,
S = 0 in Taylor series at t = 0 and 0X?2. From the construction, we have
(Id +Cg)™ = 1d +Cs.

Consequently, define G := Cg + Cg.s, then G satisfies (3.4.2). O]

By the Duhamel principle, the heat kernel exists, and e = H =Q 4+ Q * S. In

particular, for any ¢t > 0, e 74 € ¥, *(X).

3.5 Trace expansions and Dirac operators

In this section, we assume that the reader is familiar with the local index formula

proved by Getzler. See [19].

Theorem 3.5.1. Ast — 0, we have the following asymptotic expansion:

—tA ‘ o~ +—1/2 Z k
e Ay t apt”,
k=0

where a € C* (X, ).

Proof. Note that Q = S|Ab ~ 0. Recall that @ = ¥gHop + Y1 Hi(1 — ¢). Thus, we

compute

‘ln :c/x/|2

YoHod|,, = (4mt) ™ 2y(a) e i et p(a!)

= (4mt)" e 70 (y, y)d(2).

119



Since dimY = n — 1, we have

e—tAo - t—(n—l)/2 Z tkCL;(y),
k=0

where aj € C*(Y, ), and consequently,

dx

T

¢0H0¢|Ab ~ 1" 2 t*(4m) "2 g () a (y)

k=0

On the other hand, we have

leI(l - ¢)|Ab = (1 - ¢)H1|Ab ~ 2 Z tkag,

k>0
where a/l € C*(X, ), since H; € V. 2(X"). Then the claim follows. O

From the local index formula, the pointwise supertrace of e~ has the following

asymptotic property:

str(e ") ~ A(TM) chz(E/S) + o(t). (3.5.1)
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Chapter 4

The index theorem

4.1 b-integrals and b-traces

We follow the approach in [12].
Let a € SH(X,). Over the collar C' = [0,1), x Y, write a(z,y) = (ao(y) +

a1(z,y)) | %] v(y), and define the b-integral of a by

Definition 4.1.1. Let A e ¥,,”(X). The b-trace of A is

b
"Tr(A) = J Aly,-
X
Proposition 4.1.2. 1. Let A € 'S}, (X, Q) = 'S (X7, Qur) © ¥, (X).
Then A is of trace-class, and "Tr(A) = Tr(A).

2. Let A € W(X) and B € 'Sy, 5 (X3, r). Then both AB and BA are of
trace-class . In particular,

Ti([A, B]) = 0.
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Proof. 1. Note that A|x €159 ((X, %)), hence

Tr(A) = JX Al < oo

That °Tr(A) = Tr(A) follows immediately from the definitions.

2. Note that N(AB)(7) = A(7)B(7) = A(7)00 = 0, and similarly N'(AB)(7) = 0,
hence AB, BA €S}, ;4 (Xi, Q r), and by part 1, both AB and BA are of trace-

class.

Lemma 4.1.3. Let Ae U, *(X), and for any z > 0, define

Flz) = JX A,

Then

F(z) - % JR T (A(r)) dr + "Tr(4) + of2).

Proof. Near the front face, write

/

A= (a0(87y7y/) + al(%&%y,)) “H

then
Aly, = (a0(0,y,9) + a1 (2,0,9,)) - %V(y)’-
Thus,
JJanOyy—V foaleyy)d—y() L\CﬂA\Ab
:;Laom 0.) SEoly) + 1) + g2),
where f(z go §y a1 (z,0,y,9) Lu(y), g(2) = Sx xZA\Ab. Observe that f(z) and
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g(z) are continuous at z = 0.

Note that
thus
and consequently

Therefore, we have

| w00 v = | | Anmaray= | | A dudr = | 0 (A

which implies the lemma. ]

Theorem 4.1.4. If Ae V}}(X) and B € V,,*(X), then

(4, B) - i |

R

Tr ((M(T) oé(f)) dr. (4.1.1)
Proof. Observe that

2*|A,B| = 2*AB — 2*BA
=a2°AB — Ax*B + Ax*B — x*BA

= [2%, A|B + [A, 2*B].

Note that for z > 0,

.I'ZKB € IS%Tb(XQ, Qb,R)-
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Hence by Proposition 4.1.2, we have

=0
Ay

f (A, 2°B]

for any z > 0. As a result,

Now observe that

[2*, A|B = 2°C,B

where C, = A — x7*Axz*. Note that the kernel of C, is given by

Kig— (x/2) 7Ky =(1—e*)Ky

with s = In(z/2"). Recall that

e = Z (_Z?k =1— 25— 2%g(s,2).
Consequently the kernel of z*C. B is
22 (s + z9(s, z)) K ap.
By Lemma 4.1.3, we have

fza;Z(s + 29(s,2)) Kag|, = 2 (% JRTr (f)z(T)) dr + "Te(D.) + o(z))

lA)Z(T) dr 4+ 2°Tr(D.) + 2 - o(2)
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where D, is a family of bl-pseudodifferential operators defined by the kernels (s +

2g(s, z))Kap. Lastly, we conclude that

(A, B) =ty | <[4, Bll, - | V(A ) ar
- llir(l) . Tr <ﬁ2(7)> dr + o(z) — %J%Tr([ﬁ(ﬂ, B(r)]) dr
=LH@WD&zL%@WWﬂm&

= iJ;R Tr (8711(7') o é(T)) dr. O

Formula (4.1.1) is called the trace-defect formula.

4.2 The index theorem

At last, we finish off the proof of the index theorem. We begin with an alternative
way to obtain the n-invariant adopted from [20].

Let A € R. Assume A > 0. For any a > 0, we compute

lfwx+wr%h:iwm@+my4mA—m»

™ (x

—a

1
= —(targ(A + ia) —iarg(\ —ia))
im

2
= —arg(\ + ia),
T

hence

a

1 ([~ 1
—f A+4r)tdr=lim - | (A+4r)tdr

™ J_xo a0 T J_ 4

2
= lim —arg(\ + ia)

a—0 77

= 1.
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For A < 0, we make a substitution 0 = —7 to compute

1 (> 1 (™
—J A+ir) tdr = —J (A +io) ' do

T J_ 7r

Consequently, if A = {\,..., Ax} < R\{0}, then

H_w SN\ +ir) " dr = #{A e A]A > 0} — #{\ e A]A < 0}. (4.2.1)

D NeA

Proposition 4.2.1. If A is a self-adjoint matriz with eigenvalues A < R\{0}, then

1 JOO Tr ((A+i7)7") dr = sgn(A) == #{X € A} > 0} — #{) € A|]X < 0}.

T J-o

Proof. The proof is a simple exercise in linear algebra. Recall that A is diagonalizable

since it is self-adjoint. Let
A= P ' [\Nd,]P =P 'DP

for some invertible matrix P. Observe that

The claim now follows from (4.2.1). O

The above discussion motivates the following consideration. Let D be a Dirac
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operator of product-type on the collar. For ¢ > 0, define

1 2. p2
n(t) := —f Tr ((Dg +ir) et +D0)> dr. (4.2.2)
R

™

Note that e (™*+D%) serves as a regularizing factor to assure that the integral (4.2.2)
converges. The value of 7j(t) at ¢t = 0, if exists, should measure the spectral asymmetry
of Dy, in view of Proposition 4.2.1. To see the connection of 7(t) with the n-invariant

of Dy, we compute

1
() =~ fRTr ((Do —iT)(7? + Dj) ! e_t(72+D3)) ar

™

1 * 2, 2
= —J Tr ((DO —iT)J e+ Do) ds> dr
¢

T JRr
1 (> 2

= —f J Tr ((DO —iT) e’S(TerDO)) drds.
T™Jt JR

Since Tr <—7JT e_s(72+D5)) is odd in 7, we go on to compute

_ 1 @© et _ D2
n(t) = — e *T Tr <Doe s 0> drds
T™Jt JR
1 * —-1/2 —2 —sD?2
= — s e Tr(Doe 0) deds
T™J¢ JR

1 OO -1/2 T (D —sD%) d
= — S r{Dye s.
VT i

Recall that n(Dy) := \/LE SSO s~V Ty <D0 6’5D3> ds is exactly the n-invariant of D).
Now assume that Dy is invertible. Note that DT is Fredholm (Proposition 2.2.1).

Our study of the index formula relies on the following fundamental result:

Theorem 4.2.2 (Hérmander-Fedosov). If D is a fully elliptic operator, and P its
(full) parametriz, then, in particular, both Id —PD and Id —DP are of trace-class,
and

IndD = Tr(Id —PD) — Tr(Id —DP).
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Define
t
By = D‘f e PP (s,
0

Then,
D'By=Id—e™P ByD" =Id—e P P".

Since D(7)~! exists for all 7 € R, we can choose a Q € W, (X) such that Q(r) =
D(7)~! = i(iT + Do) 'o. Define
B = Bo + QeitD-FD_,
then
D*B =1d—K,, BD* = Id—K,,

where

Ki=(Id-D"Q)e ™ P Ky=(1d—QD")e ™™ P".

Observe that

Kl(T) =0= KQ(T),

hence K; and K5 are of trace-class. Now the Hormander-Fedosov’s theorem implies
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that

IndD* =Tr(K,) — Tr(K;)

:J K2|A_f Kl‘A
X X
b b
:J K2|Ab_ J Kl‘Ab
X X

="Tr(K,) — "Tr(K) (4.2.3)
="Tr ((Id —QD") e‘“”’*) — Ty <(Id —D* Q) e—tD*D*>
=Ty <e_tD7D+) — Ty (e_“ﬁD*)

_ by (QD* o—tD Dt _ p+ QeftD*'D_) '

Let £(t) = 2°Tr (QDJr e PP _ Dt Q e_tD+D_).
Theorem 4.2.3. £(t) = 7j(t).

Proof. Recall that DT e ™ P = ¢ P"P" D* by the uniqueness of solution to heat

equation. Thus

f(t) =_9 bTI' <D+ Q eftD"'D_ _Q eft’D'*'D_ D-‘r)

= 2Ty <[D+, Qe_tD+D_]> :
Now by the trace-defect formula (4.1.1),

£(t) = =25~ | Te[@ DM QAN ) () ar

= [ 1| Gotir + w) oitir + Do) o o A ) r) | ar
= %JR Tr [O’ o (it +Dy) too ./\/(e_tD+Di)(T)] dr.
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To obtain A (e *"P7)(r), we observe that

A~

N (e ™™P7)(7) = Ho(7)
where Hj is given by (3.3.1), and compute

1 2 .
_J e 2| /415e tAoe 2T 2
R\/47ﬂf
72
= e tT e [VANG)

"4+D3)

=0 e_t( 0.

Consequently, we have

1 _
g(t) = ; (\ Tr U(i’T + Do)_la' ¢} ge_t(72+Dg) 0] dr
JR -
1 [ 2
- — ( Tl“ U(ZT + Do)il o eft(TQ‘F'DO) O_:| dT
7T ‘)R L
1 [ 2
= — ( Tr [e "7+ P8) 5 o o(it + 730)_1] dr
1
= — ( Tr <e_t(72+D3)(z’T + Do)_1> dr
T Jr
= 7(t).
1 1
Theorem 4.2.4. IndD" = J A(TM) chz(E/S) — 577(1)0).
X

Proof. By (4.2.3), (3.5.1) and Theorem 4.2.3, we have

1(t).

IndD* = J A(TM) chz(E/S) + o(t) —%

130



In particular, 7(0) exists, and

1 1

277(770 = 77(0)

= lim
t—0

1y
2 i
ﬁ TM)chy(E/S) + oft )) — IndD*

A

f ft(TM) chy(E/S) — IndD* .
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Appendix A

Conormal distributions

In this section, we describe a calculus of conormal distributions, which is particularly
suitable to the study of compact manifolds with boundary. The approach here is
adopted from [21].

Denote %10 by D2 for any (multi-)index a.

Let f € S(R™) be a Schwartz function on R™. Recall the Fourier transform of f

fle) = fﬁ f(z) dz

and the inverse transform

where d¢ = (2m)™" d&.
Lemma A.1. Let f,g € S(R"). Then

~

fo=7F=+7

and

fg=(@m)"f*g
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Proof. Recall the convolution between ¢ and v

@ *P(§) = Jw(é —n)(n) dn.

Note that f g € S(R™). Appling the Fourier inverse transform to the formula
(f=9)= 19,

we verify the first claim. The second claim could be proved similarly. ]

Recall that a is said to be in SJH(RF! x R™; R") for m € R if a can be written as
a = ag+ay, where ap € S™(RF1 x R™; R"), and a; € ST (RM x R™; R"), that is, given

any multi-indexes «, 5,7 and £ € N, x5 > 0,

sup [ (1 + (€N (1 + m]) (1 + Jy| + [2)]"(20.)*(9,0.) an (,y, 2, €) | < 0.

o (A.1)
Note that this definition of symbols is slightly different from the standard in that we
impose decaying property on the (y, z)-variables. See also [9]. The decaying property

allows us to carry out Fourier transform more freely and precisely.

Example A.2. Let ¢ € C*(RFY) ¢ € C*(R"), and p(§) € P,(R") where P,,(R")
is the collection of m-th degree polynomials in n variables. Then a(x,y,z,§) =

o(z,y)(2)p(€) is in SP(RF x R™; R™).

We will denote

Je_“” a(z,y,2,€) dy

by a(z, T, z,&), and similarly

f (g, 2, €) dz
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by a(x,y,1,§).

Lemma A.3. If a € S7/(R*! x R™;R"), then both a(z,7, z,£) and a(x,y,7,£) are in
Sm(RRx R R™).

Proof. Let «, 3,7, 9, € be arbitrary multi-indexes in £ € N. Note that

Te(xax)anﬁz(?ga(x,?, 2,€) = Te(xﬁm)ana;’ag fe_iy'T a(z,y,z,€) dy
= JTGDTB e_iy'T(xﬁm)a626ga(x, y,2,&) dy = JD;/ e VT -yﬂ(a:&x)aé’zé’ga(x, y,2,§&) dy
=(=1)" fe D, (v (wdy)*020ca(z,y. 2, €)) dy

—=(=1)l Z Ce, Jeiy'T Dzlyﬁ . (x&x)“Df&zé‘ga(x,y,z,f) dy

€1+eg=¢€

(= > Celfe‘iy'TD§1y5~(ﬂfax)“D?@Z@g(ao(y,z,é)+a1($,y,z,§)) dy.

€1+eg=€

Thus, for 0 < x < x, we have

|Te(a;(?x)anazﬁgal(x,?,z,f)‘ < Z J|D;1yﬁ| ) ‘(a:@x)aDzzazagal(a:,y,z,§)| dy

A+ (L + )1
< Ca,ﬂnﬁ#f (1 + [y|)p+1el y- [(1+]2])(1 + |Inx])]¢
(1+ )"

o
@BYST(T 4 [2[)(1 + [Inz])]

for some constant, Cf 5 _ 5 ., where 554,6,%5,6 = Cl g5 S(L+1]y)) 7 dy and p = 2(k—1).

67

Hence a(x, T, z, &) satisfies the symbol estimate (A.1). Similarly we have
sup |[(1+ [z] + [7))"(1 + €))7 D01 0ao (7, 2, €)| < o0,
so we conclude that a(z, 7, z,€) € SiH(RM! x R™; R™). The other claim is proved in the

exact same way. ]
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Let u € I (RM!x R™; R¥!x {0}) be associated with a € S{(RF!x R™; R"), that is,

U= feizf a(x,y, z, &) dE.

We will derive the "left” symbol of u, i.e., a symbol @ € Sj(R*!: R™) such that

u=f (Y, €) dE.

Let ¢ - pu € C’go(Rk’l x R"™ €)), where p = ‘d?“"dydz|. In particular, ¢ vanishes to

infinite order in z at the boundary of R¥! x R™. Observe that

[ €a(r,y. 2. 00y, 2) yaate

J

r — da
= < ra(fc,y,ﬁ—n E(x,y,1) dn) =L dyde

v
= <a(x ) xyn—dydn

—P< a(z,y,n — &) & ) xyn—dydn

= e ([ atw i 6 d€) el 2) @ ayan

Therefore, the left symbol of u shall be defined by

ile,y,m) = f ale,y, 7 E.6)dé (A.2)

§,§)d¢ (A.3)

e~

oy, 7 ££d£+J (o, &, 6) de

Il
%Q’

= ao(y,n) + ay(z,y,m). (A4)

To justify the work, we need the following result.

Theorem A.4. Let a € SJF(R* x R"; R™). Then a € Sj(R*!; R™), where a is defined
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in (A.2).
Proof. We will establish the desired decaying property for a. Observe that
opalz, y,m) = I e a(z, y, 2,€) dal

r

| =) e 1702 (. y, 2, €) dadg

r

J _(a& <_izi)7iileii(nié)z)a($a Y, =, f) dZd—g

=— f&gi ((—izi)'ﬁfle*i(”*oz a(x,y, z, 5)) dadg

+ J(—izi)%_le_i("_g)z Oga(z,y, 2,€) dE.
Since by Lemma A.3 for any ¢ € N there exists a constant C such that

‘Je—i(n—ﬁ)z(_izi)”ﬁ_la(x,y,z,f) dz| < C(1+ =€~ (1+ leh™,

in particular for any fixed n

[imre o age .0 2 B0

we have
Jé’& ((_Z‘Zi)%—le—i(n—f)z CL(ZL‘, Y, 2, 6)) ddeZ
) &=
£i—0
Thus,

ora(z,y,n) = J(—z’zmle““)z 0c,a(,y, 2,€) de.
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Continue this procedure, we eventually have

Oyia(w,y,m) = Je—im—@z G a(w,y,2,€) ddg

::J@gax@ynffbiwk-

Arguing similarly, we have

(e, ym) = f (67a) (. y. 7 €. €) dt.

Note that (0fa)(z,y, (,6) e 5’;77%”(1@"“1 x R™;R"). Since @ has a decomposition given

in (A.4), now it suffices to establish the symbolic estimate

Cop (1 + )™ (1 + (1 + [Inz[)~*)
(1+ |y])*

|(x0,)* 0 a(z,y,n)| <
for any indexes «, 8 and £ € N, when 0 < x < x5. Consider

(wbn) (e, y,m)| = U(:zcamafa(x,ynf—\s,a ae

_ J Cly (14 (14 lnz)™f) (1+[Eh™
N [(L+ Jy]) (T + |n— &P

dg
with some constant Ciﬁ. Recall the Peetre’s inequality

(L+[6)° < (14 |n = €D (14 |m))*,

138

(A.5)



s € R. Thus, let £ = |m| + 2n, we have

oG Cly(L+ L+ ma)™) L+ |p— D™ @+ )™
(w2 ate, )| < | =2 T+ oD (L —EDT %
B f Cls (14 (14 |Inz)™) 1+ [n)" ac
- Y 2n
g (L+Jyl)" (L +|n =€)
_ Cag(L+ )™ (1+ (1 + |Inz|)~)
(1+ [y
where C¢4ll = C%4 § (1 + |n — &) 7" dc. O

Corollary A.4.1. There is an symbolic asymptotic expansion of @ given by

N (DZoga)(x,y,0,n)
CL(ZU7 Y, 77) ~ Z (<—1>O‘|Oz!

«

In particular, d(x,y,n) = a(x,y,0,17) mod S7(RF!;R™).

Proof. To reduce notational ambiguity, we rename the variables in the integrand of

~

(A.3) as a(:c,y,g, ¢). Applying Taylor expansion to a(z,y,&,n — &) in ¢, we have

~ @a)(z,y, 8118
ey -9 = 3 CNELED ey 53 EVEPlg e

lerl<p |Bl=p+1
where Rg(z,y,&,m) = &° Sé(l —t)"@'_l(&?a)(x, y,&,n—t&) dt for any p € N. Therefore,

O‘ 0‘ |/3|
i, y,m) f25 ”fa'y,f”du > S R, o

lal<p |Bl=p+1

where ﬁﬁ(x,y,n) = (Rs(x,y,&,n)dS. From the elementary properties of Fourier
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transform, we can rewrite the first term in (A.6) as

J 3 S 5 PR

|a‘a'
laf<p laf<p

D“@a (x,y,0,m)

- Z ‘0‘|04|

la<p

Thus, it is only left to show that the second term in (A.6) is in S P~ (R¥! R™), and
it suffices to verify that so is each ﬁg. We will establish the symbol estimate. Hence,

given any multi-indexes 7, d, ,we compute

(20,)7050¢ Ra(x,y,n) 1)1 (20, )70005 ((O2a)(w,y, €,n — t€) ) dule
Y yn ¢

JJ £)lel= 155 (m&x)wz&?ﬁa) (:L“,y,an —1€) dude,

then for any ¢ € N, by Lemma A.3 and the Peetre’s inequality, we estimate

warasagiotayn| < [ [ 0= 00 (oot a) e én—i6)] ane

LC QO al)™) £t (e ) (1 by — )"
(1+ |y N T T
<C’ (1+ (14 Inz])™) [- H(1—t)P (1 + EDIB\ (1+|n—te)™ e
A+ e e+ — )P
O+ +ma)™) -+ )8l (1 1y
b 1+ Jy)" ) Js (L+ €)™ (1 4 [ PHHH

<C (14 (14 Inz) =) (1 + [y) ™" (1 + [y 17HH,

dudg

dude

where g = |(m — |B] — |¢])| + |B] + 2n, C is some constant depending on v, , €, ¢, and
C = cfu — )7 (1 + [te)™ P (1 4 ey drde. O
Example A.5. Suppose that a € S7?(R*; R") and ¢ € C*(R"), then v(2)a(z,y, &) €
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Sm(RM! x R™; R™), and the left symbol of the conormal distribution u defined by

ﬁﬁwmm%ox

is just
A, ) = f (e — myalz,y.n) dn,

This construction was used extensively in the study and applications of conormal

distributional densities on manifolds

Theorem A.6 (Continuity principle). Let p(x,y, 2,§) € C’OO(RZ’:Z/) x R? x RE) with
p(x7 y7 Z? 0)
= 1 be bounded in (z,y, z) and Schwartz in &, i.e., given any multi-indexes a, 3,7, 0, €

there is some constant C;M such that

56(30‘(7507(7‘55/)@, z,§) } < Ciprs-

20y 0;
If u e I[MRM! x R™; REL x {0}) such that

u = Jeiz& a(x,y,z, &) d¢
with a € SIF(RF! x R™; R™), and

w:fw%m%w@wW%a&
= feizg ar<$7 Y, z, 5) dg

with 7 > 0. Then u, € I;;*(R"! x R"), and given any ¢ - € C*(RF! x R", () with

= ‘d;mdydz

Y

lim u, (@) = u(p).

r—0
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Proof. Observer that for any multi-indexes o, 8,7 and £ € N

|(20:)*0y 02u, | = U(xax)o‘@f@;’ (€™ plw,y, 2, r€)a(z,y, 2,€))

— J ¢ N Ol (x1000) 01 p) (w2, 7€) (122002 02 0 a) (w, y, 2, €)
0<a’'<a
altaz=a’
B1+pB2=p
Y1+y2+73=Y

~ 1+ )™ _
<l | i €6 [0+ a0+ I + )

hence u, € I;”(R® x R"). Since p is bounded in z and a is Schwartz in z, a, is

Schwartz in z as well for any » > 0. Hence by Lemma A.1, we have

———

. d d
u(p) = fe’zg a(r,y,2,&)p(,y, 2) dﬁéfdy = fa(af, Yy, & —n,&)p(w,1) dndifdy

and

", dx
UT(SO) = ] ezz{ p(l‘yyaZvrg)a($7y7za§)(p($7yaz) dz'dgzdy

[ izte—n) . da
= € p(l‘,y, 277’5)65(%%275)90(337%77) CTZdUdf?dy

r

» - dz
= [ play, 2, r€)al,y, 2, € (w, . ) deddn "y,

where the employment of Fubini’s theorem is justified by Lemma A.3 and the Peetre’s

inequality. Write

Jeiz(ﬁ—n) p($’y7z’r§)a(g:,y,z,£)(iz = fr(x7y7§7n)7

and

feiz(ﬁ—ﬂ) a(x,y,z,8)dz = f(x,y,&,n).
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Note that for any fixed (z,y, &), }eiZ(nfﬁ) p(z,y, 2, ré)alz, y, 2’5)‘ <O+ |2))™ for
some constant C, then by the dominated convergence theorem, lim, o f.(z,v,£,n) =

f(z,y,&,m). Now observing that

[fr,y, & mp(e,y, M < Cag(a) (L + [yl) 7 F V(L + 1€ —nl) (1 + o))~

< Clwd(a)(L+ [yl)>E D+ )72 (L + )~

for some constant C’ and ¢(x) € CX([0,0)), by Peetre’s inequality, another applica-

tion of the dominated convergence theorem shows that

. ) - dz
lim u, () = lim J fr(@,y, & m)e(z,y, 1) dédn?dy

r—0

d

= u(p). O

Example A.7. Let 77 : RE! xR — R¥! be defined by 71(,y, 2) = (z,y). Assume
that v € IT(RM! x R™; R x {0}) associated with a € S7(RM! x R™;R"), and the
left symbol of u is @ € S™(R™;R"™). Then the push-forward of u via 77, is defined.

Moreover,

(r)eue.9) = [ € ale,y.2,6) dadg
f (29,0 &, €) e
a(z,y,0).

On the other hand, let u, € [,,”(R¥! x R™) be associated with @, := p(ré)a €

Sy P (RELR™) where p € S(R") with p(0) = 1. Then by the continuity principle,
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r—0 r—0

u, — u, and hence (71).u, — (71).u, as distributions. More explicitly, we have

(7TL>*U = hn(l)(ﬂ-L)*ur = hII(l) e'*t 5r(x,y,§) dédz

= lima,(z,y,0) = lir% p(0)a(x,y,0)

r—0

= 5(x’ y7 0)7
consistent with the previous computation. Note that, formally, we have

f ¢ a(z,y, €) dedz = Az, y,0), (A7)

a well-known formula in Fourier analysis for Schwartz functions.

To study conormal distributions on compact manifolds with boundary, we need
to work with boundary points as well as interior points. Henceforth, we will also
denote the collection of ordinary m-th order symbols defined on R*" by S (RF; R™)
in lieu of S™(R*;R") . The symbol estimates to use shall be clear from the domain
of the symbols. Also, a subset U ¢ R, x Ri~' x R? may be denoting R* x R" or
RE! x R™, depending on the nature of the coordinate patch in question. Note that

the first coordinate x may or may not be a boundary defining coordinate.

Theorem A.8. For any m € R, there is a linear map
O I(X, Z) — SE(N*Z,Q,(N*2))
such that the sequence
0 — 'YX, Z) — IMX, Z) =22 SI™(N*Z,Q(N*Z)) —— 0
is exact.
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Proof. We first define o,,,. Suppose that u € I}J(X,Z). Let {U; = U; x R"
R* x R",®,} be a (finite) coordinate chart cover of Z with compatible coordinates
(as submanifold). Let {¢,} be a partition of unity for Z subordinate to {l{;}, that is,
a collection of smooth functions on X such that supp p; < U; and }, jp;=1lon Z.

Then by definition we have

Pju = Je”'g a;j(x,y,&)dg

for some a; € S (Uj; R"). Let af be the pullback of a;(x,y,§) - |d§] to Sg?(N*Z}M',
Q¢(N*Z)), and define

. *
a=Ya
J

Then o,,(u) is defined by
om(u) = [a] € ST (N*Z,Q4(N*Z)).

We must check that o(K) is well defined in the sense that it is independent of the
choice of {U;,p;}. Therefore, Let {U;, P, } be another coordinate chart cover of Z
and {¢}} be a partition of unity for Z subordinate to {U}}, and by be the local left

symbol of pju. Let b:= 3, bf. Note that

a =) al, b= &b,
J,k

j?k

* and gpuz to N*Z. If {U; nU;, n Z = &},

where 7 and (p},) | 2

are the lifting of ¢;

then (g})*at = 0 = @b if {Uy " UL N Z # @}, then &P (z,y,2) = (f,9,h) and

;(P,) Hu,v,w) = (f', ¢, h') with h(z,y,0) = 0 = ' (u,v,0), and

Jeiz'g (@, y, 2)a;(x,y,8) A& = i K = Jeiwf ;i (u, v, w)be(u, v,m) dn.
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Hence, by the coordinate invariance of conormal distributions (e.g., see Proposition

1.2.12),
(Ph)"a] — @ibi e S~ (N" 2y, 4, 2 (N*2)).
By the arbitrariness of j, k, we conclude that [a] = [b].

It is clear that ker(o,,,) = I}~ (X, Z). To see the surjectivity of o,,, we reverse the
previous process. Fix an arbitrary a € Sj}(N*Z,Q;(N*Z)). Recall that {{;} covers
Z and {y;} is a partition of unity of Z subordinate to {{/;}. Then for each j, there
exists an a; € Sj}(U;; R"™), such that the pullback of pja to U; x R" is equal to a;. In
particular, the support of a; in U; is compact. Let u; be the distribution conormal

to Z with compact support in U; determined by a; as the local left symbol. Lastly,

define a distribution on X in the following way: Given any f e C*(X,Q(X)),

<U,f>3=Z<Uj,f>.

J

Then in particular we have ;u = u; and u € I} (X, Z). Moreover, we have o,,(u) =

[a], which implies that o, is surjective. O
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Appendix B

b-geometry and blow-ups

In this section, we review some basics of Melrose’s b-geometry and blown-up spaces.

Let X be a smooth manifold with boundary 0X =Y.

B.1 b-type geometric objects

We commence with the b-cotangent bundle *T*X of X. We will construct *T*X by
specifying its transition functions between local trivializations. Near a point p € X ,
the transition functions are essentially the ones for the ordinary cotangent bundle. If
{Uo, o}, where O = «, (3, are coordinate patches of X with U, nUs N 0X # @, and

denote

¢a O@?(%?le . 7y7l—1) = (x/A(x', B 7y:171)7‘ .- ,yn_l(l‘/,, . Jy;Lfl)) = (IV . ;yn—1)7
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with A(2',y’) > 0, then we define

|4 z2A 104 1 oA
Aox  Ady] Aoyl _4
2oL 1 oy
a / a / AR a /
gaﬂ — z Y1 yn—l (Bl)
x/ayn—l 1 OYn—1
B oz Yy T oy, _y

Hence, *TX is defined as the unique smooth vector bundle over X determined
by the transition functions prescribed above, and the b-cotangent bundle *T*X is
defined as the dual bundle of *TX. In particular, the transition function of *T*X
over U, N Ug is given by (g;é)T. The b-cotangent bundles are the carriers of the
principle symbols of the b-type pseudodifferential operators. Note that T X was
constructed in the way so that in the interior of X, *T'X is isomorphic to 7'X, while
near 0X, (x0,0,) = (204,04,...,0y, ,) 1s serving as a local ordered basis', and
(B.1) just reflects this purpose. This assertion can be made precise by considering
the following “realization”? of ®T'X. Recall that, over U, an element in *7X can be

represented by an equivalent class [(z,y),v] where v € R™. Let

T([(2,9),0]) = (2,0 - (200, 0y)).

Then by (B.1), 7 is a well-defined map from *T'X to TX, and it is actually a vector
bundle homomorphism. Furthermore, in X , T is a vector bundle isomorphism. The
transpose 7! : T*X — "T* X is therefore also a bundle homomorphism restricting to
an isomorphism in the interior of X. Moreover, in the interior of the coordinate patch
Uy, (T'(4),7(dy)) is a local ordered basis of *T*X ‘L?a’ which extends by continuity
to a local basis (7/(42), 7*(dy)) of bT*X|ua over the entire U,. Under this recognition,

we will henceforth also denote (7/(42),7'(dy)) as (%%, dy), and the following useful

ISimilar notations like (%’", dy) = (df, dyi,...,dy,—_1), etc., are used below.
2For an intrinsic realization of *T'X and more, see [25].
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fact is readily verified:

Lemma B.1. Let X, X’ be manifolds with boundary and f : X — X’ a diffeomor-
phism. Let 7 : E — X’ be a vector bundle over X’ and ¢ : T*X — E a bundle
homomorphism covering f, that is, ¢ preserves the fiber structure and the diagram

below commutes:
T*X —* 5 F

WT*X\L lﬂ'E

x . x

Assume that {gp‘)«z(dx), cp‘)a((dy)} can be extended smoothly to ¢X. Denote the

T

extended version by {¢| (%), ¢|;(dy)}. Define a map ¢ : "T*X — E by setting

dz

T

dz

(T(=)) = ¢l (=), Y(F(dy)) = o[ (dy)

X

and extending through linearity fiber-wisely. Then

rrx Y B

Tbpx Xl lﬂ—E

x L o x

is a bundle homomorphism diagram.

The b-density bundle over X is Qy(X) := [ .y QT X), where
QUTFX) = {c|w||we /\” "T*X and c € R}.
The transition function hag of Qy(X) over U, N U is just
hag = |det(g,5)7| = |det gap| ",

in particular, in the interior of U, N Us, has = Aldet J|~", where J is the Jacobian

matrix of ¢, o gbgl. On the other hand, in the interior of U, N Uz, as elements of (the
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ordinary density bundle) Q(U, N Uz), we also have

da’

—dy = Aldet J|™!

de ‘

Hence, in view of the discussion of b-cotangent bundles above, it makes consistent
sense to integrate sections of the b-density bundle over the entire manifold X. In

particular, if u e C*(X, (X)) is supported inside a coordinate patch U, near 0X,

we can right u = p(z,y) , Where ’d””dy| is technically |7' ) A THdy) } and

the integration of u is

JM—LM& :vy—dy (B.2)

Note that the value of (B.2) may or may not be finite.

Since *T*X is a manifold with boundary on its own, one can define Q(°7T*X)
accordingly. Suppose that (z,y,£) are local coordinates associated to a coordinate
patch, say, {Ua, (z,y)}, of X, then }%’”dydf’ is a local trivialization of ,(°T*X).
The observation is that arguing exactly like the case for the ordinary density bundle
Q(T*X), one can show that ’dfdydf ‘ is defined invariantly. Hence, there is a canonical
global trivialization of Q,(°7*X), and in particular, sections of b-density on °T*X

are identified with functions on *7T*X.

B.2 Conormal bundles

Now we turn to the conormal bundles of submanifolds, which play a fundamental role
in the study of general conormal distributions.

Let Z < X be an embedded submanifold. Define the vector bundle 7 : N*Z — Z
with

N¥Z :={£e TrX|¢(v) = 0,Yv e T,Z}.

and N*Z := ][ ., N;Z. Note that N*Z is a sub-bundle of T*X’Z and is called the

peEZ
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conormal bundle of Z. Tt is, of course, just the dual bundle of NZ := TX/TZ, the
normal bundle of Z.

Assume that Z intersects 0X = Y transversally. This condition can be inter-
preted in terms of local coordinates: there exists a coordinate patch {U, (z,y,2)} =
U, (z, v, ..., yr,
21,...,2¢)} near Z n'Y with x the boundary defining coordinate, such that Z nU =
{(7,4,0)}. In such a coordinate system, an element § in N7 where p = (z,y,0) can

be represented by
‘
£=>1¢dz.

j=1

Hence, a local coordinates system of N*Z associated to {U, (x,y, z)} is given by

T UN2) (g, O = U Z), (2,91, Y&, 60

where &; satisfies

fz(Z nj dzj) = 1i-

Now assume that {U’, (2/,y/, 2')} is another coordinate patch of X such that U nU’ N
Z n 0X # @, and moreover, Z nU' = {(2',4/,0)}. Then, the change of coordinates

formula over 7= (U N U’ n Z) has the following form
x’ = xl($’ Y, 0)7 y/ = ?/(xv Y, 0)7 5/ = (Hil)T<x7 Y, 0)57

where 2'(x,y, 2), vy (z,y, 2), 2/(z,y, 2) are the transition maps from U to U’ and

01 7 0z
oo o
oz1 0z

Note that the coordinate transition formula near an interior point of X in Z can be
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analyzed in the same way.

Recall that the (1-)density bundle of N;Z as manifold is
AN; Z) = [ [Ty (N 2)),
q

where

AT (N;Z)) = {clw||we /NT;(N;Z) and c e R}.

q

Since (;) are (global) coordinates of N Z for any fixed p € Z, d§ := [d§1 A -+ A d&
is a basis of Q(N;Z). We then construct a line bundle Q;(N*Z) on N*Z whose fiber

over the point (p, &) = (v,y,§) is just Q(N;Z), that is,

G(N*Z):= || QN2
(pE)eN*Z
The subscript “f” here stands for “fiberwise”, against the genuine density bundle
QIN*Z) = [pensz UL, (N*Z)). Through the discussion above, one sees that the
transition function (of the naturally associated local trivializations) from 7= (U’ N Z)
to 7 HU N Z) is just

Guar(p,€) = |det H(p)| ",

where (p,&) e m ' (U' " Z) n 77 (U n Z) and H was defined in (B.1).
Note that Q;(N*Z) can be interpreted as the pullback of the “normal density
bundle” over Z via the projection m : N* — Z. Similarly in the spirit, we can

consider the pullback of the “tangent b-density bundle” over Z. Hence, define

Wu(N*Z) =[] QCTy2), (B.2)
(P.LEN*Z
and we remark that
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B.3 Blow-ups

We review the notion of blow-ups introduced by R. Melrose.

When taking finite products of manifolds with boundary, the notion of man-
ifolds with corners arises naturally. A manifold with corners is locally modeled
R™* ~ [0,00)F x R** where 0 < k < n. However, the theory is not universally
agreed, depending on the concrete applications, and there are a couple of inequiva-
lent definitions of manifolds with corners and smooth map, see [10]. We follow the
sense of Melrose in [25]. See also [13], [14], [22]. The prominent feature of this defini-
tion is that the (topological) boundary of a manifold with corners is a finite union of
hypersurfaces, i.e., co-dimension 1 embedded submanifolds. Moreover, the boundary
faces, that is, the intersections of boundary hypersurfaces, are also embedded sub-
manifolds. Note that if a boundary face is an embedded submanifold, then it is indeed
a p-submanifold, i.e., it is locally R"*¥ x {0} < R™* with n’ < n and k' < min{n/, k}.
We remark that this is important in the discussion of blow-ups. Main examples are

provided by finite products of manifolds with boundary.

Lemma B.2. If

¢ : R — R™

(:Ela"' 7$n)'—> (¢1a"' 7¢n)

is a diffeomorphism such that ¢;(--- ,2;-1,0, 241, --) = 0 for 1 <i < k, then
G = ﬂvzﬁgz

for some ¢; € C*(R™*) with ¢; > 0.

Proof. By Taylor’s theorem, it is clear that ¢; = x;¢; with ¢; € C*(R™F). Note that

when x; > 0,0 <17 < k, then ¢; > 0, hence qz~5, > 0.
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Observe that the Jacobian matrix of ® is

xlaxlél + &1 ce xlaxkél xlaxkﬂ@ ce ﬂflﬁxnﬁgl
J xkaxl(%k te mkaxk(gk + ék xk(’}karlQ;k te Qikaxnﬁgk
‘b = ~ ~ ~ ~
Oy Pt E Oy Phot1 Orgrr @1 O Oks1
| a:l?l (5” e axkén aazk+1$n e axnén ]

Since det (Jg) # 0, by extending the determinant along the i-th row, it follows that

Gi(- -+ 01,0, 2441, --) # 0.

By continuity, we have

qbl( t ,$i_1,0,$i+1,' : ) > 0 D

Corollary B.2.1. The b-derivatives are preserved by diffeomorphisms on R™*. In

particular,

o for 1 <i<k,

) 0 ~i r i 0 b, L 0D
Ti0p, = | 1+ i ¢ ;0 + 2 %—ﬁx;@ﬂ + Z xiﬂ@gn;
6s O jhiger 05 0z 7 Am O

o for k+1<i<n,

Let M be a n-dimensional manifold with corners. Suppose that N is a closed I-
dimensional p-submanifold of M. In particular, near any point y € N, M =~ RH* x R¥?

centered at y and N =~ R% x {0}. One can define “M blown-up at N 7, [M; N],
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— Inward 2 2 STN,Y
— Outward
X x1
y y
(a) Inward/Outward Pointing Vectors (b) Spherical Normal Vectors

Figure B.1: Abstract Sphere

by introducing polar coordinate about N. As a set, [M; N] is obtained by replacing

each point in N by an “abstract sphere”. Precisely, we define, at y (see Figure B.1):

n
inward-pointing tangent vectors in M: T;M = {Z a;j0y,;a; = 0 for j <1}
j=1

inward-pointing normal vectors to N: NN := T,”M/T,[ N.
inward-pointing spherical normal vectors to N: STN,N := (N, N\{0})/R".

inward-pointing spherical normal bundle to N: STNN := H S*TN,N.
yeN

M blown-up along N: [M; N]:= STNN [ [(M\N).

The introduction of polar coordinates turns [A; N] into a manifold with corners.
To illustrate this procedure, we investigate a pertinent example.
Let X be a manifold with boundary and Y = dX. Then Y? is a boundary face of

X2, hence a p-submanifold. The stretched double product of X is
X7 = [X%Y2].

Over ' = (Q\Y) [ (STNY]|any) in X7, a chart ¢ : ' — R* x §12 x R2"=) s
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S*N(Y?)
y? /

X2 X7

Figure B.2: Stretched Double Product

given by

(a,b)
) m7

(1, 72)
1'1,552, \/727 a xly*rQa >€Q\Y
+x
2

¢([azy + b0x,], y) = (0 y), it ([ads, +b0s,],y) € STNY,

Assume that ®(z1,29,y) = (v14,2.B,C) is a diffeomorphism on R*»? then the

transition map induced by ® is

(Awl, ng)
\/(Awl)z + (Buwy)?’

5 (r,w,y) r\/ Aw)? wo)?,

Note that A, B,C are smooth functions with A, B > 0 by Lemma B.2, hence P is
also smooth. Thus, X? is equipped with a smooth structure, which makes it into
a manifold with corners. Other coordinate systems than the polar coordinates can
be introduced on X?. For instance, the local functions p(r,w,y) = rw; + rwy and

s(r,w,y) = In() are smooth, and (p, s,y) is a coordinate system on X? mapping an
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b

Ay
Ir rb
(a) Blow-down map (b) Submanifolds in X g

Figure B.3: Blow-down Map and Submanifolds

open subset to [0,00) x R x R2™~1D_ The map

5 X X2

z, ifxe X?\Y?

€T ——

y, ifxeSTN,Y?

is called the blow-down map. See Figure B.3a. Note that 7 € C* (X7, X?). Important

p-submanifolds of X7 include (Figure B.3b):
o left boundary, Ib = c1<(5§)—1(ax x )2'))
o right boundary, rb = cl((ﬁg)—l()% x aX)>
e front face, ff = STNY?
e b-diagonal, A, = cl((5Z)"1(A\Y?))
Note that 0X? =1burbu ff.
Lemma B.3. Let 7w, mrp : Ay — X be the restriction of the b-projections at the

b-diagonal. Then (| Ab)* — (TR Ab)* extends to a bundle isomorphism

* * ., brpx *
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Proof. We use local coordinates. Near 0X, we have X =~ R™! and use the coordinates
(z,y); near Ay N ff, we have X? =~ R™! x R" and use coordinates (z,vy,s,2) =

(z,y,In %,y — ). Note that A, n O = {(x,y,0,0)}, and TA, = span{0y, 0, }.

‘Ame

Hence,

(meofa,)" = (Trafa,) () = ds, (Teal,)" = (Tral3,)"(dy) = d=.

Since {ds, dz} is a local frame of N*A, near ff n A, the claim then follows from

Lemma B.1. O

Corollary B.3.1. C*(N*Ay, Q;(N*Z) ® QU (N*Z)) = C*(PT*X,0("T*X)) =

0

C2(PT*X).
Proof. 1t follows from the lemma and (B.3). O

The stretched triple product, X3, is defined as the iterated blow-up

Xg) = [X?’?Ta {BF,BS,BC}],

where T =Y2c X3, Brp =Y xY xX =71 (Y xY),Bs = X xY xY = a5 (Y xY),
and Bo =Y x X xY = 7' (Y x Y). It arises essentially when one studies the
composition of pseudodifferential operators. We rely heavily on the following result,

whose formulation was adapted from [15].

Theorem B.4. There exist unique continuous functions moy : X7 —> X7, where

O = F,S or C, such that

To o By = By o moy (B.1)

Proof. (Sketch) Note that, in the interiors, the left hand side of B.1 is just the ordinary
projection onto the correspondent components, and 7 acts as identity, hence mo

has to be defined canonically by mp. The uniqueness of 7o, then follows from the
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continuity. The existence could be established by exhibiting local formulas in terms

of coordinates. See, e.g., the formulas in the following Corollary. O
Corollary B.4.1. Let V =~ R"! be a coordinate patch of ¥ = 0X. Near the
boundary of X, we have X = [0,1), x V,. Moreover, X* = [0,1){, ., x V(, .,
and X? >~ [0, 1):(39: o gy X Vf’y o Then, in local coordinates, we have the following
representations of 7o, where the coordinates in X7 near rb(X?) n ff(X2), Ap(X?) N
X2) and Ib(X2) n ff(X2) are given by (z,w,y,y) = (z,In %, y,v/), (z,w,y, z) =
ff( b) b b g Yy YW Y Y ) $7y7y ) y Wy Y,
z,In% —v') and (v, 2’ = (In%, 2 "), respectively:
(z,InZ,y,y =) V7YY 7@, y,y), resp y
I. Near fs n ff nmbe X}, we use coordinates
t " / n . (1 £ 1 'r_, " / /i B 2
(57 ,«T,y,y,y)-— nx,,?nxaxayayay) ( )
then (s, t,2",y,vy,y") € (—0,0) x (—0,0) x [0,1) x R* and
mrp(s 2",y y") = (2"’ t,y, o) near vb 0 ff € X
wso(s,t, 2"y, 9 y") = (s + t,2", ¢, y") near b ffe X7, (B.3)
mou(s, t, 2"y, v y") = (s,2”,y,y) near rb N ff € X7
II.  Near fsnlbn ff € X2, we use coordinates
" / 7 T x/ " / "
(Sat7$ay>y7y)::(lng71ny7l’ay>y7y) (B4)
then (s,t,2",y,vy',y") € (—0,0) x (—0,0) x [0,1) x R and
Trs(st, 2"y, y") = (s,2"€',y,y') near Ibn ff € X7
wsp(s,t "y, y") = (2", y") near Ibn ff € X7 (B.5)

7TC’,I)(Sa ta ZL'”, Y, y/7 y”) = (S + Z(:7 ,CC”, Y, y/) near lb N jj(‘ € ‘va2
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II.  Near ff ncsnlbe X2, we use coordinates

T a:l/

(Sam/7t7y7y/7y”) = (lnp7x,7ln?7y7y/7y”)
then (s,2',t,y,y,y") € (—0,0) x [0,1) x (—o0,0) x R® and

wep(s, 7'y, Y y") = (s + 4,2y, y) near b ff € X7;
7T-,5'71)(87 xlu t) Y, ylu y”) = (J]l, t7 yla y”) near rb N ﬁ € Xl?’

Tou(s, @ty yy") = (s,2'el y, y') near b n ff € X7

IV. Near W}?})(Ab) N Wg’i(Ab), we use coordinates

ml :L.l/

(l’, Svtayaz7w) = ($a1n;7ln;7yay - ylvy - y”)

then

(T, 8,1y, 2, w) = (1, 8,7y, 2) near A, N ff € X7;

s, 8,1y, 2, w) = (e, t — 8,y — z,w — z) near A, N ff € X7;

mou(T, 8,1y, z,w) = (2,t,y,w) near Ay N ff € X7

V. Near m;,(Ay) N fs. In X7 near ff(X7) n Ib, we use the coordinates

xT
(x,7y7772) = (x/7y7ln;7y - y,)a

and in X}, we use coordinates

X T
(xﬂay73,7~U,taZ) = (ﬁﬂ»%lnpay - yllvln;’y - y,)
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Note that X = X x R{, , and Tip(Ap(XE)) = X7 x {0}. Then

(2", y, s, w,t,2) = (2" ey, t, 2) near Ay N ff € X7,
msp(z” Yy, s,w,t, 2) = (2, y — 2,8 — t,w — z) near Ib N ff € X7, (B.11)

mou(2”,y, s, w,t,2) = (2", y, s, w) near rb n ff € X;.

VL. Near m;,(A) nrb. In X7 near ff(X7) nrb, we use the coordinates

/

X
(z,y,w,2) == (z,y,In — et Yy,

and in X}, we use coordinates

" /

(2,9, 5,w,1,2) = (w,5,In — Y=y 1n£,y y)- (B.12)
Note that X = X x R{, ., and Tip(Ap(XE)) = X7 x {0}. Then

(T, Y, 8,w,t,2) = (1,y,t,2) near A, N ff € X7,
msp(T,y,8,w,t,2) = (ve',y — z,s —t,w — 2) near Ib N ff € X7, (B.13)

Top(T,y, 8, w,t, 2) = (7,9, s,w) near rb N ff € X7.

VIL  Near mg;(Ay) N ss. In X2 near ff nrb, we use the coordinates

/

T
(@,y,w,2) = (2,9, 10—y =),
and in X}, we use coordinates

" "

(z,y,s,w,t,2) = (z, y,lnx,y y’, lnﬁ,,y ). (B.14)

161



Note that X = X’ x R{, , and Top(Ap(X})) = X7 x {0}. Then

(t,z

WF,b(:EvyaSawat?Z) = (l’,y,t - 572) near b N ﬁ € Xl??

msp(T,y, 8, w,t,2) = (xe' %,y — z,t,w — 2) near A, N ff € X7,

Tow(T,y, 8,w,t, 2) = (2,9, s,w) near rb N ff € X7.
VIIL. Near mg;(Ay) N lb. In X7 near ff n Ib, we use the coordinates
/ / x /
(.T 7y7772) = (l‘ 7?/7111;71/_9)7

and in X}, we use coordinates

T /

x
(ZE”, Y,s,w,t, Z) = (xllu Y, In .I‘”’y - y”v In ?p Yy— y/)

Note that X = X x R{, ,, and Top(A(X})) = X7 x {0}. Then

(2", y, s, w,t,2) = (2" e’ y, s —t,2) near Ib N ff € X7,

msp(z” Yy, s,w,t, 2) = (27, y — 2, t,w — 2) near A, N ff € X7,

mou(2”,y, s, w,t,2) = (x,y, s,w) near Ib N ff € X;.
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Appendix C

Fredholm without Banach and

Hilbert

We give a detailed description of an unconventional approach which, as far as we
know, is due to Paul Loya and not published in literature yet, to establishing Fredholm
property of operators on various function spaces.

Let X be a compact manifold with or without boundary. Denote Y = 0X. Note
that Y might be a empty set. Let u be a measure on X. C(X) is the Banach
space of complex-valued, continuous functions on X with the sup-norm. Let ® be
a vector subspace of C'(X) n L?(X;u). We assume that ® is closed under complex
conjugate, hence ® is naturally equipped with an (Hermitian) inner product, namely,
the L2-inner product. However, we do not assume that the metric on ® induced by
the inner product is complete, and we remark that this is the major advantage of
this approach and justifies the section title. Denote the collection of linear operators
on ¢ by Z(®). Suppose that ¥(X) is a vector subspace of Z(®), and U, (X) <
U(X) a subalgebra of Z(®), such that U(X) - ¥;*(X) < U;*(X). In applications,
operators in Wy *(X) are usually identified with continuous integral kernels against

the measure p. The major examples are provided, of course, by the various types
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of pseudodifferential operators. Henceforth, we will not distinguish the operators
in ¥,”(X) from their integral kernels and assume that ¥,*(X) < C(X?). The
subscript 0 in U, (X) alludes to some “regularities”, in addition to being “residual”.
whose meaning depends on the concrete calculus in question. For example, in b- or bl-
calculus, the additional condition is the vanishing of the normal operator. Analogous
regularity conditions are available for other b-type calculi, or heat calculus on closed
manifolds.

Assume that A € Z(®), B € ¥(X) and R € ¥;*(X) such that AB = Id —R.
The first and main step of our approach is to refine the remainder R, which we will
carry out momentarily. The ideal situation is that the remainder term R is given by

some “finite rank” operator. We begin with a definition.

Definition C.1. Let B < V¥ be an algebra closed under complex conjugate. A
function K in %p = BB < C(X?) is called B-finite rank.

Explicitly, K is B-finite rank if it is of the form
k
K(z,2') = ) fi()g;(«")
j=1

where f;,g; € B. Note that %5 is a subalgebra of C'(X?) with the multiplication
induced by the one in B. The elements in %5 are meant to be serving as the integral

kernel of some operators with finite dimensional range. In fact, given any ¢ € ®, since

Bc ®c L*(X;pu), we define

K= | Y @ )ele)n) = 3 £ [ g6)eute)

In particular, InK < span{f;}. On the other hand, the operators with a finite rank
integral kernel are not the finite-rank operators usually defined only on Banach spaces.

In the contrast, A continuous linear operator on some subspace of C(X) with finite-
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dimensional image is not necessarily given by a finite rank integral kernel. A simple
counterexample is given by 7' := 1J, on C*(X), where 1 is the constant function
with value 1 on X and 9§, is the Dirac delta function at a fixed point p € X. Clearly
T is not even an integral operator.

Under some compatibility conditions, the finite-rank-refinement can be achieved

by choosing a new right-parametrix of A wisely.
Lemma C.1. Assume that
I s U;7(X) € C(X?);
2. UoP(X) C(X?) Uy?(X) € ¥y®(X); and
3. given any Q € UVo®(X) and f € B, | f(2)Q(z, 2" ) u(z) € B.

If there is an Fy € %5 with

J|(R — Fy)(z, )| u(z') <5 < 1 (C.1)

for all z € X, then there exists a B € U(X) and F € %5 such that AB = Id —F.

Proof. Denote R — Fy by S. Note that S € ¥;*(X) by Assumption (1). Denote S

by SM. For any integer k > 2, let

S, y)S* Dy, 2" ) uly).

S® (g, 2") = JS(QZ, 12)S (22, 23) ... S(wk, 2" ) (o) p(xs) . . . ()

Note that S*) e W *(X) since Wy (X) is a subalgebra. By (C.1), we have

S|, = sup|S®(z,2")| = sup

JS(SU, Yy)S(y, 2" )u(y)

<|IS]l,. - sup f 1S(x,y)| uly) <55l
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Proceed with induction, one could show that
1@, < 8" 1Sl

In particular, the series

converges in C'(X?) under the sup-norm topology. Note that

Qz, ') = SV (zx,2") + SP(z,2') + SQS(z,2)

=aaw+jswwa%wmw+jaawm%aﬂawmwmm

hence by Assumption (2), @ € W% (X). In particular, Id +@ is just the inverse of

Id —S as operators on ®. Observe that

AB(1d+Q) = (Id—(R — Fy) — Fy)(1d +Q)
— (1d—8)(Id +Q) — Fy(Id +Q)

—1d—Fy — Q.
Assume that Fy(z,2') = X fj(2)g;(2') with f;, g; € B. Then

RQ(x.2') — J Folw, 202", '\l
SN PHCOIEREMED

= 2 @) ),

where §;(2") = § g;(2")Q(2", 2")p(z") € B, by assumption (3). Consequently, we have
F = Fy+ FyQ € Zg. Let B = B+ BQ, then Be U(X), and AB =1d—F. O
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Henceforth, we will take the hypotheses in Lemma C.1 for granted.

The next simple fact, which says that a “big” vector subspace is indeed an (orthog-
onal) direct summand, from elementary linear algebra, turns out to be, surprisingly,
a crucial piece in proving the main result we desire. The proof was included to keep

this article self-contained.

Lemma C.2. Let V be a inner product space and U < V a subspace. Assume that

there is a finite dimensional subspace W such that W+ < U, then
(a) Ut is finite dimensional; and
b)) V=UaU"*.

Proof. Since W is finite dimensional, for any v € V|, v = v’ + (v — v/), where v’ is
the orthogonal projection of v onto W, thus V- = W @ W+, This implies furthermore
that (W1)L = W, hence U+ = W and (a) follows.

Observe that U/W+ is isomorphic to a subspace of W, hence is finite dimensional.
Also, the orthogonal projection onto W+ is obtained via the direct sum decomposition
V = W @ W+, thus a practice essentially the same as the Gram-Schmidt process
produces a finite dimensional subspace P < U orthogonal to W+ such that U =
W+ @ P. The orthogonal projection onto U now can be defined by summing up the

projections onto W+ and P, whose existence implies (b). O

Here we point out that we made no assumption on the dimension of V' and the
metric induced by the inner product. In particular, V' was not intended to be a
Hilbert space.

We arrive at the main result of this section, which is readily obtained at this point.

Theorem C.3. Im(A)* is finite dimensional, and

® =Im(A) @Im(A)*.
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In particular, dim coker(A) is finite.

Proof. By Lemma C.1, there is a B € U(X) and an F € .Zg, such that AB = Id —F.

Assume that

F = ()2,

J
then we define

W = span{t;} < @,
where the bar over a complex-valued function stands for taking conjugate. Given any

ue W+, we compute

A(Bu) = (Id —F)u

- u= | S nt)

:’U/’

therefore W+ < Im(A). Now the desired result is implied by Lemma C.2. O
Corollary C.3.1. If, in addition, A is self-adjoint, then A is Fredholm.
Proof. Just note that ker(A) = ker(A*) = Im(A)*, which is finite dimensional. [

Note that under the self-adjoint-ness assumption, the analytical index of A is
trivial. We record also the result about Fredholm property for not-necessarily-self-

adjoint operators.

Theorem C.4. Let A be a linear operators on ®. If there exist linear operators
Bi € \I/(X) and Sz € \IJEOO(X)7 1= 1,27 such that ABl =1 — 81 and BQA =] — SQ,
then A is Fredholm.

Proof. 1t suffices to show dimker(A) is finite dimensional. An argument parallel to

the one for Lemma C.1 (with the additional hypotheses that given any @ € ¥, (X)
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and g € B, {Q(z,2")g(2") (') € B) shows that there exists an operator B, € U(X)
and a finite rank operator F, € .%5, such that E;A =1—-F.

Assume that u € ker(A), then
0= E;(Au) =JTu—Fu=u— Fu

thus ker(A) < Im(F;), which implies the claim, since dimIm(F3) is finite. See the

remark below Definition C.1. OJ

The assumptions here are readily available for, e.g., the elliptic pseudodifferential
operators on closed manifolds. For the verification to b-pseudodifferential operators
of all the hypotheses involved, see [20]. The argument to the Fredholm property is
similar in spirit to the standard one via compact remainders (see [31]). However,
thanks to the presence of the finite rank remainders, Loya’s approach is much more
accessible.

Lastly, to enlighten the readers about how hypotheses in Lemma C.1 are possibly
verified, we recall a celebrated result from point set topology and a few consequences

of it. See Section 1.6 for the genuine usage on manifolds.

Theorem C.5 (The Complex Stone-Weierstrass Theorem). Let X be a compact
Hausdorff space. If o is a closed complex subalgebra of C(X,C) that separates
points and is closed under complex conjugation, then either &7 = C'(X,C) or & =
{feC(X,C): f(xg) =0 for some zy € X}.

See [7] for a proof.

Corollary C.5.1. Let X and Y be compact Hausdorff spaces. Let .# be the algebra
generated by functions of the form f(z,y) = g(x)h(y), where g € C(X,C) and h €
C(Y,C), that is, .7 = C(X,C) ® C(Y,C). Then .# is dense in C(X x Y,C).
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Proof. The closure of % in C(X xY,C) is a subalgebra closed under complex conjuga-
tion, since all operations involved (that is, conjugation, addition and multiplication)
are continuous in the uniform convergence topology. Also, .% contains all constant
functions. Recall that compact Hausdorff spaces are normal. Now the fact that .7

(hence its closure) separates points is an easy consequence of Urysohn’s lemma. [

We are mostly interested in compact manifolds, so the property of separating
points for subalgebras of functions with various order of differentiability follows readily
from the existence of bump functions, hence the result could be extended to those
settings.

We conclude this section by remarking that what we have proved in Theorem C.3
is essentially "Hodge without Banach and Hilbert”, because it essentially produces
the Hodge decomposition with respect to A. See [19] for the details of a complete
proof of the classical Hodge theorem in this spirit, and more. Finally, this approach

could be easily adapted to the study of linear operators on sections of vector bundles.
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Appendix D

Heat kernel and n-invariant

Let A € ¥™(Y) with m > 0. Assume that A is elliptic and self-adjoint. Then
(A —X\)""is a continuous (in fact, holomorphic) family of bounded operator in L*(Y")
(denoted by B(L?) in this section) for A ¢ spec(A). We first record the following

preliminary observation from functional analysis.

Lemma D.1. If A is self-adjoint, then

1
H(A —x— z'y)’lu < W, Va,y € R with y # 0.
Y
Proof. In this argument, we denote ||-||,» by ||-|| for any element in L*(Y). (In fact,

this works for any inner product space.) Since A — z is also self-adjoint for any = € R,

it suffices to show that

1

- <o

, Vy e R with y # 0.

It is clear that

Im (((A—iy)e. ) = —y ol

171



We will also need the following inequality

(A —iy) "o, )| <yl lell?, Yy e R with y # 0,

or equivalently,

| —iy(A—iy) o, o < llell*

To see this, denote ¢ = (A — iy) !¢, then, by the self-adjoint-ness of A and the

Cauchy-Schwarz inequality, we compute

| —iy(A —iy)~tp, o)
= (o, 0y = (AA—iy) o, o)
= (o, ) — (AP, (A—iy)p)f?
= |llell” = 140> = iy A, [
— (lel® = 1140 ]%)" + 52 CAw,
= [lell* + (I AQ]* + v* CAw, v )? = 2| (A — i)y |)* | A||*)
= llell* + (1B + y? (A, ) — 2 (| AP + o2 ] [ Av]?)
= el = N Aw)* = v 2 [10]° |Aw|* - CAp, )

4
< [lell”

Lastly, combining those two relations above, we have

=y 1011 = [Im (((A — iy)e,v))]
< [C(A—iy) e, @)

~1 2
<yl llell”,

which implies the claim. O
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Theorem D.2. (A — 7)~! has only simple poles at a discrete set D = R. Moreover,

near any point 7 € D,

F
(A—7)"'=B(1) - : (D.1)
T —1T1
where B(7) is holomorphic near 7, with
0 on ker(A —7)
B(r) = : (D.2)
(A—7)™' on ker(4—m)t
and
F= Tker(A—71)5 (DB)

the orthogonal projection onto the eigenspace of 1.

Remark. See also [25, PROPOSITION 6.27].

Proof. From analytic Fredholm theory(see [25]), we know that (A —7)~! has a mero-
morphic extension with discrete singularities of finite rank. Since A is self-adjoint,
the singularities are contained in R. Assume z € R to be an eigenvalue of A, then,
from the preliminary lemma above, we have

lim (iy)*(A —z —iy) ' =0

y—0

so by the meromorphy of (A — 7)~!, it has a simple pole at z. To show that the

residue of (A — 7)7! at z is just —IIye(a—s), consider the identity

yp=y(A—z—iy)(A—z—iy) 'y
ja

= y(A -2 —iy)(B(x +iy) + @)90-
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Taking derivative with respect to y then letting y approach 0, we have
p = (A—z)(B(x) + 0,B(z))p — Fyp
or,
Id+F = (A—z)(B(z) + 0,B(z)) = (A —z)B,

that says, (Id +F)p € R(A—x). Since (A—x) is self-adjoint, ker(A—z)* = R(A—1),
and the claim follows.

Now observe that, on one hand,

A-m)A-7T)'=A-7+T7-T)A-7)"
=ld+(r—7m)(A-7)"

=(A-7)"A-7),

and furthermore, inserting formula (D.1) to the second equality above, we get
(A-7)"YA—7)=1d+(r —71)B(r) - F

which shows that B(7) = 0 on ker(A — 71) when 7 # 7, but from continuity we also
have

B(m1) =0 on ker(A —m).

On the other hand,
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Letting 7 approach 71, we have
(A — Tl)B(Tl) =Id—-F
which implies
B(r) = (A—7)"" on ker(A — 1)+
and the proof is completed. O]
For a neat application of this important result, see [18, Theorem 4.1].
Recall that for A € C\R with ImA # 0,

1A =2 0| o < TmA ™ el 2 (D-4)

for any ¢ € L?(Y'). Assume in addition that A is non-negative, we define the following

contour integral

T [ At a- N (D.5)

=5 |
where I' = {A € C : Re A = ¢} oriented downward with 0 < & < Ay, where )\ is the
smallest positive eigenvalue of A. Note that A~ (A — X)7|| = O(JA|7?) as |A| — o

for A e I', hence T is well defined. We shall first improve the estimate in (D.4).

Lemma D.3. Let A be self-adjoint and non-negative. If A € C with Re A < 0, then

(A= XNl 2 < A Il
for any ¢ € L*(Y). That is, in terms of operator norm, we have
[(A=2"" <IN (D.6)

Proof. The proof is an obvious adaptation of the one to Lemma D.1. To avoid repe-
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tition, we leave the details to the interested readers. O
Corollary D.3.1. For any A € C\ spec(A), let

1

X()\)zmax{‘)\ -

e spec(A>}

then
(A=) < x()

Proof. Assume that \; < A < \j;;. Let V = span {gpk ‘ App = Mper, Mg < )\j}. Then
LX(Y) = V@ V=t Since (A1 — Aji1) is also a self-adjoint, non-negative operator,

we have

1

[l =7 = A = Aaa) = A= Xa)T7 < 5—

On the other hand, over the finite-dimensional vector space, A|y is diagonalizable,
hence

1Al =27 =

Consequently, we have

1 1
A-X)"1 .
I A vl

Now the claim follows from the arbitrariness of \. O
Proposition D.1. Let G be the Green’s operator for A. Then T' = G.

Proof. Recall that for A € C\ spec(A),

(A=A =G\ — et
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where G(\) is holomorphic at A = 0, and G(0) = G. Hence,

A A=) = @ - e and

Lh AT A- N = G0),

21 ’
where I is any simple closed curve enclosing the origin, oriented clockwise. Given

a > €, consider the boundary of a square with side length equal a enclosing the origin:

I =T,ulluT?2UTI? (Figure D.1), where

I,=Tn{xeC|-a/2<Im)<a/2},
I={ eC|ImA\=—-a/2}n{AeC|e—a<ReA<e},
I?={AeC|ReA=c—a}n{AeC|-a/2 <Im)<aq/2},

I?={AeC|ImA\=0a/2} n{AeC|e—a<Rel<¢},
oriented respectively such that ", is oriented clockwise. Denote

TI =i(2m)" § ATHA =N,
I

J
a

Im

rs
a
2 r,

P 0 c N Re
F2
|
a 5 r

Figure D.1: Contour I',
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then by (D.4) and (D.6), lim,_,,, 77 = 0, thus,

T = lim ng AN A = AL dy
Ty

a—00 27T

— lim ng AT A= M) dA
I

a—00 LTr /
= lim G(0)
a—00
=G. m
More generally, denote 0 < A\; < Ag < -+, )\ 2%, o0 as the eigenvalues of A,

and let {p;} be a set of orthonormal eigenvectors associated to {A;}. Note that near

Ajs

1I;
AN

(A=XN)""=G;(\) -

where II; = Tier(a-»,), and G(A) is holomorphic (near A;) with G;(A;) the generalized

inverse (or Green'’s operator) of (A — \;). In particular, when A; > 0,

- G\ ML A
1 o 1 _ J . J 7
AT A ()\ DV A

therefore, the residue at A = \; is just —)\j’lHj. Consequently, for » > 0 such that

7 ¢ spec(A),
1; ©; ® P;
G: Z )\—j+T7~: Z —j—i‘Tr,
)\j<7‘ )\j<1"
where
T,= 2| A A—)N)"td)
27 Jr,

with [', = {)\ eC ‘ Re ) = 7‘} oriented downwardly. By Corollary D.3.1, we have

T. =% 0.

Lemma D.4. For 7 > 0, let V, = span{p;|\; < r}, and V;* be the orthogonal

complement in L?(Y). Given any N € Nt there exists § > 0 such that when r > ¢,
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||G¢||L2 < >‘J_\71+1 ||¢||L2 for any ¢ € V;L N C*(Y).

Proof. Write G = Z,\7-<5 /\j_lcpj ® ¢; + G, then Gy — 0 as s — oo. Thus there is
some § > 0 such that when s > §, |G || < Ay}, Therefore, when r > §, for any

e VEnCn(Y),

Joll:
AN+1

1
1Gole = || 25 5 (0r90i) i+ Grd| - = 1Gedlze <

)\j <r J 12

Note that ker A is finite dimensional, since A is Fredholm. Let {¢;} be an or-

thonormal basis of ker A.
Proposition D.2. {¢;} U {¢;} forms a complete orthonormal basis of L*(Y).

Proof. Since C*(Y') is dense in L*(Y), it suffices to prove the result for the space of
smooth functions under the L?-norm. Assume that ¢ € C*(Y), and A¢ = u. Then

Gu = ¢ — Tyer a9, where v € ker A. For any r > 0, we compute

(b_TrkerA(b_ Z <¢790j>90j =Gu — Z <¢790j>)\j90j

)\j <r )\j <r

=G lu— D (o, N>

)\j <r

=G u— >, (6, 4p;) ¥

)\j <r

=G U_Z<A¢7@]>@J

)\j <r

=G u— D (w90

)\j <r

= Go.

. 2 2 2 2
Since v = u — ij<r<u790j>90j € VrJ—7 and HUHL2 = ||u||L2 - Z)\j<7‘<u7 90j> < ||u||L27
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by Lemma D.4, |G| ;> —=> 0. O
Notation: Henceforth, we will rewrite {¢x} U {p;} as {¢;}.

Lemma D.5. Given any k € N, for sufficiently large ¢ € N, there exists some constant

Cf, such that

leller < Ci (|A%|| 2 + el z2)
for any p € C*(Y).

Proof. Let G be the Green’s operator of A. Recall that GA = AG = Id —II, where Il is
the orthogonal projection onto ker A, since A is self-adjoint. Recall that G € ¥~(Y)
and IT e ¥~*(Y). Note that for any ¢ € N,

G‘A" = (GA) = (Id —1T)" = 1d —11.

Given any P e Diff*(Y), choose ¢ € N* such that —ml¢ < —k — dimY — 1. Then
PGt e U4y < ¢~W@mY+D(Y) in particular, the Schwartz kernel of PG’ is

continuous. Denote the kernel of PG¢ by K;(x,y) and of PII by Ks(x,y). Since
Py = P(G*A* + T)p = (PG*)A'p + Pllyp,
by Cauchy-Schwarz inequality, we have

IPellco < [|(PGHA | o + ([ PTp]| co

| Ko

szﬁy ) dy

Co

<[ Mgy 14

o+ e Mgy Iy

CO

< (sup 1K, ) 14y + (s 1 i ) el
zeY zeY

The lemma now follows from the arbitrariness of k and P. O
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Proposition D.3. Given any ¢ € C*(Y'), the (Fourier) series >, { ¢, p; ) ¢; converges

to ¢ in the C'®-topology.

Proof. For any k € N, by Lemma D.5, and the self-adjointness of A,

N
||¢—Z<¢,s@j>%

Ck

<Cj < A <¢—Z<¢,%>%‘>

N
<G < Alp =D (05 Al
j

+
L2

N
SR

)

N
o CE IRy )
L2 J L2
N N
<Gﬁ< Ao = o Mool + oD {00 )
J L2 J L2
N N
<c,€< Ao = (A0 il + |0 — Y (0D )
J L2 J L2

M=o, 0

Therefore, from Proposition D.2, Hgb — Z;V (o, 05 )@,

Ck
Corollary D.5.1. If F'e C*(Y xY), then },, , ( F, 0; ® @1, ) p; @ Py, converges to F’
in C*(Y xY).

In the rest of this section, we further restrict to A = /A, a generalized Laplacian on
Y. By heat calculus, the heat kernel e~** exists and for any t > 0, e 7?2 € C*(Y xY).

With this a priori knowledge of the heat kernel, the following result is easily obtained.
Theorem D.6. Given any t > 0, e ?® = > e” ¢; ® ¢, in the C*-topology.

Proof. Denote <e_m, ©;® 9514;> by h;i(t). From Corollary D.5.1,

e !t = Z hik(t)p; ® G,

j?k
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and consequently, e 2 ¢, = 2. hje(t)p;. Thus, we have
0= (0 +2) D helt); = Y (Wielt) + Ashse(t)) s,
J J
and therefore, h,(t) + Ajhje(t) = 0. Solving the equations, we obtain that hj(t) =
Ci e~ for some constant Cj¢. Recall that ¢, = lim;_,o e *® iy, and the heat kernel

is unique, hence we must have Cj, = d;,, the Kronecker delta, and the proof is

completed. O

Corollary D.6.1. Let f(t) = Tr(e™*®). Then f™(t) = Zj(—)\j)m et

~ [are ) )

Note that 0" e ' = (— A)™e 2, and

Proof. Recall that

(=)™ <Z e N ;@ @j) = Zefﬂ" (=L)"p;) ®p; = Z<_>\j)m e N, ® @),

J J

hence

10 = [ Den e pam) = earet. o

Corollary D.6.2. lim; ., e " = Tger A

Proposition D.4. Let Dy be a Dirac-type operator on Y with dimY = n, and

(Aj)j=1 with [A;| < |Aj41] be the eigenvalues of Dy. Then

D) Z)\ o = Z A e (D.7)

j=1 A;j#0

Furthermore, as t — 0, the following asymptotic expansion holds:

Tr(Dge P8 ~ /2 Z t*ay. (D.8)
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Proof. By definition, Dy is elliptic and self-adjoint, hence there is a complete orthonor-
mal basis of L*(Y") consisting of eigenfunctions of Dy, denoted by {t;}. Assume that
Dy ; = \j1;, then e D5 = Zj e ¥; ® 1;. Therefore

Dye D8 = Z e_t)‘?(DO V) @Y, = Z A e V; @ 1;,
F J

which implies (D.7).
To see (D.8), it suffices to work locally. Recall that =P8 € U, 2(Y). Assume that
over a local coordinate patch,

x —
e—t’D% _ t_n/2q(t1/2,ﬂf, tl/Zy)V(y) + R,

where ¢(s,z,w) € & (R x R*;R") with ¢(—s,z, —w) = ¢(s,z,w) and R € U, *(R").

Also assume that over the same coordinate patch, Dy = >, a;(z)0;,. Then we

compute
D2 m -y, QP x5
a;(z) 2 .Y 2 .Y
- tn/2+1/2 (qxj(t / 1Ly +1/2 )+ Qoaj(t/ » Ly 1172 )) + Gj(l’)aij
—n/2—1/2~ Tr—y
— 2252 g Y Ww(y) + a;(x)0x, R,
where

q(s,r,w) = a;(x)(5¢, (5, T,w) + qu, (s, 2, w)).
Note that g(s, z,w) € 7 (R x R™;R") with
q(—s,2,—w) = a;(z) ((—5)qu, (—5, T, —w) + qu, (—$, 2, —w))

= —a;(2) (s, (5,2, ) + (5,2, )

= _QN(Sa z, w)7
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and a;(z)0,, R € ¥;(R"). In summary, one could show that D, e D5 ¢ v,

Now observe that

t@+1/262€+1 (0 T 0)
2125112 4 ) )~ t n/2— 1/2J
f at",z, 0u(z) ;) 20+ 1)!

-~ tfn/2 Z teag,

£=0

hence the claim follows.

Theorem D.7. For z€ C,Rez > dimY — 1/2 = n — 1/2, the integral

Q0
n(z) = <77 f D2 Tr(Dy e~'P8) dt

exists, is holomorphic, and

J

1gn )\
P

Moreover, n(z) extends to be a meromorphic function over C.

v(x)

(Y.

Proof. Recall that 1/T'((z 4+ 1)/2) is holomorphic, hence we only need to analyze

¢ 0]
no(2) — J HE=D/2 Ty(Dy =P8 dit.

0
According to(D.8), for any N € N, write

N
gn(t) = Te(Doe Do) — t72 ) thay,

then near ¢ = 0, we have

lgn ()] < CntM 2,
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Note that

1 ©
no(z) = (J (=172 Tr(Dy e_wg) dt + f (=172 Tr(Dy e_wg) dt) =m(z) + n(z),
0 1

where

1
m(z) f {02 Ty(Dy =3 dt,
0

and

0 ¢]
ne(2) = J tE=D2 Tr(Dy e P8 dt.
1

From Weyl’s law, Tr(Dgye P5) decays exponentially as ¢ — o0, hence 1(z) is holo-

morphic over C. With (D.9), we have

1 N
mi) = |t (t—"ﬂ >ty + gN<t>) at

k=0
N 1z7n71 1 z—1
:th > R, dt+f tz gn(t) dt
k=00 0
3 k () dt
];J(z—n—l)/2+k+1+f0 gn(t) dt.

Hence, n(z) is holomorphic over {Rez > n — 1/2}, and extends to a meromorphic

functions.
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By (D.7), we compute

1 °9]
n(z) = f tE=D2 Ty(Dy e 'P8) dt

1 ” z—1)/2 —tA2
e L RN N e dt
A #0

0 (z—1)/2
At (£> e " du
J, 5 (e

-1 ©
_ 1 Z )\j J u(z+1)/2—1 e du

(V]
~—
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