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Abstract

This research utilizes advanced machine learning techniques to evaluate node vul-
nerability in power grid networks. Utilizing the SciGRID and GridKit datasets, con-
sisting of 479, 16,167 nodes and 765, 20,539 edges respectively, the study employs
K-nearest neighbor and median imputation methods to address missing data. Cen-
trality metrics are integrated into a single comprehensive score for assessing node
criticality, categorizing nodes into four centrality levels informative of vulnerability.
This categorization informs the use of traditional machine learning (including XG-
Boost, SVM, Multilayer Perceptron) and Graph Neural Networks in the analysis.
The study not only benchmarks the capabilities of these models in network analy-
sis but also explores their potential in identifying critical nodes using features be-
yond centrality metrics alone, enhancing their applicability in real-world scenarios.
The research addresses a significant gap in effectively assessing the vulnerability of
electrical networks, marked by isolated use of traditional centrality metrics and a
lack of integration between these combined metrics with both tradiational and ad-
vanced machine learning models. The study integrates various centrality measures
into a comprehensive metric and advocates for the application of advanced ma-
chine learning models, particularly GNNs. It underscores the need for larger and
more complex datasets to unlock the full potential of GNNs in network vulnerabil-
ity assessments. By comparing the performance of GNN models with traditional
machine learning approaches across datasets of different sizes and complexities,
the study provides insights into optimizing model selection for network analysis,
thereby contributing significantly to the field of network vulnerability assessment.
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1 Introduction

The term ”vulnerability” has its origins in a political academic concept, referring
to the potential outcomes of system changes within an interdependent system. It
suggests that both large-scale organizations and independent individuals have in-
herent weaknesses, making vulnerabilities inevitable [1]. The idea of vulnerability
was initially introduced in research on natural disasters by scholar Timmerman in
[2], and has since expanded into various fields including network research such as
the internet[3], transportation[4], [5], and power systems[6]. In one study, an in-
dicator for assessing system vulnerability against DoS attacks on the internet was
introduced[7]. This indicator was then utilized to evaluate commonly used data
structures within network mechanisms. In the realm of electrical network analysis,
the assessment of power grid network vulnerabilities is of paramount importance.
These networks, crucial for sustaining societal and industrial functions, directly
impact community resilience and economic stability [8]. The complexity of power
grids and the critical need for a reliable power supply underscore the importance of
accurate vulnerability assessments. The advances in machine learning offers new
perspectives in network vulnerability analysis. Conventional approaches to evalu-
ating the susceptibility of electrical networks, such as stochastic modeling, convert-
ing bi-level to single-level optimization problems, employing algorithms for con-
straint and column generation, utilizing Benders decomposition, conducting system
reliability assessments, and implementing evaluations based on Acyclic Oriented
Electrical Network (AOEN) structures, often do not fully encompass the intricate
dynamics of power grid networks [9], prompting the need for more innovative and
computational approaches [10]. Machine learning, with its capacity to process large
datasets and identify intricate patterns, stands as a promising tool to enhance the ac-
curacy and depth of these assessments.Past studies often used machine learning in
isolation, relying on traditional centrality metrics that may not fully capture the
complex dynamics of power grids. This approach overlooks the interconnected and
nonlinear characteristics of nodes, potentially leading to less effective vulnerability
assessment. The need for this research stems from the limitations in dataset size
and complexity, which may restrict the effectiveness of more sophisticated models
like GNNs, and the lack of integration between combined centrality metrics and
advanced machine learning techniques.

The purpose of this research is to improve the evaluation of power grid node
vulnerability by utilizing machine learning and deep learning models. Our goal is
to increase the precision with which network vulnerabilities are identified by uti-
lizing machine learning’s capacity to recognize intricate patterns in large datasets.
Notably, XGBoost performed the best out of all the models examined. However,
we see tendency of GNNs to perform better on larger datasets.
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The contributions of this study are pivotal for advancing the field of power grid
vulnerability assessment. We used two datasets, a small and a larger one, to test
models across varying network complexities also explored distinct methodologies
for addressing missing data. By comparing traditional machine learning and deep
learning, our research analyzes complex interdependencies and nonlinear behaviors
in power grids. Additionally, the integration of entropy-weighted centrality scores
with these models has refined our ability to pinpoint critical network nodes, thus
improving predictive accuracy and operational reliability in real-world scenarios.

2 Literature Review

The assessment of power grid network vulnerabilities has been an area of extensive
research, given the critical role these networks play in modern society. Studies have
primarily focused on identifying key nodes whose failure could cause significant
disruptions. Traditional approaches have often utilized centrality metrics such as
betweenness, degree, and PageRank to determine the importance of nodes within
these networks [11]. However, a notable gap in the literature is the isolated use
of these centrality metrics, which may not comprehensively capture the complex
dynamics of networks [12]. This limitation has motivated our research to explore
more holistic methods that integrate various centrality measures into a unified met-
ric. Our study builds upon the work of[13], which discusses an entropy-weighted
Combined Centrality Score (CCS). This approach synthesizes betweenness, degree,
and PageRank metrics, offering a more inclusive view of node significance. This
method addresses the shortcomings of using single centrality metrics, as identi-
fied in previous studies [12]. Recent progress in machine learning, particularly in
the realm of Graph Neural Networks (GNNs), has created novel opportunities for
conducting network analysis [14]. These methods have shown potential in identi-
fying critical nodes using complex patterns within network data, which traditional
statistical approaches may overlook. A critical analysis of existing methodologies
reveals a lack of integration between traditional network analysis techniques and
advanced machine learning models.Traditional centrality metrics offer valuable in-
sights into power grid dynamics; however, they often overlook the non-linear and
interconnected characteristics inherent in power grids. In contrast, machine learning
models, particularly Graph Neural Networks (GNNs), demonstrate the capability to
capture and analyze the complex interdependencies and non-linear behaviors within
power grids[15]. In aligning with our research objectives, this study aims to bridge
this gap by combining the robustness of traditional centrality metrics with the ad-
vanced analytical capabilities of machine learning. By doing so, we contribute to
the development of more comprehensive tools for vulnerability assessment in power
grid networks.
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3 Network System Description

Our study uses the SciGRID dataset version 0.2, which provides a detailed layout of
the European electrical transmission network with 479 nodes and 765 edges. This
effort is supported by the German Federal Ministry of Education and Research[16]
and is focused on creating automated models for the European electrical grid to aid
various research areas.

We also draw on the GridKit network model, which comes from OpenStreetMap
data, to examine the North-American high-voltage power grid[17]. This model was
put together by the Next Energy research institute as part of the SciGRID project
and is particularly useful for analyzing power system operations and planning. The
GridKit model offers a comprehensive view with its 16,167 nodes and 20,539 edges.

Our aim with these tools is to predict the vulnerability of particular spots within
these power networks, even when we don’t have all the details about the network’s
setup, like how everything is connected or the importance of certain points. Our
findings are meant to help make the power networks, especially in the U.S., more
reliable by pinpointing and planning for potential weak spots. These datasets are
key to our work, giving us a broad overview of power networks across Europe and
North America.

3.1 Nodes and Edges:

The transmission network is represented by graph G = (N,E). The network’s
topology, defined by these nodes N and edges E, offers insights into the operational
dynamics of the power grid. The nodes in the dataset represent electrical substations
or power stations, crucial for the distribution of electrical power. The edges denote
the transmission lines, interconnecting these nodes.

3.2 Centrality Metrics

The importance of each node is assessed using several centrality metrics:

Degree Centrality (CD):

CD(v) =
deg(v)
|N | − 1

(1)

where deg(v) is the degree of node v and |N | is the total number of nodes.

PageRank Centrality (CP ):

CP (v) =
1− d

|N |
+ d

∑
u∈Bv

CP (u)

L(u)
(2)
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where Bv is the set of nodes linking to v, L(u) is the number of links from node
u, and d is the damping factor[11].

Betweenness Centrality (CB):

CB(v) =
∑
s̸=v ̸=t

σst(v)

σst

(3)

where σst is the total number of shortest paths from node s to node t and σst(v)
is the number of those paths passing through v .

4 Node Importance

A key focus of this research is identifying critical nodes within power grid net-
works. Traditional centrality metrics such as betweenness, degree, and PageRank
have been widely used in assessing the significance of nodes in networks. Be-
tweenness centrality quantifies the frequency at which a node appears on the short-
est paths between other nodes, indicating its role in controlling information flow.
Degree centrality measures the number of direct connections a node has, reflecting
its immediate influence. PageRank, a concept developed by Google researchers,
evaluates the significance of nodes in a network by considering two main factors:
the quantity and quality of incoming edges. Nodes with a higher number of in-
coming edges are deemed more crucial. Moreover, the influence of these nodes is
further enhanced if the incoming edges originate from nodes that are themselves
highly ranked by PageRank, thus recognizing the nodes’ prominence within the
overall structure. Additionally, the PageRank algorithm takes into account the dis-
tribution of a node’s influence through its outgoing links. A node’s PageRank is
divided equally among its outgoing links, meaning that a node linking to many
others spreads out its influence more thinly, as opposed to concentrating it on a
few nodes. This balance between a node’s incoming and outgoing links is cen-
tral to calculating its PageRank, ensuring that a node’s significance is determined
not just by how many, but also by how important its connections are. However,
these metrics individually may not capture the multifaceted aspects of node impor-
tance comprehensively. To address this limitation, our study adopted the formula
of an entropy-weighted Combined Centrality Score (CCS), as described in [18]
in which we implemented different centrality metrics for our analysis. This CCS
amalgamates betweenness, degree, and PageRank into a single score, offering a
more holistic view of node vulnerability and significance within the network. By
leveraging entropy as a weighting mechanism in the CCS, we aim to quantify the
inherent uncertainty and information diversity of network nodes.
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Entropy can be defined as a fundamental measure of unpredictability or infor-
mation content within a system. We used the Shannon Entropy formula to merge
centrality metrics.

Shannon Entropy Formula: The Shannon entropy of a discrete random vari-
able X with possible values {x1, x2, . . . , xn} and probability mass function p(x) is
defined as:

E(X) = −
n∑

i=1

p(xi) log p(xi) (4)

Here xi would be a specific centrality value (like a node having a degree of 4),
and p(xi) would be the proportion of nodes in the network that have that specific
centrality value. This formula, denoted as E(X) representing Shannon Entropy, is
a fundamental concept in information theory, used to quantify the uncertainty or
complexity in a data set [19].

Weights for Centrality Measures: The weight ωj for each centrality measure is
calculated as:

ωj =
1− Ej

3− (ED + EP + EB)
(5)

Here we have entropy measures ED, EP , EB for degree, PageRank, and be-
tweenness respectively where ωj represents the weight for each centrality measure,
based on their entropy values. Here, j is an index over the centrality measures.

Combined Centrality Score:

Ccombined = ω1CD + ω2CP + ω3CB (6)

CD, CP , CB are centrality measures for degree, PageRank, and betweenness
respectively. This equation defines the Combined Centrality Score, indicating the
significance of a node within the network based on weighted centrality metrics[18].

We use combined centrality scores to label centrality, vulnerability level of
transmission network nodes followed by training machine learning models, includ-
ing traditional ones and graph neural networks (GNNs). Their performance in de-
tecting critical nodes with node and edge features are evaluated. This innovative
approach aims to extend the utility of machine learning models in real-world sce-
narios beyond the limitations of conventional centrality metrics. In conclusion,
this research benchmarks the capabilities of both traditional and advanced machine
learning models in assessing the vulnerability of electrical networks and contributes
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to the development of more resilient power infrastructure through refined analytical
methods.

5 Methodology

The robustness of electrical networks is paramount, particularly because their com-
ponents are susceptible to failure from natural disasters, human errors, or malicious
attacks. Such failures can propagate through the network, causing widespread dis-
ruption due to the interconnected nature of its elements—a phenomenon known as
the cascading effect. Within the framework of graph theory, these components are
represented as nodes, and identifying those that are critical is essential for main-
taining network integrity. Ensuring these nodes receive adequate protection or re-
inforcement is crucial to mitigate the risk of cascading failures [20].

Addressing the challenge of predicting node criticality is compounded by the
scarcity of comprehensive data and the intricacies of the factors involved. There-
fore, the development of a predictive model leveraging the topological characteris-
tics of the electrical network, alongside any available functional attributes, is essen-
tial. Advanced machine learning makes it is possible to anticipate the vulnerability
of these critical nodes and implement preemptive strategies to safeguard the elec-
trical network.

Our methodology employs both classical machine learning (CML) and graph
neural networks (GNN) to evaluate the vulnerability of electrical transmission sys-
tems. The process begins with data collection, focusing on node and edge informa-
tion from a publicly accessible source. Using Python NetworkX library, a weighted
directed network is constructed, facilitating the calculation of various centrality
measures: degree centrality, PageRank centrality, and betweenness centrality [21].
These metrics are amalgamated into a combined centrality score using the Shannon
entropy method.

Afterwards, each node in the network is assigned one of the four criticality
levels: low, moderate, high, and severe, assigned based on the combined critical-
ity scores and CML and GNN algorthims are used to predict this level for spe-
cific node in later portion of the study. To augment the limited node features in
the dataset, additional features are generated from the network topology. Subse-
quently, three CML algorithms—XGBoost, Multilayer Perceptron Neural Network,
and SVM—are implemented. Hyperparameters for each algorithm are optimized
through grid search with cross validation.

In the next phase, both node and edge features are processed through various
GNN algorithms. These algorithms include Graph Neural Network (GNN), Graph
Convolutional Network (GCN), and Graph Attention Network (GAT). To imple-
ment these algorithms, the PyTorch Geometric library is utilized, a widely rec-
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ognized and efficient framework for graph-based deep learning tasks within the
PyTorch ecosystem [22]. This library provides optimized and user-friendly imple-
mentations of GNN, GCN, and GAT models, facilitating the effective application
and comparison of these techniques in our study. After evaluating these models,
the most effective GNN algorithm is identified for comparison with classical ML
algorithms. Python is employed throughout this research, known for its extensive
libraries and tools conducive to machine learning and network analysis [23]. The
main steps of the proposed methodology are shown in figure 1.

Figure 1: Main Steps of the Proposed Methodology.

5.1 Data Description and Preprocessing

Our methodology was implemented in two datasets. The first one was obtained
from the SciGRID project, which focuses on the automated creation of models for
electricity grids, serving research and related applications. The second dataset uti-
lized in our study is sourced from GridKit. Both the dataset are similar in their
structure and divided into two key components: vertices and edges, symbolizing
the nodes and their interconnections within the electrical network. The dataset de-
scription is provided in Table 1.
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Table 1: Node and Edge data description from the dataset

Variable Index Variable Description Dataset
1 v id Unique identifier for the vertex

(node)
Node

2 lon Longitude of the node Node
3 lat Latitude of the node Node
4 typ Type of node, e.g., substation Node
5 voltage Voltage level(s) at the node, multi-

ple separated by semicolon
Node

6 geom Geometric information, typically
coordinates in WKT format

Node

7 l id Unique identifier for the edge (line) Edge
8 v id 1 Identifier for the starting vertex of

the edge
Edge

9 v id 2 Identifier for the ending vertex of
the edge

Edge

10 voltage Voltage level of the edge Edge
11 cables Number of cables in the edge Edge
12 wires Number of wires in the edge Edge
13 frequency Operating frequency of the edge Edge
14 length m Length of the edge in meters Edge
15 r Resistance of the edge Edge
16 x Reactance of the edge Edge
17 c Capacitance of the edge Edge
18 i th max Maximum thermal current limit of

the edge
Edge

19 geom Geometric information, typically
line coordinates in WKT format

Edge

The vertices dataset encompasses essential information about the nodes in the
electrical network and edges dataset includes essential features of the electrical
lines. A directed network was built by utilizing an edge list that incorporates the
voltage of each line as the weights for individual links within the network. Ad-
ditionally, we computed network centrality measures like degree centrality, Page-
Rank, and betweenness centrality.

A Shannon entropy-based method was then applied to these centrality mea-
sures to assign criticality levels to the nodes. The edges dataset provides detailed
information about the connections between nodes. Like the vertices, these were
incorporated into our graph model, adding depth to our network analysis.
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In the preprocessing phase, the ’geom’ column, which contained spatial data in
Well-Known Binary (WKB) format, from both datasets. This exclusion was done
to streamline the data for machine learning analysis, as this spatial information
was not relevant to our specific study objectives focused on network structure and
electrical characteristics. The vertices dataset had missing entries in the voltage
column, which were handled through median imputation. This approach is effective
for addressing missing numerical data and maintaining the data’s central tendency
[24]. Where multiple voltage values were present, we selected the maximum value
to assume maximum capacity.

The edge dataset presented missing values in several columns (wires, r, x, c,
i th max), which we imputed using the k-Nearest Neighbors (kNN) algorithm.
This method ensures data consistency by utilizing the similarity patterns within
the dataset [25].

Table 2: Node features used for CML and GNN

Feature Index Feature Name Description
1 lon Longitude of the node
2 lat Latitude of the node
3 typ Type of node, e.g., substation
4 voltage Maximum voltage level at the node
5 eigen centrality A measure of the influence of a

node in a network
6 closeness centrality Proximity of a node to all other

nodes in the network
7 clustering coefficient Degree to which nodes tend to clus-

ter together
8 load centrality Distribution of shortest paths going

through a node
9 avg shortest path length Average distance from the node to

all other nodes in the network
10 average neighbor degree Average degree of the neighbor-

hood of a node
11 node strength Sum of weights of edges incident to

the node

Additionally for the GridKit dataset, in addressing the absence of values in the
r, x, c, and i th max columns, a regression model was developed leveraging the Sci-
GRID dataset, noted for its robust and detailed data in these specific fields. Then
this regression model was employed to predict the missing values in the GridKit
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dataset. The application of regression analysis, a machine learning technique, al-
lowed for precise estimation of missing data by utilizing the inherent relationships
within the SciGRID dataset. This method ensured the consistency of the dataset but
also aligned with the analytical demands of our study [26].

Various network centrality measures are added to existing node features for
CML. For GNN approaches, the edge features were integrated to effectively cap-
ture the network’s relational dynamics. Table 2 shows the node features used for the
application of the CML and GNN. Apart from node attributes, all edge attributes
outlined in Table 1 have been incorporated into the GNN analysis.

5.2 Assigning Criticality Levels

For both of the classification and deep learning tasks, each node within the net-
work are assigned a criticality level, categorized into one of four classes: low,
moderate, high and severe. These criticality levels serve as the target variable in
this study. First, the combined criticality scores for each node is computed using
equation (6) and then they are segmented into the four aforementioned categories.
This segmentation is methodically executed based on the quantile distribution of
the combined centrality scores. To elaborate, scores that fall at or below the 25th
percentile are designated as ’Low’. Those exceeding the 25th percentile yet not
surpassing the 50th percentile are deemed ’Moderate’. Scores advancing beyond
the 50th percentile but remaining at or below the 75th percentile are identified as
’High’. Scores that exceed the 75th percentile threshold are classified as ’Severe’.
This quantile-based approach ensures an equitable distribution of criticality levels
across the dataset.

5.3 Machine Learning Algorithms

Numerous AI and machine learning algorithms are documented in the field, yet an
exhaustive review of all extends beyond the scope of this research. The focus is on
commonly used multi-classification algorithms renowned for superior performance.
XGBoost, MLPNN, and SVM have been chosen for classical machine learning, and
GNN, GCN, and GAT for graph neural network applications.

In this project, both classical ML algorithms and GNNs were utilized to an-
alyze and compare their performance, given that the electrical network naturally
forms a graph. This approach enabled to determine the most effective method for
understanding and predicting vulnerabilities in the electrical grid.
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5.4 CML Algorithms

Extreme Gradient Boosting (XGBoost): XGBoost is a machine learning algorithm
that employs distributed gradient boosting to build gradient boosted decision trees.
Renowned for its efficiency, flexibility, and portability, XGBoost excels in pro-
cessing complex datasets with enhanced speed and performance, often resulting in
superior analytical outcomes [27].

Multilayer Perceptron Neural Network (MLPNN): MLPNN is a type of feed-
forward artificial neural network characterized by its multiple layers of nodes. It
is adept at recognizing complex patterns and classifying data, effectively handling
non-linear relationships inherent within diverse datasets. MLPNN is implemented
in many deep learning frameworks, offering robust solutions for a variety of ma-
chine learning challenges [28].

Support Vector Machine (SVM): SVM is a robust supervised learning model
introduced by Vapnik [29]. It is particularly effective for both linear and nonlin-
ear classification, capable of distinguishing between data classes by computing the
optimal separating hyperplane. This feature makes SVM an invaluable tool in the
domain of data categorization and is widely supported by machine learning libraries
for its reliability in classification tasks.

5.5 GNN Algorithms

Graph Neural Network (GNN): GNNs are specialized neural network architectures
that process data represented as graphs. These networks are adept at capturing
the complex relationships and interdependencies between nodes, making them par-
ticularly useful for datasets that inherently form graphs, such as social networks,
molecular structures, and more [30].

Graph Convolutional Network (GCN): GCNs represent an evolution of GNNs
that incorporate the principles of convolutional neural networks to graph data. By
aggregating features from a node’s immediate neighbors, GCNs can effectively
leverage local graph structures, enabling them to learn representations that reflect
both the topology and features of the graph [31]..

Graph Attention Network (GAT): GATs further enhance the capabilities of GNNs
by introducing attention mechanisms into the graph domain. This innovation allows
the network to focus on the most relevant parts of the input graph dynamically, as-
signing varying levels of importance to different nodes within a node’s neighbor-
hood based on their contributions to the model’s output. This selective focus helps
in improving the predictive accuracy of the network for tasks such as node classi-
fication and link prediction [32]. The GNN codes for the study were adapted from
the book [33], which provides practical techniques and architectures for construct-
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ing powerful graph and deep learning applications with PyTorch.

5.6 Model Evaluation

In evaluating the models, the accuracy score was utilized as the primary metric. The
accuracy score is calculated using the formula:

Accuracy Score =
Number of correct predictions

Total number of prediction
(7)

For each model, this score was computed to assess its performance. Both of
the dataset were partitioned in a 70/30 ratio, where 70% constituted the training set
and the remaining 30% was used as the testing set. The training set was employed
to train each model, including XGBoost, MLPNN, SVM, GNN, GCN, and GAT.
Subsequently, the testing dataset, which consists of previously unseen data, was
used to evaluate the models.

The accuracy score for each model was determined by comparing the model’s
predictions on the testing set against the actual values. This approach allowed for
an objective assessment of each model’s ability to accurately predict outcomes,
particularly in terms of identifying critical nodes within the electrical network.

Upon evaluating the accuracy scores across various models, a feature impor-
tance analysis on the top-performing model will be conducted. This analysis will
pinpoint the specific network features that significantly influence the model’s pre-
dictions. By doing so, a comprehensive understanding of the key factors that shape
network behavior can be developed, thereby enhancing our insights into the under-
lying dynamics of the model.

6 Result and Discussion

The electrical transmission system was represented as a weighted directed network,
characterized by specific nodal and edge attributes. The SciGrid network comprised
a total of 479 nodes and 765 edges.

Extending our methodology, we applied it to a second network, the GridKit
Network, which encompasses a larger scale with 16,167 nodes and 20,539 edges.
Unlike the SciGrid network, the GridKit Network was not fully connected. Conse-
quently, we focused on the largest connected component of the GridKit Network,
which contained 14,490 nodes and 20,881 edges, to maintain analytical consistency
and ensure the robustness of our network analysis. Upon constructing NetworkX
directed graph objects for both datasets, the edge counts were adjusted to 633 for
SciGrid and 19,073 for GridKit. This modification occurred because NetworkX, by
default, merges edges that share identical ’from’ and ’to’ node information, leading
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to a consolidated representation of the networks. The construction of the SciGrid
network and GridKit network largest component is shown in Figure 2 and Figure 3
respectively. The size of the nodes is determined based on the outgoing degree. As
a result, it is prominent that few hub nodes are present in both of the network

Figure 2: Network representation of the SciGrid network.

In order to examine the vulnerability of electrical transmission systems, both
classical machine learning algorithms and Graph Neural Networks (GNNs) were
applied to the SciGrid network, observing varied performance levels across dif-
ferent models. For the classical algorithms, after initial model development, grid
search with cross-validation was applied to ensure each model is rigorously op-
timized. This method effectively identify the set that maximizes the accuracy of
each model by exploring a range of potential hyperparameter combinations. In
contrast, for the GNNs, manual hyperparameter tuning was utilized for GNNs, as
direct Grid Search Cross-Validation support is generally not available for these
models. This approach facilitated a systematic exploration and refinement of hy-
perparameter combinations, ensuring optimized accuracy for the distinct architec-
ture of GNNs. In terms of performance, XGBoost led the way with an accuracy
of 84.72%, followed by the Support Vector Machine (SVM) at 83.33%, while the
Multilayer Perceptron Neural Network (MLP) trailed at 79.86%. Diving into the
realm of GNNs, the results varied: the generic GNN model achieved a test accu-
racy of 46.94%, the Graph Convolutional Network (GCN) recorded 61.22%, and
the Graph Attention Network (GAT) reached 71.43%. Although insightful, the per-
formance of the GNN models was notably lower compared to the classical machine
learning approaches. Figure 4 illustrates the performance accuracy of all six models
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Figure 3: Network representation of the GridKit network largest connected component.

as applied to the SciGrid network.

Figure 4: Model Performance Comparison for SciGrid Network.

In the next step, the same Machine Learning methodology was applied to the
larger GridKit network. The classical machine learning algorithms exhibited di-
verse performance levels. Figure 5 shows the results achieved from applying the
alogorithms to GridKit dataset. XGBoost continued its strong performance with an
accuracy of approximately 83.14%, while the Multilayer Perceptron Neural Net-
work (MLP) and Support Vector Machine (SVM) lagged behind, recording accu-
racies of 41.78% and 38.76% respectively. In contrast, the exploration with Graph
Neural Networks (GNNs) yielded closely contested results: the generic GNN model
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achieved a test accuracy of 65.24%, the Graph Convolutional Network (GCN) fol-
lowed at 66.98%, and the Graph Attention Network (GAT) outperformed both with
an accuracy of 65.04%. These outcomes emphasize the variance in model perfor-
mance when scaling up to the more complex GridKit network, underlining the crit-
ical role of model selection in relation to the specific characteristics of the network
being analyzed.

Figure 5: Model Performance Comparison for GridKit Network.

The comparative analysis of classical machine learning (CML) algorithms and
Graph Neural Networks (GNNs) across two different datasets, SciGrid and GridKit,
provides insightful findings. In the case of the SciGrid network, GNNs displayed
lower performance, which could be attributed to the dataset’s limited size and com-
plexity, possibly insufficient to exploit GNNs’ full potential. These networks, with
their inherent complexity and reliance on large, intricate data, did not outperform
the more straightforward CML algorithms, which seem better suited for smaller or
simpler datasets. Conversely, when applied to the larger and more complex GridKit
network, GNNs demonstrated improved performance, still not surpassing the accu-
racy achieved by the XGBoost algorithm. This suggests that while GNNs benefit
from larger datasets, their effectiveness compared to CML algorithms like XGBoost
may vary depending on the network’s scale and complexity, as well as the nature of
node and edge features.

As XGBoost is the best performing algorithm in case of both the data set, fur-
ther investigation was done on feature importance analysis specific to this model.
Figure 6 and 7 shows the top 5 features in terms of feature importance for Sci-
Grid and GridKit data respectively. In the SciGrid network, ’eigen centrality’ and
’node strength’ emerged as key, highlighting the significant influence of individ-
ual node attributes in smaller network dynamics. On the other hand, in the larger
and more complex GridKit network, ’closeness centrality’, ’node strength’, and
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’typ joint’ were predominant, reflecting the importance of connection, weight of
the network and type of nodes in extensive networks. The significance of diverse
centrality measures as principal features in the study corresponds closely with an-
ticipated outcomes, given the criticality levels defined by combining degree, pager-
ank, and betweenness centrality. The importance of ’node strength’ in the analysis
is closely linked to the network’s weight, voltage, underscoring voltage’s key role
in influencing node robustness and the network’s overall structural integrity. Fur-
thermore, the categorization of nodes, evident in the significance of joint/auxiliary
T nodes in both datasets, highlights the importance of the node type, particularly
emphasizing the extent of a node’s connection within the network.

Figure 6: Top 5 important features used for XGBoost on SciGrid Data.

Figure 7: Top 5 important features used for XGBoost on GridKit Data.

Moving forward, it is imperative to investigate these methods further on even
larger and more diverse real-world datasets. Such research could ascertain whether
increased dataset size and diversity would enhance GNNs’ performance, poten-
tially making them more competitive with or even superior to CML algorithms in
certain contexts. Additionally, exploring more intricate feature engineering, hy-
perparameter tuning might unlock new possibilities for improving model accuracy.
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These efforts could lead to the development of more sophisticated predictive mod-
els, thereby contributing substantially to the safety, resilience, and efficiency of
electrical transmission system management. As such, extending these methodolo-
gies to broader datasets and identifying the optimized parameters for existing GNN
models remain an important direction for future studies, aiming to clarify the scal-
ability and applicability of these models in real-world scenarios. All codes and
datasets are available at https://github.com/CEL-lab/Net_ML.

7 Conclusion

In conclusion, our study provided comprehensive insights into node vulnerability
assessment in power grid networks, utilizing the SciGRID and GridKit datasets.
Our findings indicate that traditional machine learning models, including XGBoost,
SVM, and Multilayer Perceptron, are more effective in identifying critical nodes
than Graph Neural Networks, underscoring their practical utility in current network
vulnerability assessments. However, the potential of Graph Neural Networks in
network analysis, particularly with larger datasets and refined prediction models, is
significant.

The study highlights various implications for power networks. It emphasizes
the importance of targeted maintenance and resilience, with predictive strategies
focusing on critical nodes to strengthen network robustness. Accurate vulnerability
assessments are shown to enhance emergency and disaster responses, especially in
natural disaster-prone areas. The potential for advanced models like Graph Neural
Networks to develop smarter, more adaptive grids capable of real-time monitor-
ing and rapid responses is evident. Strategic infrastructure investments and long-
term network planning are informed by our insights, targeting areas that require
reinforcement. Our findings have implications for policy and regulatory decisions,
particularly in enhancing cybersecurity and setting safety standards. Improved net-
work analysis can lead to effective demand-side management, resulting in energy
savings and better service quality for consumers. Our research also drives future
research and development, particularly in refining network analysis algorithms and
technologies. Understanding network vulnerabilities, as shown in our study, leads
to better grid inter-connectivity and cost-efficient grid management, benefiting both
providers and consumers.

It is important to consider the potential effects of the data imputation methods
on the outcomes of the study. Missing data in the vertex dataset’s voltage column
was addressed through median imputation to maintain central tendency, essential
for preserving underlying distribution patterns crucial for network analysis. For
other attributes in both node and edge datasets, k-Nearest Neighbors imputation
was utilized, leveraging similarity patterns to ensure consistency and completeness
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of the data. Selected imputation methods aimed to reduce information loss, which
could affect conclusions regarding feature importance and classifier performance.
While the results are substantial, it is crucial to consider that these methods might
introduce slight biases in critical features, like voltage and typ identified in the
study. Recognizing such biases is important for ensuring the accuracy of critical
node identification in network vulnerability assessments.

Additionally, the impact of dataset size and complexity on model performance
also emerged as a key finding, suggesting the need for more extensive datasets in
future research to fully exploit the capabilities of advanced machine learning mod-
els. Future research should focus on expanding datasets to improve Graph Neural
Networks’ accuracy in vulnerability prediction, and exploring other deep learning
architectures. Additionally, refining centrality measures, particularly building upon
the entropy-weighted Combined Centrality Score, will further enhance assessment
methodologies in network vulnerability. These areas offer promising directions for
advancing the field based on our study’s insights.
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