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Abstract 

 Surgical site infections are costly to both patients and hospitals, increase patient 

mortality, and are the most common form of a hospital acquired infection. Gynecological 

cancer surgery patients are already at higher risk of developing an infection due to the 

suppression of their immune system. This research leverages popular data mining 

techniques to create a prediction model to identify high risk patients. Implemented 

techniques include logistic regression, naive Bayes, recursive partitioning and regression 

trees, random forest, feed forward neural network, k-nearest neighbor, and support 

vector machines with linear kernel. Weighted stacked generalization was implemented to 

improve upon the individual base level model’s performance. The chosen meta level 

classifiers were support vector machines with linear kernel, logistic regression, and k-

nearest neighbor. The result is a model that identifies high-risk patients immediately 

following a surgical procedure with an AUC of 0.6864, accuracy of 0.6744, sensitivity of 

0.7, and specificity of 0.6728. 
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1. Introduction 

According to the Centers for Medicare and Medicaid Services (CMS), in 2015 the 

United States spent $3.2 trillion on healthcare which equates to $9,900 dollars a person; 

more than any other country (CMS, 2015). The increased spending and growth in 

hospital care, private health insurance, physician and clinician services, Medicaid, and 

prescription drug services results in 17.8% of the United States Gross Domestic Product 

(GDP) being spent on healthcare (CMS, 2015). Therefore, there is a strong need to 

reform the way healthcare is delivered so that it is more economical, safe, and of a 

higher quality. Breaking down the spending by service shows that hospital care accounts 

for the largest proportion of the United States healthcare spending. 

 A significant portion of hospital care spending results from the increased cost of 

care that results from treating surgical site infections (SSI). In fact, it is estimated that 

each infection costs an additional $20,000 per instance (Gbegnon, 2010). Not only is 

there a significant monetary cost associated with patients who develop an SSI, but there 

is also a serious impact on patient satisfaction and quality of care. In fact, patients who 

develop an SSI have longer length of stays, higher mortality, and higher readmission 

rates (Gbegnon, 2010). 

With such a significant cost associated with development of a surgical site 

infection, it is imperative that patients at high risk of developing an SSI are able to be 

determined. This research uses strategic analysis to reduce the impact a surgical site 

infection has on hospital care spending and patient quality of life. 
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1.1 Problem Statement 

Surgical site infections are the most common form of hospital acquired infections, 

and as such should be completely preventable.  According to the Centers for Disease 

Control and Prevention (CDC), an SSI is “an infection that occurs after surgery in the 

part of the body where the surgery took place” and occurs within 30 days following the 

surgery (CDC, 2012). SSIs are of interest to hospitals due to their expensive treatment 

cost and delays. In fact, SSI’s account for more than 400,000 extra hospital days 

accounting for an additional $10 billion in care each year (WHO, 2016). There are three 

types of surgical site infections that are prevalent in hospitals: 

1. Superficial - involves only skin and subcutaneous tissue of the incision 

2. Deep - involves deep soft tissues of the incision (e.g., fascial and muscle layers) 

3. Intra-abdominal - infection involves any part of the body deeper than the 

fascial/muscle layers, that is opened or manipulated during the operative 

procedure (Lachiewicz, 2015) 

Among gynecological cancer patients surgical site infections can add an 

additional unnecessary expense to an already expensive hospital stay. SSIs are 

prevalent among gynecological cancer patients because the surgeries are performed on 

bacteria prone sites, and cancer patients are already at a higher risk for infections 

(Lachiewicz, 2015).  SSIs increase the length of stay a patient stays in the hospital, and 

often require the need for readmission. Specific interventions, both pre and post surgery, 

can be implemented to reduce instances of SSI, but require appropriate identification of 

patients at risk of developing an SSI. 

 Prediction models using data mining techniques for SSIs have been utilized in 

numerous studies where significant features and interventions have been identified. 

Such prediction models have been successfully implemented for colorectal patients 

where they reduced the surgical site infection rate in cancer patients. However, 
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gynecological cancer patients have not been studied specifically to predict such 

infections.  

 
1.2 Research Objectives 

The objective of this research is to utilize data mining techniques to predict 

development of a Surgical Site Infection in gynecological cancer patients. The prediction 

is made based upon information available immediately following surgery. The prediction 

model will be used to assess patients wound treatment and post surgical care to ensure 

that high risk patients are receiving the necessary medical attention. The objective is 

completed through a 2-step approach. 

1. Predicting Individual Gynecological Surgical Site Infection 

Individual gynecological surgical site infection is predicted using seven unique 

data mining techniques. The techniques utilized are Logistic Regression, Naive Bayes, 

Random Forest, Feed Forward Neural Network, Recursive Partitioning and Regression 

Trees, K-Nearest Neighbors, and Support Vector Machines with Linear Kernel. The 

aforementioned techniques are used to predict whether or not an individual patient will 

develop a surgical site infection. Individual patient characteristics, including past medical 

history and demographics, are utilized alongside details of the surgery in each of the 

data mining techniques. The prediction performance of each of the techniques is 

compared with specific emphasis on the best performing techniques.  

2. Predicting Individual Gynecological Surgical Site Infection Using Ensemble 

Learning 

Individual gynecological surgical site infection is predicted again using ensemble 

learning, specifically stacking, techniques. The predictive probabilities from the best 

three performing techniques are utilized as inputs in three data mining techniques: 

Support Vector Machines with Linear Kernel, Logistic Regression, and K-Nearest 
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Neighbors. Higher weight was assigned to the predictive probabilities of the overall best 

performing model. The prediction performance of the ensemble stacking models was 

then compared with one another as well as with performance of the first seven data 

mining techniques. 

 
1.3 Research Contributions 

This research addresses a gap in the literature regarding predicting 

gynecological surgical site infections specifically in cancer patients. Extensive literature 

exists on predicting surgical site infections in patients both pre and post surgery, but 

there is little emphasis on cancer patients. This research utilizes data mining techniques 

to predict an individual patient’s risk of developing a surgical site infection following 

gynecologic surgery based on medical history, surgical characteristics, and patient 

demographics.  

 Uniquely this research goes a step beyond individual prediction by utilizing 

ensemble learning, specifically stacking algorithms, to improve the predictions of 

patients developing an SSI based upon information available immediately following 

surgery. Stacking algorithms have become popularized by data science competitions 

such as Kaggle due to their high predictive performance (van Veen et al., 2015). 

Stacking algorithms have made their way into healthcare through classification of 

microarray cancer genes (Nagi, 2013). Another gap in the literature exists as there is no 

specific instance of applying stacking algorithms to prediction of surgical site infections in 

gynecologic cancer patients. 

 Finally, this research offers a comparison of seven popular individual prediction 

model performances which is more than what is found in the literature. Additionally, the 

performance of three stacking algorithms were compared to each other and the 

individual models in an effort to determine the most appropriate model. 
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 In conclusion surgical site infections are a metric of poor quality of care and lead 

to increased treatment costs and reduced patient satisfaction. Hospitals have identified a 

need for models that predict the risk of surgical site infections with the most accurate 

results through data mining techniques. In this effort to achieve the best performing 

model this research applies a unique multilayer approach to generate predictions of 

surgical site infections in gynecological cancer patients. 

 
1.4 Thesis Organization 

This thesis is organized by the following: Chapter 2 details an overview of the 

literature used to determine factors of interest, individual prediction of surgical site 

infections, and ensemble learning. Chapter 3 details the methodology used in this thesis 

and starts with a description of the data acquisition and preprocessing process (Chapter 

3.1 & 3.2). Next a description of the feature selection process is covered (Chapter 3.3), 

followed by a review of the data mining algorithms implemented (Chapter 3.4). The 

section concludes with a description of the ensemble models used in this research 

(Chapter 3.4). Chapter 4 details the metrics used to assess the performance of the 

chosen data mining algorithms (Chapter 4.1) and the performance of the ensemble 

models (Chapter 4.2). Finally, Chapter 5 summarizes and draws conclusion from this 

research and offers areas to consider for future work.  
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2. Literature Review 

2.1 Factors of Interest 

 Shapiro et al. undertook one of the earliest studies to determine risk factors for 

surgical site infections following a hysterectomy in 1982. Logistic regression was applied 

to 1,448 patient’s information who had a hysterectomy between February 1976 and April 

1978. The seven significant factors found to be significant predictors of postoperative 

surgical site infection were increased duration of surgery, antibiotic prophylaxis, age, 

surgical procedure, obesity, blood loss, and surgeon. 

 Fagotti et al. found predictors of developing abscesses in gynecological cancer 

patients undergoing surgery, particularly that duration of surgery, type of surgery, and 

the use of absorbable hemostats were significant. They applied logistic regression to a 

dataset of 360 patients to accurately predict the occurrence of pelvic abscesses 

following gynecological surgery with an area under Receiver Operating Characteristic 

(ROC) curve of 0.868, as described further in section 4.1.2.  

 Lake et al. is another study that identifies the risk factors of developing an SSI 

after surgery, in this case looking at hysterectomies among 13,822 women. Using data 

from the national database collected by the ACS NSQIP (American College of Surgeons 

National Surgical Quality Improvement Program) they found that significant factors 

included diabetes mellitus, BMI, cancer, ASA class, duration of surgery, race, smoking, 

and anemia. Descriptive statistics, Student t test, Pearson x2, and Fisher exact test (two-

sided) were performed for bivariate analysis. Variables were added to the model in a 

stepwise fashion utilizing forward selection (p ≤.05).  
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 Bakkum-Gamez et al. used data collected from the Mayo clinic among 

endometrial cancer patients between 1999 and 2008 to determine the costs of SSI. in 

particular, they looked to determine the risk factors for SSI in endometrial cancer 

patients, providing reference to managing the costs associated with SSI. They found that 

among 1,369 patients, 136 or 9.9% had SSI. They used a Fisher Exact test and 

Wilcoxon Rank test to determine the individual factors associated with the 30 day cost of 

SSI. Those factors include BMI, ASA score, Diabetes mellitus, pulmonary dysfunction, 

anemia, age, smoking, MRSA history, duration of surgery, blood loss, 

lymphadenectomy, bowel resection, vascular disease. They found these factors to 

significantly influence the cost of SSI and patient mortality. 

 Mahdi et al. 2014 also used data collected from the ACS NSQIP database, from 

2005 to 2011 to determine the rate and predictors of SSI in gynecological cancer 

patients. Of 6854 patients, 369 or 5.4% were diagnosed with SSI. They used logistic and 

linear regression to determine risk factors, with all tests of significance being found at the 

level of p < 0.005. Most significantly they found that Endometrial cancer, obesity, ascites, 

ASA score ≥ 3, blood transfusion, hypoalbuminemia, respiratory comorbidities were high 

risk indicators.  

 In 2015, Lachiewicz et al. identify the risk factors contributing to SSI that occur 

after gynecological surgeries by assessing those risks against the use of antibiotic 

prophylaxis. They used a cross-sectional analysis of the ACS NSQIP database to 

identify the host risk factors, preoperative risk factors, intraoperative risk factors, and 

postoperative risk factors for SSI following any gynecological surgery. Significant factors 

included BMI, Diabetes mellitus, anemia, smoking, age, malnutrition, history of radiation, 

MRSA, length of surgery, blood loss, blood transfusion, bowel resection, 

lymphadenectomy, and preoperative and postoperative glucose levels.  
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 More recently, Johnson et al. used bundled interventions to reduce SSI among 

gynecological surgery patients, finding that there was a reduction from 6% to 1.1% in 

SSI with the implementation of the bundle. They used Fisher Exact test to determine 

significant factors within two datasets, a pre-intervention period January 1, 2010 and 

December 31, 2010, and a post-intervention period August 1, 2013 and September 30, 

2014. Significant factors included bowel resection, cancer location, surgical procedure 

(laparoscopic vs open) and duration of surgery.  

A summary of the significant factors identified in the literature and their 

corresponding papers is shown in table 1. 

Table 1 - Literature Review: Significant Factors 

 

Shapiro 

et al. 

Fagotti 

et al. 

Lake 

et al. 

Bakkum

-Gamez 

et al. 

Mahdi 

et al. 

Lachiewicz 

et al. 

Johnson 

et al. 

Age � � � � � � � 

Anemia � � � � � � � 

Antiobiotic 

Prophylaxis � � � � � � � 

ASA Score � � � � � � � 

Blood Loss � � � � � � � 

BMI � � � � � � � 

Bowel 

Resection � � � � � � � 

Cancer � � � � � � � 

Diabetes 

Mellitus � � � � � � � 

Duration of 

Surgery � � � � � � � 

History of 

Radiation � � � � � � � 

Laparoscop

ic vs Open 

Surgery � � � � � � � 

Lymphade

nectomy � � � � � � � 
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2.2 Individual Models and Ensemble Learning 

 Sands et al. uses logistic regression, recursive partitioning and regression trees 

to predict if a patient would develop a surgical site infection, using data collected 

automatically by health care systems from 4,086 procedures. Significant predictors were 

the prescriptions and dispensing of specific antibiotics, outpatient diagnosis, readmission 

with specific diagnosis, wound culture ordered, and emergency department visit.  This 

study found that using recursive partitioning to create decision trees is a better approach 

to predict development of a surgical site infection than logistic regression. The accuracy 

of the developed model was 0.74 and the sensitivity was 0.42. 

Fowler et al. analyzed 331,429 coronary artery bypass graftings to determine 

predictors of postoperative surgical site infection. Utilizing logistic regression Fowler et 

al., found that BMI, diabetes mellitus, previous myocardial infarction, hypertension, and 

urgent operation were found to be significant predictors of SSI following the cardiac 

procedure. Based on the identified significant features a prediction model was created 

that was able to predict the occurrence of surgical site infection with a c-index of 0.686. 

Malnutritio

n � � � � � � � 

Postglucos

e � � � � � � � 

Preglucose � � � � � � � 

Race � � � � � � � 

Smoking 

History � � � � � � � 

Surgeon � � � � � � � 

MRSA 

History � � � � � � � 
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Neumayer et al. analyzed 163,624 patients undergoing vascular and general 

surgery to develop a model to determine patients at high risk of developing an SSI. 

Through the use of Logistic Regression, the team was able to predict the occurrence of 

an SSI with an area under the ROC curve of 0.62. The factors found significant during 

the development of the model were age, diabetes, dyspnoea, steroids, alcoholism, 

smoking, prior radiology treatment, ASA score, Albumin, wound classification, and 

procedure type. 

In a study done by Heckerling et al. in 2007 the use of Artificial Neural Networks 

was used to create a model for the prediction of urinary tract infections in women, as 

well as determine significant predictors. The study incorporated patient information from 

212 women ages 19 to 84. The determined significant predictors were urinary frequency, 

dysuria, urine odor, symptom duration, diabetes mellitus, red blood cells, and infection 

history. The developed artificial neural network model was used to classify urinary tract 

infections with an area under the ROC curve of 0.792.  

 Looy et al. investigated the use of support vector regression in 2007 to predict 

tacrolimus blood concentration in liver transplants. More than 16,000 blood samples 

were analyzed from 50 liver transplant patients. The results from the linear support 

vector regression were compared to the results from a multiple linear regression model 

developed on the same data. The mean absolute difference between the observed and 

predicted values was 2.31 for linear support vector regression and 2.73 for multiple 

linear regression. In the study gender, age, weight, days since transplantation, and 12 

biochemical variables were found to be significant factors.  

 In 2008 Verplanke et al. compared the performance between support vector 

machines and logistic regression to model patient mortality for patients with 

hematological malignancies. 352 patients admitted to the ICU between 1997 and 2006, 

including those with a life-threatening complication, were analyzed. From the developed 
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models gender, high grade malignancy, active disease, bone marrow transplant, 

infection history, and ventilation were the factors identified as significant. The patient 

mortality predictive performance of the logistic regression model was 0.768 AUC and 

0.802 AUC for the support vector machine model. 

 Sill et al. explored the use of feature weighted linear stacking as way to reduce 

the computational demand of nonlinear stacking methods, but increase the performance 

of linear stacking alone. The study found that stacking in general improved upon the 

performance of an individual model such as linear regression used in this study. When a 

weight is assigned to individual classifiers the predictive performance is increased when 

compared to stacking without weighting. Stacking in this manner is far less 

computationally demanding than stacking with a nonlinear algorithm and results in 

comparable performance.  

 Mu et al. analyzed data reported to the National Healthcare Safety Network for all 

operative procedures that took place from January 1, 2006 to December 31, 2008. In 

total 847 hospitals from 43 contributed 849,649 operations of which 16,147 resulted in 

an SSI. The goal of the study was to develop a new risk model to improve the predictive 

performance of SSI for each procedure category. The team implemented a stepwise 

logistic regression model with bootstrap resampling as a form of bagging ensemble. The 

developed model resulted in a median c-index of 0.67 as compared to the prior median 

c-index of 0.6. Additionally, a set of variables determined to be risk factors were 

developed. 

 In 2011 Al-Shayea performed a study to investigate and introduce the use of 

artificial neural networks to diagnose diseases. Specifically, two patient datasets were 

studied; acute nephritis disease and heart disease. In the study, acute nephritis disease 

was predicted with an accuracy of 0.99 and mean square error of 1.13e-6 and heart 

disease was predicted with accuracy of 0.95 and mean square error of 7.48e-2. The 
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strong predictive performance shown in this study proves the worth of using artificial 

neural networks and an ensemble of multiple neural networks in healthcare datasets.  

 Kawaler et al. researched the best methods to predict patients at risk of 

developing venothromboembolism (VTE) after they had been discharged from the 

hospital. The prediction model used only data that could automatically be gathered from 

the patient’s electronic health record. The study included data from 720 subjects of 

which 3,330 unique variables were represented. In order to determine the best model to 

use for predicting patient’s risk several machine learning algorithms were applied to the 

dataset including Naive Bayes, K-Nearest Neighbor, Support Vector Machine, 

Classification and Regression Tree, and Random Forest. Additionally, the study applied 

bagging, boosting, and stacking ensemble methods to the dataset as well in an effort to 

increase the predictive performance. Low blood volume, infection, inflammation, 

immobilization, and malnutrition were among the variables that were found to be the 

most significant risk factors. The study concluded that Naive Bayes, Random Forest, 

and Support Vector Machine were the best learners for the dataset. 

 Shouman et al. performed a study in 2012 that investigated the use of k-Nearest 

Neighbor data mining technique to assist in the diagnosis of heart disease patients. A 

benchmark dataset was used so that the predictive performance of KNN could be 

compared to other data mining techniques that had been used on the same dataset in 

prior studies. Additionally, a bagging ensemble using KNN and majority voting was 

implemented to determine if there would be an increase in predictive performance. In the 

prior studies the best performing model was a neural network bagging ensemble with an 

accuracy of 89.01%. With the implementation of k-nearest neighbors the accuracy was 

increased to 97.4% with a sensitivity of 93.8% and specificity of 99%. While the 

implementation of the KNN ensemble did increase the performance over the data mining 
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techniques implemented in prior studies, the performance was not as high as the 

individual KNN algorithm. 

 In 2013 Manilich et al. performed an extensive analysis to determine the key 

factors that are associated with post surgical complications for patients who received 

colorectal surgery. Data were collected from the departmental outcomes database for 

3,552 who received a colorectal surgery between 2010 and 2011. Then 700 

classification models with bootstrap resampling were applied to the dataset. The outputs 

from the bootstrap models were then used in a stacking ensemble model to further 

improve the predictive performance. The study found that the duration of the surgery, 

BMI, age, surgeon, type of surgery (laparoscopic vs open) contributed the most to post 

colorectal surgery complications.  

 A study published in 2013 by Legrand et al. looked into risk factors for 

development of postoperative kidney injury in patients undergoing cardiac surgery with 

infective endocarditis. Data were gathered between 2000 and 2010 for patients with 

infective endocarditis with cardiac surgery consisting of a cardio-bypass pulmonary. 

Ultimately 202 patients were identified to be included for analysis. A stacking ensemble 

technique was applied to the dataset from which number of surgeries, contrast agent, 

Vancomycin administration, transfusion preoperative hemoglobin, and age were found to 

be risk factors. The ensemble was created by using multiple stepwise regression models 

as the base level classifiers. From the implementation of the stacking ensemble model 

postoperative acute kidney injury was able to be accurately predicted with area under 

the ROC curve of 0.76. 

 Nagi et al. performed a study in 2013 where microarray cancer data was 

classified using an ensemble approach. 9 different cancer datasets were analyzed 

separately for a total of 993 entries. First the base level classifiers of decision tree, k-

nearest neighbors, and naive bayes were implemented on each of the individual 
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datasets with their performances in terms of accuracy compared. Then bagging, 

boosting, and stacking were all implemented on the same datasets to determine if there 

was an increase in performance. For each of the ensemble methods the data mining 

techniques used for the individual models were also used as the classifiers for the 

ensemble models. In each instance implementation of ensemble techniques, specifically 

stacking lead to the largest gain in accuracy over the individual base level classifiers. 

The study concluded that the largest performance gains come from using diverse base 

level classifiers.  

 In 2013 Rose performed a thorough analysis to determine if stacking ensemble 

methods could predict patient mortality with higher performance than individual base 

level classifiers. 2,066 patients were included in this study, who were all residents of 

Sonoma, California and were aged 54 or more during 1993 to 1999. The machine 

learning techniques that were applied to these patients were Bayes logistic regression, 

LASSO, logistic regression, boosted logistic regression, bagging classification, random 

forest recursive partitioning and regression trees, and neural network. From these 

models’ implementation gender, age, self-rated health, physical activity level, smoking 

history, and cardiac history were found to be significant predictors of mortality. With the 

implementation of the stacking ensemble technique the predictive performance was 

better than any individual model with a R2 value of 0.201 and Mean Square Error of 

9.04e-2 which is a 20.1% gain in model performance. 

 A study done by Yap et al. in 2014 aimed to determine the best methods to deal 

with class imbalance through the prediction of survival following cardiac surgery. The 

data were obtained from a local hospital and included 4,976 cases of which 4.2% of 

patients died. The individual base level classifier that was chosen to be implemented 

was classification and regression tree. Gender, age, comorbidities, surgery type, and 

wound infection were the factors that were found significant from the base level 
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classifier. Bagging and boosting ensemble models were also implemented using 

classification and regression tree as the chosen classification. Use of ensemble 

techniques facilitated better model performance and handling of the imbalanced dataset. 

The best performing model had an accuracy of 76.7%, sensitivity of 69.4%, and 

specificity of 84.5%. 

 Sanger et al. performed a study in 2016 in which a model was developed to 

identify patients at high risk of developing a surgical site infection that incorporated daily 

wound assessment data. 1,000 post-surgery patients were studied at a teaching hospital 

for 1 to 5 days following their surgery. A naive Bayes model was applied to the patient 

data, as well as a logistic regression model to determine baseline performance. The 

three most significant risk factors were c-reactive protein, duration of surgery, and 

wound contamination. The best performing model was a naive Bayes model that 

included daily updated features referred to as serial features. The naive Bayes model 

had an area under the ROC curve of 0.76, sensitivity of 0.8, and specificity of 0.64. 

 Recently Taylor et al. explored the use of machine learning in predicting mortality 

in sepsis patients in a hospital. The retrospective study included 5,278 visits with 4,676 

unique patients admitted to the hospital after a visit to the emergency department 

displaying symptoms of sepsis. The chosen machine learning techniques that were 

implemented were random forest, classification and regression tree, and logistic 

regression. From these models’ analysis blood pressure, age, albumin, heart rate, CO2, 

acuity level, potassium, heart rate, and respiratory rate were found to be significant 

predictors of patient mortality in hospital. The models predicted in hospital mortality for 

the sepsis patients with an AUC of 0.86 for random forest, 0.69 for classification and 

regression tree, and 0.76 for logistic regression. 
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2.3 Literature Review Summary 

 From the literature review it is evident that there is a significant interest in 

identifying patients at risk of developing a surgical site infection and the associated risk 

factors. It was found that there are many sources suggesting that the same or similar 

risk factors are present with respect to development of a surgical site infection post-

surgical procedure. Additionally, we can see that similar models are being utilized in 

healthcare with specific instances of predicting patient’s development of surgical site 

infections. Summaries of the performed literature review are shown in tables 2 and 3. 

There is a gap in the literature when it comes to predicting development of a surgical site 

infection specifically in gynecological cancer patients. Additionally, there is limited 

literature that explores the use of ensemble learning methods in healthcare to improve 

upon the performance of the individual prediction models. 

 
Table 2 - Literature Review: Factors of Interest 

Study Objective Methodology Conclusions Significant Factors 

Shapiro et 
al., 1982 

Determine 
factors 

associated with 
postoperative 
surgical site 

infection 
following a 

hysterectomy 

Logistic 
Regression 

Identified 7 
factors found to 
be significant 
predictors of 
postoperative 
surgical site 

infection 

Duration of operation, 
antibiotic prophylaxis, 

age, surgical 
procedure 

(laparoscopic vs 
open), obesity, blood 

loss, surgeon 

Fagotti et 
al., 2010 

Determine risk 
factors for 
developing 

abscesses in 
gynecological 

cancer patients 
undergoing 

surgery 

Logistic 
Regression 

Able to predict 
the occurrence of 
pelvic abscesses 

following 
gynecological 

surgery with an 
area under ROC 
curve of 0.868 

Duration of surgery, 
type of surgery, use 

of absorbable 
hemostats 
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Lake et al., 
2013 

Estimate the 
occurrence of 
SSIs after a 

hysterectomy 
and the 

associated risk 
factors 

Logistic 
Regression, 

Student t-test, 
Fisher Exact 

test 

Identified risk 
factors for SSI 

following a 
hysterectomy and 
need for a model 
to predict SSIs 

Diabetes mellitus, 
BMI, cancer, ASA 
class, duration of 

surgery, race, 
smoking, anemia 

Bakkum-
Gamez, et 
al., 2013 

Determine risk 
factors for SSI in 

endometrial 
cancer patients 
to manage cost 
of treating SSI 

Fisher Exact 
test, Wilcoxon 
Rank Sum test 

Determined risk 
factors for SSI of 

endometrial 
cancer patients 

and the 
associated 30 

day cost of SSI in 
the cohort 

BMI, ASA score, 
Diabetes mellitus, 

pulmonary 
dysfunction, anemia, 
age, smoking, MRSA 

history, duration of 
surgery, blood loss, 
lymphadenectomy, 

bowel resection, 
vascular disease 

Mahdi et 
al., 2014 

Determine rate 
and predictors of 

surgical site 
infections 
following 

gynecologic 
cancer surgery 

Logistic 
Regression 

5.4 % of patients 
undergoing 
gynecologic 

cancer surgery 
developed an 

SSI. 
Determination of 
significant factors 

helps identify 
patients at risk of 

developing an 
SSI 

Endometrial cancer, 
obesity, ascites, ASA 

score ≥ 3, blood 
transfusion, 

hypoalbuminemia, 
respiratory 

comorbidities 
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Lachiewicz 
et al., 2015 

Review national 
database to 

determine the 
risk factors that 

increase the 
chance of 

developing an 
SSI following 
pelvic surgery 

Cross sectional 
analysis of 
American 
College of 
Surgeon's 
National 

Surgical Quality 
Improvement 

Program 
patient files 

Identified host 
risk factors, 

preoperative risk 
factors, 

intraoperative risk 
factors and 

postoperative risk 
factors for SSIs 

following 
gynecologic 

surgery 

BMI, Diabetes 
mellitus, anemia, 

smoking, age, 
malnutrition, history 
of radiation, MRSA, 
length of surgery, 
blood loss, blood 
transfusion, bowel 

resection, 
lymphadenectomy, 

preglucose, 
postglucose 

Johnson et 
al., 2016 

Determine if 
implementation 

of a bundle 
containing 

evidence-based 
practices can 

reduce surgical 
site infection rate 

Fisher Exact 
test 

Infection rate 
reduced from 6% 

to 1.1% with 
implementation of 

bundle 

Bowel Resection, 
Cancer Location, 

surgical procedure 
(laparoscopic vs 

open), duration of 
surgery 
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Table 3 - Literature Review: Data Mining Techniques 

Study Objective Methodology Conclusions 
Significant 

Factors 

Sands, et 
al., 1999 

Develop an efficient 
way to predict patients 

who will develop an 
SSI based on 

information collected 
by health care systems 

automatically 

Logistic 
Regression, 
Recursive 

Partitioning 
and 

Regression 
Trees 

Able to predict 
SSI post 

discharge with 
accuracy of 0.74 
and sensitivity of 

0.42 with 
Recursive 

Partitioning and 
Regression 

Trees, the better 
performing of the 

two models 

Prescription and 
dispensing of 

specific 
antibiotics, 
outpatient 
diagnosis, 

readmit with 
specific 

diagnosis, 
wound culture 

ordered, wound 
care, 

emergency 
department visit 

Fowler, et 
al., 2005 

Determine predictors of 
SSIs following Cardiac 

Surgery 

Logistic 
Regression 

Able to predict 
the occurrence 
of SSI following 
cardiac surgery 
with c-index of 

0.686 

BMI, diabetes 
mellitus, 
previous 

myocardial 
infarction, 

hypertension, 
urgent 

operation 

Neumayer, 
et al., 2007 

Develop a model to 
determine patients at 
high risk for an SSI 

Logistic 
Regression 

Able to predict 
the occurrence 
of an SSI with 
area under the 
ROC curve of 

0.62 

Age, diabetes, 
dyspnoea, 
steroids, 

alcoholism, 
smoking, prior 

radiology 
treatment, ASA 
score, Albumin, 

wound 
classification, 

procedure type 
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Heckerling, 
et al., 2007 

Implement Artificial 
Neural Networks to 
determine factors of 
interest and create 
models to predict 

urinary tract infections 
in women 

Artificial Neural 
Networks 

Identified 
significant 

variables for 
predicting 

urinary tract 
infections and 
able to classify 

urinary tract 
infections with 
area under the 
ROC curve of 

0.792 

Urinary 
frequency, 

dysuria, urine 
odor, symptom 

duration, 
diabetes 

mellitus, red 
blood cells, 

infection history 

Looy, et al., 
2007 

Investigate use of 
Linear Support Vector 

Regression in 
predicting tacrolimus 
blood concentration 

Support Vector 
Regression, 

Multiple Linear 
Regression 

Mean absolute 
difference 
between 

observed and 
predicted was 

2.31 for support 
vector 

regression, and 
2.73 for multiple 
linear regression 

Gender, age, 
weight, days 

since 
transplantation, 
12 biochemical 

variables 

Verplancke, 
et al., 2008 

Compare the 
performance of Logistic 

Regression and 
Support Vector 
Machines when 

predicting mortality of 
patients with 

hematological 
malignancies 

Logistic 
Regression, 

Support Vector 
Machines 

Predict patient 
mortality with 

AUC of 0.768 for 
Logistic 

Regression and 
0.802 for 

Support Vector 
Machines 

Gender, high 
grade 

malignancy, 
active disease, 
bone marrow 

transplant, 
infection history, 

ventilation 

Sill, et al., 
2009 

Explore the use of 
Feature Weighted 

Linear Stacking as a 
less computationally 
demanding way of 

increase performance 
of individual classifiers 

Linear 
Regression, 

Feature 
Weighted 

Linear 
Stacking 

Assigning a 
weight to 
individual 
classifiers 

increase the 
predictive 

performance as 
compared to 

linear stacking 
without weights, 

and is less 
computationally 
demanding than 

weighting 
nonlinear 
stacking 

algorithms 

Not specified 
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Mu et al., 
2011 

Develop new risk 
models to improve 

predictive performance 
of surgical site infection 
by procedure category 

Stepwise 
Logistic 

Regression 
with Bootstrap 

resampling 

Median c-index 
(area under 
ROC curve) 
increased to 
0.67 from 0.6 

and developed a 
set of variables 

that were 
determined to be 

risk factors 

Not specified 

Al-Shayea, 
2011 

Introduce examples in 
healthcare where 
Artificial Neural 
Networks were 

successfully 
implemented 
specifically in 

diagnosing diseases 

Artificial Neural 
Networks, 
Stacking 

ensemble with 
multiple Neural 

Networks 

Diagnosed 
Acute Nephritis 

with Mean 
Square Error of 

1.13e-6 and 
accuracy of 0.99 
and Diagnosed 
Heart Disease 
with a MSE of 
7.48e-2 and 

accuracy of 0.95 

Not specified 

Kawaler, et 
al., 2012 

Predict patients at risk 
for developing 

venothromboembolism 
post hospitalization 

based on automatically 
generated data 

electronic health 
records 

Naive Bayes, 
K-Nearest 
Neighbor, 

Support Vector 
Machine, 

Classification 
and 

Regression 
Tree, and 
Random 

Forest. Used 
bagging, 

boosting, and 
stacking 

ensemble 
methods as 

well 

Naive Bayes, 
Random Forest, 

and Support 
Vector Machines 
prove to be the 

best learners for 
this dataset 

Low blood 
volume, 
infection, 

inflammation, 
immobilization, 

malnutrition 
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Shouman, 
et al., 2012 

Determine if applying 
K-Nearest Neighbors 
will help health care 

professionals diagnose 
heart disease 

K-Nearest 
Neighbors 

The maximum 
accuracy on the 
same dataset 
was 89.01% 
using Neural 

Network 
Ensembles. 

When K-Nearest 
Neighbors was 

applied the 
accuracy 

increase to 
97.4% while 

sensitivity was 
93.8% and 

specificity 99% 

Age, blood 
pressure, 
smoking, 

cholesterol, 
diabetes, 

hypertensions, 
family history, 
obesity, and 

lack of physical 
activity 

Manilich et 
al., 2013 

Create a model that will 
help determine the 

most important factors 
that are associated 
with post-surgical 

complications 

Stacking 
Ensemble 
Technique 

Identified factors 
that contribute 

the most to post 
surgery 

complications in 
an effort to 

minimize the 
occurrence of 
complications 

Duration of 
surgery, BMI, 
age, surgeon, 
type of surgery 

Legrand, et 
al., 2013 

Determine the risk 
factors for acute kidney 
injury following surgery 

for infective 
endocarditis 

Stacking 
Ensemble 
Technique 

Predicted 
postoperative 
acute kidney 
injury with an 
AUC of 0.76 

using a stacking 
ensemble of 

stepwise 
regression 

models 

Number of 
surgeries, 

contrast agent, 
Vancomycin 

administration, 
transfusion 

preoperative 
hemoglobin, 

age 
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Nagi, et al., 
2013 

Compare performance 
of bagging, boosting, 

and stacking ensemble 
models to individual 

models for 
classification of 

microarray cancer data 

Decision Tree, 
K-Nearest 
Neighbors, 

Naive Bayes 

Implementation 
of bagging, 

boosting, and 
stacked 

algorithms for 
each of the data 

mining 
techniques 

increases the 
performance 

over the original 
models. The 

largest 
performance 

gain results from 
using stacking 
algorithms with 
diverse base 

classifiers 

Not specified 

Rose, 2013 

Determine if stacked 
ensemble models have 

higher predictive 
performance for 

mortality than individual 
machine learning 

methods 

Bayes Logistic 
Regression, 

LASSO, 
Logistic 

Regression, 
Boosted 
Logistic 

Regression, 
bagging 

classification, 
Random 
Forest 

Recursive 
Partitioning 

and 
Regression 

Trees, Neural 
Network, 
Stacking 
ensemble 

The stacking 
ensemble model 

was able to 
achieve higher 
performance 

than any of the 
individual 
models or 
ensemble 

models with a R 
squared of 0.201 

and Mean 
Square Error of 

9.04e-2, which is 
a 20.1% gain in 

performance 

Gender, age, 
self-rated 

health, physical 
activity level, 

smoking history, 
cardiac history 
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Yap, et al., 
2014 

Determine best 
methods to deal with 
imbalanced datasets 
through prediction of 

cardiac surgery 
survival using decision 

tree models 

Classification 
and 

Regression 
Tree 

Bagging and 
boosting 

techniques 
facilitated better 

model 
performance 

with accuracy of 
76.7, sensitivity 

of 69.4 and 
specificity of 

84.5 in the best 
performing 

model 

Gender, age, 
comorbidities, 
surgery type, 

wound infection 

Sanger et 
al., 2016 

Develop a model to 
identify patients for 

high risk of surgical site 
infection that 

incorporates daily 
wound assessment 

Naïve Bayes, 
Logistic 

Regression 

Able to predict 
occurrence of 
SSI with area 

under the ROC 
curve of 0.76, 

sensitivity of 0.8, 
and specificity of 

0.64 

C-reactive 
protein, duration 
of surgery, and 
contamination 

Taylor, et 
al., 2016 

Explore the use of 
machine learning 

techniques to predict 
Sepsis patient mortality 

in hospital 

Random 
Forest, 

Classification 
and 

Regression 
Tree (CART), 

Logistic 
Regression 

Predicted in-
hospital mortality 

for sepsis 
patients with 

AUC of 0.86 for 
Random Forest, 
0.69 for CART, 

and 0.76 for 
Logistic 

Regression 

Blood pressure, 
age, albumin, 

heart rate, CO2, 
acuity level, 
potassium, 
heart rate, 

respiratory rate 
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3. Methodology 

The methodology used in this research is summarized in figure 1. First the area 

of research was focused in on by determining the scope. Next a literature review along 

with consultation of clinical expertise was performed in order to determine the factors of 

interest to be utilized in the prediction models. The relevant data were then pulled from a 

multitude of sources. Before the data were able to be analyzed some initial cleaning 

including data transformations and grouping was required, as outlined in section 3.2.1. 

Following preprocessing of the data feature selection needed to take place so that only 

the most important variables with the highest predictive power were included in the 

model. The feature selection process is outlined in section 3.3, and in section 3.4 a 

variety of data mining techniques were utilized to predict individual gynecological 

surgical site infection. These methods include Logistic Regression, Naive Bayes, 

Random Forest, Feed Forward Neural Network, Recursive Partitioning and Regression 

Trees, K-Nearest Neighbors, and Support Vector Machines with Linear Kernel. The 

performance of each individual model was compared in order to determine the models 

that would be combined in an ensemble stacking algorithm as outlined in section 3.5. 

The ensemble stack models used include Support Vector Machines with Linear Kernel, 

Logistic Regression, and K-Nearest Neighbors. The performance of the ensemble 

models was compared with one another, as well as with the individual models. The data 

mining techniques were performed using RStudio, open-source Integrated Development 

Environment version 1.0.153. Additionally, feature selection and the issue of imbalanced 

classes were also addressed using RStudio (Dutta, 2016).  
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Figure 1 - Flowchart of Research Methodology 

 

3.1 Scope and Factors of Interest 

In order to be able to predict individual gynecological surgical site infection the 

scope of the research needs to be determined along with the factors of interest that will 

be utilized with the data mining techniques. This research focuses on gynecological 

cancer patients who require a surgical procedure as part of their treatment. As part of 

the requirement mandated by the Joint Commission, patients who developed a surgical 

site infection 30 days post-surgical procedure were documented and reported. It was 

decided that the scope of this research would focus on the inpatients who developed a 

surgical site infection after a surgical site infection reduction bundle was implemented. 

These patients underwent surgery more recently, and are therefore more pertinent to the 

research.  
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 The factors of interest were based upon those identified in the literature review 

as well as their presence in the clinical systems. Additionally, there was consultation with 

an infection control team to identify additional factors of interest based on clinical 

expertise. These factors can be separated into the categories of patient medical history, 

patient demographics, and surgical characteristics.  

 

Table 4 - Factors of Interest 

Factor Category Factor Name Factor Description 

Patient Medical 
History 

Diabetes Mellitus 
Patient diabetes status at the time of the 
surgery 

ASA Class 
American Society of Anesthesiologists 
Classification (ASA I, ASA II, ASA III, ASA IV, 
ASA V, ASA VI) 

CCI 
Charlson Comorbidity Index based upon 10 
year survival period for patients with multiple 
comorbidities 

Chemo Flag 
Signifies if patient has received chemotherapy 
prior to the surgery 

MI 
Signifies if the patient has had a myocardial 
infarction prior to the surgery 

PVD 
Peripheral vascular disease status at the time 
of the surgery 

COPD 
Chronic obstructive pulmonary disease status 
at the time of the surgery 

Bowel Resection 
Signifies if the patient has had a bowel 
resection prior to the surgery 
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Smoking 
Patient smoking status at the time of the 
surgery (Current, Former, Never) 

Alcohol 
Patient alcohol use at the time of the surgery 
(Current, Former, Never) 

MRSA 
Signifies if patient was diagnosed with 
Methicillin-resistant Staphylococcus aureus 
(MRSA) prior to surgery 

Number of 
Surgeries 

Number of surgeries patient has had prior to 
surgery 

Days Between 
Surgeries 

Number of days between prior surgery and 
current surgery 

Time Between 
Chemo and Last 
Surgery 

Number of days between prior chemotherapy 
and current surgery 

Preglucose Glucose levels prior to surgery 

Postglucose Glucose levels following surgery 

Albumin Albumin levels at the time of the surgery 

HGB Hemoglobin levels at the time of the surgery 

Admissions 
Number of hospital admissions the patient had 
one year prior to the surgery 

BMI Body Mass Index at the time of the surgery 

WBC 
White Blood Cell count at the time of the 
surgery 
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Age Patient age at the time of the surgery 

Patient 
Demographics 

Race 
Patient identified race (White, Black, Asian, 
Native American, Other, Patient refused to 
answer, or Unknown) 

Marital Status 
Marital status of patient (Married, Single, 
Divorced, Separated, Widowed, Unknown) 

Language 
Patient preferred language (English or Non-
English) 

Insurance 
Insurance type for patient (Private, Medicaid, 
Medicare, No Insurance, Other) 

Discharge Location 
Patient destination post discharge (Hospice, 
Other Hospital, Death, Routine Discharge, 
Rehabilitation Facility, Home Health Care) 

Median Income Median Income based on the patient's zip code 

Surgical 
Characteristics 

Wound Class 
Surgical wound classification (Clean, Clean-
Contaminated, Contaminated, or Dirty) 

Laparoscopic Vs 
Open 

Signifies whether the surgery was laparoscopic 
(many small incisions) or open (one large 
incision) 

Cancer Category 
Location of patient’s cancer (Cervix, 
Ovary/Fallopian, Uterine Endometrium, 
Vagina, Vulva, Other) 

Surgeon 
Dummy variable representing surgeon 
performing surgery 

Time Between 
Patient Surgery 
Start 

Time between patient entering surgery room 
and first surgical activity 

Duration of Surgery Length of the surgery in minutes 
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Total Blood Loss 
Amount of blood lost (in milliliters) during the 
surgery 

 
 

3.2 Data Source 

The data were pulled for 693 surgeries, following the surgical site infection 

reduction bundle that took place from February 3rd, 2015 to May 15th, 2017. The 

following additional fields were also pulled alongside the identified factors of interest: 

Patient Medical Record Number, date and time of the surgery start, date and time of the 

surgery end, patient admission date, date of last chemo treatment, patient date of birth, 

and patient zip code to aid in the calculation of the factors of interest. 

The original dataset included 1,141 surgeries, and the dataset considered for this 

research contained 693 surgeries, post-surgical site infection reduction bundle. The 

reduction bundle involved implementing mandated interventions in order to reduce the 

surgical site infection rate. From the 693 surgeries, there were 664 unique patients. 

Additionally, 93.94%, or 651 surgeries, did not result in a surgical site infection while 

6.06%, or 42 surgeries, resulted in a surgical site infection. The patient’s zip code was 

used as a reference to determine median household income. 

 

3.2.1 Data Cleaning 

The data required significant transformation before they could be analyzed. 

Dummy variables needed to be assigned to categorical predictors. These dummy 

variables consisted of integers starting at one, ensuring the number zero was not used, 

and increasing by one until a number was assigned to each of the levels in a categorical 

variable. An example of this is for the variable smoking, 1 represents patients who have 

never smoked, 2 = Former, and 3 = Current. Additionally, certain variables had a 
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significant number of levels so the data were grouped in order to improve the 

performance of the predictions. Originally, there were 78 identified languages. These 

were grouped to represent patients whose identified primary language was either 

English or Non-English based upon a review of the literature and clinical consultation. 

The levels for each of the categorical variables are summarized in table 4.  

Numerical values also require transformation to ensure each of the inputs utilizes 

the same range of values to avoid over influence of certain variables (Quackenbush, 

2002). In order to achieve this result numerical variables were normalized or feature 

scaled between 0 and 1 utilizing equation 1. 

 

Xnew = 
� � ���(�)

 �	
(�) � ��� (�)          (1) 

 

3.2.2 Data Calculations 

Before the data were analyzed simple calculations were required in order to 

obtain the identified features of interest. The duration of the patient’s surgery was 

calculated by taking the time difference, in minutes, between the start of the surgery and 

the end. Additionally, the patient’s age at the time of the surgery was determined by 

calculating the time difference, in years, between the patient’s date of birth and the start 

of the patient surgery. Finally, the number of days since the patient’s last chemotherapy 

treatment was calculated by taking the difference in days between the patient’s last 

chemotherapy treatment and the surgery start.  

 

3.3 Feature Selection  

Feature selection is an important data mining technique as it reduces the number 

of features in an effort to remove irrelevant attributes (KDnuggets, 2017). When features 

with high predictive power are combined with irrelevant attributes the result is a model 
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that is not as generalizable and has worse predictive performance. When the number of 

features has been narrowed down, correlated or related variables are eliminated to 

reduce the impact of negative interactions. Additionally, including more features in the 

models than is necessary increases the chances of data missing, as well as increasing 

the time and computational strain it takes to train the models (Deshpande, 2011). 

 

3.3.1 Univariate Analysis 

As an initial, and somewhat limited, form of feature selection univariate analysis 

was performed in order to determine individual variables that have a significant impact 

on patients developing a surgical site infection following surgery. This form of analysis 

does not consider interactions between variables, but rather individual interactions.  For 

categorical variables, both binary and multiclass, a G-test and Fisher Exact test were 

implemented to determine significant variables. For continuous variables, a Student’s t-

test and Wilcoxon Rank Sum test were implemented to determine significant variables.  

 

3.3.1.1 Categorical Variables 

To determine the significance of individual categorical variables two tests were 

implemented in order to validate the results. The first test implemented was the G-test of 

independence. The G-test is used when you have nominal variables and are interested 

in determining when the proportions of one variable are different for values of different 

variables (Biostathandbook, 2014). The null hypothesis is that the proportions of one 

variable are the same for varying values of the second variable. As an example, the G-

test helps determine if the proportion of patients who had a prior diagnosis Diabetes 

Mellitus that developed an SSI is statistically significantly different than the proportion of 

patients who were not previously diagnosed with Diabetes Mellitus and developed an 

SSI. In order to perform the G-test of Independence first the G test statistic must be 
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calculated which is achieved using equation 2. After the value of the G-test has been 

calculated the degrees of freedom must be calculated by multiplying the number of rows 

minus one by the number of columns minus one. The associated p-value is then 

calculated by using the value of the G-test and the degrees of freedom. Since the G-test 

is more suited for data where the sample size is large, greater than 1000 entries, an 

exact test is recommended for our data where the sample size is 693. 

 

� = 2 ∑ �� ∗ ��  �� (��
��)            (2) 

G = Value of the G-test 

n = Total number of observations 

Oi  = Observed frequency for each value 

Ei = Expected frequency for each given value 

 
The Fisher Exact test aims to achieve the same goal as the G-test, but is better 

suited for data where the number of samples is fewer than 1000 (Biostathandbook, 

2014). The null hypothesis is the same as the G-test in that the proportions of one 

variable are the same for different values of the second variable. To calculate the Fisher 

Exact test Statistic for a 2 by 2 table equation 3 must be used. This value is calculated 

by determining the probability of the observed numbers through the hypergeometric 

distribution The Fisher Exact test can be applied to tables larger than 2 by, however the 

chi-square test statistic must be calculated for every possible set of numbers. Those with 

values greater than or equal to the observed data are then considered as extreme as the 

observed data (Biostathandbook, 2014). In order to determine the statistical significance 

of the Fisher Exact test value a p-value must be calculated. This is achieved by 

enumerating all other possible matrices and summing together the p-values of those that 
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have a Fisher Exact test statistic value less than the overall value of the Fisher Exact 

test which can be considered a cutoff value. 

 

� =  (	 � �)!(� � �)!(	 � �)!(� ��)!
	!�!�!�!�!           (3) 

 
p = Value of the Fisher Exact test 

a,b,c,d = Total count of each cell in the table 

n = Total number of observations 

 
As a form of validation if a variable was determined to be significant by both the 

G-test and the Fisher Exact test the variable was considered for further analysis and 

inclusion in the prediction models. The four categorical variables that were found to be 

significant by both tests, p value less than 0.05, are the patient’s wound class, whether 

or not the patient underwent a bowel resection prior to their surgery, the patient’s 

insurance type, and the patient’s cancer category. The results of the G-test and Fisher 

Exact test are summarized in table 5.  

 

Table 5 - Univariate Analysis for Categorical Variables 

Categorical 
Variables 

G-Test 
Results 

Fisher Exact Test 
Results 

Significant at 
0.05? 

Diabetes Mellitus 0.06859 0.1293 No 

Wound Class 0.003214 0.001963 Yes 

ASA Class 0.8396 0.8349 No 

CCI 0.4431 0.6903 No 
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Chemo Flag 0.1257 0.1199 No 

Laparoscopic Vs 
Open 

0.53 0.5493 No 

Race 0.9976 0.9845 No 

Marital Status 0.9745 0.888 No 

MI 0.1933 0.1611 No 

PVD 0.08195 0.07959 No 

COPD 0.4033 0.6089 No 

Bowel Resection 7.62E-09 1.11E-08 Yes 

Smoking 0.9168 0.5869 No 

Alcohol 0.4531 0.6126 No 

Language 0.4788 0.2574 No 

Insurance 0.0247 0.0326 Yes 

Cancer Category 0.0168 0.0399 Yes 

Surgeon 0.8294 0.8321 No 

Discharge Location 0.1105 0.1255 No 

MRSA 0.0844 0.1176 No 
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3.3.1.2 Continuous Variables 

In order to determine the significance of the continuous variables two tests were 

also implemented in order to validate the results of identified significant variables. The 

first test implemented was the Student’s t-test for two samples. The Student’s t-test is 

used when there is one continuous variable and one categorical variable where there 

are only two values (Biostathandbook, 2014) and is generally applied when the sample 

size is small. The test determines if there is a statistically significant difference in the 

mean of the two groups by testing the null hypothesis that the mean difference between 

pairs of observations is zero. For example, the Student’s t-test determines if the average 

number of prior surgeries for patients who developed an SSI is statistically significant 

that the average number of surgeries who did not develop an SSI. In order to determine 

the significance of a variable first Student’s t-test statistic must be calculated. This is 

achieved by using equation 4 and 5. To calculate the p value the value of the test 

statistic is matched with the degrees of freedom, number of observations in the groups 

minus 2, in order to determine significance. 

 

    � = �������
 !"#

$" �!##
$#

                       (4) 

%�1 = Mean of the first set of values 

%�2 = Mean of the second set of values 

S1 = Standard deviation of the first set of values 

S2 = Standard deviation of the first set of values 

n1  = Total number of values in the first set 

n1  = Total number of values in the second set 
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    ' =  ∑(
�
̅)#
���                           (5) 

) = values given 

)̅ = Mean 

n = Total number of values 

 

In order to validate the results of the Student’s t-test a second test, the Wilcoxon 

Rank-Sum test was also implemented. The Wilcoxon-Rank Sum test is used in the same 

situation as the Student’s t-Test, but it has the added stipulation that the differences are 

not distributed normally (Biostathandbook, 2014). As such the null hypothesis differs in 

that the median difference between pairs of observations is zero. The test statistic for the 

Wilcoxon-Rank Sum test is determined by taking the lesser value of U1 and U2 as 

defined by equation 6. In order to determine the significance of the variable the p value 

must be calculated which is achieved through the use of a U table which contains *, n1, 

and n2. The null hypothesis is then rejected if the value of the test statistic is less than or 

equal to the critical value identified by the U table (LaMorte, 2017). 

 

+1 =  �1�2 +  ��(����)
�  −  .1          (6) 

    +2 =  �1�2 +  ��(����)
�  –  .2  

 

R1  = Sum of ranks for group 1 

R2 = Sum of ranks for group 2 

 
Again, variables needed to be determined significant, p value less than 0.05, by 

both test in order to be included in the prediction models. The three significant variables 

are the duration of the surgery, the total amount of blood lost by the patient during the 

surgery, and the number of admissions the patient had in the year prior to their surgery. 
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The results of the Student’s t-Test and Wilcoxon Rank Sum Test are summarized in 

table 6.  

 
Table 6 - Univariate Analysis for Continuous Variables 

Continuous Variables 
Student’s t-Test 

Results 
Wilcoxon Rank-Sum 

Test Results 
Significant at 

0.05? 

Number of Surgeries 0.195 0.02198 No 

Days Between Surgeries 0.5717 0.3349 No 

Time Between Patient 
Surgery Start 

0.04243 0.1882 No 

Duration of Surgery 0.0007442 0.0002831 Yes 

Time Between Chemo and 
Last Surgery 

0.2039 0.007578 No 

Preglucose 0.6312 0.9685 No 

Postglucose 0.1776 0.6485 No 

Albumin 0.2494 0.9023 No 
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HGB 0.2144 0.1445 No 

Total Blood Loss 0.02956 0.001848 Yes 

Admissions 0.01782 0.001669 Yes 

BMI 0.4798 0.5097 No 

WBC 0.3645 0.4538 No 

Age 0.7226 0.5858 No 

Median Income 0.6502 0.3361 No 

 
 

3.3.2 Boruta Feature Selection Algorithm 

Due to the limited nature of using only univariate analysis as a feature selection 

method it comes as no surprise that the model’s predictive performance is lackluster. 

Therefore, in an effort to improve the performance of the models a more robust feature 

selection method must be implemented. More specifically a feature selection method 

that accounts for interaction between the variables rather than treating the variables 

individually. In order to achieve this there are three main methods of feature selection, 

filters, wrappers, and embedded methods (Kaushik et al., 2017). These three methods 
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both work to obtain the same goal of selecting the features that are most relevant to 

what is being predicted. The methods however do vary in the process in which this goal 

is achieved. Filter methods are the easiest to apply in that they require the least 

computational demand. They work by calculating a statistical measure such as Chi 

squared test in order to assign a score to each feature. Based on the assigned score the 

features are ranked and determined whether they will be retained in the model, shown in 

figure 2. Since the scores are generally determined by univariate methods each feature 

will only be considered independently (Machine Learning Mastery, 2016). This can result 

in redundant features being selected, which is the opposite of the desired effect of 

feature selection. As this form of feature selection is similar to the univariate analysis 

performed in section 3.3.1, it was not considered for the purposes of this research. The 

risk of failing to select the most important features is too great with a filter approach. 

 

 

Figure 2 - Filter Feature Selection 

 
 The next feature selection method falls under the category of wrapper methods. 

Wrapper methods are far more computationally demanding than filter methods since 

they consider many different feature combinations. The performance of these 

combinations is compared to one another through the use of a prediction model 

(Kaushik et al., 2017). The combination of features is assigned a score based on the 

predictive models accuracy and those features included in the model with the highest 

score are retained as the most important features (Machine Learning Mastery, 2016). 

Wrapper methods are extremely robust and are considered to find the most important 

features due to the use of cross validation along with many wrapper algorithms, shown 
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in figure 3. These algorithms include random-hill climbing algorithm, forward passes and 

backward passes to select features. 

 

 

Figure 3 - Wrapper Feature Selection 

 
 The third feature selection method is embedded methods. These methods aim to 

combine the advantages of both filter and wrapper methods. These methods work by 

learning which features contribute to the highest accuracy while the model is being 

created, shown in figure 4. In other words, embedded methods perform classification 

and feature selection at the same time (Kaushik et al., 2017). These methods are most 

commonly implemented using regularization methods. In regularization methods, 

additional constraints are introduced to the optimization of the predictive model. These 

constraints introduce bias in the model to focus on choosing fewer constraints.  

 

 

Figure 4 - Embedded Feature Selection 

 
For the purposes of this research a wrapper method was implemented due to its 

robustness, better performance with chosen features, and availability of algorithms in 

RStudio. Specifically, the Boruta algorithm, a wrapper method based on the Random 
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Forest model was utilized for feature selection (Dutta et al., 2016). This algorithm 

identifies the most important features through a series of 4 steps. First shadow features 

are created in order to add randomness to the given dataset. These shadow features are 

created through shuffled copies of all the features in the dataset. Next a Random Forest 

classifier is trained on the dataset including the shadow features. A feature importance 

measure is then applied in order to evaluate the importance of each feature. The 

measure utilized is Mean Decrease Accuracy where a higher value signifies importance. 

Third, during each iteration it is determined if all of the features are better than the best 

of its shadow features. This is achieved by comparing the Z score of each feature and 

comparing it to the maximum Z score of the best shadow feature. Features that are 

determined to be highly unimportant are then removed from the dataset. The final step is 

for the algorithm to determine to stop. This occurs when either all features have been 

confirmed or rejected, or more commonly after a specified number of runs have been 

completed (Dutta et al., 2016). For the purposes of this research the specified number of 

runs was set as 1,000.  

When the Boruta algorithm is implemented in RStudio, the resulting output is 

figure 5. The chart includes all tested features rank in order of importance, along with the 

minimum, mean, and maximum shadow variables. From the chart, it is concluded that 5 

features were determined to be important, an importance larger than the max shadow 

variable which is represented by shadowMax in figure 5. These features, in order of 

importance, are if the patient had a prior bowel resection, the duration of the surgery, the 

patient’s BMI at the time of the surgery, the patient’s wound class, and the patient’s 

cancer category. These are the five variables to be included in the creation of the seven 

prediction models.  
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However, before the models can be created it is important to check the 

correlation between the variables. Collinearity or multicollinearity can result in 

misinterpreted data or erroneous results. Each feature is included specifically to increase 

the accuracy of the predictions being made. If features are highly correlated, features 

that are not statistically significant when considered independently may appear to be 

significant when considered in conjunction with a highly correlated variable (Tu et al., 

2005). This is known to result in more frequent Type I errors or false positive results. 

Alternatively, features may not appear statistically significant due to the wide confidence 

intervals associated with high correlation. This is known to increase the rate of Type II 

errors or false negative results. Thus, to avoid an increase in both Type I and II errors 

the correlations must be analyzed between the identified significant features. Those with 

very high correlations, above 0.5, will have to be eliminated. This will be achieved by 

Figure 5 - Boruta Feature Selection 
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keeping the variable that was ranked more important by the Boruta algorithm, so long as 

the other variables correlations do not increase. The correlation plot in figure 6 shows 

the correlation between the five identified significant variables. Since no variables have a 

high correlation, above 0.5, it is a fair assumption that all five variables can be retained 

for use in the prediction models (Statistics Solutions, 2018). The performance of the 

models, as discussed in sections 4.1.4 & 4.2.3, were significantly improved when using 

the features identified as significant by the Boruta algorithm when compared to the 

features identified as significant by univariate analysis alone. As such, the prediction 

models and associated results displayed in this research are developed and based upon 

the five variables identified as significant by the Boruta algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 - Correlation Among Significant Features 
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3.4 Predicting Gynecological Surgical Site Infection 

Section 3.4.1 discusses the methodology used to address the imbalance 

between classes. Sections 3.4.2 to 3.4.8 outline data mining techniques implemented for 

the prediction of surgical site infection following gynecological surgery.  

 

3.4.1 Class Balancing 

Before data mining techniques can be implemented it is important to understand 

the distribution of the classes. In fact, most datasets have a different number of cases in 

each class, but small differences are not significant. It is when there is a vastly 

imbalanced distribution between the cases that an intervention needs to be made. This 

is to avoid the “accuracy paradox” that is inherent in datasets with unbalanced classes 

(Brownlee, 2016). This accuracy paradox occurs when you achieve very high accuracy 

with a prediction model, but it is only reflecting the distribution of the classes. Using this 

research as an example, prediction models are able to achieve 93.94% accuracy, which 

is very high, just by predicting all patients as not developing an SSI. While this is a very 

accurate model, it is not a good model at all as the more important and rare class, those 

who did develop an SSI (6.06%), were not taken into consideration. This occurs because 

many models are biased towards only achieving high accuracy. Since there would be no 

purpose to implement a model that behaves as such it is important that the severely 

unbalanced classes are addressed prior to application of data mining techniques. 

There are four main algorithms that aim to deal with balancing of classes; 

oversampling the minority class, undersampling the majority class, Synthetic Minority 

Over-Sampling Technique (SMOTE), and Random Over Sampling Exercises (ROSE). 

Over-sampling the minority class involves randomly duplicating entries in the minority 

until the two classes are balanced. This is more beneficial in smaller datasets where 

eliminating entries would have a significant impact on the predictive performance 
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(Analytics Vidhya Team, 2016). Undersampling is similar to over-sampling except that it 

deals with the majority class. Undersampling randomly removes entries from the majority 

class until the two classes are balanced. This is more beneficial in larger datasets where 

removing entries will not have as significant of an impact on the performance of the 

model. These two methods are more basic in dealing with unbalanced classes and are 

prone to overfitting in the case of oversampling, and information loss in the case of 

undersampling. Therefore, there are two hybrid methods developed in order to 

overcome the class imbalance problem through synthetic data generation. 

 The first method, SMOTE, works by looking at the difference between a feature 

and its nearest neighbor. A random data point is then placed in between the two features 

(Analytics Vidhya Team, 2016). For the purpose of this research the ROSE class 

balancing technique was implemented. Developed by Menardi and Torelli in 2014, 

ROSE works by utilizing a smoothed bootstrap approach to generate synthetic data 

points from the classes with emphasis on the minority class (Lunardon, 2013). The 

below steps outline the steps for generating a single synthetic data point.  

 
1. Select y* = Yj with probability πj           (7) 

2. Select (xi , yi ) ∈ Tn, such that yi = y* , with probability 1 nj  

3. Sample x* from KHj (·, xi ), with KHj a probability distribution centered at 

xi and covariance matrix Hj  

 
y* = Synthetic generated y coordinate 

Tn = Training set of size n 

(xi , yi ) = generic row in training set Tn 

x* = Synthetic generated x coordinate 
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 In other words, an observation from either class is taken from the training set Tn 

and a new data point (x*, y*) is generated in the neighborhood of the original observation. 

Steps one through three are then repeated m times, number of observations in the 

training dataset, in order to create a new synthetic training set Tm
* (Lunardon, 2013). By 

synthetically generating data points the pitfalls from under or oversampling can be 

avoided resulting in the mitigation of information loss and overfitting while improving the 

predictive performance of the developed models.  

 

3.4.2 Logistic Regression 

Logistic Regression is among the most popular data mining techniques used in 

predicting individual surgical site infection, as well other predictions. It is a form of 

regression analysis that is used to determine a relationship between a dichotomous 

dependent variable and one or more categorical or continuous independent variables 

(CMU, 2013). Logistic regression works through the use of the logit function shown in 

equation 8, to create a linear function of x (CMU, 2013).  

 

�12 3(
)
��3(
) =  β0 + ) ∗ 6          (8) 

�12 3(
)
��3(
) = logit function 

p(x) = probability of event occurring 

β0= Y intercept 

x = Input variable value 

β = coefficient of input variable 

 
Consequently, the probability that an event will occur is determined using 

equation 9. The probability is calculated based upon the inputs from the associated 

predictors (CMU, 2013).  
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�())  =  789:;∗8
��789:;∗8 =  �

��7<(89:;∗8)                    (9) 

 
The coefficient estimates of β are fitted through the use of a Maximum Likelihood 

Estimator (MLE). Through the use of a MLE the overall error of the estimates is reduced. 

For the purposes of this research, Logistic Regression was applied to the features 

identified as important by the Boruta algorithm. The results are shown in equation 10. 

 

�12 3(
)
��3(
) = 2.1162 + 0.5108 ∗ Wound Class + 2.3208 ∗ Duration of Surgery − 0.4248 ∗

BMI +  1.1479 ∗ Bowel Resection − 0.2447 ∗ Cancer Category                       (10) 

 

3.4.3 Naive Bayes 

Naive Bayes is another popular classification technique and relies on the 

application of Bayes’ Theorem. The algorithm provides a way to calculate the probability 

of a class given the predictors, which is referred to as the posterior probability (Sayad, 

2010). Within the classifier lies the assumption that the effect of a predictor’s value on a 

class is independent of the other predictors, which is referred to as class conditional 

independence (Sayad, 2010). Additionally, the probability of a class, known as prior 

probability, and the prior probability of a predictor are used to calculate the posterior 

probability. Prior probability is based on the associated percentage of the classes. The 

prior probability of a predictor is based on the associated percentage of levels within a 

predictor. The equation for calculating posterior probability is shown in equation 11.    
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](^|)) =  ]()1|^) ∗ ]()2|^) ∗. . .∗ ]()�|^) ∗ ](^)      (11) 

 

P(c|x) = Posterior probability  

P(c) = Prior probability 

P(x|c) = Probability of predictor given class.  

P(x) = Prior probability of predictor 

 
In order to obtain the best performing Naive Bayes prediction model it is 

important to tune the model against the performance metric of choice; Receiver 

Operating Characteristic (ROC). This metric was utilized when tuning each of the 

individual and ensemble models and is further discussed in section 4.1.2.  For the 

purposes of this research two distribution types were considered for use; Gaussian and 

Nonparametric due to their availability in RStudio. Additionally, a Laplace Correction was 

applied in order to address the problem that arises when conditional probabilities are 

equal to zero. From figure 7 it is evident that the best performing model, retained for use 

in this research, arises when the distribution type is Nonparametric and the Laplace 

Correction is two. 
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3.4.4 Recursive Partitioning and Regression Trees 

A recursive partitioning and regression trees algorithm is an algorithm that is vital 

in the implementation of classification or regression trees (CART). Recursive partitioning 

refers to the iterative process in which a decision tree is constructed by either splitting or 

not splitting a node on the tree into further nodes (Izenman, 2008). The initial node or 

root node consists of the entire dataset of predictors. The root node then splits into two 

daughter nodes based upon whether or not a condition is satisfied. This condition is 

determined by the observed value of the variable being used as the node as is referred 

to as the threshold value. This process is repeated until a tree with k splits is 

constructed. When a node does not split it is referred to as a terminal node and is 

Figure 7 - Naive Bayes Tuning 
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assigned a class label. Each node is determined by the predictor that would result in the 

most information gain which is determined by the entropy function in equation 12. 

 
�(`)  =  − ∑ �(a|`)�12�(a|`)bbc�        (12) 

K = number of classes 

p(k|T) = Estimate of probability that observation x belongs to a 

class given it is in node T 

 
Once a predictor for use in a node has been chosen for the best split the 

threshold value for us in the split must be determined. This is again achieved by 

calculating information gain for each of the possible threshold values for the predictor. 

The value that results in the largest information gain is retained as the threshold value.  

Figure 8 gives a simple example of a decision tree where X1 and X2 represent the 

two predictors. ϴ1, ϴ2,  ϴ3, and ϴ4 represent the associated threshold values and 

T1,  T2,  T3, T4, and T5 represent the terminal nodes for which a class label is applied. 
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Again, it is important to tune the model in order to obtain the model that results in 

the best predictive performance. For the implemented classification tree, the tuning 

parameter is the complexity parameter; cp.  This acts as a threshold value for which if 

the value of R2, measure of how close data fit a regression line (Frost, 1970), does not 

increase by a value of cp during a split, the split is not implemented. This is a way to 

reduce the computational effort needed. From figure 9 a cp value of 0.032 results in the 

best performing model in terms of ROC. Thus, this is the model that is retained for 

further analysis. 

Figure 8 - Decision Tree Example 
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3.4.5 Random Forest 

Random Forest is a type of ensemble learning that groups poorly performing 

models together in order to form a better performing model. Random Forest is akin to a 

decision tree algorithm, discussed above in section 3.3.4, but takes it one step further by 

combining many repetitions of generated trees. First subsets of the data are created by 

sampling N cases of the data. The subsets should contain a majority proportion of the 

data. At each node in the decision tree m predictor variables are randomly chosen from 

all predictor variables. The predictor variable that results in the best split is then retained 

for a binary split. Performance regarding the best split is based upon variable importance 

as determined by an embedded objective function relating to the error for each data 

point. At the next node, the process is repeated by again selecting m predictor variables 

Figure 9 - Recursive Partitioning and Regression Trees Tuning 
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from all predictors. A terminal node is reached when a predictor variable in the set m 

leading to the best split has already been utilized. This process is repeated for any 

number of trees T (Benyamin, 2012). In regard to this research a majority voting 

technique was implemented when combining the generated trees to reach a final 

prediction due to the dependent variable being categorical.  

In an effort to produce the best performing random forest model, the model was 

tuned across many values for the number of randomly selected predictors, m. From 

figure 10 it is evident that 1 randomly selected predictor results in the best performing 

model. Subsequently this was the model retained for the purposes of this research. 

 

 

 

Figure 10 - Random Forest Tuning 
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3.4.6 Feed Forward Neural Network 

Feed Forward Neural Networks are a classification technique that maps inputs to 

categories in a fashion that is akin to how the human brain operates. This research 

implements a Feed Forward Neural Network which signifies that no feedback 

connections exist that feed outputs of the model back into itself (Gupta, 2017). A neural 

network comprises of an input layer, hidden layers, and an output layer. Each individual 

node in a layer is referred to as a neuron and contains the basic computations of the 

neural network (Gupta, 2017). Figure 11 shows the basic structure of a Feed Forward 

Neural Network. 

 

Figure 11 - Feed Forward Neural Network Structure 

 

Figure 12 shows the composition of a neuron in a neural network. X1 - Xn are the 

inputs, w1 - wn are the inputs corresponding weights, b is the bias, and f is the activation 

function. In each neuron, first the weighted sum of the inputs is calculated, then an 

activation function is applied so that the weighted sum is normalized (Gupta, 2017). The 
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weights associated with the input variables are learned through the training process. For 

the purposes of this research a sigmoid activation function was implemented. 

Specifically, a logistic function was implemented based on the equation 13. The purpose 

of the activation function is to provide a way to make a decision as to which class the 

input belongs to at the output of each neuron.  

 

 

Figure 12 - Composition of a Neuron 

 
'())  =  �

� �7<d        (13) 

 
The predictors of features of the input data are the first layer of the neural 

network, referred to as the input layer. The output layer is where the predictions are 

displayed, either 0 or 1 in the case of this research. The hidden layers are a series of 

functions that are applied to the input (Gupta, 2017). These functions allow the model to 

detect complex relationships that are not linear in nature. The model then learns by a 

backpropagation algorithm in which training samples are passed through the neural 

network and the outputs are compared to the actual outputs (Gupta, 2017). As data is 

passed through the associated weights in the neurons are updated so that the error is 



 

 

57

reduced. In order to determine the neural network that provides the best predictive 

performance it is important to tune the model for various hidden layers and weight 

decay. The weight decay is a factor by which the weights are multiplied after each 

iteration to ensure that the weights do not grow too large (Metacademy, 2012). For the 

purposes of this research a neural network with one hidden layer and a weight decay of 

0.1 offered the best performance, as shown in figure 13.  

 

3.4.7 K-Nearest Neighbors 

K nearest neighbors is another popular classification technique due to its 

interpretability and fast computation. This is due to the predictions being made in real 

time as the model does not require any prior learning. K nearest neighbors works by 

Figure 13 - Feed Forward Neural Network Tuning 
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looking at a new object, determining the K most similar objects to the new object, 

referred to as neighbors, and then taking a summary of the neighbors (Machine Learning 

Mastery, 2016). In a classification problem, a new object's class is determined by the 

most frequent class in the K nearest neighbors. If there is a tie, K is increased by 1 to 

determine the majority class. Similarities between a new instance and the neighbors are 

calculated through the use of a distance measure. The most popular distance measure 

is Euclidean distance, shown equation 14, where p represents a new point and q 

represents an existing point (Statsoft, 2018).  

 

  e(�, g)  =  h(��-g�)� + (��-g�)� + . . . + (��-g�)�      (14) 

 
Deciding what K should be is very important in implementing K Nearest 

Neighbors algorithm. Figure 14 shows the model's performance for varying values of K. 

The model with the best predictive performance results from when K is equal to 28.   

 

Figure 14 - K-Nearest Neighbors Tuning 
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3.4.8 Support Vector Machines with Linear Kernel 

Support Vector Machines (SVM) is a classification algorithm that finds an optimal 

hyperplane to categorize new data (OpenCV, 2014). This hyperplane is referred to as 

the decision boundary which is the separator between the two classes. One side of the 

decision boundary will be classified as class 1, and the other side of the decision 

boundary will be classified as class 2. The optimal hyperplane is determined by the line 

that offers the maximum distance between the nearest element of each case, the 

support vectors (Stencanella, 2017). Twice this distance is referred to as the margin. For 

the purposes of this research a linear hyperplane was implemented as it offered the best 

separation between the two classes. A summary of the optimal hyperplane can be found 

in figure 15.  

 

Figure 15 - Optimal Linear Hyperplane 
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The equation for a hyperplane is shown by equation 15 where β is the weight 

vector, β0 is the bias, x the support vector is the training example that is closest to the 

hyperplane, and T represents the dot product. 

j())  =  60 + 6k%        (15) 

 
Rewriting the equation in order to find the optimal hyperplane yields equation 16. 

|60 + 6k%|  =  1        (16) 

 
The distance between a point and the hyperplane (β, β0) is then calculated by 

equation 17. 

e�l�m�^n =  |op �oq�|
‖o‖                    (17) 

 
Finally, the margin, M, is calculated by taking multiplying the distance to the 

support vectors by two, as shown in equation 18. The optimal hyperplane is then 

determined by maximizing the margin M. This is achieved by minimizing the function 

L(β) shown by equation 18 where yi represents the class labels for the training data. The 

constraints that the function is subject to enable the hyperplane that best classifies the 

data from the training set xi.  

 

     s =  �
‖o‖         (18) 

t��o,op, u(6)  =  1
2 ‖6‖� lvwxn^� �1 y�(6k)� + 6p)  ≥ 1∀� 

 
As mentioned above a SVM with Linear Kernel was implemented in this research 

due to the reduced computational effort needed along with offering the best separation 

between the two classes. Kernel functions apply a transformation to map the data into 

higher dimensional space. The kernel functions then are used to calculate the dot 

product, or similarity between all pairs of data in this higher dimensional space without 
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the need to calculate the coordinates (Souza, 2010). In doing such the computational 

strain is greatly reduced. The equation for a linear kernel is shown by equation 19. 

 
a(), y)  =  %ky +  ^        (19) 

 
c is an optional constant that is representative of the cost of classification. A 

small value of c will yield a large margin hyperplane resulting in a larger separation 

between the support vectors. On the other hand, a large value of c will result in a lower 

misclassification rate (Fumera & Roli, 2002). As shown in figure 16, a value of c equal to 

90 resulted in the model with the best predictive performance.  

 

 

 

Figure 16 - Support Vector Machines with Linear Kernel Tuning 
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3.5 Ensemble Learning Model 

Sections 3.5.1 to 3.5.5 outline types of ensemble models, the development of the 

ensemble learning models, the prediction performance metrics of interest, and a 

comparison of the results. 

 

3.5.1 Types of Ensemble Models 

Ensemble modeling is a method in which several weaker performing models, 

base learners, are combined in order to improve the predictive power of a model. Since 

these base learners differ in the methods used to classify the data, they each have 

varied predictions on how the data is to be classified. Ensembling takes into 

consideration all of the base learners to create a more accurate and robust prediction 

model that is less likely to be biased (Kaushik, 2017). 

When it comes to ensemble models there are three main methods of combining 

base learners in an effort to improve their predictive performance; bagging, boosting, 

and stacking. Bagging, or bootstrap aggregation, refers to the process where a single 

base learner is applied to different training sets. A bootstrap technique is applied to 

resample the training data in a way that ensures diversity in the smaller training sets. 

The chosen algorithm is then applied to each training set, and a predicted class is 

determined. A final prediction is achieved by a majority voting from each of the individual 

classifiers. Majority voting is when the final prediction is chosen by the class that was 

predicted most often by the individual classifiers (Kaushik, 2017). Figure 17 shows the 

structure of the bagging technique where D represents the class prediction by each of 

the classifiers. It is important to note that bagging focuses on reduction in variance.  
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Figure 17 - Bagging Ensemble Technique 

 

Boosting also uses a resampling technique, but it is different than the one used in 

bagging. A training set is generated based upon its sample distribution (Nagi, 2013). The 

first classifier is then created on an equally weighted dataset. Next a second training set 

is created where higher weight is placed on the samples correctly predicted, and lower 

weight on the samples incorrectly predicted. This process is then iteratively repeated. A 

final class prediction is then made based upon a weighted linear combination of the 

classifier outputs. Higher weight is applied to the more accurate classifiers, while a lower 

weight is applied to the less accurate classifiers. Figure 18 outlines the boosting process 

where D again refers to the class prediction by its associated classifier. The main focus 

of the boosting technique is to reduce the bias. 

 

 

Figure 18 - Boosting Ensemble Technique 

 
The third most popular ensemble technique is stacked generalization or stacking 

which is broken up into two parts. First base level classifiers are trained on the training 
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dataset, and the predicted classes are recorded. The outputs of these base level 

classifiers are then combined into a second dataset. This dataset is then used as the 

training data for the second level or meta level classifier. The predictions from the meta 

level classifier are then used as the final predictions. Implementing a stacking technique 

ensures that the data have properly learned from the training set (Nagi, 2013). If a base 

level classifier incorrectly learns a part of the training set, it will lead to misclassifications 

stemming from the incorrectly learned part. The goal of the meta classifier then is to 

learn this behavior and combine it with the behavior of the other base classifiers to 

correct the improper learning (Nagi, 2013). In an effort to improve the performance of the 

stacking ensemble the predictive probabilities from each of the base level classifiers are 

used instead of the class labels, as suggested by Polikar. Figure 19 shows the how the 

stacking technique is implemented. For the purposes of this research a stacking 

ensemble model was implemented based on prominence of its use in popular data 

science competitions such as Kaggle, as well as its balanced reduction of both bias and 

variance. 

 

 

Figure 19 - Stacking Ensemble Technique 

 

 



 

 

65

3.5.2 Development of Ensemble Learning Model 

Once it was decided that a stacked generalization technique was going to be 

implemented the specific base level classifiers, as well as the specific meta level 

classifiers needed to be chosen. For the base level classifiers, it is important to choose 

classifiers that are not too closely related so that the meta level classifier has ample 

opportunity to learn from the training set. Additionally, the base level classifiers have 

relatively strong predictive performance, further discussed in section 4.1.2. For these 

reasons Support Vector Machines with Linear Kernel, K-Nearest Neighbors, and Logistic 

Regression were chosen as the base level classifiers. It is important to note that not 

every individual prediction model was included due to some similarities between the 

techniques and the associated risk that the stacking algorithm would learn the 

overlapping pitfalls of these methods rather than the areas of strong performance.  

Before the stacking algorithm could be implemented on the chosen base level 

classifiers it is important to make sure the prediction results are not highly correlated due 

to the same reasons as discussed in section 3.3. Figure 20 shows the associated 

correlation matrix for all of the base level classifiers, where Logistic Regression is 

represented by glm, K-Nearest Neighbors by knn, Naive Bayes by nb, Feed Forward 

Neural Network by nnet, Random Forest by rf, Recursive Partitioning and Regression 

Trees by rpart, and Support Vector Machines with Linear Kernel by svmLinear. Since no 

probabilities are highly correlated, greater than 0.5 we do not need to remove the 

predictive probabilities from any data mining technique. This allows the stacking 

algorithm to be implemented on the chosen base level classifiers. 
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Once the base level classifiers were chosen their predictive probabilities, from 

the training set, were utilized as inputs to train the meta level classifier. The meta level 

classifier then utilized the testing set predictive probabilities as the inputs in the trained 

meta level classifier in order to determine predictive performance. In order to compare 

performance of the stacking ensemble models three meta level classifiers were chosen; 

Support Vector Machines with Linear Kernel due to its strong performance for all 

measures as an individual model, K-Nearest Neighbors again due to its strong predictive 

performance as an individual model, and Logistic Regression due to its ease of 

implementation and interpretability.  

In an effort to improve the performance of the stacking ensemble a series of 

weights were applied to the individual base level classifiers. Specifically, extra emphasis 

was placed on Support Vector Machines with Linear Kernel due to the emphasis on 

sensitivity in the development of the prediction model. Further discussion on the impact 

Figure 20 - Correlation Amongst Individual Predictions 
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of the performance metrics is discussed in section 4.1.2. Therefore, the predictive 

probabilities from Support Vector Machines with Linear Kernel received 50% of the 

weight while K-Nearest Neighbors and Feed Forward Neural Network received 25% of 

the weight each due to their balanced performance. 

 

3.5.3 Support Vector Machines with Linear Kernel Ensemble 

The same classification algorithm, as discussed in section 3.4.8, was applied to 

the combined predictive probabilities of the individual Support Vector Machines with 

Linear Kernel, K-Nearest Neighbors, and Feed Forward Neural Network. Again, in an 

effort to improve the performance of the model the value of the cost of classification, c, 

was varied. From diagram 21 a value of c=70 yields the best performance in terms of 

ROC.  

 

Figure 21 - Support Vector Machines with Linear Kernel Ensemble Tuning 



 

 

68

3.5.4 Logistic Regression Ensemble 

The same generic algorithm as discussed in section 3.4.2 was applied again to 

the base level classifiers predictive probabilities outputs. Equation 20 shows the results 

of using Logistic Regression as a meta level classifier.  

�12 3(
)
��3(
) =  0.1418 − 1.6077 ∗ |}} − 0.7232 ∗ }}~` + 1.0898 ∗ '�su��nm� (20) 

 

3.5.5 K-Nearest Neighbors Ensemble 

The third meta level classifier implemented was K-Nearest Neighbors. Utilizing 

the algorithm from section 3.4.7 above a stacking ensemble was created. A very 

important part of implementing K-Nearest Neighbors is choosing an appropriate value of 

k. From figure 22, k=28 yields the best results in terms of ROC. 

 
 

Figure 22 - K-Nearest Neighbors Ensemble Tuning 
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4. Results 

 

4.1 Gynecological Surgical Site Infection Prediction Results 

Section 4.1.1 to section 4.1.4 outline the creation of a training and testing set, 

performance metrics, a comparison of the performance metrics, and discussion of the 

individual prediction model results. 

 

4.1.1 Model Training and Testing 

In order to determine the effectiveness of the data mining techniques, the 

algorithms are trained on a portion of the data and then evaluated on a testing set. The 

purpose of splitting the data in this manner is to determine how the developed models 

behave on new data that has not been seen before. For the purposes of this research 

the data were split into 75% training, 521 observations and 25% testing, 172 

observations. This same training and testing set was used for both the development of 

the individual and ensemble prediction models. In order to compare the results of the 

prediction models in a more robust way, a five fold cross validation, repeated ten times, 

was implemented. 

K fold cross validation is a validation technique that is used to evaluate the 

performance of machine learning techniques. First the training dataset is randomly 

divided into k subsets which are referred to as folds. It is important that there is an equal 

distribution of the class being predicted and the sample sizes remain close across the 

folds (Kohavi, 1995). During each of the folds, k-1 of the subsets are used as the training 

dataset which allows the machine learning algorithms to learn the features and behavior 
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of the dataset. The model is then tested on the fold that was left out in order to 

determine the performance of the model. This process is then repeated with the withheld 

fold inserted back into the dataset and the next subset is withheld. This is repeated until 

every data point is in the test set k times and is a part of a training set k-1 times 

(Carnegie Mellon Computer Science, 1995). Validating the data in such a manner is 

more computationally demanding, however it offers lower variance since each data point 

is used for validation only once. In order to ensure the model was validated the k-fold 

cross validation algorithm was implemented with 5 folds and repeated 10 times. The 

results of the folds across the 10 repetitions were averaged together to gain a strong 

understanding of the model performance. Figure 23 hows the schematic for how a k-fold 

cross validation is implemented (Esmaeelzadeh et al., 2014).  

 

 

Figure 23 - k-Fold Cross Validation Implementation 

 

4.1.2 Prediction Performance Metrics 

Five measures were used to compare the performances of the seven individual 

data mining techniques; accuracy, sensitivity, specificity, Receiver Operator 

Characteristic (ROC), and Area under the Receiver Operating Characteristic Curve 

(AUC). For the first three performance metrics, a confusion matrix must be used in order 

to perform the calculations and compare the performances. Table 7 shows the 
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framework for the confusion matrix with regards to this research. In this research, a 

patient who did not develop an SSI was considered a negative output, and a patient who 

did develop an SSI was considered a positive output. The outputs were structured this 

way to increase the emphasis on the patients who did develop an SSI.  

There are four sections in a confusion matrix; True Negative (TN), True Positive 

(TP), False Negative (FN), and False Positive (FP). A true negative indicates that a 

patient did not develop an SSI and it was predicted that the patient would not develop an 

SSI. Alternatively, a true positive indicates that a patient was predicted as developing an 

SSI and did develop an SSI. A false negative represents a patient who developed an 

SSI but was predicted as not developing an SSI. Finally, a false positive indicates that a 

patient was predicted as developing an SSI and did not develop an SSI.  

 

Table 7 - Surgical Site Infection Confusion Matrix 

True Negative 
 
Patient was predicted as not developing an 
SSI, Patient did not develop SSI 

False Negative 
 
Patient was predicted as not developing 
an SSI, Patient did develop SSI 

False Positive 
 
Patient was predicted as developing an 
SSI, Patient did not develop SSI 

True Positive 
 
Patient was predicted as developing an 
SSI, Patient did develop SSI 

 

Accuracy, sensitivity, and specificity draw from the confusion matrix in order to be 

calculated. Their respective equations are shown by equations 21, 22, and 23 where the 

output is a number between zero and one. Values closer to one are indicative of better 

performance with one being a perfect score. Accuracy is a measure of how well patients 

are predicted correctly, both developing an SSI and not developing an SSI (Baratloo et 

al., 2015). As mentioned in section 3.4.1 accuracy is strongly dependent on the 
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distribution of the classes. Therefore, it was not considered as the sole performance 

metric.  

Sensitivity is a measure of how well the prediction model is able to determine 

patients who did develop an SSI as such. This was considered a very important 

performance metric for the purposes of this research as there is a strong interest in 

ensuring that patients who developed SSIs are correctly being identified.  

On the other side of sensitivity is specificity, which is a measure of how well the 

prediction model is able to classify the patients that did not develop an SSI as such. 

Again, this is an important measure since it is detrimental to over predict patients as 

developing an SSI. 

  

�^^v�m^y =  k� � k�
k� � k� � �� � ��                             (21) 

 

'n�l������y =  k�
k� �  ��                    (22) 

 

'�n^�j�^��y =  k�
k� � ��                    (23) 

 

Receiver Operating Characteristic, specifically the ROC curve, is a powerful 

metric that is used to compare the performance of many different classification 

techniques. ROC is especially powerful when dealing with unbalanced classes such as 

the case with this research (Vogler, 2016). In a two class problem, the ROC curve is 

created by plotting the specificity, decreasing, on the X axis and the sensitivity, 

increasing, on the Y axis. The points on the plot represent the associated sensitivity and 

specificity of the models at various thresholds. A threshold is representative of a 

probabilistic value to distinguish between the classes. Probability outputs larger than the 
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threshold are classified as one class, and probabilities below the threshold are classified 

as the other class (Zygmunt, 2013). Additionally, a line is drawn to represent a ROC of 

0.5 as this is representative of a random classifier. Models that perform poorer than this 

are less accurate than random classification and are considered ineffective (Hanley & 

Mcneil, 1982). A ROC score of 1 corresponds to a perfect classifier and would be 

represented by a curve that extends to the top left of the plot. 

When calculating ROC, the value is determined by calculating the area under the 

curve or AUC. Therefore, ROC and AUC are used to represent the same metric, but for 

the purposes of this research they correspond to different datasets. When the metric 

ROC is referred to it is the area under the ROC curve associated with the performance 

of the training set. When the metric AUC is referred to it is the area under the ROC curve 

associated with the performance of the training set.  

The ROC curves comparison for the performance of the individual prediction 

models on the testing dataset is shown in figure 24. The results of the comparison are 

discussed in section 4.1.3.  

Figure 24 - Individual Predictions ROC Curves Comparison 
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4.1.3 Individual Prediction Results Comparison 

The results from the seven implemented data mining techniques are summarized 

in table 8. Since a variety of performance metrics were used to assess the predictive 

performance of the various techniques it is very rare to find one model that has the best 

performance across all metrics. Therefore, the techniques that performed best for each 

metric were noted.  

In terms of accuracy Random Forest and K-Nearest Neighbors performed the 

best with scores of 0.7791 and 0.7558 respectively. For sensitivity Support Vector 

Machines with Linear Kernel had by far the best performance with 0.7. For specificity, 

Random Forest and K-Nearest Neighbors again performed the best with scores of 

0.8086 and 0.7840 respectively. For ROC of the training set, Support Vector Machines 

with Linear Kernel had the best performance with a score of 0.8036. Finally, for AUC K-

Nearest Neighbors has by far the highest performance with a score of 0.8086.  

 
Table 8 - Comparison of Individual Model Performance 

Model Accuracy Sensitivity Specificity ROC AUC 

Logistic Regression 0.6163 0.3 0.6358 0.7575 0.4605 

Naïve Bayes 0.657 0.3 0.67901 0.7923 0.5154 

Random Forest 0.7791 0.3 0.80864 0.7663 0.5287 
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Feed Forward Neural Network 0.6977 0.5 0.70988 0.7752 0.5611 

Recursive Partitioning and 
Regression Trees 

0.5698 0.3 0.58642 0.6917 0.4827 

K Nearest Neighbors 0.7558 0.3 0.78396 0.7672 0.8086 

Support Vector Machines with Linear 
Kernel 

0.657 0.7 0.65432 0.8036 0.5747 

 

4.1.4 Individual Prediction Results Discussion 

It is difficult to determine which one model had the best overall performance 

across all the metrics. Of note are Support Vector Machines with Linear Kernel due to its 

high sensitivity and K-Nearest Neighbors due to its high accuracy, specificity, and AUC. 

Feed Forward Neural Network did not perform the best in any single category, however 

when considering the predictive performance, it had high results for all metrics.  

 

4.2 Ensemble Learning Prediction Results 

Section 4.2.1 to section 4.2.3 outline the metrics used in the ensemble prediction 

models, a comparison of those metrics, and a discussion of the ensemble prediction 

models.  

 

4.2.1 Ensemble Prediction Performance Metrics 

The same performance metrics, as mentioned above in section 4.1.2, were used 

to assess the predictive performance of the ensemble models. Again, a confusion matrix 
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needed to be created, and the same layout and definitions from section 4.1.2 were used 

for the ensemble model confusion matrix. Additionally, ROC for the training set and AUC 

for the testing set were calculated. The associated ROC curve comparison for the testing 

set of the weighted ensemble models is shown in section 4.2.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2 Non-Weighted Ensemble Prediction Results Comparison  

 Table 9 shows the results of the three chosen ensemble stacking models for the 

identified performance metrics. In terms of accuracy Support Vector Machines with 

Linear Kernel has the best performance with 0.6628. Support Vector Machines with 

Linear Kernel, Logistic Regression, and k-Nearest Neighbors have the best 

performance, with regards to sensitivity, of 0.5. For specificity Support Vector Machines 

with Linear Kernel again has the best performance with 0.6728. Logistic Regression has 

the best ROC performance with 0.5008. Finally Support Vector Machines with Linear 

Kernel has the best AUC performance of 0.5864. 

Figure 25 – Weighted Ensemble Models ROC Curve Comparison Figure 25 - Weighted Ensemble Models ROC Curve Comparison 
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Table 9 – Comparison of Non-Weighted Ensemble Model Performance 

Model Accuracy Sensitivity Specificity ROC AUC 

Support Vector Machines with Linear 
Kernel Ensemble Model 

0.6628 0.5 0.6728 0.4945 0.5864 

Logistic Regression Ensemble 

0.6105 0.5 0.6173 0.5008 0.5586 

K Nearest Neighbors Ensemble 

0.657 0.5 0.6667 0.4783 0.5833 

 

4.2.3 Non-Weighted Ensemble Prediction Results Discussion 

 Based on the performance of the ensemble models, it is evident that Support 

Vector Machines with Linear Kernel offers the best performance. k-Nearest Neighbors is 

not far behind Support Vector Machines with Linear Kernel in terms of performance, and 

Logistic Regression has the worst results. However, none of these ensemble models are 

able to achieve the sensitivity, 0.7, that the base level classifier of Support Vector 

Machines with Linear Kernel was able to. Thus, this research investigates the use of 

weighting to increase the performance of the stacked generalization models with specific 

emphasis on the Support Vector Machines with Linear Kernel ensemble model.  

 Figure 26 shows the results of varying the weight on Support Vector Machines 

with Linear Kernel during the stacking process. Specifically, the weight was varied from 

0.1 to 0.9, while the remaining delta was split equally amongst Feed Forward Neural 

Network and k-Nearest Neighbors. Figure 26 depicts the resulting change in 

performance for the Support Vector Machines with Linear Kernel ensemble model with 
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regards to the varying weights. Form the figure it is evident that the best performance for 

all four performance metrics results from 50% of the weight on Support Vector Machines 

with Linear kernel, and 25% on both Feed Forward Neural Network and k-Nearest 

Neighbors. Thus, these weights were retained for the stacked generalization models. 

 

 

Figure 26 - Varying Weights During Stacked Generalization 

 

4.2.4 Weighted Ensemble Prediction Results Comparison 

Table 10 shows the results of the same three chosen ensemble models, but with 

50% of the weight on Support Vector Machines with Linear Kernel, and 25% of the 

weight on both Feed Forward Neural Network and k-Nearest Neighbors. In terms of 

accuracy Support Vector Machines with Linear Kernel has the best performance with 

0.6744. Both Support Vector Machines with Linear Kernel and Logistic Regression have 

the best performance, with regards to sensitivity, of 0.7. For specificity Support Vector 

Machines with Linear Kernel again has the best performance with 0.6728. Logistic 

Regression has the best ROC performance with 0.567. Finally Support Vector Machines 

with Linear Kernel has the best AUC performance of 0.6864.  
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Table 10 - Comparison of Weighted Ensemble Model Performance 

Model Accuracy Sensitivity Specificity ROC AUC 

Support Vector Machines with Linear 
Kernel Ensemble Model 

0.6744 0.7 0.67284 0.5591 0.6864 

Logistic Regression Ensemble 0.6628 0.7 0.66049 0.567 0.6802 

K Nearest Neighbors Ensemble 0.6628 0.6 0.66667 0.5191 0.6333 

 
 

4.2.5 Weighted Ensemble Prediction Results Discussion 

Based on the results for the various performance metrics it is evident that 

Support Vector Machines with Linear Kernel ensemble has the best performance of the 

three chosen ensemble models. However Logistic Regression ensemble is not far off in 

terms of performance. K Nearest Neighbors is the worst performing of the three tested 

ensemble models. It is important to compare the performance of the ensemble models to 

that of the individual predictions though. Support Vector Machines with Linear Kernel 

ensemble outperforms the individual Support Vector Machines with Linear Kernel in 

every metric besides ROC. Additionally, the Logistic Regression and K Nearest 

Neighbors ensemble out perform their respective individual performances for nearly 

every metric.  

Since sensitivity was the performance metric of highest significance when 

developing the model, more weight was placed on the model with the highest sensitivity; 

Support Vector Machines with Linear Kernel. Additionally, the individual model 
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performed very well across the other performance metrics. Thus, the increase in 

performance, specifically sensitivity, can be attributed to the higher weight placed on 

Support Vector Machines with Linear Kernel during the stacking process. As weighted 

Support Vector Machines with Linear Kernel ensemble was the best performing of the 

ensemble and individual predictions, it was retained as the final model for the purposes 

of this research. 

 The features included in the base level classifiers were bowel resection, duration 

of surgery, BMI, wound class, and cancer category. From utilization of these factors 

three meta level classifiers were retained for use in the stacked generalization process; 

Support Vector Machines with Linear Kernel, Feed Forward Neural Network, and k-

Nearest Neighbors. Weighting the meta level classifiers so that 50% went to Support 

Vector Machines with Linear Kernel, and 25% went both to Feed Forward Neural 

Network and k-Nearest Neighbors facilitated higher performance during the stacked 

generalization process. Weighted Support Vector Machines with Linear Kernel as the 

stacked generalization classifier achieved the best performance for predicting 

development of an SSI following gynecologic surgery in cancer patients.  

 



 

 

81

5. Conclusion and Future Work 

5.1 Summary 

In chapter 2 a review of the available literature was performed in order to 

determine factors of interest that were used in the prediction of surgical site infections. 

Additionally, throughout the literature review a series of data mining techniques were 

identified as the most popular methods of developing prediction models. This thesis 

utilizes seven data mining techniques in order to predict individual risk of surgical site 

infection immediately following surgery. In an effort to further improve upon the 

performance of the individual models, a stacking algorithm was also implemented. 

 From the significant features identified in the literature 5 features were retained 

for use in predictions based on the output of the Boruta algorithm. These 5 features are 

whether or not the patient had a bowel resection prior to surgery, the time between the 

surgery start and stop in minutes, the patient’s BMI at the time of the surgery, the 

surgical wound classification, and specific location of the patient’s cancer. Only one of 

these variables, duration of the surgery, is not available prior to the operation. It is 

however available immediately following the surgery which aids in the timeliness of the 

predictions. The other preoperative variables can be entered into a model prior to the 

patient’s surgery as they are easily obtainable through a patient’s medical record. Then 

once the surgery concludes only the duration of the surgery needs to be added to the 

model in order to ascertain the patient’s risk of developing a surgical site infection. 

The seven implemented data mining techniques used to predict individual 

surgical site infection were Logistic Regression, Naive Bayes, Random Forest, Feed 

Forward Neural Network, Recursive Partitioning and Regression Trees, K-Nearest 
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Neighbors, and Support Vector Machines with Linear Kernel. These techniques 

represent a diverse range of classification techniques whose performance has not been 

previously compared in prior work. Due to the model’s diverse nature, their 

performances differed across the chosen performance metrics used to compare the 

models.  

Three models stood out due to their high performance; Support Vector Machines 

with Linear Kernel had the highest sensitivity of 0.7, K-Nearest Neighbors had the 

highest AUC of the testing set of 0.8086, and Feed Forward Neural Network due its high 

performance across all of the metrics. Thus, the predictive probabilities of these three 

models were used as the base level classifiers in three meta level classifiers where 

performance was compared using the same metrics.  

The three meta level classifiers used in the stacking algorithm were Support 

Vector Machines with Linear Kernel, Logistic Regression, and K-Nearest Neighbors. 

Support Vector Machines and K-Nearest Neighbors were chosen due to their high 

performance in the individual models, while Logistic Regression was chosen due to its 

ease of implementation and interpretability. Of the three meta level classifiers used in 

the stacking algorithm, Support Vector Machines with Linear Kernel had the best 

performance in terms of accuracy, sensitivity, specificity, and AUC compared to the 

other stacking algorithms. Additionally, the implemented Support Vector Machine 

stacking algorithm performed better than its associated individual model.  

 

5.2 Conclusion 

It is often difficult to determine the machine learning technique that best applies 

to your dataset. The techniques chosen to implement have a significant impact on 

predictive performance with regards to the chosen performance metrics. This research 

implements seven popular machine learning techniques to ascertain which model 
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facilitates the highest predictive performance relevant to predicting a gynecological 

cancer patient’s likelihood of developing a surgical site infection. Additionally, the use of 

ensemble learning, specifically stacked generalization, was implemented in an effort to 

improve upon the individual model’s predictive performance. 

Support Vector Machines with Linear Kernel was chosen as the most effective 

individual model. This was due to its providing the highest sensitivity along with 

moderately high accuracy and specificity. It is important to note that the performance of 

the support vector machine with linear kernel model is specifically tied to the size and 

characteristics of the dataset utilized in this research. Therefore, one cannot conclude 

that support vector machines with linear kernel is the technique that facilitates the 

highest predicting performance for predicting patients at risk of developing an 

SSI.  Additionally, there are significantly more kernel functions that exist and were not 

tested in this research. When implementing data mining techniques on a similar dataset 

it may be a good idea to start with support vector machines. 

This thesis also compares performance resulting from the use of stacked 

generalization to the performance of the individual models. Again, the classifier that 

resulted in the best performance was support vector machines with linear kernel. Using 

this machine learning technique as a meta level classifier further improved upon the 

predictive performance resulting from support vector machines with linear kernel being 

used as a base level classifier. This is another indicator that support vector machines 

are an appropriate start for implemented data mining techniques on similar datasets. 

This research goes even further and explores the used of weighted stacked 

generalization. Varying the weight placed on Support Vector Machines with Linear 

Kernel during the stacking process shows the resulting change in performance. The 

weights that result in the best performance for the four chosen metrics are 50% on 

Support Vector Machines with Linear Kernel, and 25% on both Feed Forward Neural 
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Networks and k-Nearest Neighbors. Thorough the utilization of weighting the 

performance of the stacked generalization models increased slightly over the non-

weighted models. This slight increase in performance is significant due to the precise 

nature of healthcare, and the necessity to have accurate models. 

The predictive performance resulting from the implementation of data mining 

techniques on the dataset used in this research is comparable to, or better than, the 

performance in associated literature. With the dataset including only 693 patients it is 

difficult to gather the minute details and relationships among factors that one would be 

able to discern from significantly larger datasets, up to nearly 850,000 patients, such as 

what was found in the literature. The performance of the implemented machine learning 

techniques is attributable to the specific dataset the techniques are being implemented 

on. 

This research most significantly concludes utilizing stacking algorithms promotes 

better performance than the individual base level classifiers. For the three chosen meta 

level classifiers all the stacking methods had better performance than their 

corresponding base level classifier performance. Thus, stacking facilitates generation of 

a better performing predictive model than any other individual model. Additionally, this 

research proves the worth of comparing multiple, diverse base level classifiers to the 

performance of stacking ensemble methods. Additionally, this research concludes that 

stacking algorithms are appropriate to use in healthcare and more specifically, the 

prediction of surgical site infections in gynecological cancer patients. Through proactive 

management of high risk patients, the significant negative impact on the health system 

resulting from the development of an SSI can be further reduced. 
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5.3 Future Work 

In order to expand upon the work that was done in this thesis there are a few 

areas that warrant further investigation. First is the collection of more data. Since there 

were only 693 cases included in this study the predictive power is not as strong as 

models developed on a larger dataset.  Additionally, as the dataset expands it may 

become more appropriate to predict each specific type of surgical site infection rather 

than just if a patient will develop a surgical site infection or not. Knowing the likelihood of 

each severity of SSI can allow the care team to make more appropriate interventions. 

Alongside collection of more data is the testing of additional variables. While a 

large number of factors of interest were identified and tested, further investigation can be 

performed on the patient’s past medical history and demographics related to the 

patient’s area of residence. 

 This research includes a mix of preoperative and postoperative variables without 

distinguishing between the three types. As such the predictions regarding whether or not 

a patient will develop a surgical site infection are only available upon the surgery 

completion. This can limit the interventions that can take place in order to reduce 

likelihood of a surgical site infection. In an effort to provide the most accurate information 

to the care team two models can be developed. One model consisting of only 

preoperative features so that the care team can take proactive measure to address high 

risk patients, and another model that is updated during and at the completion of the 

surgery. A two step model of this nature ensures that the care team has access to 

pertinent and up to date patient information which can result in the most appropriate care 

plan. 

 In order to operationalize the predictive models a decision support system (DSS) 

should be implemented. Through the implementation of a DSS a surgeon would be able 

to input information regarding a patient and get clear results about their risk of a Surgical 
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Site Infection. Additionally, the DSS would have clear indicators of necessary next steps 

to ensure the most appropriate care plan is followed for a patient. To ease in the 

implementation of a DSS, one can investigate the development of an index similar to the 

Charlson Comorbidity Index (CCI). An index places weights on each of the features 

incorporated in the index according to their importance. Due to the reduced 

dimensionality of the dataset following feature selection, development of an index is 

appropriate for the five features identified as significant. Developing an index can aid in 

the operationalization and reduce future computational strain. 

 Additionally, different feature selection techniques could be implemented in an 

effort to perform the predictive performance of the models. Specifically, embedded 

feature selection can be implemented in order to have the individual prediction models 

determine the significant features to include in each specific model. Based on the 

literature performing feature selection in this manner is shown to be more robust as 

compared to the wrapper method that was implemented in this research.  

 Higher predictive performance should always be sought after especially in 

industries such as healthcare where an accurate prediction can mean the difference 

between a patient’s life and death. Additional base level classifiers and meta level 

classifiers should be tested to determine if there are different models that are more 

accurately able to predict whether or not a patient will develop a surgical site infection. 

An increase in the predictive performance of the models will result in the most accurate 

care plan being developed for a patient, and will ultimately result in a reduced surgical 

site infection rate.  

 For future work, even further down the road, a similar form of analysis should be 

applied to additional types of surgical site infections for cancer patients and ultimately all 

types of patients. Accurate prediction models that are able to determine patients that are 

high risk of resulting in a surgical site infection will result in the best proactive care being 
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provided to patients. Patients who are receiving the appropriate care are at lower risk of 

developing a surgical site infection, and as a result significantly less money will need to 

be spent on treatment and readmissions. 
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