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1 Abstract

This work presents an innovative approach to understanding and measuring com-
plexity in network models. We revisit several classic characterizations of complex-
ity and propose a novel measure that represents complexity as an interactive pro-
cess. This measure incorporates transfer entropy and Jensen-Shannon divergence
to quantify both the information transfer within a system and the dynamism of its
constituents’ state changes.

To validate our measure, we apply it to several well-known simulation models
implemented in Python, including: two models of residential segregation, Conway’s
Game of Life, and the Susceptible-Infected-Susceptible (SIS) model. Our results
reveal varied trajectories of complexity, demonstrating the efficacy and sensitivity
of our measure in capturing the nuanced interplay of interactivity and dynamism in
different systems. The results corroborate the notion that heterogeneity and stochas-
ticity increase system complexity.

This study contributes to the field by proposing a measure that not only quanti-
fies the amount of complexity present in a system but also emphasizes the process
of ‘‘complexing,‘‘ marking a semantic shift from viewing complexity solely as an
attribute or condition. Our findings underscore the significance of considering both
interactivity and dynamism in defining and measuring complexity. The study also
acknowledges limitations related to computational resources and the simplification
of transfer entropy calculations, setting a clear path for future research in refining
and expanding this measure of complexity.

2 Introduction

As our world becomes increasingly interconnected with uncountable components
and interactions, the importance of complexity science increases commensurately.

1

1

Deter: A Measure of Interactive Complexity in Network Models

Published by The Open Repository @ Binghamton (The ORB), 2024



Naturally, ideas, definitions, and measures of complexity have concurrently grown
in abundance in the literature. In his classic illustration of complexity, Weaver [1]
identified three regimes in which problems reside: organized simplicity, where a
small number of possibly interacting components are observed; organized complex-
ity, where larger number of interacting components are observed; and disorganized
complexity where a perhaps massively large number of components are interacting
with some stochasticity are observed. Moving beyond these categorical characteri-
zations of complexity, we seek measures by which to quantify it. Constructing such
a description requires a definition or concept of complexity.

Mitchell [2], acknowledging the challenge inherent in selecting a single defini-
tion or conceptualization, reviews several characterizations of complexity: size, en-
tropy, algorithmic information content, logical depth, thermodynamic depth, com-
putational capacity, statistical complexity, fractal dimension, and degree of hierar-
chy. Excepting algorithmic information content, each are system attributes which
can be directly measured from its static image. Gershenson [3] suggests that com-
plexity can be found when a system’s state dynamics are balanced between self-
organization and emergence in the observed variety of states that a system or its com-
ponents may take over a time period. De Dominico et al. [4] assert that complexity is
evident where interactivity, emergence, dynamics, self-organization, and adaptation
are observed. These concepts emphasize interactivity and dynamism whose mea-
sures require observation over time. Thompson et al. [5] emphasize the importance
of interactivity in complexity in their work to develop a measure of complexity in
simulation models.

The descriptions we, as observers, may construct are dependent upon the lan-
guage available to us. The difficulty we experience in distilling complexity as a
concept may be a result of a tendency in the literature to articulate complexity as
an attribute or condition, rather than as a process. Such semantic choices have been
shown to influence the scientific process [6]. The verb form of the term ”complex”
typically refers to the formation of complexes in chemistry and is not frequently
encountered in the context of complexity science. This tendency may bias our sys-
tem description toward complexity as an attribute and away from ”complexing” as a
process. Each of the sources previously discussed which sought to refine complex-
ity as a concept noted the importance of interactivity as a necessary condition for
complexity [2, 4, 5]. However, none proposed concrete measures which required
evidence of interactivity. Algorithmic complexity may represent interactivity, how-
ever, identifying the shortest algorithmic description of a system is not a trivial task.
The other measures emphasized how much complexity a system ”has” rather than
how much complexing it is ”doing.” We propose to aid a semantic shift by providing
a measure of complexity which emphasizes meaningful interactivity. The measure
proposed in the next section accounts for these shortcomings.
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3 Proposing a Measure

The objective of this work is not to proclaim a superior measure of complexity, but
rather to propose a measure which complements existing measures, thereby enabling
a fuller characterization of complexity in systems. To do so, our measure is designed
to elucidate meaningful interactivity.

In constructing our measure, it is important to note that, per [7], a system is
dependent upon the observer and the system description they choose to adopt. Re-
turning to Weaver [1], at first glance, it appears that the case of disorganized com-
plexity would necessarily be substantially more complex than the case of organized
complexity. However, we needn’t reduce the case of disorganized complexity to its
constituent components and engage in a transcomputational task. We can instead
alter our description of the system and, viewing it at a higher level, employ methods
from statistical mechanics. We see immediately that the complexity of a system de-
pends on the description constructed by its observer. Thus, in measuring a system’s
complexity, our measure must be able to reflect this observational selectivity. This
may include the specification of components, the choice of sampling frequency, or
the scale(s) at which the system is observed.

3.1 Interactivity

To measure interactivity within a system, we employ transfer entropy as described
by Schreiber [8]:

)-→. =
∑

?(.C+1, H
:
C , G

;
C )
?(HC+1 |H:C , G;C )
?(HC+1 |H:C )

(1)

where HC+1 is the future state . , H:C is the past : states of . up to time C, G;C is the past
; states of - up to time C, ?(.C+1, H

:
C , G

;
C ) is the joint probability of the coincidence of

these states, ?(HC+1 |H:C , G;C ) is the conditional probability of the future state of. given
the past states of both - and . , and ?(HC+1 |H:C ) is the conditional probability of the
future state of . given only its own past states. Effectively, this measure indicates
the improvement made upon the prediction of the future states of . given the past
states of - , beyond what is already predicted by the past states of . . Thus, it is an
indication of the transfer of information from - to . . This measure satisfies Klir’s
[9] requirement that an informational measure of a system’s complexity be propor-
tional to the amount of information required to describe the system since )-→. is
upper-bounded by the size of . ’s state-space. Since transfer entropy is computed
from a specific time series, it is also sensitive to the sampling frequency of the time
series.
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Averaging over a specified window of time, we obtain:

)-→. (ΔC) =
1
ΔC

ΔC−1∑
C=0

∑
?(HC+1, H

:
C , G

;
C )
?(HC+1 |H:C , G;C )
?(HC+1 |H:C )

(2)

For a system, (, we can find the pairwise transfer entropy:

)?08AB ((,ΔC) =
∑
8∈(

∑
9∈(, 9≠8

)8→ 9 (ΔC) (3)

Certain limitations impair our use of pairwise transfer entropy. Pairwise transfer
entropy may overestimate information transfer unless conditioned on background
processes. This leads to a situation with infeasible computational demands. This
problem worsens when all possible hyperedges are considered.

To avoid this obstacle, we elect to pursue a measure which examines the infor-
mation between individuals and their respective neighborhoods. In doing so, we
view the collection of neighbor states as a whole. A dynamic mapping is used to
transform each unique collection to a corresponding unique integer value. Thus,
each individual, 8, has a neighborhood, =8, the set of nodes connected to 8 by at least
one edge. Then,

)=486ℎ1>Aℎ>>3 ((,ΔC) =
∑
8∈(
)=8→8 (ΔC) (4)

This method appears to be a safer alternative for use with the models we have se-
lected since any information relayed from individuals outside the neighborhood must
be transmitted through a member of the neighborhood. Further work is required to
develop a comprehensive methodology applicable to a broader set of models. This
methodology has the additional advantage that it can be easily adapted to networks
with dynamism in their topologies. To further reduce the complexity of our compu-
tations, we selected : = ; = 1 for our calculations.

3.2 Meaning (Dynamics)

Interactivity alone is insufficient. Per [4], a system must exhibit dynamism in order
to be considered complex. Imagine two systems, each with four possible states and
for some time period, ΔC, we have )?08AB ((1,ΔC) = )?08AB ((2,ΔC) with distributions:
%(1 = %(2 = [.25, .25, .25, .25]. It is possible to conceive of a scenario in which
at the next time step, %(1 = [.24, .25, .25, .26] and %(2 = [.1, .4, .1, .4]. Here we
find that interactivity is equivalent, but this activity has resulted in very little real
change to the elements of (1 while substantial change has manifest to the elements
of (2. A natural next step would be to examine the change in Shannon entropy,
� = −∑

8∈%( ?8 log ?8, from C to C + 1 [10]. Unfortunately, a pitfall arises: imagine
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that at time C +2, %(2 = [.4, .1, .1, .4]. Then, � (%(2 (C +1)) = � (%(2 (C +2)), despite
a real, substantial change in the system’s elements. To ameliorate this, one might
instead employ Kullback-Leibler divergence:

� ! (% | |&) =
∑
G∈-

%(G) log
%(G)
&(G) (5)

where % is future distribution of the system and & is the prior distribution of the
system [11]. This provides a measure of distance between the future and prior dis-
tributions. Unlike Shannon entropy, � ! (%(2 (C+1) | |%(2 (C+2)) > 0. Unfortunately,
another pitfall arises when at C + 3, %(2 = [.4, 0, .1, .4] because � ! is undefined
when a state disappears from or when a novel state appears in a distribution.

To contend with this issue, we instead employ Jensen-Shannon divergence:

��( (% | |&) =
1
2
� ! (% | |") + 1

2
� ! (& | |") (6)

where " is the mean distribution calculated from % and& [12]. This measure is di-
rectionless and bounded between 0 and 1 where a value of 0 represents no difference
in the distributions and a value of 1 represents maximal difference. Thus, ��( pro-
vides a reliable measure of dynamism amongst a system’s constituent components
independent of system size.

It is important to note that ��( alone is similarly insufficient. Without the pres-
ence of interactivity, the observed change in the system cannot be related to the
interactivity amongst its constituents, but rather must be the result of some other
cause. In this case, the chosen system description should be replaced with one more
reflective of the complexity observed. More concretely, we suggest that a good sys-
tem description requires that its complexing and complexity be aligned.

3.3 Interactive Complexity

Here, we propose a new measure of complexity as the product of the pairwise trans-
fer entropy and the corresponding Jensen-Shannon divergence:

� = )=486ℎ1>Aℎ>>3 ((,ΔC) ×
ΔC∑
C

��( (%( (C + 1) | |%( (C)) (7)

This product is minimized when either interactivity is not evident or when dynamism
in the components’ states is not evident. Conversely, this product is maximized when
both interactivity and dynamism are prominent in the system’s elements.

This formulation ensures that we do not erroneously identify complexity where
dynamism is driven by externalities. Imagine a set of traffic lights changing on a
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schedule set by a novice. These lights may coincidentally exhibit dynamism in their
states, but that dynamism will not be a result of their interaction. It also ensures that
we only make claims of complexity when interactivity manifests dynamism. Imag-
ine now that the traffic lights self-organize, as in [13], but vehicles are continually
added to the system until it is perfectly congested. As the system is filled, interac-
tivity increases until a failure point is reached and the interactivity can no longer
manifest changes in the system. After this threshold, there is no longer any measur-
able information transfer. This raises an important point: dynamism is a necessary
condition for interactivity in this formulation as ��( = 0 =⇒ )=486ℎ1>Aℎ>>3 = 0.

4 Simulations

To further illustrate this proposed measure of complexity, several well-known simu-
lation models were implemented and observed. For all cases, the NetworkX package
in Python was used to instantiate a 20x20 regular lattice [14]. Individual cases var-
ied by rule sets and, in some cases, neighborhood size and/or boundary conditions.
For each model, a batch of 25 distinct simulations over 500 time steps was gener-
ated and executed. In each case, complexity was measured on the distribution of
neighborhood compositions. To measure transfer entropy, we used the time-local
variant of transfer entropy (ΔC = 1) from the Pyinform package [15]. To compute
entropy and divergence, we used the SciPy package [16]. Thus, our computation of
interactive complexity, as the product of these, relied on these packages as well.

4.1 Segregation

Two network models of residential segregation were examined: a simple, fast-converging
implementation proposed by [17] and popularized by [18], and a more sophisticated
model proposed by [19].

4.1.1 Schelling Model

The Schelling [18] model is implemented on a regular lattice with von Neumann
neighborhoods and closed boundary condition. Nodes are either populated by a red
or blue individual, or left vacant. For our implementation, the vacancy rate was
0.15. Individuals were assigned uniform tolerances, n , for mixing in their respective
neighborhoods. For more direct comparison with the Xie & Zhou model [19], we set
n at approximately 0.4, meaning that individuals with more than roughly 40 percent
dissimilar neighbors, the individual will be unhappy. At each time step, an unhappy
individual is randomly select and transferred to an eligible vacant node where its
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tolerance threshold is not exceeded. This process repeats until either all nodes are
satisfied with this position or no favorable trades remain.

4.1.2 Schelling Results

As shown in Figure 1, transfer entropy, Jensen-Shannon divergence, and complexity
are prominent early before collapsing at near the 200Cℎ time step. This is consis-
tent with our understanding of this particular model. We can expect to see strong
interactivity with initial random mixing that subsides once individuals are largely
situated in their desired neighborhoods. Modest acceleration in complexity is pro-
pelled by strengthening of neighbor influences as organization increases. We ob-
serve low levels of Jensen-Shannon divergence at each time step which is consistent
with the asynchronous update procedure used in this implementation - each update
can, at most, impact 1% of neighborhoods. In this deterministic example, the only
dynamical motivator is interactivity, and we see both of these phenomena collapse
concurrently.

Figure 1: Jensen-Shannon Divergence, Transfer Entropy, and Complexity results for
Schelling model simulations.

4.1.3 Xie & Zhou Model

The Xie & Zhou [19] model expands upon its predecessor by representing hetero-
geneous preferences amongst individuals. For 10.47% of individuals, n fell within
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[0.0,0.07); for 18.10% of individuals, n fell within [0.07,0.21); for 26.73% of indi-
viduals, n fell within [0.21, 0.36); for 13.86% of individuals n fell within [0.36,0.57);
for 26.59% of individuals, n fell within [0.057,1.00]. For the remaining 4.25% of
individuals, a rank-ordered logit model was constructed to account for individuals
found not to conform to the Guttman scale. See [19] for additional details related
to their implementation. The introduction of heterogeneity in this implementation
extends complexity. Unlike the Schelling model, this simulation is not halted at
equilibrium due to the presence of individuals with stochastic payoff functions.

4.1.4 Xie & Zhou Results

The results of the Xie & Zhou simulations in Figure 2 are distinct from those ob-
tained via Schelling simulations. These results show steadier and more protracted
Jensen-Shannon divergence, transfer entropy, and complexity. This aligns with our
understanding of this model. The introduction of both stochasticity and heterogene-
ity enables protracted complexity throughout the simulation. The levels of transfer
entropy, divergence, and complexity are similar to those in the Schelling simula-
tion runs before the 200Cℎ time step. This again illustrates the complexity boundary
associated with the asynchronous update rule for this model.

Figure 2: Jensen-Shannon Divergence, Transfer Entropy, and Complexity results for Xie &
Zhou model simulations.
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4.2 Game of Life

4.2.1 Model

Conway’s Game of Life is implemented on a regular lattice with Moore neighbor-
hoods and periodic boundary condition [20]. This classic cellular automata model
can produce complex behaviors and emergence. Initially, the lattice is randomly
populated with a given target density, usually between 20-40%. Our simulations
set this value at 30%. At each time step, nodes are updated synchronously. For
each node, one of three possible actions occurs: (1) birth - a dead node with exactly
three neighbors becomes a live node; (2) survival - a living node with 2-3 neighbors
continues to survive; and (3) death - a live node with less than 2 or more than 3
neighbors dies. This process continues until a stable condition is reached, usually
when a mass-extinction results in a density too low to maintain interactivity.

4.2.2 Results

Figure 3 shows high levels of complexity within the initial time window with mostly
decreasing complexity throughout the simulations. This is consistent with our un-
derstanding of the Game of Life. Due to the strength of its rules and above-equilibrium
density present at initialization, large die-off events are likely, and interactivity is
expected to diminish. The higher level of Jensen-Shannon divergence observed per
transfer entropy in the initial phase appears to indicate strong sensitivity to interac-
tivity which is consistent with Game of Life model behavior.
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Figure 3: Jensen-Shannon Divergence, Transfer Entropy, and Complexity results for Game
of Life model simulations.

4.3 Susceptible-Infected-Susceptible

4.3.1 Model

Susceptible-Infected-Susceptible models are commonplace in epidemiology. This
model was similarly initialized on a regular lattice with Moore neighborhoods and
a periodic boundary condition. The grid is fully populated by individuals: 15% are
infected and the remaining 85% are susceptible. Of those infected, the infected time
period is randomly set with between 1-3 time steps remaining. At each time step,
nodes are updated synchronously. Each node with infected neighbors has an addi-
tional 10% chance to become infected per each infected neighbor. Once infected, an
individual will remain infectious for 3 time steps. After this period, the individual
will become susceptible again.

4.3.2 Results

The most dramatic results were obtained from the SIS model simulations. Figure 4
shows high levels of Jensen-Shannon divergence, transfer entropy, and complexity
as the disease spreads initially through the population. Afterward, high levels of
transfer entropy are maintained as waves of susceptibility, infection, and immunity
cycle through the population. Jensen-Shannon divergence diminishes as the rela-
tive proportions of infected and uninfected individuals in the population stabilize.
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However, it is important to note that divergence is still observed as these proportions
continue to fluctuate albeit at a lesser rate. This example also illustrated the case that
a system’s change in entropy, Δ� over time can be substantially different from its
Jensen-Shannon divergence, see Figure 5. Change in entropy, the difference in en-
tropy between two time steps, indicates a change in the heterogeneity of the system’s
states. We may observe dynamism by computing this difference. Negative Δ� was
frequently and observed for these simulations. Due to this,

∑
C Δ� yields starkly

different results. One could correct for this by employing
∑
C |Δ� |. However, no

correction is available to address the pitfall discussed in 3.2. Namely, a real change
in the distribution of states may not result in a change in entropy if heterogeneity in
states is constant. This is a fundamental limitation of Shannon entropy as a measure
of dynamism.

Figure 4: Jensen-Shannon Divergence, Transfer Entropy, and Complexity results for
Susceptible-Infected-Susceptible model simulations.
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Figure 5: Jensen-Shannon divergence and entropy results for the SIS model simulations.

5 Discussion

Figure 6 shows the varied complexity trajectories for each of the systems investi-
gated. The SIS model showed the greatest and most persistent levels of complexity.
The Game of Life model displayed decreasing levels of complexity. The Xie & Zhou
model also displayed persistent complexity, but at lower levels. The Schelling model
displayed complexity similar to the Xie & Zhou model before collapsing earliest at
around C = 200.
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Figure 6: Complexity results for all model simulations.

The proposed measure of complexity performed as expected in each of these
conditions by reflecting the intersection of interactivity and dynamism amongst their
constituent components. The results from the segregation models were consistent
with Weaver’s [1] suggestion that the addition of stochastic behavior to the elements
of a system increase its complexity. Puig et al. [21] have shown the heterogeneity
likewise extends criticality. Similarly, we have shown preliminarily that heterogene-
ity extends complexity. The underpinning concept here may be that both complexity
and criticality require variety as described by Ashby [22].

The results from the Game of Life and SIS models illustrated two key phenom-
ena: (1) Jensen-Shannon divergence captures dynamism in systems where Shannon
entropy may mislead, and (2) dynamism may occur without meaningful interac-
tivity. Together, the results demonstrate the complementary value of the proposed
measure. It enables discussion of how much complexing a system did during a given
ΔC. Conversely, examining the Shannon entropy for the same ΔC would only enable
discussion of the heterogeneity of its states for that period. This is because Shannon
entropy alone does not ensure that dynamism was attributable to interaction by the
system’s elements.

The primary limitation of this work arises from the computational complexity
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inherent in the formulation of the measure. Future work is required to develop a more
comprehensive methodology for computation of this measure for a wider variety of
system descriptions.

An attractive avenue for future investigation is cross-scale complexity. By se-
lecting processes at both higher and lower scales of system, and noting that transfer
entropy is asymmetrical, we could examine interactive complexity bidirectionally.
Here we could elaborate Gershenson’s [3]’s assertion that both upward and down-
ward emergence may occur.

References

[1] Warren Weaver. Science and complexity. American scientist, 36(4):536–544,
1948. ISSN 0003-0996.

[2] Melanie Mitchell. Complexity: A guided tour. Oxford university press, 2009.

[3] Carlos Gershenson. Emergence in Artificial Life. Artificial Life, 29(2):
153–167, 05 2023. ISSN 1064-5462. doi: 10.1162/artl_a_00397.

[4] M. De Domenico, D. Brockmann, C. Camargo, C. Gershenson, D. Gold-
smith, S. Jeschonnek, L. Kay, S. Nichele, J.R. Nicolás, T. Schmickl, M. Stella,
J. Brandoff, A.J. Martínez Salinas, and H. Sayama. Complexity explained.
https://complexityexplained.github.io/, 2019.

[5] J. Scott Thompson, Douglas D. Hodson, Michael R. Grimaila, Nicholas Han-
lon, and Richard Dill. Toward a simulation model complexity measure. Infor-
mation (Basel), 14(4):202–, 2023. ISSN 2078-2489.

[6] Lera Boroditsky. How language shapes thought, 2011. ISSN 0036-8733.

[7] Joseph A. Goguen and Francisco J. Varela. Systems and distinctions; duality
and complement arity. International journal of general systems, 5(1):31–43,
1979. ISSN 0308-1079.

[8] T Schreiber. Measuring information transfer. Physical review letters, 85(2):
461–464, 2000. ISSN 0031-9007.

[9] George J Klir. Facets of systems science, volume 7. Springer Science & Busi-
ness Media, 2013.

[10] Claude Elwood Shannon. A mathematical theory of communication. The Bell
System Technical Journal, 27:379–423, 1948. URL http://plan9.bell-
labs.com/cm/ms/what/shannonday/shannon1948.pdf.

14

Northeast Journal of Complex Systems (NEJCS), Vol. 6, No. 1 [2024], Art. 4

https://orb.binghamton.edu/nejcs/vol6/iss1/4
DOI: 10.22191/nejcs/vol6/iss1/4



[11] S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of
mathematical statistics, 22(1):79–86, 1951. ISSN 0003-4851.

[12] J. Lin. Divergence measures based on the shannon entropy. IEEE Transactions
on Information Theory, 37(1):145–151, 1991. doi: 10.1109/18.61115.

[13] Carlos Gershenson. Design and control of self-organizing systems. CopIt Arx-
ives, 2007.

[14] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network
structure, dynamics, and function using NetworkX. In Gäel Varoquaux, Travis
Vaught, and Jarrod Millman, editors, Proceedings of the 7th Python in Science
Conference (SciPy2008), pages 11–15, Pasadena, CA USA, Aug 2008.

[15] Douglas G. Moore, Jake Hanson, and Cole Mathis. Elife-asu/pyinform: v0.2.0,
August 2019. URL https://doi.org/10.5281/zenodo.3369447.

[16] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren
Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian
Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors.
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Na-
ture Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

[17] James M. Sakoda. The checkerboard model of social interaction. The Journal
of mathematical sociology, 1(1):119–132, 1971. ISSN 0022-250X.

[18] Thomas C Schelling. Dynamic models of segregation. Journal of mathemati-
cal sociology, 1(2):143–186, 1971.

[19] Yu Xie and Xiang Zhou. Modeling individual-level heterogeneity in racial
residential segregation. Proceedings of the National Academy of Sciences,
109(29):11646–11651, 2012.

[20] Martin Gardner. Mathematical games, 1970. ISSN 0036-8733.

[21] Fernanda Sánchez-Puig, Octavio Zapata, Omar K. Pineda, Ger-
ardo Iñiguez, and Carlos Gershenson. Heterogeneity ex-
tends criticality. Frontiers in Complex Systems, 1, 2023.

15

Deter: A Measure of Interactive Complexity in Network Models

Published by The Open Repository @ Binghamton (The ORB), 2024



ISSN 2813-6187. doi: 10.3389/fcpxs.2023.1111486. URL
https://www.frontiersin.org/articles/10.3389/fcpxs.2023.1111486.

[22] William R Ashby. An introduction to cybernetics. 1956.

16

Northeast Journal of Complex Systems (NEJCS), Vol. 6, No. 1 [2024], Art. 4

https://orb.binghamton.edu/nejcs/vol6/iss1/4
DOI: 10.22191/nejcs/vol6/iss1/4


	A Measure of Interactive Complexity in Network Models
	Recommended Citation

	tmp.1723130155.pdf.RT7rs

