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Abstract

This thesis investigates the plausibility of producing a quantum spin liquid (QSL)

with ultracold bosonic atoms optically confined to the Mott insulating state. QSLs

have received a great deal of attention for being an antiferromagnetic groundstate with

many exotic properties, including the absence of local order, long-range entanglement,

and fractionalized excitations. However, the identification and characterization of

these phases in solid state systems remains a great challenge. Here we outline an

alternate route to uncovering the QSL phase, which from the nature of spin angular

momentum for ultracold atoms encounters many properties unique to these systems

along the way. This proposal is possible because the magnetic exchange interactions

for Mott insulating ultracold atoms are mediated by the hopping of whole atoms.

Whole-atom exchange—a unique property of cold atoms—allows large fluctuations

between the quantized Zeeman sublevels of each atomic spin. As we demonstrate,

these fluctuations increase when large-spin atoms are used, or when interactions are

tuned via optical Feshbach resonance (OFR). These strong quantum spin fluctuations

inhibit classical magnetic ordering, and lead to a QSL ground state.

To illustrate the relationship between the spin magnitude, interaction strength,

and QSL ground state, we present two distinct approaches to solving the relevant

Hamiltonian. With mean field theory we find that for large spin (f > 2), and

strong scattering through the spin-singlet channel, that magnetically-ordered Bose-

Einstein condensates are unstable to the formation of a QSL. We then utilize Rayleigh-

Schödinger perturbation theory to derive an effective Hamiltonian for our system in

the Hilbert space of nearest-neighbor singlet coverings. At large spin this Hamiltonian
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produces a type of quantum dimer model (QDM), which are known to possess QSL

phases. We derive the QDM parameters t, t′ and V as a function of spin on several

lattices, finding they scale with the inverse number of Zeeman sublevels, (2f + 1)−ε.

We then determine the proximity of the physically accessible states to the QSL phase,

and discuss how other regions of the phase diagram may be accessed. We then con-

clude by highlighting several advantages to studying QSLs and QDMs with ultracold

bosons.
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from |b〉 to |c〉 to |a〉. The multiplicity is the total number of terms in
the Hamiltonian which produce identical dimer resonances, and is the
product of the number of yellow lines in one single row. The kinetic
resonances result in t : 2β�a,b and t′ : 4β2��a,b, while, the effective
potential becomes V : 2β2(N +N p +N ) ∝ −4β2Nflipδa,b. . . . . . 100

5.2 Coefficients of the quantum dimer model on different lattice geometries,
determined from the method demonstrated pictorially for a square lat-
tice in Tabs. 5.1 and 5.1. The large-f ground states on square and
triangular lattices are determined by numerical diagonalization as dis-
cussed in section 5.2. The appearance of the second-order, three bond
resonance t′ is unique to the quantum dimer model as derived from the
singlet Hamiltonian, Eq. 5.1. . . . . . . . . . . . . . . . . . . . . . . . 103

xi



F.1 Angular momentum quantum numbers for two commonly used species
of alkali atoms. Shown are the electronic spin s, the electronic orbital
angular momentum l, the nuclear spin i, and the hyperfine spin f =
i± j, where j = s + l is the total electronic angular momentum. The
electronic magnetic moment relative to the Bohr magneton (µe/µB)
and the nuclear magnetic moment relative to the nuclear magneton
(µnuc/µN) are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . 139

F.2 Pictorial derivation of the t and t′ terms of the quantum dimer model on
the triangular lattice. We note that there is a sub-leading contribution
to the 4-site resonance. The kinetic resonances result in t : 2(β+β2)�a,b
and t′ : 4β2��a,b. Meanwhile, the effective repulsive potential becomes
V : 4β2Nflipδa,b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

xii



List of Figures

2.1 The band structure of weakly interacting electrons in a 1-dimensional
periodic potential. The band gap ∆ characterizes the minimum energy
needed to excite an electron from the valence band to the conduction
band. The Pauli Exclusion principle dictates that no two fermions
can occupy a single-particle state simultaneously. Therefore, the elec-
tronic ground state is found by filling up available energy states from
low to high, resulting in a Fermi surface. This is in contrast to the
ground state of bosonic systems in which all of the bosons may occupy
the lowest-energy state simultaneously, and Bose-Einstein condensa-
tion may occur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 A pictorial representation of the Hubbard Model, where blue circles
represent electrons, and the black solid line represents the underlying
lattice potential. When an electron hops from one lattice site to an-
other, the energy is reduced by t. If any site is doubly occupied, then
the energy is increased by U . The ground state for t >> U is that of
a band metal, where metallic or insulating behavior come from a filled
valence band and a gap to the conduction band, as shown in Fig. 2.1.
For U >> t the strong repulsive interactions quench the kinetic energy,
and for one particle per site the system becomes a Mott insulator. . . 10

2.3 Three classical magnetic orders. (a) Ferromagnetism is responsible for
macroscopically magnetic materials, such as iron bar magnets. (b) An-
tiferromagnetism is a magnetic ordering with zero macroscopic magne-
tization, and is found in many transition metal oxides. (c) Paramagen-
tism has no magnetic order, and the spins only align in response to an
external applied field. Most chemical elements are paramagnetic, and
both ferromagnetic and antiferromagnetic materials are paramagnetic
at high temperatures. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Magnetic susceptibility for the classical magnetic orders. The suscep-
tibility characterizes the material’s response to changes in the external
magnetic field. Both ferromagnetic and antiferromagnetic materials
behave like paramagnets at high temperatures. Ferromagnets develop
magnetic order below their Curie Temperature TC , while antiferromag-
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From these plots, this region is seen to occur for Vtrap/Erecoil ∼ 12–20,
which is within the range of experimental parameters. . . . . . . . . . 49
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3.7 Phase diagram for an f = 1 spinor condensate (such as 23Na) in an
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Ŝz

〉
= 0 the k = 2 component becomes large, while the k = 1

component goes to zero, indicating nematic order in this region. . . . 57
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4.2 Spin uncertainty vs. spin quantum number f on a log-log plot, calcu-
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√
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ing maximum spin uncertainty (and hence quantum fluctuations) in
the large-f limit. This is in contrast to solid-state spin models, where
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5.1 Examples of singlet cover states. The numbers label the lattice sites,
while connected sites represent a spin singlet between the atoms on
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†
4,5Â

†
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all the other bonds in |a〉 are left unchanged. This notation is used in
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Chapter 1: Introduction

1.1 The search for exotic magnetism

Progress in physics has been defined by the paradigm shifts undertaken to assimi-

late new and unexpected findings into our understanding of reality, and the field of

condensed matter physics remains in the aftermath of such a shift. Traditionally,

phases of matter and phase transitions have been understood by examining how the

ordering of each phase breaks some symmetry of the underlying physical laws, fol-

lowing the methods of Landau [1]. However, upon the discovery of the Fractional

Quantum Hall Effect (FQHE) in 2D electron gases [2, 3], it was observed that not

all distinct quantum phases break a distinct symmetry, and thus elude a description

with Landau theory. As FQHE systems were further investigated and modelled, it

became clear that the community was exploring an entirely new type of condensed

matter phase—one defined not by a broken symmetry, but by fractionalized exci-

tations [4, 5], topological symmetry [6, 7], and emergent gauge degrees of freedom

[8]. These surprising findings stimulated an overwhelming interest in the condensed

matter community, and it was only a matter of time before new fractionalized and

topological phases were being proposed and studied.

One of these proposed phases was the so-called resonating valence bond (RVB)

ground state wave-function for a quantum antiferromagnet. These RVB phases—

proposed by Anderson prior to the discovery of the FQHE [9], and inspired by Paul-

ing’s work with resonating valence bonds [10]—were shown to possess topological

order and fractionalized excitations [11, 12]. These discoveries, which were made
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around the same time that Anderson was suggesting the pairing mechanism in high-

TC cuprate superconductors could be caused by proximity to the RVB phase [13],

resulted in an explosion of interest over the following decades [14].

In the time since, these RVB states have been classified as members of a larger

group of entangled magnetic ground states, known as quantum spin liquids (QSL).

Broadly speaking, a QSL is the ground state of an insulating antiferromagnet in which

large fluctuations of the spins between their quantized Zeeman sublevels prevent the

onset of collective magnetic ordering down to zero temperature, and so retain the

statistics of a liquid [15]. No symmetry is broken when the QSL phase is entered

by cooling from the high-temperature paramagnetic phase, and so they cannot be

described by conventional Landau Theory. As such, they possess hallmark properties

of a “post-Landau” phase, including long-range entanglement [16, 17], fractionalized

excitations [18–20], topological order [21–23], and emergent gauge dynamics [15, 24].

Strong numerical evidence suggests spin liquid ground states on several frustrated

lattices [25, 26], but the experimental study of the QSLs has proved challenging. The

list of spin liquid candidate materials has been growing [27], and increasingly detailed

measurements have allowed for a better understanding of their material properties

[28–30], but a “smoking gun” experiment by which to unambiguously identify QSL

ground states has remained elusive [31–33]. This has in some ways caused a dis-

connect between theory and experiment, which has slowed progress in the field for

decades. Although a plethora of possible QSL phases may be calculated theoreti-

cally, no single model has thus far accounted for the measured properties of current

candidate materials.

One route towards breaking this deadlock requires improved accuracy of experi-

mental probes, such as an increased energy resolution for inelastic neutron scattering,

or a finer spatial resolution for SQUID-based microscopy. While extremely important

to pursue, this route is straightforward conceptually, and one can imagine other novel
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routes to be explored in the meantime. One such route involves finding candidate

materials in which the microscopic Hamiltonian is known with certainty, leading to a

more direct interpretation of the measured data. This thesis embarks on this latter

route, and explores the possibility of finding QSL physics in new condensed matter

systems.

Finding new spin liquid candidates amounts to finding systems with sufficiently

large quantum spin fluctuations. To achieve large fluctuations between Zeeman sub-

levels in a solid-state system—where electron hopping mediates the magnetic ex-

change interactions—one must restrict the search to low-dimensional, geometrically-

frustrated, spin-1/2 antiferromagnets [25, 31, 34–37]. These frustrated antiferro-

magnets possess competing interactions which cannot be simultaneously satisfied,

resulting in a large classical degeneracy of their ground state [38–41]. Large spin

fluctuations may then melt the magnetic order, and drive the systems towards the

spin liquid phase.

Despite knowing what is required of candidate materials, many challenges remain.

Firstly, not all materials with spin-1/2 moments on a classically frustrated lattice are

guaranteed to possess QSL ground states. Furthermore, materials which do are often

structurally complex, and the presence of interlayer coupling, anisotropic exchange

interactions, and disordered magnetic moments, make it difficult to develop accurate

microscopic models by which to explain scattering and thermodynamics measure-

ments. Therefore, in this thesis we specifically seek systems for which the interaction

Hamiltonian may be determined with relative certainty, and which possess a QSL

phase somewhere on their phase diagram.

Quantum dimer models (QDM) are one such example of a microscopic model

which can produce QSL ground states. QDMs describe the dynamics of close-packed

hard-core dimers on a lattice, and have received continued attention since their orig-

inal proposal by Rokhsar and Kivelson in 1988 [42]. Exotic physics emerges in these
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systems from the interplay between quantum fluctuations, hard-core constraints, lat-

tice geometry, and system topology. Their rich phase diagram contains a short-ranged

version of Anderson’s RVB spin liquid, as well as conventional symmetry-broken

phases known as valence bond crystals (VBC) [43]. As a type of QSL, the RVB

phase exhibits all of the desired properties—topological order and fractionalized ex-

citations [12, 44, 45], emergent gauge dynamics [43, 46, 47], and quantum critical

points [48–50]. Furthermore, the creation and manipulation of a QDM would be a

major step forward in the quest for topologically protected quantum computing, due

to its close relation with Kitaev spin liquids [33, 51–53]. Unfortunately again, there

are no clear-cut examples of materials governed solely by a QDM Hamiltonian, and

so we must look in new places to find clean physical realizations of this model.

Systems of cold atomic gases loaded into optical lattices may provide the alter-

nate route to experimentally observing the quantum dimer models and spin liquid

phases that we seek. Experiments with ultracold atoms, as they are often called, offer

unprecedented levels of tunability and control over lattice parameters and particle-

particle interactions, and have repeatedly proven their effectiveness as quantum sim-

ulators of condensed matter models and phases [54–56]. The experimental demon-

stration of atomic Mott insulators and their associated Hubbard models [57–60], and

the growing capability to control and probe the magnetic interactions [61–64], has

opened the door for the study of magnetic ground states using ultracold atoms.

In particular, when an atomic gas is cooled near absolute zero and confined with

an array of lasers—a so-called optical lattice—the spin degree of freedom remains un-

frozen [65, 66] and the low-energy spin interactions are manifest as a virtual exchange

of whole atoms between lattice sites [62, 67]. Counter-intuitively, this whole-atom ex-

change produces fluctuations which increase with the atomic hyperfine spin f [68],

in dramatic contrast to solid-state systems, where fluctuations are suppressed and

classical ordering occurs for large spin moments. This peculiar behavior of ultracold
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atoms may allow large-f Mott insulators to exhibit exotic magnetic phases tradi-

tionally associated with low-spin materials, including atomic spin liquids. In fact,

crystallized dimer phases [69–72], resonating plaquette phases [73–76], and dimer liq-

uid phases [77–82]—all hallmarks of the QDM—have been studied theoretically for

large-N SU(N) and dipolar quantum gases [83, 84]. However, these previous stud-

ies have largely considered ways by which to simulate quantum dimer physics, and

to engineer systems such that the relevant degrees of freedom may be mapped to a

QDM. Therefore, determining how terms in the microscopic QDM Hamiltonian de-

pend on physical parameters, and determining which regions of the phase diagram are

physically accessible, are open questions which we address thoroughly in this thesis.

1.2 Thesis description

This thesis details a proposal for using of large-spin ultracold atoms to engineer and

observe exotic magnetic phases, such as quantum spin liquids, and ground states

of the quantum dimer model including ordered valence bond crystals (VBC). We

believe that by fundamentally broadening the search in this way, we may bypass

several persistent difficulties. Specifically, the microscopic Hamiltonian for a cold

atom system can be determined more directly than in the solid state, and so we may

model a QDM with a high degree accuracy. We may then determine the physically

accessible regions of the phase diagram, and investigate whether a QSL ground states

could someday be observed experimentally using ultracold atoms.

As discussed in the following chapters, the study presented in this thesis is unique

in many ways. We find evidence for exotic magnetism without requiring enhanced

symmetry, geometrical frustration, or a mapping from an equivalent Hamiltonian. In-

stead, we find that the naturally occurring whole-atom exchange interaction—which is

fundamentally different than electron superexchange in a solids, due to the presence
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higher-order Heisenberg couplings—allows sufficiently large quantum spin fluctua-

tions to melt the order and produce a genuine spin liquid phase. All that is required

are large-spin atoms and the assistance of an optical Feshbach resonance—a widely

used method of tuning particle-particle interactions in systems of ultracold atoms.

Another important aspect of this work is the explicit calculation of a quantum

dimer model for ultracold atoms. Not only does our work provide a rigorous pertur-

bative expansion of the QDM in terms a physically small parameter, but in doing

so, we uncover a second-order kinetic term unique to this system. This term favors

disorder and pushes the system towards a liquid ground state. For these reasons,

we firmly believe the results presented in this thesis provide strong evidence that the

quantum dimer model and resonating valence bond regions of its phase diagram could

be observed for the first time in their purest form using large-spin ultracold atoms.

1.3 Thesis overview

This thesis is organized as follows. Chapter 2 reviews the background physics of quan-

tum magnetism in many-body systems, and provides a description of quantum spin

liquids and the phases accessible to quantum dimer models. The history of observing

exotic phases of matter with ultracold atoms is reviewed, and their potential for inves-

tigating entangled magnetic phases is discussed. Chapter 3 begins with the derivation

of the microscopic Hamiltonian for a gas of bosonic atoms in a 2-dimensional opti-

cal lattice. A protocol for tuning the interactions via optical Feshbach resonance is

then presented, and estimates of relevant energy scales and required experimental

parameters are calculated to ensure the validity of our proposal. Chapter 3 is then

concluded with a determination of the ground state phase diagram for the microscopic

Hamiltonian using the conventional spinor mean field theory, for which nematic and

antiferromagnetic phases are found.
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Chapters 4 and 5 present the major contributions of this thesis—the broadening

of the search for quantum spin liquids and a rigorous derivation of the quantum

dimer models for ultracold atoms. Chapter 4 begins by developing a mean field

(MF) theory for bosons in an optical lattice. A spin liquid phase is found to be a

competitive ground state to the spin nematic and antiferromagnetic states for large

spin and interaction strength, and spin fluctuations are shown to be a maximum in

this region. The chapter is concluded when the mean field QSL wavefunction is shown

to take the form of a short-range RVB state when projected to the one-particle-per-

site Hilbert space. This motivates the reformulation of the microscopic Hamiltonian

in the form of a quantum dimer model, which is the subject of Chapter 5. This

chapter begins with a discussion of the dimer Hilbert space, and is followed by a

rigorous application of Raleigh-Schrödinger perturbation theory to derive an effective

QDM for ultracold bosonic atoms. Results from this perturbation expansion are

compared with numerical results which we perform on the unperturbed Hamiltonian.

The phase diagram is then calculated, and the physically accessible region of the

parameter space is identified. Finally, Chapter 6 concludes this work by reviewing its

prominent contributions, and discusses this work in the context of the greater search

for exotic magnetic phases.
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Chapter 2: Quantum Magnetism and

Ultracold Atoms

2.1 Magnetic phases in solid state systems

2.1.1 The Hubbard and Heisenberg models

We may begin to understand low-energy physics of materials by considering the Hub-

bard model, which serves as a common starting point for the study of electrons in

periodic potentials [85, 86]. This model was developed to describe the transition

from metallic behavior—where electrons are free to move about the lattice due and

electron-electron interactions are small—to the Mott insulating state—where elec-

trons are localized at particular lattice sites due to strong electron-electron interac-

tions. This model also describes common band insulators, in which the conductivity is

determined by the filling fraction, and the presence of a band gap between the valence

and conduction bands, as shown in Fig. 2.1. While our search for exotic magnetism

does require insulating materials, band insulators do not possess magnetic ordering in

the ground state, and so we restrict ourselves throughout this work to Mott insulators

with one-particle-per-site.

The Hubbard model is typically expressed as

H = −t
∑
〈i,j〉,σ

(ĉ†iσ ĉjσ + H.c.) + U
∑
i

n̂i↑n̂i↓, (2.1)

where ĉ†iσ/ĉiσ are creation/annihilation operators for electrons at lattice site i and with
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Figure 2.1: The band structure of weakly interacting electrons in a 1-dimensional pe-
riodic potential. The band gap ∆ characterizes the minimum energy needed to excite
an electron from the valence band to the conduction band. The Pauli Exclusion prin-
ciple dictates that no two fermions can occupy a single-particle state simultaneously.
Therefore, the electronic ground state is found by filling up available energy states
from low to high, resulting in a Fermi surface. This is in contrast to the ground state
of bosonic systems in which all of the bosons may occupy the lowest-energy state
simultaneously, and Bose-Einstein condensation may occur.

spin σ = {↑, ↓}, while n̂i,σ = ĉ†iσ ĉiσ is the number operator which simply counts the

number of electrons on lattice site i. The first term—parametrized by t—represents

the kinetic energy of electrons hopping between nearest-neighbor sites, while the

second term—parametrized by U—accounts for the potential energy of interaction

between two electrons on the same site, as shown in Fig. 2.2. In the weakly interacting

limit (U/t << 1), one recovers the physics of nearly free electrons in a periodic

potential, with energy bands corresponding to the different Bloch states. In the one-

particle-per-site strongly interacting limit (U/t >> 1), one obtains the physics of

a Mott insulator, where strong electronic repulsion prevents transport of electrons

through the lattice.

In the Mott insulating regime, we may neglect hopping and treat the electrons as

fixed spins on a lattice. We then reintroduce hopping as a weak perturbation, and

one obtains the antiferromagnetic Heisenberg model [87]. In this model, the electrons’
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Figure 2.2: A pictorial representation of the Hubbard Model, where blue circles
represent electrons, and the black solid line represents the underlying lattice potential.
When an electron hops from one lattice site to another, the energy is reduced by t.
If any site is doubly occupied, then the energy is increased by U . The ground state
for t >> U is that of a band metal, where metallic or insulating behavior come
from a filled valence band and a gap to the conduction band, as shown in Fig. 2.1.
For U >> t the strong repulsive interactions quench the kinetic energy, and for one
particle per site the system becomes a Mott insulator.

kinetic degrees of freedom remain frozen, so the dynamics are controlled by the spin

magnetic moment on each site. This spin could be that of a single valence electron,

a combination of several electrons, or could include the nuclear spin. In these cases,

virtual hopping processes allow spin-exchange interactions between different sites of

the lattice. This may be written as

H =
1

2

∑
i,j

JijŜi · Ŝj, (2.2)

where Ŝi denotes the spin operator for the spin on site i. Here, Jij measures the

strength of the interaction between the spins on ith and jth sites. The ground state

properties of this Hamiltonian will depend on strongly on the geometry of the lattice

and the nature of the couplings Ji,j. While the solution of this problem is well under-

stood for simple lattices and interactions, studying this model on so-called “geomet-

rically frustrated” lattices leads to much richer and more exotic phases, as described

in Subsec. 2.2.1 to follow.
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(a) (b)

(c)

Figure 2.3: Three classical magnetic orders. (a) Ferromagnetism is responsible for
macroscopically magnetic materials, such as iron bar magnets. (b) Antiferromag-
netism is a magnetic ordering with zero macroscopic magnetization, and is found in
many transition metal oxides. (c) Paramagentism has no magnetic order, and the
spins only align in response to an external applied field. Most chemical elements are
paramagnetic, and both ferromagnetic and antiferromagnetic materials are paramag-
netic at high temperatures.

2.1.2 Classical spin orders

For simple lattice geometries the Heisenberg model can be solved with a mean field

theory, and one finds the three of the major types of classical magnetic ordering—

ferromagnetism, antiferromagnetism, and paramagnetism—as depicted in Fig. 2.3.

Mean field theory was developed by Pierre Curie and Pierre Weiss [88] during early

studies of magnetism, where they used it to describe the magnetic susceptibility of

ferromagnets in the paramagnetic phase above the transition temperature to the

magnetically ordered state. At high temperatures, both ferromagnetic and antiferro-

magnetic materials behave as paramagnets, with random orientation of spin moments

and no macroscopic magnetization. However, upon cooling below the critical tem-

perature, spontaneous magnetic ordering occurs.

The paramagnetic-magnetic phase transition can be observed by measuring the

material’s magnetic susceptibility, χ = ∂M/∂B, which characterizes the change in

the material’s magnetization with respect to changes in an external magnetic field,
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Figure 2.4: Magnetic susceptibility for the classical magnetic orders. The suscepti-
bility characterizes the material’s response to changes in the external magnetic field.
Both ferromagnetic and antiferromagnetic materials behave like paramagnets at high
temperatures. Ferromagnets develop magnetic order below their Curie Temperature
TC , while antiferromagnets become ordered below their Néel Temperature, TN .

as shown in Fig. 2.4. The behavior of the χ in the paramagnetic regime can be

described by what is know as the Curie-Weiss Law, and is given by

χ =
C

T −Θ
, (2.3)

where C is the Curie constant, T is the temperature, and Θ is the Curie temperature

or critical temperature of the phase transition (also written as TC for ferromagnets).

Then, by fitting the inverse susceptibility at high temperature to the Curie-Weiss Law,

one determines the nature of the magnetic interactions in the material, which is shown

in Fig. 2.5. Materials with ferromagnetic interactions have a Curie temperature

Θ > 0, while antiferromagnetic materials have Θ < 0.

A fundamental characteristic of ferromagnetic and antiferromagnetic orders is that

they break spin-rotational symmetry, despite the fact that the spin-spin interactions

of the Heisenberg model (Eq. 2.2) are symmetric (unchanged) under spin rotations.

In the paramagnetic phase, thermal fluctuations result in a ground state which pre-
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Figure 2.5: The inverse magnetic susceptibility as a function of temperature. The
inverse susceptibility is useful for determining the sign of a material’s spin-exchange
interactions, and therefore whether one expects a low-temperature ferromagnet or an-
tiferromagnet. This is done by extrapolating the high-temperature behavior—which
follows the Curie-Weiss Law (χ−1 ∝ T−Θ)—to the temperature axis to determine the
Curie-Weiss temperature. Paramagnets intercept at T = 0, while ferromagnets have
a positive Curie-Weiss Temperature TC . Antiferromagnetic materials will a negative
Curie-Weiss Temperature ΘAF . This is an important measurement in the determina-
tion of spin liquid candidates, as several materials show antiferromagnetic exchange
interactions from their inverse susceptibility, but show no signs of magnetic ordering
several orders of magnitude below their expected phase transition around |θAF |.

serves the spin-rotational symmetry of the underlying interactions. However, below

the transition temperatures, fluctuations are decreased, and the spin-rotational sym-

metry is spontaneously broken when the spin moments point along some specific axis.

Phase transitions into and out of these magnetically ordered phases are described by

Landau’s Theory of Phase Transitions, since the different states are defined by their

different symmetries.
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Figure 2.6: A schematic phase diagram of the Hubbard Model. Tuning the ratio
of the potential and kinetic energy U/t, the system passes from metal to insulator
in what is known as the Mott transition. In the intermediate regime (U/t ∼ 1),
strong virtual hopping increases the charge and spin fluctuations. The enhanced spin
fluctuations in this region can “melt” the classical spin ordering on geometrically
frustrated lattices.

2.2 Quantum dimer models and quantum

spin liquids

2.2.1 Frustrated interactions and spin fluctuations

In many-body spin systems at low temperatures, quantum fluctuations of the spin

moments play a significant role in determining the nature of the magnetic ground

state. Classical and mean field approximations treat the quantum mechanical spins

as classical magnetic moment vectors. To introduce fluctuations around the MF

ground state the spin operators Ŝi may be written in a bosonic representation, known

as Holstein-Primakoff bosons [89], which are expanded as a power series in 1/S,

and diagonalized via a Bogoliubov transformation [87, 90]. In the large spin limit

(S >> 0), spin fluctuations around the MF ordering are sufficiently captured by this

approximation, and the spins indeed behave like classical vectors. For certain systems

however, quantum spin fluctuations radically change the ground state of Eq. 2.2. This

is particularly the case when systems are close to the Mott-insulator transition (Fig.

2.6) and for geometrically frustrated lattices.

Geometrical frustration occurs on lattices which contain “triangular-motifs” [31],

including triangular, kagome, and hyper-kagome lattices. On these lattices, spins can-
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Figure 2.7: Geometrical frustration of Ising spins on a triangle. For antiferromagnetic
interactions, each spin tries to align anti-parallel to its neighbors. For Ising spins
constrained to point up or down along one axis on a triangular lattice, it is impossible
to meet this criteria simultaneously for each spin, and so there may be a large number
of degenerate “next-best” arrangements. Since the system cannot reach its ideal
configuration, it is said to be frustrated. Spin fluctuations are be increased by the
presence of geometrical frustration.

not minimize their energy through any single ordering pattern [15]. Classically, this

may result in a number of degenerate states corresponding to equal energy configura-

tions of local spins. A simple example of geometrical frustration is shown in Fig. 2.7,

for Ising spins with antiferromagnetic interactions on a triangular lattice. The idea is

that Ising spins which reside on the corners of a triangle cannot simultaneously mini-

mize their energy by pointing in opposite directions of each other, as desired by their

local antiferromagnetic interaction. This results in frustration, as spin configurations

which minimize the energy locally often do not minimize the energy globally. The

system therefore possesses a highly degenerate ground state, due to many possible

next-best arrangements of the spins locally. When a system of spins is geometrically

frustrated, spin fluctuations tend to kick the system around between the degenerate

configurations, resulting in highly disordered spin states.
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Figure 2.8: Example of the pictorial dimer representation used throughout this work.
The two circles represent particles on sites A and B, and the solid line connecting
them indicates that these spins are in a singlet state, or dimer. A singlet state consists
of two quantum spins in a superposition of up and down states, resulting in a total
spin moment of zero.

2.2.2 Valence bond crystals and the quantum dimer model

Valence bond solids, or valence bond crystals (VBC), have spins on neighboring sites

which pair-off to form spin-singlet pairs with a total S = 0. When these singlet pairs

exist on a lattice, they are also known as dimers, and are described pictorially and

mathematically in Fig. 2.8. This pairing originates from the fact that each term in

the antiferromagnetic Heisenberg model, which takes the form Ŝ1 · Ŝ1, may be solved

by moving from the basis of individual spins 1 and 2, to basis states constructed from

the total angular momentum basis. A dimerized ground state of a Heisenberg spin

system attempts to minimize the energy by minimizing the energy locally, and the

system will be tessellated by these dimers, as shown in Fig. 2.9. This is related to

the so-called domino tiling of a region, and the number of unique dimer patters has

been calculated exactly by the method of Pfaffians [91, 92].

The dynamics of a valence bond state are governed by a type of Hamiltonian

called a quantum dimer model (e.g. [46, 93]). A typical QDM for a square lattice

would be written as,

ĤQDM =
∑

plaquettes

[
−t
( ∣∣ 〉 〈 ∣∣+ H.c.

)
+ V

( ∣∣ 〉 〈 ∣∣+
∣∣ 〉 〈 ∣∣ )] . (2.4)

This description captures the dynamics of the valence bond state through a kinetic

term parametrized by t, and a potential term of parametrized by V . The underlying
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Figure 2.9: An example of a dimer covering on a square lattice. Shaded blue squares
represent flippable plaquettes, in which the dimers may rearrange locally. Dimers
on non-flippable plaquettes require non-local rearrangements in the form of closed
loops. Defects where an atom is not paired to any dimer, known as a spinon, are
fundamental excitations of this system.

one-particle-per-site constraints result in hardcore, non-overlapping dimers, such that

no spins exist in multiple dimer pairs simultaneously. Therefore, all dimer motion

must involve rearrangements of neighboring pairs called flippable plaquettes, as shown

in Fig. 2.9, or longer chains called flippable loops. Meanwhile, the potential energy

term represents an effective repulsion of dimers, and prefers configurations which

minimize the number of flippable plaquettes.

There are three main categories of VBC/dimer phase: columnar, plaquette/mixed,

and staggered, which are shown in Fig. 2.10. The columnar phase is built from re-

peating columns (or rows) of parallel bonds, and is favored when the kinetic energy

is large (V/t << 1). In the plaquette phase, dimer bonds resonate between different

configurations inside a multi-site unit cell, such as the vertical and horizontal con-

figurations of two bonds around a flippable plaquette on a square lattice. Plaquette

phases on a triangular and kagome lattices have resonances of larger sizes. The mixed

phase is simply a plaquette phase with an unequal superposition of the different dimer
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Figure 2.10: Three phases of the quantum dimer model on a square lattice, which
are encountered as the ratio of potential-to-kinetic energy (V/t) is varied. When
the potential energy is negative (V/t < 0), the system will attempt to maximize the
number of flippable plaquettes, resulting in the columnar phase. For 0 < V/t < 1
the terms are comparable, and the plaquette phase emerges. The point V/t = 1 is
a special point, known as the RK point, where the system behaves as a s-RVB spin
liquid (described in Sec. 2.2.3). For all values of V/t > 1, the staggered phase, in
which there are no flippable plaquettes, is the exact ground state.

patterns in resonance. Finally, the staggered phase is such that there are no flippable

plaquettes, and is an exact eigenstate of this model when the potential is greater than

the kinetic term (V/t > 1).

2.2.3 Quantum spin liquids

A spin liquid is a Mott insulator with antiferromagnetic exchange interactions, which

resists magnetic order all the way down to absolute zero temperature. Here “liquid”

implies an analogy with the common solid-liquid phase transition, where a disordered

liquid freezes into an ordered solid at low temperature. Since the disordered spins

of a spin liquid never freeze into a magnetically ordered phase, the spins are said

to remain a liquid. However, the liquid description only applies to the orientations

of the spins, not their physical location in the lattice, and the system remains a

one-particle-per-site Mott insulator.

To achieve a spin liquid ground state, it is necessary to have large spin fluctuations.

These fluctuations effectively melt the long-range Néel order that would appear in the
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ground state of antiferromagnets. Spin uncertainty is largest for small magnitudes of

the spin, and in solid state systems, spin liquid candidate materials are those whose

magnetism is governed by the behavior of a single spin−1/2 electrons on each site.

These spin fluctuations are enhanced further by geometrical frustration, and when

quantum fluctuations are included, geometrically frustrated systems may become spin

liquids.

A particularly important class of QSL are known as resonating valence bond states

(RVB). Historically, these states were introduced in an attempt to understand the

pairing mechanism of cuprate superconductors [9, 13, 14], specifically the phase dia-

gram of hole-doped La2CuO4. An RVB state consists of an equal superposition of the

equal energy valence bond coverings of the lattice. In this way, it can be thought of

as a superposition of spin singlet coverings, which are themselves spin superpositions.

This results in a highly entangled ground state, which no longer breaks rotational

symmetry of the lattice. Anderson’s idea was that when a QSL is hole-doped by in-

troducing empty sites into the Mott insulating state, the entangled electron pairs will

become mobile and become superconducting. If the valence bond patterns of an RVB

spin liquid consist of only nearest-neighbor dimer pairs, the system may be described

by a QDM (Eq. 2.4), where depending on the lattice, the RVB QSL phase occurs at

or in the vicinity of the Rokhsar-Kivelson Point (v/t = 1). While Anderson’s RVB

has failed to accurately describe cuprate superconductors, the theoretical connections

between RVB spin liquids and exotic entangled states has remained a driving force

behind the investigation into spin liquid phases [14].

2.2.4 Fundamental excitations of VBCs and QSLs

A major difference between the antiferromagnetic Néel-ordered state and the QSL

state, is the nature of their low energy excitations [16, 90]. Néel states break the SU(2)

spin rotational symmetry of the Heisenberg model (Eq. 2.2), and therefore possess
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a low-energy hydrodynamic mode associated with the broken symmetry, following

from Goldstone’s theorem [94]. The Goldstone modes for the Néel state are long-

wavelength spin waves, which when quantized are called magnons, and are spin-1

bosonic excitations. Furthermore, the energy spectrum of these excitations is gapless,

and so they may be created with arbitrarily low energy.

When considering valence bond crystal states with only nearest-neighbor dimers,

the chosen dimer pattern breaks the rotational symmetry of the lattice, and so there

exist a set of degenerate equal-energy configurations corresponding to different ro-

tations of each possible covering pattern [95]. The fundamental excitations of this

system are those by which a singlet bond (S = 0) is promoted to a triplet bond

(S = 1), by changing the orientation state of one of the composite spins [15]. The

triplet state exists at a finite energy above the singlet state, and so the energy spec-

trum for a VBC is gapped. We can equivalently view this energy gap as the amount

of energy required to create two spinons.

In a VBC, spinons are confined and thus cannot be observed as isolated excita-

tions. As two spinons migrate away from each other, they leave a string of distorted

dimers connecting them, as depicted in Fig. 2.11. These distortions break the back-

ground dimer order, and cost energy for each dimer that is distorted. Therefore, when

two spinons are separated, they experience an effective potential which increases lin-

early with the separation distance. At some critical distance it becomes energetically

favorable to release the energy store in the dimers, and create two new spinons to pair

each of the separated pair. Therefore, spinons are not found as isolated excitations in

these system, and they are said to be confined. This confinement of the spinons is a

direct result of the ordered dimer background, and the means that the fundamental

excitations of the VBC are the spin-1 triplets [95].

For a QSL on the other hand, the spinons are not confined, as described in Fig.

2.12. As two spinons move apart, only dimers local to each spinon are disrupted, and
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Figure 2.11: Spinon confinement in a columnar VBC phase on a square lattice. Two
spinons are created in pairs by breaking a nearest-neighbor singlet dimer, with some
energy ∆. As one spinon moves away from its original location, it leaves behind a
string of dimers which are distorted from the original columnar configuration (shown
in red). If each unfavorable bond costs some energy ε, the energy to move the spinons
a distance d apart grows as εd. When the energy of their separation costs more than
the energy to create two new pairs (εd > 2∆), new spinons will be created at the
ends of the string, resulting in a system which only has nearest-neighbor spinon pairs.
This limiting of the possible separation distance is known as confinement.

so there is no linear potential associated with their separation. These spinons may

be found as isolated, fractionalized, spin-1/2 excitations, since they have a quantum

number of one-half the fundamental triplet excitation in the VBC.

2.2.5 The experimental search for quantum spin liquids

Despite a large body of theoretical work, the experimental identification of true two-

dimensional spin liquid materials has proven challenging. Firstly, the materials need

to be Mott insulators which possess localized spin−1/2 moments, interacting through

antiferromagnetic exchange interactions. Additionally, geometrically frustrated lat-

tices are required to maximize spin fluctuations and uncertainty. The material must

also exhibit no magnetic ordering at any temperature, which is equivalent to observing

paramagnetic behavior at all temperatures. This can be determined from magnetic

susceptibility measurements, as shown in Figs. 2.4 and 2.5. Once a material meets

these requirements, it may be considered a spin liquid candidate material.
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Figure 2.12: Spinon deconfinement in a RVB spin liquid. To break a dimer and
create a spinon pair requires some energy ∆. However, as each spinon is moved apart,
they distort only the 4 bonds adjacent to themselves, limiting the energy needed for
separation. Since there is no upper bound to the distance d at which they are found
as isolated particles, they are said to be deconfined. Each lone spinon is considered a
fractionalized excitation, in that they have a quantum number (s = 1/2) which is a
fraction of the quantum number of the “unfractionalized” triplet excitation (s = 1).

When a spin liquid candidate material is found, there are several ways to ex-

perimental study its properties. Neutron scattering experiments provide a way to

probe the spin-spin correlations and excitations of a material, magnetic heat capacity

measurements provide information about the low-energy density of states, and both

NMR and muon resonance spectroscopy (µRS) provide information about local spin

moments in the material. Together, these different experiments paint a good picture

of the spin liquid candidate, but there is still no single experiment which unequiv-

ocally determines a spin liquid phase [31]. Comparison of neutron scattering data

for Herbertsmithite [28], a spin−1/2 Mott insulator with a kagome lattice, with the

spectrum obtained from a Z2 spin liquid [19], provides compelling evidence for the

presence of a QSL state in at least one candidate material. However, for all the effort

that has been spent studying and characterizing spin liquid candidate materials, the

number of systems being studied remains quite small.
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2.3 Exotic magnetic phases with ultracold atoms

The field known as ultracold atoms, or cold atoms, has a history of experimentally

verifying predictions of condensed matter physics, and so one may expect that exper-

iments with cold atomic gases could provide a way to study exotic magnetic states,

such as quantum spin liquids and valence bond crystals. This history begins with

the creation of a Bose-Einstein condensate (BEC) with bosonic rubidium atoms (pos-

sessing integer spin f = 1, 2, 3 . . .)) in a magneto-optical trap. The existence of this

phase of matter was proposed by Einstein 1925 when applying Satyendra Nath Bose’s

quantum statistics of light to a gas of atoms with integer spin. It was predicted that

such a gas would undergo a phase transition into a state with a macroscopically large

fraction of atoms in the lowest energy state, as shown in Fig. 2.13. This theory

proved successful in describing the superfluid properties of Helium-4, but it was over

75 years before Einstein’s idea of a condensed bose gas was observed in a lab.

Advancements in the laser cooling and trapping of neutral atoms allowed for the

cooling of an isolated gas of atoms to record low temperatures [96, 97], and BECs

were observed with rubidium vapor [98], sodium [99], and lithium gases [100] soon

after. In these experiments a cloud of rubidium vapor was held in a magnetic trap and

cooled using a combination of laser cooling and evaporative cooling, to a temperature

of about 170 nK. By analyzing the momentum distribution of the particles (Fig.

2.14) and calculating the fraction of particles in the ground state (Fig. 2.13), they

determined that a Bose-Einstein condensate had formed. More recently, BECs of

larger atoms such as Chromium [101] and Dysprosium [102] have been created, and

the list continues to grow. While there are now a multitude of phases and phenomena

being investigated with cold atomic gases, there is no doubt that its birth from a clear

and stunning observation of Bose-Einstein statistics quickly put the field of ultracold

atoms on the map.
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Figure 2.13: The fractional occupation of the single-particle ground state, N0/N .
This quantity serves as the order parameter for the phase transition from a gas
to a Bose-Einstein condensate. This second-order transition occurs at the criti-
cal temperature T = TC , and in the vicinity of TC this quantity takes the form
N0/N ' (1− T/TC)ε, where the critical exponent ε = 1/2.

Figure 2.14: The momentum distribution of a Bose-Einstein condensate, above and
below the transition temperature. As the temperature is lowered below TC , macro-
scopic occupation of the lowest momentum state occurs. This results in a sharp peak
at the center of the momentum distribution, and is evidence of the growing occupation
of the ground state.
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2.3.1 Optical lattices

The first cold atom experiments used magnetic fields from sets of Helmholtz coils to

create the magnetic field gradients needed to spatially trap the electrically neutral

atoms. A drawback of these magnetic traps is that magnetic field induces a Zeeman

splitting between of the degenerate spin states, and so the trapped gas is typically

spin-polarized, with all spin-dynamics frozen out. The development of optical trap-

ping, which uses lasers to create the confining potential, was required to observe

magnetic phenomena. Optical trapping, as shown in Fig. 2.15, allows the observa-

tion of spin dynamics through Stern-Gerlach measurements made on the condensate

cloud [65]. These additional spin degrees of freedom quickly inspired new theoretical

descriptions of the BEC gas in which spin-dynamics were included. The pioneering

work of Ohmi and Machida [103] and Tin-Lun Ho [104] led to a wide study of these

spinor condensates, where the spin structure of the BEC were examined. Theoretical

predictions of spin ordering and topological spin textures have since been experi-

mentally observed [105, 106], and spinor condensates have since been used to study

topological knots found in the order parameter of a nematic spinor condensate [107].

One of the primary developments was that interfering lasers could produce a

periodic potential which could trap atoms via the AC Stark effect [65]. By using

multiple lasers, the periodic potential could be made to resemble the periodic potential

felt by electrons in a crystal lattice. This setup became known as an optical lattice,

and it was soon after discovered that atoms in an optical lattice approximately obey

the Hubbard model [58, 67]. This demonstrated that cold atoms in optical lattices

could be used to simulate the physics of electrons in solids [108]. Due to their artificial

nature, experimenters possess a high degree of control over the microscopic parameters

in these systems [109]. The lattice spacing, geometry, and depth can be controlled by

adjusting the laser parameters, the particle statistics can be chosen by using either
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Figure 2.15: Trapping mechanisms used to study cold atomic gases. A harmonic
magnetic trap is used to confine the atoms within a vacuum, while optical lasers are
used to cool the atoms via Doppler cooling. Additional lasers are used to create an
optical lattice, which confines the atoms to a periodic lattice potential.

fermionic or bosonic atoms, and the interaction strength between the atoms can even

be tuned from repulsive to attractive using Feshbach Resonance. This incredible

tunability allows experimentalists to fluidly explore the parameter space of the cold

atom systems in many ways which are unique to the field.

For instance, to construct a one-dimensional optical lattice two counter-

propagating lasers are used to construct a standing wave. For propagation along the

x axis, we may write the electric field for these two waves as E±(x, t) = E0e±i(kx−ωLt).

For neutral atoms coupled to a weak laser field, the leading order interaction will

have the dipole form Ĥdip = −d̂ · Ê, where d is the electric dipole moment oper-

ator for the atom. This operator has only off-diagonal elements in the basis of the

atomic eigenstates, 〈ei| d̂ |ej〉, and the laser induces transitions between these coupled

atomic states. If the laser frequency ωL is tuned near a transition between a ground

state |g〉 and an excited state |e〉, which differ in energy by an amount ~ωe, then

the system will undergo Rabi oscillations at the frequency Ω ∝ E(x) 〈e| dz |g〉, where

E(x) is the time-averaged electric field. Using the rotating frame approximation, we

move to a frame rotating at the laser frequency ωL and eliminate the counter-rotating
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Figure 2.16: Energy structure of a two-level atomic system, which which is optically
coupled to an oscillating electric field of frequency ωL. State |g〉 is the electronic
ground state of the atom, while |e〉 is the first excited state, and is separated by an
energy ~ωe. For the alkali atoms shown in Tab. 2.1, the laser detuning δ must be
large enough to prevent sizable occupation of the excited state, which allows for an
effective description in terms of the ground state. The detuning may be considered
either “blue” or “red”, depending whether the laser energy is greater or less than the
atomic transition frequency, respectively.

modes oscillating at ωL + ωe, while keeping modes which oscillate at the laser detun-

ing δ ≡ ωL − ωe, as shown in Fig. 2.16. If the laser detuning is small compared

to ωL, this approximation will be valid. For a low-amplitude laser, such that |E| is

small, the laser detuning will be large compared to the Rabi frequency δ > Ω. At

low saturation, the occupancy of the excited state will be small, and we can adiabat-

ically eliminate that state with second-order perturbation theory, leaving behind an

effective interaction for the ground state |g〉.

The effective ground state interaction takes the form Veff(x) ∝ |E|2cos2(kx)/δ,

such that it depends on the square of the laser amplitude, and exhibits a periodicity

of half the laser wavelength λ/2. The effective force from this potential is Fdip =

−∇xVeff(x), and so spatial variations in the amplitude of the time-averaged standing

wave creates an effective restoring force pointing towards the nodes or anti-nodes

in the case of blue-detuned (δ > 0) or red-detuned (δ < 0) light, respectively. It

is worth mentioning that the scattering rate from the trap varies as Γ ∝ |E|2/δ2,
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23Na 87Rb

nS-nP, ωe 508 THz (590 nm) 382 THz (785 nm)

Spin-orbit 0.52 THz 6.8 THz

Hyperfine 1.8 GHz 6.8 GHz

nS-nP linewidth 2 π× 10 MHz 2 π× 6 MHz

Lattice scattering 9.9 mHz 0.5 mHz

Table 2.1: Atomic energy scales for two species of alkali atoms. These energies are
used to calculate laser parameters needed to trap the atoms in an optical lattice, as
discussed in Fig. 2.16. The optical lattice frequencies ωL are tuned relative to the
transition frequency between the highest occupied S orbital and the lowest unoccupied
P orbital on the same shell. The detuning δ must be larger than both the spin-orbit
and hyperfine splitting to produce degenerate angular momentum states in the lattice.
The laser detuning and transition linewidth dictate the scattering rate of atoms out
of the trap, which puts an upper-bound on the lifetime of cold atoms experiments.

and so it is advantageous to make the detuning as large as possible, while keeping

it much smaller than the transition frequency ωe. Approximate energies for two

of the standard alkali species, sodium and rubidium, are shown in Tab. 2.1. By

introducing additional lasers, a variety of lattice geometries and dimensionalities can

be constructed, including two dimensional frustrated lattices such as triangular and

kagome lattices [54, 110, 111].

For a low-temperature atomic gas in an optical lattice with a large trapping po-

tential Veff and weak interparticle interactions, the atoms remain in the the lowest

Bloch band. In this scenario, we may approximate the minima of the trap at site

i as harmonic potentials Vi(x) ∼ U(x − xi)
2. Furthermore, we may expand these

Bloch waves in terms of Wannier functions, which are each spatially localized around

a particular lattice site. This transformation gives a description which takes the form

of a Hubbard Model (Eq. 2.1). By varying the trapping potential U , the atoms can

be taken from the nearly-free electron limit to the tight-binding limit. In bosonic

systems, this transition is called the Mott-superfluid transition and its observation

was a hallmark achievement in the quest to model solid state physics using cold atoms
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Figure 2.17: In an optical lattice, neutral atoms are trapped in the periodic wells
of the laser potential via the AC Stark Shift. At low temperatures, the atoms in
each potential well are approximated by a 3D harmonic oscillator. When the kinetic
degrees of freedom have been frozen out, the remaining interaction is an effective spin-
spin interaction. A ferromagnetic state is shown, but a multitude of the magnetic
phases found in solid state systems are possible, as well as many phases which may
be unique to cold atom systems.

[57]. Furthermore, since the optical lattice preserves spin degeneracy, interactions at

sufficiently low temperatures take place solely in the form of magnetic interactions,

resulting in an effective spin model. This includes the ability to simulate the Heisen-

berg Model and its phases, both classical—as depicted in Fig. 2.17—and exotic, such

as spin liquids.

2.3.2 Quantum magnetism with ultracold atoms

A major challenge in using cold atoms to simulate magnetic models such as the

Heisenberg Model, has been reaching the extremely low temperatures required. This

is because to observe magnetic order, the thermal energy must be much smaller than
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the superexchange energy (kbT << J), and so a very low entropy-per-particle (S/N)

must be achieved to see the appearance of Néel ordering in these systems. With

laser cooling followed by evaporative cooling, cold gases may be brought to approx-

imately S/N ∼ 1kB, [112]. Although this entropy-per-particle is low enough to ob-

serve Bose-Einstein condensation [98] and degeneracy in a Fermi gas [113], it is above

the scale at which magnetic superexchange interactions are expected to dominate,

S/N ∼ 0.35kB, [55]. However, recent experimental advances in cooling have greatly

reduced the accessible entropy [112, 114–116], and allowed successful demonstration

of antiferromagnetic behavior [117, 118]. Coupled with the site-resolved imaging [64],

there is a growing class of magnetic systems to create and probe. It is therefore the

opportune time for theorists to explore the space of accessible phases, and help guide

experimentalists towards unexpected findings.

Thus far, most theoretical studies of spin liquid states in cold atom systems have

focused on fermionic systems with enhanced rotational symmetry [77, 79]. Therefore,

the models being used are more symmetric than the minimal SU(2) spin symmetry

required by nature, and so spin liquid states in these systems are by nature highly

symmetric. This enhanced symmetry may be a topological symmetry [119], or it may

result from a decoupling of orbital and nuclear spins in systems of alkali-earth metal

atoms [84]. The latter case produces SU(N) symmetric models, where N = 2S + 1

and S is the nuclear spin. It has been proposed that these SU(N) symmetric systems

can be used to simulate several interesting phases, such as transition metal oxides,

heavy-fermion materials, and spin liquids [83]. While enhanced symmetry is helpful,

it is not necessary to create a QSL using ultracold atoms. Therefore, we believe that

it is worthwhile to study emergent QSL behavior in models possessing only generic

SU(2) symmetry.

Large spin fluctuations are necessary to stabilize entangled magnetic phases such

as VBCs and QSLs. In solid state systems this requires the spin on each site be
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Figure 2.18: A comparison of the whole-atom exchange and superexchange mecha-
nisms in cold atoms and solid state. For atomic gases optically confined to the Mott
state (top), the exchange of whole spin-f atoms leads to magnetic fluctuations on the
order of 2f . In the solid state by contrast (bottom), electron superexchange restricts
fluctuations to order ∼ 1, which can be small compared to the total spin on each site.
Therefore, large-spin atoms are an ideal tool with which to study fluctuation-driven
states—especially those which are not readily accessible with solid state systems.

as small as possible, because the spin−1/2 valence electrons mediate the exchange

interactions [120]. Through an exchange of electrons on neighboring sites, the total

spin projection on each site m can only change by an amount ∆m = ±1, so for spin

f = 1/2 systems the relative change in spin reaches the maximum possible value,

∆m/f = ±2. For large values of the spin f on each site, ∆m remains unchanged.

This is because the exchange is still mediated by a single spin-1/2 electron, and

so the relative change ∆m/f decreases with increasing f . In cold atom systems,

whole atoms hop between the lattice sites to mediate exchange interactions [68], in

a process called whole-atom exchange. This allows a change in spin of ∆m = ±2f ,

and so ∆m/f = ±2 for all values of f , and does not disappear at large spin. In

cold atoms, large-spin systems may have the necessary fluctuations to possess spin

liquid phases. The contrast between electron superexchange in a solid state system

and whole-atom exchange in an optical lattice is shown pictorially in Fig. 2.18.
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Chapter 3: A Spin Model for Ultracold

Bosons

3.1 The Bose-Hubbard model

We begin with the continuum Hamiltonian for a dilute gas of spin-f bosons with spin-

dependent interactions. This Hamiltonian may be written Ĥ = Ĥ1 + Ĥ2, where Ĥ1

denotes the single-particle energy, and Ĥ2 denotes the two-particle interaction energy.

The single-particle Hamiltonian,

Ĥ1 =

f∑
m=−f

∫
dr ψ̂†m(r)

[
−~2∇2

2M
+ Ulat(r)

]
ψ̂m(r), (3.1)

contains the kinetic and potential energy of the mass M atoms, written in terms

of field operators ψ̂†m(r)/ψ̂m(r), which create/annihilate spin-f bosons with hyperfine

spin projection m at position r. These field operators obey typical bosonic commu-

tation relations,

[ψ̂m(r), ψ̂†m′(ri)] = δ(r− r′)δm,m′ , (3.2)

and

[ψ̂m(r), ψ̂m′(r
′)] = 0. (3.3)

The potential energy associated with the presence of the optical lattice takes the form

Ulat(x, y) = Vtrap(sin2[kx] + sin2[ky]) for a square lattice, where Vtrap is the depth of

the optical lattice and is proportional to the laser intensity, while k is the wavevector

of the lattice laser—as described in Subsec. 2.3.1.
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23Na 87Rb

Thermal de Broglie 37.3 µm 19.2 µm

Lattice wavelength 514 nm 514 nm

Lattice constant 257 nm 257 nm

Lattice SHO width 387 Å 409 Å

Scattering Length, a0 26.4 Å 46.3 Å

van der Waal’s radius 2.3 Å 3.0 Å

Table 3.1: Relevant length scales for two commonly used alkali atoms in an optical
lattice at T = 300 pK. At these ultracold temperatures, the thermal de Broglie
wavelength is much larger than the van der Waal’s radius of their interaction potential.
This results in an effective contact interaction, characterized by the s-wave scattering
length a0 at low energies. Since a0 is much smaller than the lattice constant only
onsite interactions are relevant.

For neutral atoms, the interaction energy takes the form of a Lennard-Jones po-

tential. However, in the ultracold limit the thermal de Broglie wavelength of the

atoms at temperature T ,

λ =
h√

2kBMT
, (3.4)

is longer than the characteristic length of their interaction potential, as shown in Tab.

3.1, which provides a comparison of relevant length scales. In this case, the two-body

interaction is effectively a contact interaction dependent on the combined spin F of

the two colliding atoms, given by v(r, r′) = gF δ(r − r′). The coupling constant gF

can be determined by applying the Born Approximation to first order [121], and is

given by

gF =
4π~2

M
aF , (3.5)

where aF is the s-wave scattering length of the spin-F scattering channel, and corre-

sponds to the low-energy (l = 0) term in the partial wave expansion of the scattered

wavefunction. These scattering lengths are shown in Tab. 3.2 for several commonly
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Atomic Species Scattering Lengths (units of Bohr radii, aB ∼ 0.53Å)

Isotope f a0 a2 a4 a6 Source

23Na 1 50.0± 1.6 55.0± 1.7 [122]

87Rb 2 87.4± 1.0 92.4± 1.0 100.5± 1.0 [123, 124]

52Cr 3 40± 10 −7± 20 58± 6 102.5± 0.4 [125–127]

164Dy 8 92± 8 N/A [102]

Table 3.2: S-wave scattering lengths for several commonly used bosonic isotopes.
These values are determined by comparing multi-channel scattering calculations with
experimental measurements of collisional dynamics and magnetic Feshbach resonances
[127–129]. They include short-ranged isotropic contributions from magnetic DDIs, in
addition to electronic Born-Oppenheimer molecular potentials [130, 131]. For 52Cr
and 164Dy—which have large dipole moments—the scattering lengths vary greatly
across different spin channels, and reliable values are difficult to extract by these
methods. For alkali atoms on the other hand, the scattering lengths are are known
to high accuracy, and roughly the same through each channel

used atoms. We note that the natural decoupling of the interaction into total angular

momentum channels, each parametrized by a scattering length aF , arises from the

rotational symmetry of the low-energy interaction, which conserves the total angular

momentum of two bosons during a collision [104].

With these considerations, the spin-dependent two-particle interaction energy,

Ĥ2 =
1

2

∑
F,M

gF

∫
dr Â†FM(r)ÂFM(r), (3.6)

is written in terms of the operators A†FM/AFM which create/annihilate a pair of atoms

with total spin F and projection M. These operators are related to the field operators

ψ̂†m(r) through the Clebsch-Gordan coefficients as follows,

Â†FM(r) =
∑
m,m′

〈f,m; f,m′|F,M〉 ψ̂†m(r)ψ̂†m′(r) (3.7)

Furthermore, from the symmetry of the Clebsch-Gordan coefficients (see App. B.1)
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and the commutation relations of the bosonic field operators, we find that Â†FM(r) = 0

for odd values of F. Therefore, scattering only occurs through even spin channels.

Throughout this work, all sums over F imply a sum over the even channels F =

0, 2, 4 . . . only, unless otherwise specified.

In the presence of the periodic optical lattice potential, the single-particle wave-

functions will take the form of Bloch waves. Since we wish to describe insulating

magnetic states, it is convenient in the tight-binding limit to use wavefunctions which

are localized around each site. A common choice for these functions are the Wan-

nier functions, which are real, orthogonal functions constructed from the Bloch waves

and centered around each lattice site. These are the optimal basis to use when the

thermal energy is small compared to the lattice depth (kBT << Vtrap). In this case,

the atoms become kinetically trapped—residing at the bottom of the potential well

of each lattice site—though tunnelling between sites may still occur. For example,

for 87Rb at 300 pK, we have a thermal energy of kBT/h ∼ 6.25 Hz. If an opti-

cal lattice of wavelength λlat = 514 nm creates a periodic potential of amplitude

Vtrap ∼ 16ER = 16 ~2k2lat/2M ∼ 142 kHz, then the atoms will be kinetically trapped.

When we consider the dynamics of atoms confined to the isolated potential minima

of each lattice site, we may Taylor expand to second order and treat every minima

as a spherically symmetric simple harmonic oscillator (SHO) potential. In this case,

the Wannier functions may be approximated by 3D SHO eigenstates centered around

each lattice site. Additionally, if the thermal energy is small compared to the spacing

between the SHO energy levels (kBT << ~ωtrap, with ωtrap =
√

2Vtrapk2/M ∼ 2π ×

24.6 MHz, as shown in Tab. 3.6) then we may assume that only the ground state

mode of the oscillator to be occupied. With these considerations, we expand our field

operators using

ψ̂†m(r) =
∑
i

Φ(r− ri) b̂
†
i,m, (3.8)

where the operator b̂†i,m(b̂i,m) creates(annihilates) a spin-f bosonic atom on site i and
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with magnetic hyperfine projection m, and Φ(r − ri) is the wavefunction centered

around site i. For the ground state of a 3D SHO we have Φ(r) = φ(x)φ(y)φ(z), where

φ(x) =

(
Mωtrap

π~

) 1
4

e−
Mωtrapx

2

2~ , (3.9)

for each of the Cartesian coordinates.

When Eq. 3.8 is inserted into the continuum Hamiltonian of Eqs. 3.1 and 3.6,

the result is a tight-binding Hamiltonian where the interaction between particles

on different sites is directly proportional to the overlap of their single-particle wave

functions. We obtain

Ĥ = −
∑
i,j

ti,j b̂
†
i,mb̂j,m +

1

2

∑
FM

gF
∑
i,j,k,l

Ui,j,k,lÂ
FM†
i,j ÂFMk,l , (3.10)

where ti,j = thop
i,j +overlap

i,j comes from the single-particle term (Eq. 3.1), with

thop
i,j =

∫
dr Φ∗(r− ri)

(
~2∇2

2M

)
Φ(r− rj) (3.11)

and

toverlap
i,j = Vtrap

∫
dr Φ∗(r− ri)

[
sin2(kx) + sin2(ky) + sin2(kz)

]
Φ(r− rj), (3.12)

while the interaction term (Eq. 3.6) gives

Ui,j,k,l =

∫
dr Φ(r− ri)Φ(r− rj)Φ

∗(r− rk)Φ
∗(r− rl). (3.13)

For these parameters, the leading order contribution is typically several orders

of magnitude larger ( & 6) than the next-leading order, and so we retain only the

dominant contributions from each. For example, the leading-order term for toverlap
i,j is

the on site term toverlap
i,i , and results in spatially-uniform shift to the chemical potential.
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Figure 3.1: A schematic mean field phase diagram for the scalar Bose-Hubbard model,
in which the interactions are spin independent. By tuning the optical lattice depth,
the ratio t/U may be varied, and the system moves between the Mott insulator and
superfluid phases—a feature of the model which was first proposed [132], and then
successfully observed experimentally for the first time using ultracold atoms [57]. For
spin-dependent interactions, one may assume a similar phase diagram, but with rich
spin structure as a function of the different scattering lengths aF .

In the one-particle-per-site limit this overall shift may simply be ignored. For the

hopping term thop
i,j , the on-site contribution is zero, while all hopping beyond nearest

neighbors is subdominant, and so we retain only nearest-neighbor hopping (t ≡ ti,j

if i and j are nearest-neighbors). While for the interaction energy the on-site term

Ui,i,i,i dominant, and so off-site interactions may be neglected (U ≡ Ui,i,i,i)—which is

to be expected from an effective contact interaction.

After dropping all sub-dominant and trivial terms, we obtain a form of the spin-f

Bose-Hubbard model [67, 132, 133] with spin-dependent interactions. This is given

by

ĤBH = −t
∑
<i,j>

f∑
m=−f

(b̂†i,mb̂j,m + H. c.) + U
∑
i

2f∑
F=0,2,...

gF P̂
F
i , (3.14)

where i ranges over all N lattice sites, and < i, j > denotes a sum over all distinct
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nearest-neighbor pairs. The on-site interaction is written in terms of projection oper-

ators P̂ F
i =

∑
M=−F,...,F |F,M〉ii〈F,M |, which project the two-particle states on site

i into the subspace, with total angular momentum F .

By manipulation of the optical lattice depth (Vtrap), it is possible to tune the

ratio U/t from Eq. 3.14. For small U/t the system behaves as an atomic superfluid

where the atoms are allowed to hop freely around the lattice. The wavefunctions of

the superfluid atoms are therefore spatially extended throughout the lattice and are

all at the k = 0 point of the lowest Bloch band. This may be written as |SF 〉 =

(b̂†k=0)N |0〉. On the other hand, for large U/t the system is a Mott insulator, with

atoms kinetically trapped on each lattice site. The wavefunction for this phase may

be written |MI〉 =
∏

i(b̂
†
i )
n |0〉. By tuning the lattice depth alone, the system can

be taken back and forth between these two phases. This allows experimentalists

to explore a large region of the systems parameter space. The phase diagram for

a spinless system has been understood theoretically [67, 132] (as shown in Fig. 3.1)

and features such as the Mott-superfluid transition have been observed experimentally

[57].

3.2 Deriving an effective spin model

With spin-dependent interactions, we anticipate that the Mott insulating lobes of Fig.

3.1 contain various spin orderings and phases. To determine these phases we require

a description of the Mott limit, where the kinetic energy is completely quenched

relative to the on-site repulsion (t << U). This allows for a perturbative expansion

of Eq. 3.14 to second order in t/U . In this case, the unperturbed Hamiltonian is

Ĥ0 = U
∑

i

∑
FM gF P̂

F
i . If we take Natoms = Nsites, then the ground state will be

the one-particle-per-site Mott insulating state with an energy E = 0. A state with a

single doubly-occupied site will be higher in energy with E = UgF . The perturbation
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Atom f Vtrap

ER
ΘFesh

g2

g0

Ug0

t
t

Edip

4t2/Ug0

Edip

23Na 1 12 0 1.10 42.5 112 10.6

87Rb 2 11 0 1.06 33.6 67.6 2.91

52Cr 3 10 0 0.175 17.2 12.00 2.78

Table 3.3: Ratios of lattice and interaction energy scales for particular lattice depths,
in the absence of any Feshbach-tuned scattering. The lattice depths are chosen to
satisfy Ug0 > t > Edip and 4t2

Ug0
> Edip, which are required for Eqs. 3.14 and 3.19 to

be valid.

Ĥ ′ = −t
∑

<i,j>

∑f
m=−f (b̂

†
i,mb̂j,m + H. c.) connects the ground state and first excited

state manifolds. We then find the effective two-site Hamiltonian in the Mott sector

to be

Ĥ = −4t2

U

∑
FM

1

gF

∑
m,m′

n,n′

CFM
m,m′C

FM
n,n′ |m,m′〉 〈n, n′| (3.15)

at second order, where |m,m′〉 represents a state where the two atoms on nearest-

neighbor sites i and j have hyperfine spin projections m and m′. Finally, to put this

in the common form (cf. [62, 72]) we write it in terms of the total spin projection

operators P̂ F
i,j, giving

Ĥ = −J
∑
<i,j>

∑
FM

1

gF
|F,M〉 〈F,M | = −J

∑
<i,j>

∑
F

1

gF
P̂ F
i,j, (3.16)

where J = 4t2/U sets the exchange energy J/gF through each channel, and the

projection operator P̂ F
i,j now projects two sites i and j into total angular momentum

state F . The kinetic, potential, and exchange energies (t, U and J) are calculated for

various trap depths and plotted in Fig. 3.2, to determine the validity of our effective

model, Eq. 3.15. A suitable choice of lattice depth, and the resulting energies, are

shown for f = 1, 2, 3 atoms in Tab. 3.3.

At this point, one commonly re-expresses the P̂ F
i,j operators of Eq. 3.16 in terms of

39



(a) (b)

Figure 3.2: (a) The magnitude of t and UgF from Eq. 3.14, as calculated from Eqs.
3.11 and 3.13. (b) The magnitude of the exchange interactions from Eq. 3.19. These
are shown in comparison to the nearest-neighbor dipole-dipole interaction, and as a
function of lattice depth Vtrap for f = 1 23Na atoms. For our description to be valid,

we require that Ug0 > t > Edip and 4t2

Ug0
> Edip, which from these plots can be seen

to occur for Vtrap/Erecoil ∼ 5–15, well within experimental limits.

a polynomial in the Heisenberg coupling Ŝi · Ŝj, or with tensor operators of increasing

rank. For example, in terms of spin operators we may write

Ĥ =
∑
<i,j>

nmax=2f∑
n=0

cn(Ŝi · Ŝj)n, (3.17)

where successively higher powers of Ŝi · Ŝj are introduced for larger hyperfine spin f .

For a spin-1/2 system, where nmax = 1, Eq. 3.17 simply recovers the Heisenberg model

of Eq. 2.2. For a spin-1 system, where nmax = 2, we obtain the bilinear-biquadratic

Heisenberg model, which has a long history of study for 1D antiferromagnetic chains

[134–139], and has been looked at more recently on higher-dimensional lattices [140,

141]. It has also previously been studied in the context of spin-f cold atoms [62, 142–

144]. In all cases, a competition between nematic order and dimerization is predicted.

We show in Chap. 4 that this competition occurs at larger f as well.

While expansions in terms of Heisenberg couplings have been successful for low-

spin systems, these methods do not move fluidly from one spin f to another, since one

must continually introduce new terms in the Hamiltonian upon increasing the spin.
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Previous schemes overcome this difficulty by describing the terms as stereographic

projections of polyhedra of increasing order [145, 146]. In this work, we instead

proceed by returning our Hamiltonian to the formalism of second quantization.

To return Eq. 3.16 to second quantization we write the projection operators as

P̂ F
i,j =

∑
M ÂFM†i,j ÂFMi,j , where the ÂFM†i,j (ÂFMi,j ) pair operators create(annihilate) a pair

of bosons on sites i and j in total angular momentum state |F,M〉, which in analogy

with Eq. 3.7 are given by

ÂFMi,j =
∑
m,n

CFM
m,n b̂i,mb̂j,n (3.18)

in terms of the boson operators b̂†im(b̂im). With these considerations in mind, we write

our spin Hamiltonian in second quantization as

Ĥspin = −J
∑
<i,j>

∑
F,M

1

gF
ÂFM†i,j ÂFMi,j . (3.19)

In this form, to describe a system with a given atomic hyperfine spin f , one simply

calculates the Clebsch-Gordan coefficients through the even-F pairing channels, up

to 2f . The straightforward calculation of these coefficients then provides for a much

simpler study at large f .

The presence of the Clebsch-Gordan coefficients CFM
m,n = 〈f,m; f, n|F,M〉 in Eq.

3.18 ensures that the pair operators ÂFMi,j rotate irreducibly as an object with angular

momentum F under SU(2) spin rotations. However, despite rotating like particles

with a well defined angular momentum, these operators do not have the commutation

relations of particles (either fermionic or bosonic), and therefore the two atoms created

by this operator do not represent a bound molecular state. We find that for two bonds
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i—j and k—l the commutation relations are

[
ÂFMi,j , Â

F ′M ′†
k,l

]
=


δF,F ′δM,M ′ , for i—j = k—l

0, for i—j 6= k—l,

(3.20)

but for bonds which share only a single site (in this case we choose i = k and j 6= l)

we have [
AFMi,j , A

F ′M ′†
k,l

]
= CFM

m,m′C
F ′M ′

m,n′ δk,ib
†
l,n′bj,m′ . (3.21)

This prevents us from a description where the |FM〉 states represent fundamental

spins defined on the bonds of the lattice.

Another important property of the ÂFMi,j is that since CFM
m,m′ = 0 unless m+m′ =

M , the ÂFMi,j operators only couple neighboring spins when this condition is met. So

for example, ÂF0 operators will only couple spins with m′ = −m, and the Â2f,2f

operators will only couple spins of m = m′ = f . Therefore, terms in Eq. 3.19 with

|M | = 2f describe ferromagnetic interactions, while terms with M = 0 describe

antiferromagnetic interactions.

3.3 Tuning interactions with optical Feshbach res-

onance

A primary attraction of studying cold atom systems, is the possibility of tuning inter-

particle interactions. While the exchange energy J from Eq. 3.19 may be controlled

by tuning the optical lattice depth, to fully explore the phase diagram we require

at least some control of the scattering lengths aF , and hence the coupling constants

gF . Historically, magnetic Feshbach resonances [147–155] have been used to tune the

scattering-length by coupling an open scattering channel with the close-channel of

a molecular bound state. Unfortunately, the magnetic field used in this technique
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leads to strong Zeeman splitting and the subsequent freezing of the spin dynamics,

effectively resulting in a scalar Bose gas, as shown in Fig. 3.1.

Rather, to retain the hyperfine spin dynamics, a wide range of light-induced tuning

methods—generally referred to as optical Feshbach resonances—have been proposed

and demonstrated for many different atomic species [156–182]. A schematic diagram

of the energy levels involved in this process are shown in Fig. 3.3. The effect of these

techniques depends on the nature of the particular molecular state which is being

optically coupled to the incident scattering channel. In this section, we follow the

proposal of Ref. [176] to produce a shift in the scattering length which is dependent

on the total spin F .

To achieve the spin-dependent tuning that we seek, we consider an OFR between

pairs of atoms by shining a laser tuned near a transition to an excited molecular

state, labeled by orbital angular momentum L = 1, electronic spin S = 0, and total

electronic angular momentum J = 1 (see Fig. 3.4). The nuclear angular momentum

is not relevant so long as the detuning of the laser is large compared to the hyperfine

splitting (see Eq. 3.4). In the cold collision limit the rotational angular momentum

of the nuclei vanishes (R = 0) and so we may neglect rotation induced energy split-

tings of the molecular bound states. Since the incident atoms are chosen to have no

total orbital angular momentum, the only allowed optical transitions are to a L = 1

molecular state.

The Hamiltonian for the relevant electronic and nuclear degrees of freedom in-

volved in this process may be written in the form

ĤFesh = Ĥatom + Ĥmol + ĤInt, (3.22)

where since the effects of an optical Feshbach resonance are local, we have dropped

spatial indices from the bosonic operators. The atomic contribution consists of the
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Figure 3.3: A schematic of optical Feshbach resonance. Two alkali atoms in the nS1/2

ground state are coupled to a bound molecular state (of which there are many, each
with differing spin and/or vibrational/rotational quantum numbers) through the use
of a photoassociation laser. If the laser detuning δPA is large compared to the splitting
of these molecular bound states, then photo-induced occupation of the molecular state
will be small. The result is an effective shift in the scattering lengths of the ground
state atoms. Additionally, since coupling to the molecular state depends on the total
electronic angular momentum of the colliding atoms, and since the projections of
different electronic states into the hyperfine basis are not equal, the shift through
each spin channel will be different, resulting in the form of Eq. 3.28.
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hyperfine coupling of the nuclear and electronic angular momentum, which is given

by

Ĥatom = EHF
∑
mj ,m

′
j

mi,m
′
i

(Ĵ)mj ,m′j · (Î)mi,m′i b̂
†
mj ,mi

b̂m′j ,m′i , (3.23)

where EHF is the atomic hyperfine coupling constant, Ĵ is the total electronic angular

momentum operator, Î is the total nuclear angular momentum operator, and b̂ms,mi

annihilates a boson in the state |ms,mi〉.

The molecular Hamiltonian Ĥmol models the binding energy of the molecule, and

is given by

Ĥmol = EB
∑
mi,m′i

B̂†mi,m′i
B̂mi,m′i

, (3.24)

where B̂†mi,m′i
creates a molecule with an electronic spin S = 0 and electronic orbital

angular momentum J = 1. If the quantization axis of the electronic orbital angular

momentum J is chosen in the same direction as the Feshbach laser’s angular momen-

tum, then only one of the molecular states in the J = 1 triplet is coupled via the

laser to the atomic singlet (such that ∆MJ = ±1). We denote the binding energy of

one of these molecular states by EB.

Finally, the Feshbach interaction term ĤInt coupling between the unbound atoms

and the molecular bound state induced by the photoassociation laser. This photo-

induced molecular formation is modeled with the dipole approximation, and couples

incident circularly polarized light with the atoms. After applying the rotating wave

approximation to this description we obtain

ĤInt =
∑
mi,m′i

Ω e−iωPAt B̂†mi,m′i

(
b̂ 1

2
,mi
b̂− 1

2
,m′i
− b̂− 1

2
,mi
b̂ 1

2
,m′i√

2

)
+ H. c. (3.25)

where ωPA is the angular frequency of the photoassociation laser which induces the

molecule formation, and the term in parenthesis destroys an atomic pair with S = 1
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Figure 3.4: An example of some energy scales relevant to the optical Feshbach
resonance proposed in Sec. 3.3. For alkali atoms, the photoassociation laser couples
the L = 0, S = 0 ground state to the L = 1, S = 0 excited state. If the laser detuning
δPA is large compared to the molecular and atomic hyperfine splitting, then different
hyperfine states will not be resolved during this photoassociation, and so the process
is independent of the nuclear spin.

and L = 0, while the nuclear spins remain arbitrary. The generalized Rabi frequency

Ω is proportional to the square of the dipole-transition matrix element between the

atomic and molecular states and the laser intensity, and is thus a tunable parameter.

The detuning between the laser energy and molecular binding energy is defined

δPA ≡ ~ωPA − Eb, and plays a crucial role in the analysis of this perturbation.

Mainly, for large detuning the stimulated occupation of the molecular state will re-

main small. Then, following [176], we may adiabatically eliminate the molecular

state using second-order perturbation theory to obtain an effective interaction for the

atoms, which gives

ĤFesh = − Ω2

δPA

∑
mi,m′i

(
b̂ 1

2
,mi
b̂− 1

2
,m′i
− b̂− 1

2
,mi
b̂ 1

2
,m′i√

2

)†(
b̂ 1

2
,mi
b̂− 1

2
,m′i
− b̂− 1

2
,mi
b̂ 1

2
,m′i√

2

)
.

(3.26)

If the overall chemical potential is chosen such that only a single hyperfine eigenstate
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is occupied, we may project the operators b̂†mj ,mi into the hyperfine basis and retain

only terms that lie within the appropriate hyperfine sector.

By projecting Eq. 3.26 into the total hyperfine spin basis |F,M〉, we obtain

ĤFesh = − Ω2

δPA

∑
FM

αF Â
FM†
i,i ÂFMi,i , (3.27)

where coefficient αF is the square of the overlap between the electronic spin singlet

(S = 0) and the hyperfine state with total spin F [183]. As detailed in the App. F.1,

we find

αF =
(2f + 1)(f + 1)− F (F + 1)/2

2(i+ 1/2)2
(3.28)

for alkali atoms which have s = 1/2 and nuclear spin i > 0, while for 52Cr which has

l = i = 0 we find αF = δF,0, where δ is the Kronecker delta symbol. A plot of αF as a

function of F is shown in Fig. 3.5, where it is seen that αF decreases with increasing

F . In this way, the F = 0 channel will be affected the most by this form of optical

Feshbach resonance, while scattering through the F = 2f channel will be affected the

least.

Most importantly, since Eq. 3.27 takes the same form as the scattering interaction

from Eq. 3.14, we can absorb the effect of the optical Feshbach resonance by defining

a new scattering length aF , and hence a new coupling of

gF = g
(0)
F − αF

Ω2

UδPA

. (3.29)

where g
(0)
F now denotes the contribution from the background scattering lengths from

Tab. 3.2, which include on-site dipole-dipole interactions. From this we may define

a dimensionless parameter, which we call the Feshbach tuning

ΘFesh ≡
Ω2

δPA

1

U

M

4π~2aB
∝ Ω2

δPA

, (3.30)
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Figure 3.5: A plot of αF/α0 from Eq. 3.28 for alkali atoms as a function of F . Since
αF monotonically decreases with increasing F , the F = 0 channel will exhibit the
largest shift in scattering length for a given Feshbach tuning ΘFesh. For alkali atoms,
the background scattering lengths are roughly equal, which allows OFR tuning to
access the limit where g0 << gF 6=0, resulting in the effective singlet Hamiltonian of
Eq. 3.31.

which characterizes the shift in the scattering lengths in units of the Bohr radius aB.

The magnitude of this parameter may be manipulated by changing the intensity and

detuning of the Feshbach laser, while the sign may be changed by implementing either

“blue” (δPA > 0) or “red” (δPA < 0) detuning.

In particular, if we choose the Feshbach tuning ΘFesh such that a0 . aB, then since

αF forms an decreasing series with F we find that super-exchange (J = 4t2/UgF )

through the F = 0 channel will dominate over the other channels. In this case, the

ratio g0/gF 6=0 is small, and we may keep only the F = 0 channel from Eq. 3.19, giving

us an effective singlet Hamiltonian of

Ĥ00 = − 4t2

Ug0

∑
〈ij〉

Â00†
ij Â

00
ij , (3.31)

where Â00
ij =

∑
m(−1)mb̂i,mb̂j,−m/

√
2f + 1 annihilates a pair of bosons at sites i and j
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(a) (b)

Figure 3.6: Lattice and interaction energies, in the presence of an OFR which tunes
the scattering lengths such that a0 ∼ aB. This figure shows (a) the magnitude of t
and UgF from Eq. 3.14 and (b) the magnitude of the exchange interactions from Eq.
3.19 compared to the DDI as a function of lattice depth for 23Na, with a Feshbach
tuning of ΘFesh = 20. For Eq. 3.31 to be valid, we require that UgF > t > Edip and
4t2

Ug0
> 4t2

Ug2
, Edip. From these plots, this region is seen to occur for Vtrap/Erecoil ∼ 12–20,

which is within the range of experimental parameters.

in a hyperfine spin singlet. This Hamiltonian favors the formation of nearest-neighbor

singlets, and can lead to quantum spin liquid and resonating valence bond phases, as

discussed at length in Chaps. 4 and 5.

Atom f Vtrap

ER
ΘFesh

g2

g0

Ug0

t
t

Edip

4t2/Ug0

Edip

23Na 1 20 65 24.5 10.7 16.3 6.07

87Rb 2 16 45 8.23 8.72 10.85 4.97

52Cr 3 16.5 0.69 30.5 4.52 2.26 2.00

Table 3.4: Ratios of lattice and interaction energy scales for particular lattice depths,
with an optical Feshbach resonance tuning the scattering lengths such that a0 ∼ aB.
The lattice depths are chosen to satisfy UgF > t > Edip and 4t2

Ug0
> 4t2

Ug2
, Edip. We see

that even in the presence of a strong OFR, it is possible to choose parameters such
that our approximations used to obtain Eqs. 3.14, 3.19, and 3.31 remain valid.
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Parameter Symbol 23Na 87Rb

Mass M 22.99 amu 86.9 amu

Electron spin s 1/2 1/2

Orbital momentum l 0 0

Nuclear spin i 3/2 3/2

Hyperfine spin (possible) f 1, 2 1, 2

Hyperfine spin (chosen) f 1 2

Electron magnetic moment µj 1.73 µB

Nuclear magnetic moment µi 2.22 µN 2.75 µN

Lattice depth Vtrap/Erecoil 20 16

Feshbach tuning ΘFesh 65 45

Temperature T 300 pK

Magnetic field from Earth BEarth 25×10−6 T

Table 3.5: Experimental parameters used to calculate the lattice and interaction
energy scales of Tab. 3.6. The hyperfine spin manifolds are chosen for their stability
(see for example the discussion in Ref. [127]). The lattice depth and Feshbach
tuning are chosen to satisfy the conditions in Tab. 3.4. The temperature is chosen
to be towards the lower bound of achievable temperatures for Mott insulators (see
for example Ref. [116]). The upper-bound for any external magnetic fields used in
calculations.

3.4 A discussion of relevant energy scales

In this section, we discuss and summarize relevant energy scales for our cold atom

system, including possible perturbative effects which have been neglected. Tabs. 2.1

and 3.6 summarize these energy scales and are used as reference throughout this

section. In particular, it shows realistic choices of atoms, lattice depth, and Feshbach

tuning, for which the derivation of Eqs. 3.19 and 3.31 from Eq. 3.14 remain valid,

and for which we believe would take experimentalists closest to a physical realization

of the models predicted in Chaps. 4 and 5. The calculation for many of these energy

scales is presented in App. A.
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Energy Scale Symbol 23Na 87Rb Source

Electronic Zeeman energy µjBEarth 606 kHz Tab. 3.5

SHO frequency ωtrap 294 kHz 69.5 kHz Eq. A.1

Recoil energy Erecoil 32.8 kHz 8.29 kHz Eq. A.2

Nuclear Zeeman energy µiBEarth 423 Hz 524 Hz Tab. 3.5

Onsite interaction Ug0 435 Hz 119 Hz Eq. 3.13

Hopping energy t 17.7 Hz 14.4 Hz Eq. 3.11

Exchange interaction 4t2/Ug0 24.5 Hz 8.23 Hz Eqs. 3.13 & 3.11

Thermal energy kbT 6.25 Hz Tab. 3.5

Quadratic Zeeman shift q Zeeman 16.9 Hz 4.36 Hz Eq. A.3

Nearest-neighbor dipole Edip 2.22 Hz 1.81 Hz Eq. A.4

Quadratic AC Stark shift q Stark 1.4 Hz 0.44 Hz Eq. A.5

Inelastic scattering rate Γscatter 10 mHz 0.5 mHz Eq. A.6

Table 3.6: Atomic and lattice energy scales for an alkali gas trapped in an optical
lattice, in descending order of magnitude. Most parameters used in these calculations
are provided in Tabs. 2.1 and 3.5. We point out that the nearest-neighbor DDI and
the tensor light shifts from the photoassociation lasers are neglected in our treatment,
which is acceptable since they are the smallest energy scales in the problem, and down
by almost an order of magnitude from the exchange energy.
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In our derivations, we assume that there is no external magnetic field applied to

the system. However, for the study of low-energy magnetic phases even the Earth’s

magnetic field creates a linear Zeeman energy which in some cases is several orders

of magnitude larger than the lattice energies. This may be compensated for by

applying a slowly varying parabolic Magnetic field across the entire system. This

auxiliary field achieves two things. First, its magnitude and direction may be chosen

to effectively cancel the Earth’s magnetic field for a large region in the center of

the trap. Second, at the edges of the trap where the fields no longer cancel, the

field gradient acts as an additional confining potential, keeping the atoms centrally

located and preventing them from falling out the sides of the optical lattice. However,

if we confine our attention to the physics within the center of the trap, then we may

neglect the presence of this small and slowly-varying field. Additionally, the quadratic

Zeeman shift from the Earths field is negligible, and will be even more negligible when

an auxiliary field is used.

Inelastic scattering of atoms with the optical lattice can result in kinetically hot

atoms which escape from the trap. However, for blue detuned lattices of wavelength

λ = 530 nm, we find the scattering rate is O(mHz), while the lifetime of cold atoms

experiments is often 1s or less. Therefore, we expect scattering from the optical

lattice play no appreciable role in experimental realizations of our proposal.

A concern specific to the study of large spin gases is the presence of dipole-dipole

interactions (DDI), since the magnitude of the dipole energy grows as j2, where j is

the total electronic angular momentum. The contribution from the nuclear magnetic

moment is much smaller and may be neglected. The on-site dipole interaction is

absorbed into the background scattering lengths of Tab. 3.2, while the magnitude

of the long-range component goes as |ri − rj|−3. We find that the Feshbach tuning

scheme which we propose to produce Eq. 3.31 actually increases the strength of

exchange interaction relative to the nearest-neighbor dipole-dipole energy.
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With these considerations, we anticipate that the most straightforward applica-

tion of our model is to alkali systems. Those which are readily available for study

include F = 1 systems of 23Na and 87Rb, F = 2 systems of 87Rb. To use even

larger spins, experiments involving radioactive isotopes with lifetimes longer than

typical experimental cycles are also possible [127]. These include F = 3 systems of

135,137,139,141Cs, and F = 4 systems of 119Cs and 207,209,211,213Fr. These gases would

allow for increasing the hyperfine spin f , while keeping j = 1/2 and therefore a negli-

gible dipole moments. However, we do not rule out the use of atoms with large dipole

moments such as F = 3 52Cr or F = 7, 8 164Dy, since techniques for tuning both

their scattering lengths [178, 184–189] and their effective DDIs [190–192] have been

developed to some extent.

Furthermore, producing a tunable scattering length through optical Feshbach res-

onance may introduce other perturbative corrections to the effective model of Eq.

3.19. These include inelastic scattering losses and tensor light shifts—both arising

from the presence of the photoassociation laser. The inelastic scattering losses may

be captured in our model by modifying UδPA → UδPA + i ~Γ, where Γ is the natural

linewidth of the molecular state. Furthermore, the scattering rate Γscatter ∝ Γ/δ2
PA

[54], and so if the detuning is large compared to the natural linewidth, this type of

molecular decay can be neglected. Typical values for the detuning are ∼GHz while

the linewidth ∼100 MHz [160], and so this condition is met we may safely ignore this

effect. However, a drawback of using a large detuning is that to appreciably change

the scattering lengths (Eq. 3.29), a high intensity laser is required, and higher-order

terms in the AC stark shift—known as tensor light shifts—may be present. However,

these have been calculated following Ref. [193] and remain extremely small compared

to other relevant energy scales (see Tab. 3.6). These shifts are further minimized if

the laser detuning is larger than atomic hyperfine splitting [111]. Finally, there are

prospects of tuning these quadratic shifts—including the possibility of cancelling them
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completely—through the use of auxiliary microwave fields [193, 194]. Therefore, we

do not feel that inelastic scattering or tensor light shifts are needed for an accurate

description of our system as a Feshbach-tuned spin model (Eq. 3.19), and that this

model captures only the energetically relevant physics in a valid way.

3.5 The phase diagram predicted by spinor mean

field theory

We now conclude this chapter by examining the Hamiltonian of interest, Eq. 3.19,

using a common variational approach, where the trial states are spinor Bose-Einstein

condensate states of various symmetry. This method applies the techniques used for

BEC with spin-dependent interactions to a system of spinful bosons on a lattice. In

these cases, one assumes that the ground state wavefunction is a product state of

the spin states on each site—where the order parameter for the spin on each site

is a vector, known as a spinor, which spans the hyperfine projection space. This

method is able to capture ferromagnetic, antiferromagnetic, nematic, and higher-

order generalizations of the nematic states [104, 145, 195, 196]. However, this method

does not capture entangled states such as dimer phases or spin liquids, which are

competitive ground states on these lattices [70, 72] and which we show to be present

in Chaps. 4 and 5 over a specific range of scattering lengths. However, it is instructive

to first determine the nature of the spinor condensates which appear in the absence of

these exotic phases, and to help understand the nature of the underlying interactions

as a function of scattering length.

We begin with a spinor condensate wavefunction of the form

|ψ〉 =
N∏
i

∑
mi

ξmi b̂
†
i,mi
|0〉 . (3.32)
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Here, ξmi represents the coefficient of each hyperfine component in the single-particle

wavefunction. We require that this single-particle wavefunction is normalized, and so

we have
∑

m |ξm|2 = 1, which will also normalize the entire product state. Using Eq.

3.32 as a variational wave function for Eq. 3.19 gives us a trial energy of

Evar = −J
∑
<i,j>

∑
F,M

1

gF
〈ψ| Â†FMi,j ÂFMi,j |ψ〉 = −2JN

∑
F,M

1

gF
|ξ†.CFM .ξ|2, (3.33)

where ξ = (ξf , . . . , ξ−f )
T is the spinor order parameter, and is a vector in spin space,

while CFM is a matrix in spin space with elements equal to the Clebsch-Gordon

Coefficients CFM
m,m′ = 〈f,m; f,m′|F,M〉.

In the interest of comparing these results with the results of Chap. 4 we focus on

a square lattice—however, generalizations to other lattices are straightforward. Due

to the bipartite nature of the square lattice we allow for two different spinors ξi and

ξj on sublattice i and j respectively. Furthermore, we may consider the application

of a uniform magnetic field B directed along the quantization axis (in this case the

z-axis), which couples to each spin through a Zeeman term of the form ĤZeeman =

−µ̂zB = µBŜz. While we will not be applying a magnetic field during our study of

exotic phases during later chapters, we do so here mainly to provide an additional

axis to the phase diagram. With these considerations, we write the variational energy

as

Evar

JN
= −2

∑
FM

1

gF

∣∣∣ξ†i .CFM .ξj

∣∣∣2 −Beff(ξ†i .Ŝz.ξi + ξ†j .Ŝz.ξj), (3.34)

where Beff ≡ µB
2J

. We then minimize Eq. 3.34 with respect to the ξi and ξj spinors,

while maintaining the normalization conditions |ξi|2 = |ξj|2 = 1. In doing so we

find the variational ground state wavefunction and energy, for which we know sets an

upper bound on the true ground state energy (EGS ≤ Evar).

We characterize the resulting spinors by calculating the expectation values of

spherical tensor operators
〈
T̂ k,q

〉
= ξ†.T̂ k,q.ξ, which at each rank k gives

〈
T̂ k
〉
≡
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Figure 3.7: Phase diagram for an f = 1 spinor condensate (such as 23Na) in an
external magnetic field Beff = µB/2J. The ratio of the scattering lengths g0/g2 and
may be tuned with an optical Feshbach resonance as described in Sec. 3.3. For
zero magnetic field (Beff = 0) the system is a spin nematic for g0/g2 = (0, 1), which
corresponds to the spinor condensate ground states found in Chap. 4, while for
g0/g2 = (−∞, 0) and g0/g2 = (1,∞) the system is antiferromagnetic and ferromagnetic
respectively. The application of a magnetic field expands the ferromagnetic region,
and induces a small magnetization in the nematic state which points along the field
axis. In this way, the phase contains aspects of both the nematic and ferromagnetic
phases, and so we elect to call it the “mixed” phase. However, this phase is not to
be confused with the mixed phase of the QDM.
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(a) (b)

Figure 3.8: Characterization of the spinor wavefunction for Beff = 0. (a) Shows
the expectation value of the spin projection along the quantization axis for spins on
sublattice i (blue) and j (red). AF, N, and F denote the antiferromagnetic, nematic,
and ferromagnetic phases respectively. (b) Shows the expectation values of the k = 1
(black) and k = 2 (blue) spherical tensor operators. It is seen that for g0/g2 = (0, 1),

where
〈
Ŝz

〉
= 0 the k = 2 component becomes large, while the k = 1 component

goes to zero, indicating nematic order in this region.

∑
q

〈
T̂ k,q

〉2

. This is equivalent to calculating expectation values of common spin

order parameters. For example, the rank-1 spherical tensor T̂ 1 contains the same

information as the spin vector operator, Ŝ, while the rank-2 spherical tensors T̂ 2 are

equivalent to the spin nematic order parameter Q̂a,b = ŜaŜb + ŜbŜa − Ŝ2δa,b, where

a, b = x, y, z. The advantage of the spherical tensor operators is that they are much

simpler to construct at higher order, which is necessary for the phases at large spin.

We may employ this procedure to characterize the spinor condensate phase diagram

for Eq. 3.19.

The phase diagram for a spin-1 system is shown in Fig. 3.7. While the features as

a function of Beff are interesting, we primarily point out the behavior at Beff = 0 for

use in Chap. 4. Namely, when g0 and g2 are both positive (as is the case for the alkali

atoms discussed throughout this chapter) the possible spinor phases are nematic and

ferromagnetic. Since Tab. 3.2 indicates that the background scattering lengths are

roughly equal, we begin near the g0/g2 ' 1 point. The OFR discussed in Sec. 3.3 is
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(a) (b)

Figure 3.9: Characterization of the spinor wavefunction for Beff = 0.4. (a) Shows
the expectation value of the spin projection along the quantization axis for spins on
sublattice i (blue) and j (red). AF, M, and F denote the antiferromagnetic, “mixed”,
and ferromagnetic phases respectively. (b) Shows the expectation values of the k = 1
(black) and k = 2 (blue) spherical tensor operators. It is seen that within the mixed
phase the k = 2 component becomes large, while the k = 1 component becomes
small, and that both continuously approach their values in the ferromagnetic phase
as g0/g2 is increased. This indicates that the “mixed” phase is a nematic state which
is being biased in the applied field direction, hence the non-zero magnetization but
large nematic-character to the spinor in this region.

then used to reduce g0 relative to the higher-F scattering channels, taking g0/g2 ' 0

in the limit which yields Eq. 3.31. Thus, throughout the entire analysis of Chap. 4

and Chap. 5 the competing spinor condensate phase has nematic symmetry.
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Chapter 4: Quantum Spin Liquids

In this chapter, we perform a mean field theory for spin-f bosons on a square optical

lattice, tightly confined to the Mott insulating state. We choose to include only the

fundamental low-energy scattering interactions [104], described by the set of s-wave

scattering lengths, aF , and tuned via microwave and optical Feshbach resonances [179,

197–199], as outlined for a single-photon OFR in Sec. 3.3. We then show that our

model supports the existence of a short-range resonating valence bond ground state,

for certain values of gF and f . Throughout this treatment, we omit the possibility

of magnetic dipole-dipole interactions, though we briefly discuss their effects in Sec.

4.5. The results of this chapter indicate that whole-atom exchange may melt magnetic

order and stabilize spin liquid phases in Mott insulating large-spin ultracold atoms.

Furthermore, these results lead naturally to the the description of our system in terms

of quantum dimers, which is the subject of Chap. 5. Material supplemental to the

contents of this chapter are presented in App. D.

4.1 Spin liquid mean field theory

To solve our Hamiltonian (Eq. 3.19) with mean field theory, we first expand the

pairing operators ÂFMi,j about their ground state expectation values QFM
i,j ≡ 〈ÂFMi,j 〉,

and then drop terms of second order in the fluctuations δÂFMi,j . Here, this is achieved

by sending ÂFMi,j → QFM
i,j + δÂFMi,j , but the result is equivalent to performing a formal

Hubbard-Stratonovich transformation on the action S, as demonstrated in App. C.

This process reduces the Hamiltonian to a quadratic form in the b̂i,m operators, and
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is given by

ĤMF = −
∑
<i,j>

∑
F,M

J

ḡF

(
QFM
i,j Â

FM†
i,j +QFM∗

i,j ÂFMi,j − |QFM
i,j |2

)
+
∑
i

λi(n̂i − 1), (4.1)

where ḡF = gF/g0 denotes the scattering length of the F channel relative to the

singlet channel (F = 0). As our interest lies in the translationally invariant states of

this Hamiltonian, we consider bond-independent mean fields, such that QFM
i,j = QFM .

Furthermore, we only consider monotonically increasing repulsive interactions, such

that gF > 0 for all F , and gF ′ ≥ gF for F ′ > F . This is a reasonable assumption, as

gF increases with F for most alkali atoms [180]. In this case, spin singlets (F=0) have

the lowest two-particle energy, resulting in the antiferromagnetic interactions needed

to form spin liquid states.

The second term of Eq. 4.1, which contains the site- and time-dependent Lagrange

multiplied λi, is introduced to enforce the one-particle-per-site constraint [20]. This

constraint is necessary because ĤMF connects to states outside of the physical one-

particle-per-site Hilbert space. We can see this from the non-zero commutator

[ĤMF, n̂i] =
∑
FM

J

gF

∑
<(i)j>

(QFM∗
ij ÂFMij −QFM

ij ÂFM†ij ), (4.2)

where the number operator n̂i =
∑

i b̂
†
i,mb̂i,m is the total number of bosons on site i,

and < (i)j > denotes a sum over the Z nearest neighbors j of site i.. This nonzero

commutation implies that eigenstates of ĤMF are not simultaneously eigenstates of n̂i

with fixed particle number. However, minimizing the mean field energy EMF = 〈ĤMF〉

with respect to λi fixes the average particle number to be 1, which we believe is a suf-

ficient first approximation. Fluctuations away from the physical one-particle-per-site

Hilbert space are calculated in Subsec. 4.2.4, and will lead us towards a description

in terms of a quantum dimer model discussed in Chap. 5. We therefore proceed
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with the understanding that the methods of this chapter do not rigorously prove the

existence of a spin liquid phase with cold atoms, but are rather used to illustrate the

general behavior of the quantum spin fluctuations for large-spin ultracold bosons on

a lattice. Particularly, that large-spin bosons have large spin fluctuations, allowing

them to overcome the tendency towards condensed magnetic order. Furthermore,

that these strong spin fluctuations can be observed through mean field theory, which

averages out fluctuations by definition, is quite striking, and indicates just how in-

fluential whole-atom exchange can be in determining the ground state of large-spin

systems.

We note that our choice of decoupling the ÂFMi,j operators themselves provides

more versatility than standard mean field decouplings of Eq. 3.19, which assume

a spinor BEC through the use of a vector order parameter [103, 104], or through

the single-mode approximation [195], which is known to be invalid for the antifer-

romagnetic interactions that we exclusively consider in this work [200]. In contrast,

our MF decoupled Hamiltonian (Eq. 4.1) allows direct competition between exotic

paired states described by the QFM
i,j fields—including spin liquid phases and atomic

superconductors with both trivial (F = 0 singlet) and non-trivial (F > 0) Cooper

pairing [201]—and the spinor BEC phases described by the boson field 〈b̂i,m〉. In this

way, our theory may reproduce the results of the well-studied spinor BEC mean field

theories over the target parameter space, while also allowing for spin liquid ground

states. The outcome of this competition depends fundamentally on the strength of

magnetic fluctuations, as a spin liquid state will only appear when sufficiently large

spin fluctuations have melted the magnetic order of the spinor condensate phase.

To find the ground state of ĤMF , we solve the self-consistent mean field equations,

QFM(λ,QFM) =
1

Nbonds

∑
<i,j>

〈ÂFMi,j 〉 =
1

Nbonds

∑
<i,j>

∑
m,n

CFM
m,n 〈b̂i,mb̂j,n〉 (4.3)
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and

navg(λ,QFM) =
1

Nsites

∑
i

〈n̂〉 =
1

Nsites

∑
i,m

〈b̂†i,mb̂i,m〉 = 1, (4.4)

where we have explicitly indicated the dependence of these quantities on λ and QFM .

In particular, since QFM is a function of itself (i.e., a transcendental equation) there

is no closed-form solution. Rather, these equations must be solved iteratively until

self-consistency is reached. This is done by first picking initial values QFM
(i) , and then

solving for a λ(i) which satisfies the constraint, navg(λ(i), QFM
(i) ) = 1. We then calculate

a new set QFM
(i+1)(λ

(i), QFM
(i) ), which is used to start the next iteration. When these

quantities remain unchanged through several iterations such that λ(i) ' λ(i+1) and

QFM
(i) ' QFM

(i+1), they have converged to their self-consistent values, and the ground

state becomes fully specified. We note that the mean field equations Eq. 4.3 and

Eq. 4.4 are equivalent to performing the steepest-descent approximation around the

saddle point of the action S, which is outlined in App. C.

The mean field energy EMF = 〈ĤMF〉 is determined by taking the expectation

value of the Hamiltonian with respect to the self-consistent ground state. The energy

per site is then

EMF

Nsites

= −γ
∑
FM

J

gF
|QFM |2 (4.5)

where γ = Nbonds/Nsites is the ratio of the number of bonds to the number of sites,

and is a purely dependent on the lattice geometry. For example, on a square lattice

γ = 2. Although the energy function is unbounded from below, the actual ground

state energy is finite, and the self-consistency conditions prevent |QFM | → ∞.

While it is possible to allow for spatial variation of the order parameter QFM
i,j

and to approach the mean field theory in real space, our target states are transla-

tionally invariant. We may therefore take advantage of the imposed translational

invariance (QFM
i,j = QFM and λi = λ) by assuming periodic boundary conditions

and Fourier transforming Eq. 4.1. We utilize the Fourier transformation (FT)
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b̂i,m =
∑

k b̂k,meik·Ri/
√
N , where the sum runs over all wavevectors k in the first

Brillouin zone (BZ), Ri denotes the Bravais lattice vector of site i, and N is total

number of sites in the lattice. We may then write Eq. 4.1 with QFM
i,j = QFM and

λi = λ in reciprocal space as

ĤMF = −
∑
k

∑
m,m′

(∑
FM

εk
gF
CFM
m,m′

(
QFM b̂†k,mb̂

†
−k,m′ +QFM∗b̂k,mb̂−k,m′

)
. . .

. . .+ δm,m′
λ

2

(
b̂†kmb̂km′ + b̂†−k,−mb̂−k,−m′

))
+
∑
FM

Nbonds

gF
|QFM |2 − λNsites, (4.6)

where the details of this transformation are given in App. D.2. We note that the

lattice contribution of the FT is εk =
∑

<(i)j> eik·(Rj−Ri), which for a square lattice

with a lattice spacing of unity gives εk = cos[kx] + cos[ky].

The method of solving this self-consistent mean field for a general set of QFM

fields is outlined in App. D.3, and follows the method of SU(N) mean field theo-

ries for Heisenberg antiferromagnets [202–213]. These methods decompose a spin-1/2

electron into N flavors of bosonic partons—as is done with slave-particle methods

[214]—and in doing so introduce an artificial SU(N) symmetry. The action S then

contains a prefactor of N−1, and so this perturbative analysis becomes exact in the

large-N limit. Methods to effectively produce SU(N) magnetism in cold atom sys-

tems have been proposed [83, 84], and it has been shown that large-spin fermi gases

possess hidden symmetries smaller than SU(N), but larger than SU(2). This is cer-

tainly a promising avenue from which to study these systems, and a majority of the

community’s focus has been in this area.

Our approach is unique in that we only require physical SU(2) spin-rotational

symmetry to be present, as will be shown in Subsec. 4.1.1. Additionally, in the one-

particle-per-site Hilbert space, the bosonic b̂†i,m operators of our theory correspond to

physical spin-f atoms. This is in contrast to the mathematically-introduced partons

of typical slave-particle MF theories, which do not necessarily carry any physical
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significance on their own. This correspondence can greatly assist in the interpretation

of observables and operators, when expressed in the boson variables. Quite amazingly,

the SU(2) symmetry naturally introduces prefactors of (2f + 1)−1, making certain

regimes of our theory exact in the large-f limit. The ability for experimentalists to

approach this limit by simply using larger-spin atoms is a major motivation for our

study.

4.1.1 Symmetry of the mean field Hamiltonian

Before solving our mean field theory for various ansatz, it is instructive to first examine

the spin rotational symmetry of the ĤMF (Eq. 4.1) for given set of QFM fields. This

characterization will assist us in determining the symmetry of our mean field phases,

by simply inspecting which of the QFM are zero for a given state. To do so, we write

the real-space Hamiltonian Eq. 4.1 in matrix form,

ĤMF =
∑
<i,j>

(∆m,m′ b̂
†
i,mb̂

†
j,m′ + H.c.) + λ

∑
i,m

b̂†i,mb̂i,m + constants, (4.7)

where ∆ is a (2f + 1)× (2f + 1) dimensional with elements

∆m,m′ = −
∑
FM

QFMCFM
m,m′/gF .

Now we consider a global unitary transformation of the boson operators, b̂i,m →

Um,m′ b̂i,m′ and b̂†i,m → U∗m,m′ b̂
†
i,m′ . The constraint term b̂†i,mb̂i,m will be trivially invari-

ant since U †U = I for a unitary operator, while invariance of the interaction term

b̂†i,mb̂
†
j,m′ requires that ∆ = U †∆U∗. If we consider small transformations parametrized

by θa then we may Taylor expand the unitary operators to first order, which gives

U = eiθaTa → I + iθaTa +O(θ2
a), where Ta are the Hermitian generators of the trans-

formation (see App. B.3). For example, if we are considering SU(2) spin rotations,
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these would be proportional to the spin-f representation of the Pauli spin matrices

for the three spatial dimensions. The condition for invariance ∆ = U †∆U∗ under an

infinitesimal rotation dθa becomes ∆Ta + T Ta ∆ = 0. By examining which generators

satisfy this condition we may determine the symmetry of the Hamiltonian for a given

set of mean fields QFM .

As a result, we find that a completely general set {QFM} breaks all rotational

symmetries, and therefore may describe arbitrary symmetry-broken states. For a set

which contain only M = 0 pairings {QF0}, we find the ĤMF is symmetric under

rotations about the quantization axis, but no other directions. This set therefore

describes spin nematic states (see Sec. 4.3). Finally, a state which contains Q00 only

has the full SU(2) spin rotational symmetry of our original Hamiltonian (Eq. 3.19).

A Q00-only phase describes a phase of spin singlets (see Sec. 4.2). We find no SU(N)

symmetric points in our parameter space, in contrast to Eq. 3.19, which contains an

SU(N) point when gF were all equal. However, we again emphasize that enhanced

symmetry is not required for our approach, and we believe this to be a significant

advantage of our theory.

4.2 The short-ranged resonating valence bond

ansatz

To directly uncover a spin liquid phase in our model, Eq. 4.1, we retain only the or-

der parameter of the short-range resonating valence bond (s-RVB) state—namely, an

isotropic nearest-neighbor pairing amplitude through the singlet channel—in what we

call the s-RVB ansatz. In a pure s-RVB spin liquid state, all F > 0 pairing channels

have zero amplitude, and the spins exist in an equal superposition of nearest-neighbor

singlets. A ground state of this type preserves spin rotational and translational sym-

metry, making it one of the simplest spin liquid mean field theories possible for this
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model. Furthermore, we may reach this s-RVB limit by taking g0 → 0 with gF 6=0

fixed, which from Eq. 4.1 we see will result in the Q00 pairing term dominating,

and a suppression of the higher-order pairings. The ability to access this limit by

tuning a single parameter (g0) is extremely advantageous, and may prove crucial in

the eventual realization of this phase experimentally.

We employ the s-RVB ansatz in our formalism explicitly by substituting 〈ÂFMi,j 〉 =

Q00δF,0 in Eq. 4.1, where the bond-independent complex number Q00 represents the

s-RVB order parameter. Then, by introducing the column vector spinor Ψ̂k,m =

(b̂k,m, b̂
†
−k,−m)T we may compactly write the FT Hamiltonian as

Ĥ =
∑
k,m

Ψ̂†k,mhk,mΨ̂k,m − λNsites
(2f + 3)

2
+
ZNsites|Q00|2

2g0

, (4.8)

where we have defined the 2× 2 matrix

hk,m =

 λ/2 −εkQ00C00
m,−m/g0

−εkQ00C00
m,−m/g0 λ/2

 , (4.9)

and where we have fixed the gauge of the bosons b̂i,m = eiθb̂i,m such that Q00 is real.

Again, throughout this chapter we explicitly consider a 2-dimensional square lattice

with a lattice spacing of unity, and so Z = 4 and εk = cos[kx]+cos[ky]. The approach

for other lattices follows similarly. In particular, we looked at the triangular lattice,

since the geometric frustration of this lattice is known to assist in the formation of

spin liquid phases. However, the results on a triangular lattice were qualitatively

similar to the square in all cases examined, and are therefore omitted for to avoid

redundancy.

In contrast to other methods of studying Eq. 3.19 which focus on a single spin-f

at a time [62, 70, 72, 144], our study of the g0 << gF 6=0 limit—which results in the

Q00-only Hamiltonian of Eq. 4.8—allows us to fluidly describe systems with different
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spin. This feature comes directly from the Clebsch-Gordan coefficients, which appear

in Eq. 4.9 due to the physical SU(2) spin rotational symmetry. Essentially, the

condition on the CG-coefficients that CFM
m,n = 0 unless m + n = M implies that the

s-RVB state, which requires M = 0, retains only terms in which n = −m. In other

words, the matrix elements of our s-RVB Hamiltonian only ever connect a spin state

m with the state of opposite spin polarization −m; a fact which leads to the chosen

form of the spinor ΨT
k,m and a single 2× 2 matrix representation for the Hamiltonian

at all f . Compared to the general QFM -case of Eq. 4.1, where we would need a

2(2f + 1) × 2(2f + 1)-dimensional matrix at each f , the s-RVB ansatz produces a

dramatic mathematical simplification. Additionally, the C0,0
m,−m CG-coefficients are

of order (2f + 1)−1/2, allowing for a perturbative expansion in 1/f , as described in

Subsec. 4.2.2. This makes the Q00-only limit a remarkable limit in which to study

the magnetic phases of ultra-cold atoms.

We now seek the ground state of the s-RVB Hamiltonian (Eq. 4.8) in the pres-

ence of the one particle-per-site constraint. As outlined in App. D.4, we move to

the basis of collective excitations γ̂k,µ by finding a linear transformation Mk,m which

diagonalizes the matrix hk,m while preserving the bosonic commutation relations,

[γ̂k,µ, γ̂
†
k′,µ′ ] = δk,k′δµ,µ′ and [γ̂k,µ, γ̂k′,µ′ ] = 0. We may write this transformation as

Ψk,m = Mk,mΓk,m, where Γk,m = (γ̂k,m, γ̂
†
−k,−m)T is the corresponding spinor of quasi-

particles. Explicitly, this becomes

 b̂k,m

b̂†−k,−m

 =

 Uk,m Vk,m

V ∗−k,−m U∗−k,−m


 γ̂k,m

γ̂†−k,−m

 , (4.10)
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where the Bogoliubov factors Uk,m and Vk,m are found in App. D.4 to be

Uk,m =

√
1

2

(
λ/2

ωk,m
+ 1

)

Vk,m = (−1)m

√
1

2

(
λ/2

ωk,m
− 1

)
,

(4.11)

and obey the condition |Uk,m|2 − |Vk,m|2 = 1 to ensure bosonic statistics for the

quasiparticles γ̂k,m. These γ̂k,m possess a dispersion ωk,m given by

ωk,m =
√

(λ/2)2 − |εkQ00C00
m,−m/g0|2, (4.12)

for the band corresponding to magnetic sublevel m, and we note that the m-

independence of |C00
m,−m| = 1/

√
2f + 1 forces complete degeneracy of all 2f+1 bands.

Furthermore, these bands are all dispersive (i.e., no flat bands), which as we will see,

leads to maximal fluctuations.

On a square lattice, Eq. 4.12 takes a minimum value at k = (0, 0) and

k = (π, π). The value of ωk,m at these points defines the energy gap ∆ =√
(λ/2)2 − 4|Q00/g0|2/(2f + 1) for the excitations of our system. This gap will play

a crucial role in the thermodynamic ground-state analysis to come. We also note that

since ωk,m is symmetric with respect to both k and m, that Uk,m and Vk,m are real

and symmetric in those indices as well—a property used frequently in calculations to

follow.

Performing the transformation given by Eq. 4.10 takes us to the quasiparticle

basis, where Hamiltonian is written

Ĥγ = 2
∑
k,m

ωk,m

(
γ̂†k,mγ̂k,m + 1/2

)
+

(
Nbonds

∑
FM

|QFM |2

gF
−Nsitesλ

(
2f + 3

2

))
.

(4.13)

We see that the Hamiltonian is diagonal in this basis, from which it follows that
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[Ĥγ, n̂
γ
k,m] = 0, and so the quasiparticle numbers are well-defined (conserved) for the

eigenstates of Ĥ. When the gap is non-zero (∆ > 0) the system will minimize the

energy by having zero quasiparticles in the ground state, and thus γk,m |ΨMF〉 = 0 for

all k and m.

4.2.1 Results of the s-RVB ansatz

To determine the self-consistent ground state of the s-RVB Hamiltonian in the thermo-

dynamic limit (Nsites →∞) we solve Eqs. 4.3 and 4.4. Expanding in the quasiparticle

basis we obtain

Q00 =

√
2f + 1

4

∫
d2k

(2π)2
εk

√
(ω̄k,m)−2 − 1, (4.14)

and

〈n̂i〉 = nγ∆ + (2f + 1)

∫
d2k

(2π)2

1− ω̄2
k

2(ω̄2
k + ω̄k)

= 1, (4.15)

where we have defined ω̄k = 2ωk,m/λ to clean up the notation a bit. Here, nγ∆

denotes the occupation of collective excitations in states with energy ∆. With gapped

excitations (∆ > 0), we have nγ∆ = 0.

By numerically solving these constraints (Eqs. 4.14 and 4.15), we find the two

scenarios shown in Fig. 4.1. The first occurs for f ≥ 3, where one may satisfy the

constraint with ∆ > 0. The gapped excitations imply that the condensate fraction is

zero, and so the Q00 field characterizes the state completely. It is shown in Subsec.

4.2.5 that in the large-f limit this corresponds to a pure s-RVB spin liquid when

projected into the one-particle-per-site Hilbert space. On the other hand, for f ≤ 2

one cannot satisfy the constraint with a gap, implying ∆ = 0 at k = (0, 0) and

k = (π, π). The collective excitations may condense at these points, making nγ∆ 6= 0

to restore the validity of the constraint. In particular, if ∆ = 0 then Uk,m and Vk,m

are undefined and our transformation breaks down. This indicates the presence of a

spinor condensate, where one must now describe the state with a set of parameters
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Spin nematic s-RVB spin liquid

f = 1 f = 2 f = 3 f = 4

Figure 4.1: Phase diagram of the s-RVB ansatz (αF 6=0 →∞) as a function of f . For
f ≤ 2 the ground state is a spin nematic with 〈S〉 = 0 and 〈S2

x〉 = 〈S2
y〉 6= 〈S2

z 〉 on
each site. For f > 2, degeneracy of the magnetic sublevels enhances fluctuations, and
the ground state becomes a short-range resonating valence bond (s-RVB) spin liquid.

〈b̂k,m〉, in addition to the Q00 field. A spinor of this type breaks spin rotational

symmetry, implying a magnetically ordered ground state for f ≤ 2. A more thorough

description of the condensate symmetry is discussed in Sec. 4.4.

The fact that for small spin we have a magnetically ordered spin nematic ground

state, while for large spin we have a disordered spin liquid phase, results directly from

the increasing number of magnetic sublevels as one moves to large f . We understand

this by noting that the integral in Eq. 4.15,

〈n̂i,m〉 =

∫
d2k

(2π)2

1− ω̄2
k

2(ω̄2
k + ω̄k)

≤ 0.19 . . . ,

corresponds to the contribution from the non-condensed bosons of the m band, 〈ni,m〉,

and has a maximum value ' 0.19, which occurs when ∆ = 0. Degeneracy of the 2f+1

bands then implies that for ∆ > 0 we can write 〈n̂i〉 < 0.19∗(2f+1), and so to satisfy

〈n̂i〉 = 1 for finite ∆, we must have f > 2. Again, we emphasize that the increasing

spin-fluctuations in our large-spin states result directly from the increasing number

of magnetic sublevels as one moves to larger spin. The enlarged space through which

the spins may interact enhances the fluctuations, melting magnetic order and driving

the system into an s-RVB spin liquid phase.

4.2.2 The large-f limit

A remarkable feature of the s-RVB ansatz is that it possesses a straightforward ex-

pansion in 1/f . With current experiments able to use atoms with hyperfine spins as
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large as f = 8 [102], we are hopeful that the g0 << gF 6=0 and large-f limit—where

our theory becomes exact—may soon be physically accessible. For this reason, we

study several properties directly in the large-f limit, such as the spin fluctuations and

ground state wavefunction.

For the quasiparticle dispersion ωk,m, we find to sub-leading order that

ωk,m =
λ

2

(
1− 1

2(2f + 1)

(
2εkQ

00

λ

)2
)

+O
(

1

f 2

)
. (4.16)

Similarly, the Bogoliubov factors Uk,m and Vk,m (defined in Eq. 4.11) become

Uk,m = 1 +O
(

1

f

)
,

Vk,m =
(−1)m√
2f + 1

εkQ
00

λ
+O

(
1

f

)
.

(4.17)

We now use these expressions to simplify the self-consistent equations. For the con-

straint (Eq. 4.15) we find

〈ni〉 = (2f + 1)

∫
d2k

(2π)2

1

4(2f + 1)

(
2εkQ

00

λ

)2

=
Q2

λ2
= 1. (4.18)

From this we determine that λ = ±Q00, but since EMF (Eq. 4.5) is proportional to

|Q00|2 we can take λ = +Q00 without loss of generality. Now looking at Eq. 4.14 we

obtain

Q00 =
Q00

2λ

∫
d2k

(2π)2
ε2k =

Q00

2λ
+O

(
1

f

)
, (4.19)

from which we can determine that in the large-f limit,

λ = Q00 =
1

2
, (4.20)

which specifies the self-consistent ground state. We may now use this to calculate

ground state properties of our system in the large-f limit.
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4.2.3 Spin fluctuations in the large-f limit

A primary goal of this study is to explicitly show that quantum spin fluctuations

increase as one moves to larger spins. This follows the general argument made by

Wu for large-spin fermi gases [68], and is central towards our belief that large-spin

bose gases should contain exotic fluctuation-driven many-body phases, such as spin

liquids and dimerized valence bond crystals. While this argument can be made from a

“cartoon” understanding of the exchange interactions (as described in Fig. 2.18), and

is supported by the existence of a mean field spin liquid for large-f , it is worthwhile

to calculate the spin uncertainty and verify explicitly that this is the case.

We calculate the spin uncertainty on an arbitrary site i, and in a particular direc-

tion α = x, y, z, which is given by ∆Ŝαi =

√〈
(Ŝαi )2

〉
−
〈
Ŝαi

〉2

. With Q00-only, the

expectation value of each spin component is zero,
〈
Ŝαi

〉
= 0, and so we only have to

calculate
〈

(Ŝαi )2
〉

. In terms of our boson operators we have

〈
(Ŝα)2

〉
=
∑
m,m′

∑
n,n′

〈
b̂†mŜ

α
m,m′ b̂m′ b̂

†
nŜ

α
n,n′ b̂n′

〉
, (4.21)

where we have suppressed the site index i which is common to each operator. Now,

we transform to the quasiparticle basis, expand to 2nd order in f−1, and use Eq. 4.20

to determine that the squared-uncertainty of a single spin component is

(∆Sα)2 =
1

2f + 1

(
1 +

1

2f + 1

) f∑
m=−f

m2, (4.22)

and is identical for all three spatial components. This quantity is plotted in Fig.

4.2, where we can clearly see that the spin fluctuations grow in the large-f limit.

Deviations from the trend for small-f may be ignored, since our expansion is only

valid at large-f . Furthermore, we find the total uncertainty relative to the spin

magnitude, ∆S/S =
√

(∆S2
x + ∆S2

y + ∆S2
z )/(f(f + 1)), approaches a constant value
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Figure 4.2: Spin uncertainty vs. spin quantum number f on a log-log plot, calculated
using the Q00 only large-f limit expansion. The uncertainty of a each component ∆Ŝα,
where α = {x, y, z}, is given by Eq. 4.21, is seen to grow with increasing spin f . The
uncertainty relative to the spin magnitude S =

√
f(f + 1) goes to a constant value

of 1, indicating maximum spin uncertainty (and hence quantum fluctuations) in the
large-f limit. This is in contrast to solid-state spin models, where electron mediated
exchange interactions cause the relative magnitude of the spin fluctuations to decrease
with increasing f , and so the spins behave more classically in the large-spin limit.

of 1 in the large-f limit. This indicates that the Q00-only spin liquid phase at large-f

possess the maximum possible spin fluctuations.

4.2.4 Fluctuations of the mean fields in the large-f limit

We may also calculate uncertainty of the Â00
ij and n̂i operators, to test the validity of

our mean field approximations. The results will determine whether these operators

are well approximated by their average value, and that fluctuations were negligible as

we assumed during the mean field decoupling of Sec. 4.1. If the fluctuations of these

quantities are zero in the mean field ground state, then there is a reasonable chance

that the approximation of static fields was good, and the predicted phases may be

stable. On the other hand, if the fluctuations are large in the mean field ground state,

then it likely indicates that the system would prefer to be in a different phase, but is
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too constrained by the mean field ansatz to relax into the true ground state. In this

way, the mean field approximation is able to test its own validity.

For the uncertainty in singlet operator Â00
ij , we find

〈
(Â00

ij )2
〉
−
〈
Â00
ij

〉2

=
1

4(2f + 1)
+O(f−2), (4.23)

which goes to zero in the large-f limit. We therefore believe that our choice of de-

coupling through the Â00
ij operators was reasonably correct, and because of that, the

large-f behavior of our system is described by states with well defined 〈Âi,j〉. This

observation motivates a description of Eq. 3.19 where singlet bonds are the funda-

mental object. This results in a quantum dimer model, as implemented in Chap.

5.

When we look at the fluctuations in the particle number n̂i, we find

〈
n̂2
i

〉
− 〈n̂i〉2 = 1 +

1

2f + 1
+O(f−2). (4.24)

We see that while the fluctuations decrease, they do not completely die out for large

f . This indicates that our approximation of a static and uniform Lagrange multiplier

λi(t) = λ, and of a fixed-phase Q00, is insufficient to properly maintain the one-

particle-per-site constraint. While they can enforce the correct density on average,

our theory fails to completely suppress density fluctuations. This is due to the broken

U(1) phase symmetry of the boson operators in our mean field theory. From Noether’s

theorem, we know that the continuous U(1) phase symmetry (b̂i,m → e−iφb̂i,m) of

our nearest-neighbor spin Hamiltonian (Eq. 3.19), is associated with conservation of

boson number. Therefore, by fixing the gauge and breaking this symmetry, we expect

to induce fluctuations in the particle number, which Eq. 4.24 confirms.

To more formally treat the constraint we may proceed in several ways—two of

which we discuss here. One possibility is to allow phase fluctuations of the QFM fields
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and amplitude fluctuations of λ and formulate a U(1) lattice gauge theory in 2 + 1-

dimensions [16, 214]. In our case, one may expect to utilize the factors of (2f +1)2 to

expand the bosonic Green functions and all other relevant quantities as a converging

series, as is formulated in App. C. Furthermore, on bipartite lattices—such as the

square lattice currently under consideration—gauge fluctuations may make the mean

field spin liquid phase unstable towards dimerization [16, 20, 208, 215]. Frustrated

lattices such as triangular and kagome are more likely to possess stable spin liquid

phases [31, 202], and are stronger candidates on which to observe QSL physics in cold

atoms. Although, these arguments are made for S = 1/2 Heisenberg models, and so

a square lattice spin liquid phase with ultracold atoms cannot be ruled on by analogy

alone. Especially since additional interactions may be enough to sufficiently frustrate

spins on the square lattice, as is the case for the J1− J2− J3 Heisenberg model [204].

In Chap. 5 we discuss how the higher-order scattering channels (F = 2, 4, . . . , 2f)

may be used to move our system to the s-RVB point of the quantum dimer model,

and so we believe that there may in fact be a multitude of ways to stabilize the square

lattice spin liquid predicted by our mean field theory.

While the aforementioned method has its merits, the most straightforward way of

enforcing the constraint is to project our mean field ground state wavefunction into

the physical one-particle-per-site Hilbert space, via a Gutzwiller projection for bosons

[216]. After a discussion of the mean field ground state in the next section, we show

that this projection produces an effectively dimerized ground state. Again, we use

these results to guide our reformulation of the Hamiltonian for g0 << gF 6=0 into the

dimer basis, which we rigorously present in Chap. 5.
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4.2.5 The mean field ground state

Now we proceed to calculate the mean field ground state. We require that the ground

state is the vacuum of Bogoliubons, and so satisfies

γ̂k,m |ΨMF〉 =
(
uk,mb̂k,m + vk,mb̂

†
−k,−m

)
|ΨMF〉 = 0 , (4.25)

for all k and m. We may construct a state which satisfies the relation in Eq. 4.25,

and without regards for normalization is given by

|ΨMF〉 ∝ Exp

[
−
∑
k,m

vk,m
uk,m

b̂†k,mb̂
†
−k,−m

]
|0〉 , (4.26)

where |0〉 is the vacuum of atoms. In real space, the exponent may be written as

−
∑
k,m

vk,m
uk,m

b̂†k,mb̂
†
−k,−m =

∑
i,j,m

tmi,j b̂
†
i,mb̂

†
j,−m, (4.27)

where we define

tmi,j ≡ −
∫

d2 k

(2π)2
e−ik·(ri−rj)

√
1− ω̄k,m
1 + ω̄k,m

. (4.28)

We find that tmij may link sites which are separated by more than one lattice constant.

Therefore, the general ground state involves spin singlets over long-range bonds, the

characteristic length of which decreases with f . Furthermore, since these terms appear

in the exponent, the ground state will contain terms of all possible particle number

n = 0, 1, 2, . . . ,∞, as may be seen by expanding the exponential as a series. This

property is illustrated in Fig. 4.3a.

The mean field ground state simplifies for large f when using the expansions from
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Subsec. 4.2.2. In this limit we find

∑
i,j,m

tmij b̂
†
i,mb̂

†
j,−m ∝

∑
〈i,j〉

Â00†
ij . (4.29)

The mean field ground state for large f is then

|ΨMF〉 ∝ Exp

∑
〈i,j〉

Â00†
ij

 |0〉 . (4.30)

This allows us to visualize the ground state, which is shown in Fig. 4.3a. We see that

the ground state is a superposition of all possible nearest-neighbor singlet states with

even total particle number. To determine the contribution from terms with a chosen

total particle number Natoms, we sum over all configurations which contain Natoms/2

spin-singlets on nearest-neighbor bonds.

If we project |ΨMF 〉 into the physical one-particle-per-site Hilbert space, we find

that in the large-f limit, then |Ψproj.〉 corresponds to an equal amplitude s-RVB. In

general however, the we find that |Ψproj.〉 represents a more general RVB spin liquid,

which contains long-ranged valence bonds as well. In the following chapter, we will

use these factors to motivate the formulation of our theory as a QDM in the large-f

limit. However, before moving on to this reformulation, it is instructive to look at

what happens to our mean field theory when other scattering channels are allowed.

4.3 The spin nematic ansatz

To better describe the atomic species used in cold atom experiments we must study

the most general case ĤMF (see Eq. 4.1), which allows scattering through all total

angular momentum channels, F = 0, 2, . . . , 2f . However, with all QFM fields allowed,

the increasing size of the interaction space at large f makes the MF Hamiltonian

increasingly cumbersome to solve numerically. Specifically, to efficiently probe the

77



(a) Mean field ground state, ignoring weights and overall normalization

(b) Physical mean field ground state, with one particle per site

Figure 4.3: The mean field ground state is shown in Fig. 4.3a, and the ground state
projected onto the physical one-particle-per-site Hilbert space is shown in Fig. 4.3b.
Black dots represent sites on a 2 × 2 lattice. Blue lines represent a singlet between
two atoms at sites i and j, created by Â00†

i,j , and a double bond is created by (Â00†
ij )2.

Atoms exist only at the end of the bonds, and so a disconnected site is empty, a site
which is a part of two bonds has two atoms, etc.
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large-f behavior as a function of the scattering lengths aF , we retain only the order

parameter of the spin nematic state, given by 〈ÂFMi,j 〉 = QF0δM,0. With this set of

mean fields each site will have 〈Ŝ〉 = 0 and 〈Ŝ2
x〉 = 〈Ŝ2

y〉 6= 〈Ŝ2
z 〉—the symmetry

of a spin nematic, as seen from Subsec. 4.1.1. Since this ansatz retains only the

M = 0 pairing, we may write the MF Hamiltonian with the 2-dimensional spinor

Ψ̂k,m = (b̂k,m, b̂
†
−k,−m)T , as was done in Sec. 4.2. This allows us to diagonalize in a

similar way, and the result is to effectively take Q00C00
m,−m/g0 →

∑
F Q

F0CF0
m,−m/gF

in the formulas for Uk,m and Vk,m from Sec. 4.2.

We motivate this ansatz by extending our results from the s-RVB ansatz, as shown

in Fig. 4.1, and by looking to the phase diagram for the spin 1, 2, and 3 spinor Bose-

Einstein condensates [62, 71, 103, 104, 144, 154, 217–220], as well our own work

from Sec. 3.5. We find that our region of interest, parametrized by gF > 0 for all

F and gF ′ ≥ gF for F ′ > F , lies entirely within the nematic sector of these phase

diagrams. Additionally, our ansatz consists of a linear combination of the uniaxial

and biaxial spin nematic states (see App. D.5), which are known to possess an

accidental degeneracy at mean field level [221, 222]. Thus, it provides a suitable trial

state for our specific parameter regime, capable of describing both a nematic spinor

condensate and a Q00-only s-RVB spin liquid phase. We note that, in all cases tested,

the numerical solutions to the general QFM mean field theory (see App. D.3) were

degenerate with the results of this section. We therefore proceed with this ansatz

with the belief that our results describe the physically accessible states of the general

QFM model (Eq. 4.1).

While this approach simplifies the determination of the ground state for a general

set of scattering lengths, a difficulty remains in how to best present these results

graphically. This is because the number of scattering lengths grows as f + 1, which

on a phase diagram would require the introduction of an additional axis at each f . To

avoid this, we seek an approximation which describes the various scattering lengths
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with a single parameter. One possibility is to use the laser intensity Ω, which was

introduced in Sec. 3.3, however, this introduces a set of recursive equations to solve

at every f , and therefore does not simplify the large-f limit as we intend. Rather,

guided by the s-RVB case where we found that g0 → 0 favors the singlet pairing

and induces an s-RVB spin liquid, we shall use the following approximation for the

relative scattering lengths ḡF = gF/g0,

ḡF =


α for F > 0

1 for F = 0

, (4.31)

where scattering lengths through non-zero angular momentum channels have equal

magnitude, and differ from g0 through the proportionality factor α. Varying α from

1 to ∞ covers our original range of the scattering lengths—gF > 0 and ḡF ≥ 1 for all

F—while the α → ∞ limit recovers Eq. 4.8 directly. While in real atomic systems

the ḡF 6=0 are not generically equal, they effectively appear so when compared to g0 in

the α→∞ limit, making this approximation especially useful for describing the spin

liquid phase. Most importantly, we may now construct a phase diagram as a function

of f and α, since α is a parameter common to all spin f .

We note that applying Eq. 4.31 takes us to an enhanced symmetry point of the

original spin Hamiltonian (Eq. 3.19)—namely, the bosonic analog to Wu’s hidden

symmetry found in large-spin Fermi gases [119, 223]. Our results do not depend on

this symmetry however, and we may show this by using the alternate approximation,

ḡF = α′F + 1, where the scattering lengths have a linear relationship with slope α′.

This approximation does not generically possess symmetry higher than SU(2), yet the

results obtained coincide qualitatively with the results outlined in the next section

using Eq. 4.31. The qualitative similarity stems from the fact that in each case,

increasing α or α′ effectively takes g0 → 0, and so the singlet pairing dominates—the
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s-RVB spin liquid

Spin nematic

Figure 4.4: Phase diagram on the square lattice of the nematic ansatz as a func-
tion of f and α, where α = gF 6=0/g0 parametrizes the relative scattering lengths, as
introduced by Eq. 4.31. The fluctuations responsible for the spin liquid state are
enhanced by the increasing number of magnetic sublevels as one moves to large f ,
and by increased scattering through the singlet channel (F = 0) as one moves to large
α. For f ≤ 2 the system is nematic for all α, while for α = 1 the spin liquid phase is
not accessed at any f . The phase diagram for the triangular lattice is qualitatively
similar in that the s-RVB region expands to smaller values of α, but condensate order
still occurs for f ≤ 2 at all interaction strengths.

crucial condition for obtaining a spin liquid phase in this model.

4.3.1 Results of the nematic ansatz

Fig. 4.4 shows the phase diagram for α = [1,∞) and f = 1, 2, . . . , 13. For f ≤ 2 the

system always form a nematic condensate, in agreement with our s-RVB solution in

the α→∞ limit. On the other hand, for f > 2 the system moves into the spin liquid

phase for α greater than some critical value αC . As we move to large f , we find that

αC decreases and the spin liquid region grows in size. Again, decreasing g0 relative

to the other scattering lengths increases α, and so by tuning a single parameter one

may access the spin liquid phase for f > 2 atoms.

We describe the behavior of the spin liquid region as follows. Increasing α (or

α′) biases the system towards singlet pairing through Feshbach tuning, which causes

equal occupation of the Zeeman sublevels and maximizes magnetic fluctuations. Ad-
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ditionally, moving to large f increases the number of available magnetic sublevels,

also enhancing fluctuations.[68] The shape of the spin liquid region as shown in Fig.

4.4 results from the cumulative effect of these two scenarios. For f ≤ 2, too few

sublevels contribute to produce the necessary fluctuations, regardless of any tuning

towards the singlet channel. With f > 2 but still small, the system requires strong

tuning to reach the spin liquid phase. While at large f , the multitude of participating

sublevels allows access to the spin liquid phase with only a small tuning. In light of

this, large-spin atoms such as Dysprosium (f = 7) would theoretically require only

minimal tuning to obtain the long sought-after spin liquid phase.

4.4 Bose-Einstein condensate ground states

In this section we consider two aspects of the spinor BEC phase, which we find

preferred to the s-RVB QSL for small spin and tuning. First, we discuss the scaling

of the gap as a function of system size, and how this may determine the behavior

of the ground state (being gapped or gapless) in the thermodynamic limit. This is

relevant, because the absence of a gap is used throughout this chapter as an indication

of magnetic ordering, as well as determining the nature of the fundamental excitations

of the system. Second, we discuss which types of magnetic ordering appear in the

spinor BEC phase, by analyzing the symmetry of the spinor order parameter.

4.4.1 Behavior of the energy gap in the thermodynamic limit

In the case when ωk,m = 0 for some set of k̄ and m̄, then we will have a condensate

in the thermodynamic limit (N → ∞). We can see this by looking at our number

constraint term, Eq. 4.15, as discussed in Subsec. 4.2.1. However, some care is needed

in taking the thermodynamic limit if the system is headed towards condensation.

Specifically, we find that to smoothly approach a BEC in the thermodynamic limit, we
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Figure 4.5: The excitation gap as a function of inverse system size. For the spin
liquid phase, the gap remains constant as the system is taken to large system sizes.
For the spin nematic phase, the gap is roughly 2 orders of magnitude smaller, and
decreases in a clear linear trend as the system size is increase. It is therefore clear
that the phases are either a gapped spin liquid, or a gapless spinor condensate which
possesses nematic symmetry.

must have (|Uk̄m̄|2 + |Vk̄m̄|2) ' N . Expanding these functions gives the condition that

we must have ω̄k̄,m̄ = 2∆/λ ∝ N−1, such that the gap relative to the bandwidth goes

to zero inversely with N . We may understand this from the need to have ω̄k̄,m̄ → 0

as N → ∞. Mainly, if ω goes faster than 1/N then there will be some finite system

size for which the gap is zero, and we will have divergent number of particles-per-site.

While if it goes slower than 1/N , there will be a gap in the thermodynamic limit and

the constraint equation won’t be satisfied. Therefore, we may analyze the behavior

of the gap versus the system size to determine if the system will condense in the

thermodynamic limit. Furthermore, we can see this behavior clearly in our numerical

analysis of the finite-sized QF0-only system, shown in Fig. 4.5. We also note that λ

converges fairly quickly with system size, and so the behavior of ∆/λ→ 0 is from the

gap shrinking and not λ growing. This approach was utilized in the determination of

the phase diagram of Fig. 4.4.
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4.4.2 Symmetry properties of the spinor condensate

There are many ways to determine the symmetry of the condensate, and many ways

to include it into the theory—although some are more useful than others. The most

straightforward method was presented in Sec. 3.5, where a spinor condensate order

parameter is assumed to exist, before the mean field decoupling is applied. From

this approach, we find a spin nematic phase over the entire region of parameter space

being considered, which agrees with the theoretical and experimental evidence found

for spinor gases [62, 71, 103, 104, 144, 154, 217–220]. Another straightforward method

is to look at the symmetry of the MF Hamiltonian, as was done in Subsec. 4.1.1. For

all cases of finite α, we have a MF ground state described by QF0 fields, which by

construction gives rise to a condensate with nematic symmetry.

We may also calculate the expectation values of the spin and nematic tensor

operators, and the spin uncertainty. For QF0 states moving towards a condensate in

the thermodynamic limit, we find that the z-component has zero uncertainty, while

the x and y are each split a half of the total uncertainty. This indicates that there will

be magnetic ordering in the thermodynamic limit, as would be the case with well-

defined m states. Additionally, the spin expectation value vanishes (〈Ŝi〉 = 0), while

the nematic tensor operator has non-zero elements (〈N̂a,b〉 6= 0), further indicating of

nematic order.

Two methods which are not utilized in this study, but are mentioned for sake of

completeness, include utilizing an alternative transformation on the b̂i,m operators,

which is well defined for the gapless condensate. This approach is described in Ref.

[210] for fermions, and then extended in Ref. [209] to apply to bosons. These cases

only consider two flavors of slave particles however, and the approach for 2f + 1-

flavors of bosons would require a much more complicated transformation in general.

Alternatively, we could introduce a condensate order parameter 〈b̂i,m〉 directly into
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the MF Hamiltonian, treat it as an additional self-consistent parameter [48, 202], and

solve for it iteratively along with the QFM and λ. However, introducing additional

mean fields—the number of which grows as 2f + 1—does not assist us in a producing

an efficient description of the large-f limit. Therefore, we are content to characterize

our state by the presence or absence of an energy gap in the thermodynamic limit, and

then by utilizing symmetry arguments or an explicit condensate trial wavefunction

to determine the type of condensate present for gapless phases.

4.5 The experimental accessibility of quantum spin

liquids

This chapter is now concluded with a discussion of experimental considerations for

our proposal. First, we note that the regarding the natural (“un-tuned”) scattering

lengths, as compiled in Tab. 3.2 for several commonly used atoms (87Rb and 23Na

with f = 1, 2, and 52Cr with f = 3), we see that a0 and the next smallest aF 6=0

are roughly the same order of magnitude. For each of these atoms, these natural

parameters place them near the α = 1 region of Fig. 4.4, and predicts a spin nematic

ground state, in agreement with previous theoretical work on these atoms [62, 71,

103, 104, 144, 154, 217–220, 222]. However, upon tuning g0 to be sufficiently small

via optical Feshbach resonance, a transition to the spin liquid phase may occur. We

note that this transition may even occur for f ≤ 2 atoms as well, since fluctuations

beyond mean field theory would likely enlarge the spin liquid region.

A potential order parameter for the spin liquid-to-spin nematic phase transition

in these systems could be the relative contribution from the F > 0 pairing channels,

as given by

QR =

∑
F>0 |QF0|2∑
F≥0 |QF0|2

. (4.32)
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Figure 4.6: Relative contribution from the higher-order scattering channels (F > 0)
for an f = 3 system, as captured by the QR parameter defined in Eq. 4.32. In the spin
liquid phase (α & 18) all pairings except the singlet pairing Q00 are negligible, while
in the spin nematic phase (α . 18) pairing through the non-zero angular momentum
channels becomes relevant. Measurement of this parameter could allow observation
of the quantum phase transition associated with the tuning of the scattering lengths.

This quantity is similar to the singlet-fraction measured in Ref. [224], and may

allow the observation of a spin liquid phase experimentally. Fig. 4.6 shows the

behavior of this quantity for an f = 3 system when α is tuned, moving the system

from spin liquid to spin nematic. Additionally, by spatially resolving vortices in the

QFM
i,j fields via photoassociation intensity experiments [148, 181, 182, 225, 226], one

may investigate vison excitations in the system, in a similar manner to the vison

experiment performed on the high-TC cuprate superconductors [227]. Overall, the

increasingly varied techniques used to prepare and characterize cold atomic systems

should provide several avenues by which to observe of these exotic phases.

We note that the interplay between gauge fluctuations and lattice frustration could

play a key role when determining the observed phases. This belief originates from

studies which go beyond mean field theory, such as those for similar large-N models on

square, triangular, and kagome lattices [202, 203]. Particularly, these studies found

that on a square lattice, the gauge fluctuations make the spin liquid phase unstable

to forming a dimer phase. However, on frustrated lattices such as triangular and
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kagome, the spin liquid phase will be stable against these fluctuations. We therefore

expect lattice frustration to play a crucial role in the experimental realization of the

QSL phase. However, the proximity of the dimer phase to the quantum spin liquid

means that even the observation of static dimers, as discussed in Chap. 5, could

provide a wealth of information regarding the physics of spin liquid groundstates.

Finally, we expect that the primary challenge remaining in the quest to observe

large-f spin liquids will be to overcome the anisotropic dipole-dipole interactions.

These interactions grow with the spin as f 2 [228], making them particularly problem-

atic for large spin, where we expect spin liquid phases to be competitive ground states.

For example, several recently trapped isotopes of Dysprosium have an extremely large

spin of f = 7 and 8, and the DDI in these systems are believed to affect the ground-

state physics in a non-perturbative way [102]. Essentially, the dipole-dipole energy

sets a lower bound on the allowed tuning of g0, below which our approximation

breaks down and we must account for these interactions explicitly [192]. Fortunately,

for f = 3 Chromium, the DDI do not significantly affect the ground-state physics

[104], allowing use of our mean field description (Eq. 4.1). Also, recent proposals to

tune the dipole-dipole interaction [190], including reducing its effective strength, may

hopefully bypass these concerns when using large-spin atoms. However, as presented

in Chap. 3 and summarized in Tab. 3.4, for f = 3 and below, configurations of

lattice parameters and tuning do exist to create an interacting spin system governed

by the Hamiltonian Eq. 3.31, without reaching the energy scales of the dipole-dipole

interaction. Since the results in this chapter indicate spin liquid behavior for f > 2,

we suggest that f = 3 could provide the optimal balance between large-spin physics

and prohibitively large dipole-dipole interactions.
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Chapter 5: Quantum Dimer Models

In this chapter, we show that quantum dimer models effectively describe the low-

energy interactions of large-spin Mott insulating bosonic atoms in a unit-filled optical

lattice, when the spin-dependent interactions are dominated by scattering processes

through the spin-singlet channel. After numerically demonstrating nearest-neighbor

dimer behavior to the ground state, we derive an effective dimer model on several lat-

tices, discuss the phase diagram of these models, propose a way to explore this phase

diagram with our system, and discuss novel measurement techniques only possible in

cold atoms which could potentially be used to measure dimer-dimer correlations.

5.1 The singlet basis and the dimer basis

We consider the singlet Hamiltonian from Eq. 3.31, where the Feshbach tunings have

been chosen so that only the F = 0 scattering channel remains appreciable, and the

interaction favors the formation of nearest-neighbor spin singlets. This is given by

Ĥ00 = − J
g0

∑
〈ij〉

Â00†
ij Â

00
ij , (5.1)

where as before, Â00
ij =

∑
mC

00
m,−mb̂i,mb̂j,−m annihilates a pair of bosonic atoms at

sites i and j in a hyperfine spin singlet. Throughout this chapter, we often drop

the superscripts which denote the total spin variables F and M since they are now

both zero, and refer to this pair operator simply as Âij. Additionally, we will make
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frequent use of the commutation relation

[
Âij, Â

†
ij′

]
= δjj′

(
1 +

n̂i + n̂j
2f + 1

)
+

1− δjj′
2f + 1

∑
m

b̂†j′,−mb̂j,m

to calculate expectation values and other operator products. Also, we note that in

the one-particle-per-site Hilbert space and in the large-f limit this reduces to bosonic

commutation relations [Âi,j, Â
†
k,l] = δi,jδk,l, and so the Â singlet pair operators are

a convenient fundamental object to work with in this limit. We therefore seek to

describe the entire Hilbert space in terms of singlet pairs.

The eigenstates of Eq. 5.1 can be written as a superposition of singlet coverings,

with each singlet covering being constructed from the pair operators Âij. When acting

on the empty state, the Âi,j operator creates a state where the bosons on sites i and

j are paired in a spin singlet, which we may denote as |i—j〉 ≡ Âi,j |0〉. These sites

do not necessarily have to be nearest neighbors. The full set of singlet coverings are

the states given by

|a〉 =
∏

(i,j)∈a

Â†ij |0〉 , (5.2)

where each lattice site appears exactly once in the product over bonds. This Hilbert

space contains no states with unpaired spins (monomers), or multi-paired spins

(trimers). Some examples of singlet coverings are and how they are related to the

Âi,j operator are illustrated in Fig. 5.1, and typically, the pictorial representations of

these states are more convenient than listing out the paired sites explicitly.

To be used as a valid Hilbert space, the space of singlet coverings must be closed

under the operation of Ĥ. We can see this directly by using the commutation relations

(Eq. 5.1) to calculate how terms from Ĥ00 of the form Â†ijÂij act on states in the
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Figure 5.1: Examples of singlet cover states. The numbers label the lattice sites,
while connected sites represent a spin singlet between the atoms on those sites. In
this example, |a〉 = Â†1,2Â

†
4,5Â

†
3,6 |0〉. The notation |(i, j) : a〉 denotes a state where

sites i and j are paired in a singlet, the original partners of i and j in |a〉 are paired
in another singlet, and all the other bonds in |a〉 are left unchanged. This notation
is used in the supplementary materials to derive an effective dimer model (Eq. 5.18).

singlet covering space. We find

A†i,jAi,j|i—j; i′—j′〉 = |i—j; i′—j′〉

A†i,jAi,j|i—i′; j—j′〉 =
1

2f + 1
|i—j; i′—j′〉,

(5.3)

and so if sites i and j are already paired then nothing happens, while if i and j are

initially unpaired this operator pairs them, and then pairs their old partners i′ and

j′. The Clebsch-Gordan coefficients from the commutation relations give this process

an amplitude of (2f + 1)−1. When extended to general states in the Hilbert space |a〉

we write

Â†ijÂij |a〉 =


|a〉 , for (i, j) ∈ a

(2f + 1)−1 |(i, j) : a〉 , for (i, j) /∈ a,
(5.4)

where the we have introduced the notation |(i, j) : a〉 to denote a state in which i and

j are paired, and the original partners of i and j from |a〉 are paired, while all the

other bonds in |a〉 are left unchanged. An example of a singlet covering |a〉 and a few

of the related states |(i, j) : a〉 are illustrated in Fig. 5.1.

A difficulty of using the singlet coverings as defined in Eq. 5.2 is that they are
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not orthogonal. Their overlap matrix Sa,b = 〈a|b〉 may be calculated directly with the

commutation relations Eq. 5.1, or through their so-called transition graph, as shown

in Fig. 5.2. We find that the overlap between two singlet coverings |a〉 and |b〉 is

Sab = (2f + 1)Nloops

(
1√

2f + 1

)Lloops

, (5.5)

where Nloops is the total number of closed loops in the transition graph formed by the

dimers not common to |a〉 and |b〉, while Lloops is the total number of sites involved

in all loops. This overlap matrix element is pictorially represented by a transition

graph, shown in Fig. 5.2. For large f , we may expand Sab in powers of (2f + 1)−1 to

obtain

Sab = δab +
�ab

2f + 1
+

�(2)
ab

(2f + 1)2
+O(f−3). (5.6)

Here, �ab = 1 if |a〉 and |b〉 differ by a 4-site loop in their transition graph, and is

zero otherwise. The symbol �(2)
ab = 1 if |a〉 and |b〉 differ by either a single 6-site loop,

or two distinct 4-site loops in their transition graph, and is zero otherwise.

Despite derivations of QDM for spin-1/2 Heisenberg models in solid state systems,

clear valence-bond crystal order or short-ranged RVB behavior have not been experi-

mentally observed in these systems. We believe that non-orthogonality plays an role

in this apparent discrepancy between theory and experiment. Typically, it is argued

that since any two randomly chosen coverings likely have long loops in their transition

graphs, that these singlet coverings can just be taken to be orthogonal. However, the

ground states of these models are typically described by a superposition of very sim-

ilar states, which have small loops and therefore large overlaps between them. Other

times, an expansion similar to Eq. 5.6 is used, and they neglect higher order terms

despite (2f + 1)−1 = 1/2 not being small. We feel that since the singlet states arising

from cold atoms become truly orthogonal in the f →∞ limit, that these systems are

much more likely to physically realize the predictions of these models, even at large
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Figure 5.2: Examples of transition graphs between non-orthogonal singlet coverings.
The magnitude of the overlap is given by Eq. 5.5 and is shown in the figure for the
two cases. The overlap Sab comes from a single 4-site loop, and represents the largest
possible overlap in magnitude. The overlap Sac comes from a single 6-site loop, and is
down in magnitude by a factor of (2f + 1)−1. In the large-f limit, all singlet coverings
become orthogonal as the overlaps approach zero.

but finite f .

To construct an orthogonal basis set from the non-orthogonal singlet coverings, we

could generally use the Gram-Schmidt procedure, however, this procedure is typically

impractical for large sets of abstract vectors, especially since each vector is treated

uniquely in the procedure. Rather, as pointed out by Ref. [42], there turns out to

be a much simpler way to construct an orthogonal basis from the singlet coverings,

and it applies uniformly to all basis vectors, making it much easier to write down in

a general way.

We first note that the overlap matrix from Eq. 5.6 is real, symmetric, and positive

definite (meaning all the eigenvalues are real and positive, and hence it is invertible).

These conditions imply that there is a unique matrix S1/2 called the principle square

root, such that S = S1/2S1/2. The principle square root is also positive definite and

invertible, which means that S1/2 and its inverse S−1/2 can be expanded as a series in

(2f + 1)−1. We now use S−1/2 to construct from the singlet basis |a〉 an orthogonal
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Figure 5.3: Pictorial representation of an orthogonal dimer state constructed from
non-orthogonal singlet coverings, as expressed in Eq. 5.7. A dimer state |ā〉 has an
associated O(1) singlet covering |a〉, which is used to label the state. At O(f−1) and
higher, it contains contributions from all coverings |b〉 which differ from |a〉 by a 4-site
loop in their transition graph, including those which lie outside the nearest-neighbor-
only Hilbert space.

basis |ā〉, defined

|ā〉 =
∑
b

(
S−1/2

)
a,b
|b〉 , (5.7)

which we call the dimer basis. States in the dimer basis |ā〉 are orthonormal, which

can be seen directly by calculating
〈
ā
∣∣b̄〉 = (S−1/2.S.S−1/2)a,b = δa,b.

While the transformation from physical singlet pairings to an orthonormal basis

set may seem abstract, we can see that the states in many ways retain their character,

and are still most readily imagined in terms of the pictorial representation of singlet

pairs. We see this by expanding |ā〉 for large f to obtain

|ā〉 = |a〉 −
∑
b

(
�ab

2(2f + 1)
+

�(2)
ab

2(2f + 1)2
− 3

8(2f + 1)2

∑
c

�ac�cb

)
|b〉+O

(
f−3
)
,

(5.8)

to 2nd order. We see that a given dimer state contains an O(1) contribution from a

particular singlet covering, which we may use to label the dimer state. In fact, in the

f → ∞ limit |ā〉 = |a〉, and so the labelling is one-to-one and the deformation from

the singlet set is continuous as f becomes finite. This allows us to think of dimer

states in almost exactly the same way as we were thinking of the physical spin-singlet

coverings. Higher-order contributions come from singlet coverings which differ from

the labeling cover by successively longer loops in their transition graph. A pictorial

example of singlet covers being used to construct an orthogonal dimer state is shown

to first order in Fig. 5.3.

Since our Hamiltonian is defined in terms of its action on the singlet states, as in
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Eq. 5.4, we may write this as

Ĥ |a〉 =
∑
b

ha,b |b〉 , (5.9)

where the matrix ha,b relates vectors in this non-orthogonal space under the action of

Ĥ. In terms of the orthogonal basis, we find 〈ā| Ĥ
∣∣b̄〉 = Ha,b = (S−1/2.h.S1/2)a,b, such

that the eigenvalues of Ha,b and ha,b are identical, and that the eigenvectors can be

transformed between bases with Sa,b. This equivalence allows us to find the ground

state in either basis, depending on which is convenient. For numerical diagonalization,

the non-orthogonal basis is simpler, while for the application of formal perturbation

theory, the orthogonal basis is much more transparent. In the following sections we

utilize both approaches where they are most convenient.

5.2 Exact diagonalization with small systems

Now that we have defined the singlet and dimer Hilbert spaces, we find the ground

state of Eq. 3.31 numerically. For this calculation, we utilize the non-orthogonal

singlet basis, since the action of the singlet Hamiltonian on these basis states is

known from Eq. 5.4, and so we may calculate ha,b from Eq. 5.9 in a straightforward

manner. We seek to show that the ground state of this Hamiltonian lies in the nearest-

neighbor-only subspace, and that the ground state possess dimer-like correlations.

In our numerics, we do not rely on the large-f approximation, nor do we restrict

ourselves to states with only nearest-neighbor dimer bonds. However, we limited our-

selves to a small systems with no more than 16 lattice sites. By exact diagonalization

of ha,b, as constructed from the Ĥ00, we compute the ground state and the dimer-

dimer correlation functions 〈Â†ijÂijÂ
†
klÂkl〉, which are used extensively to characterize

the ground state of QDMs on various lattices [47, 229–231]. Furthermore, in Sec. 5.6

we propose a method of directly imaging singlet bonds to calculate these correlations
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Figure 5.4: Dimer-dimer correlations on a square lattice with periodic boundary
conditions. The thicknesses of each bond represents the probability of measuring
a dimer on that bond, relative to the reference dimer. (a) The large-f limit, with
f = 100, shows a mixing of the columnar and plaquette orders. (b) For accessible
spin values, such as f = 3 shown, the correlations weaken, but remain mixed.

in real space. Here, we calculate the ground state dimer-dimer correlations for a 4×4

square.

Fig. 5.4 shows the calculated correlations between a bond (i, j) and a bond (k, l)

on a square lattice for two different values of f , where the bond (i, j) is fixed, and

the bond (k, l) is varied. For large f we find correlations which appear to be a

mixture of the columnar and plaquette phases. For f = 3, which corresponds to the

typical atomic species 52Cr, the correlations are weaker but still indicative of a mixed

columnar/plaquette phase.

We may look at the excitation energy as a function of spin very simply using

these numerical techniques, which is shown in Fig. 5.5. We may also investigate

the stability of our system against small perturbations, such as off-site dipole-dipole

interactions. We calculate the matrix element of this perturbation V01 between the

grounds state and first excited state. Using parameters appropriate for Rubidium,

we find V01 ∼ 0.008 Hz, which is small compared to the lowest energy plaquette-flip

excitation ∼ 0.9J/g0 ∼ 4.5 Hz.
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Figure 5.5: Excitation energy as a function of the spin f . We find that the energy gap
decreases as (2f + 1)−1 in the large-f limit. For the experimentally accessible spins
(f = 1, . . . , 8) we find the excitation energy ranges between roughly 0.16–0.9 (J/g0).
For an f = 2 system of 87Rb, we may use Tab. 3.6 to determine that ∆E ' 0.9J/g0 '
7.5 Hz. In this case, the nearest-neighbor DDI of ∼ 1.8Hz does not take the system
outside of the nearest-neighbor dimer subspace spanned by our QDM.

5.3 Deriving a quantum dimer model for ultracold

bosons

The numerical calculations indicate nearest-neighbor dimer correlations to the ground

state of our singlet Hamiltonian (Eq. 5.1), however, at this point we are unsure if

this result holds for larger system sizes, and we have no information regarding the

parameters of the model, or exactly what types of dimer dynamics occur. To answer

these questions we seek an effective description of our Hamiltonian in the nearest-

neighbor only sector of the Hilbert space.

We follow the method of Raleigh-Schrödinger perturbation theory described in

App. E. First, we define a bare Hamiltonian Ĥ0 which contains the nearest-neighbor

only dimer subspace as the low energy sector, and of which we know the eigenvalues of

in the whole dimer space. Then, we define our perturbing interaction V̂ which takes
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us out of the nearest-neighbor sector. V̂ should be scaled by some small parameter, to

justify a truncation of the perturbative expansion to some reasonable order. Finally,

we derive an effective Hamiltonian ĤQDM which acts only in the nearest-neighbor

subspace.

To formally define the nearest-neighbor only sector we introduce the operator N̂nn,

which counts the number of nearest-neighbor in a state N̂nn |ā〉 = Na |ā〉, where Na is

the number of nearest-neighbor dimers in dimer covering |a〉. This may range from

Na = 0 for a state with completely long-range dimers, to Na = N/2 for a state in the

nearest-neighbor-only subspace. Here, N is the number of lattice sites in the system,

and N/2 is the maximum since each site is paired, and each pair contains two distinct

sites. Using this N̂nn operator, we trivially rewrite the Hamiltonian in Eq. 5.1 as

Ĥ

J/g0

= −N̂nn −

∑
〈ij〉

Â†ijÂij − N̂nn

 , (5.10)

where we take the first term, Ĥ0 = −N̂nn, to be our unperturbed Hamiltonian. This

term is diagonal in the entire dimer basis, and its completely degenerate low-energy

eigenspace is spanned by the set of all nearest-neighbor-only dimer coverings with

eigenvalue of −N/2. This low-energy subspace is separated from all higher-energy

subspaces by at least J/g0. Also, since all states in our subspace are degenerate, we

will subtract −N/2 from the final result since it is just a constant, making Ĥeff = V̂eff.

The second term in Eq. 5.10 is our perturbation, V̂ = −
(∑

〈ij〉 Â
†
ijÂij − N̂nn

)
,

which has matrix elements ofO (f−1), as will be illustrated shortly. We use completely

degenerate perturbation theory to expand V̂ as a series in (2f + 1)−1, restricted to

the low-energy subspace of nearest-neighbor-only dimer coverings. We obtain

Ĥeff =
∑
ab

|ā〉
〈
b̄
∣∣(〈ā∣∣∣V̂ ∣∣∣b̄〉+

∑
c

〈
ā

∣∣∣∣∣ V̂

N̂nn −N/2

∣∣∣∣∣c̄
〉〈

c̄
∣∣∣V̂ ∣∣∣b̄〉) . (5.11)
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Here, |ā〉 and
∣∣b̄〉 lie in the nearest-neighbor-only subspace, while |c̄〉 lies in the higher-

energy subspace, and contains at least one long-ranged dimer. The matrix element

for V̂ between any two dimer states |ā〉 and
∣∣b̄〉 is given by

〈
ā
∣∣∣V̂ ∣∣∣b̄〉 = Nbδab −

∑
d,e

(
S−1/2

)
ae

NdSde +
1

2f + 1

∑
〈ij〉/∈d

Se,(ij):d

(S−1/2
)
db
, (5.12)

where d and e include all dimer states, and 〈ij〉 /∈ d indicates a sum over all empty

bonds, i.e. nearest-neighbor pairs from state d which do not together form a dimer.

Substituting Eqs. 5.6 and 5.12 into Eq. 5.11 and restoring the factor J/g0, we

find that the matrix elements of the effective Hamiltonian in the nearest-neighbor

subspace are

Ĥa,b =
J

g0

− 1

2f + 1

∑
〈ij〉/∈b

δa,(i,j):b −
1

(2f + 1)2

∑
c

∑
〈ij〉/∈c

∑
〈i′j′〉/∈b

δa,(ij):cδc,(i′j′):b

 ,

(5.13)

to second order in (2f + 1)−1. This is an extremely general result, independent of the

system size, the lattice geometry, and boundary conditions of the problem. However,

in this form it may not be exactly clear how this model relates to the traditional

QDMs, but as the following section will show, when put onto specific lattices, the

familiar quantum dimer dynamics emerge.

5.4 The quantum dimer model on different lattices

To simplify Eq. 5.13 further, and to determine the coefficients t, t′, and v which

appear in Tab. 5.2, we must evaluate explicitly for different lattices, to express each

term using the lengths of loops in the transition graphs between two states. In this

section we focus on a square lattice, but a similar procedure can be done for other

lattices as well. Pictorial examples of these terms are shown in Tab. 5.1.
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For a square lattice, the first term from Eq. 5.13 becomes

∑
<i,j>/∈b

δa,(i,j):b = 2�a,b. (5.14)

This says that |ā〉 must be related to
∣∣b̄〉 by applying the Â†i,jÂi,j operator to an

empty bond in
∣∣b̄〉. If the empty bond in

∣∣b̄〉 corresponds to the open side of a

flippable plaquette, as illustrated in Tab. 5.1, then the plaquette will be flipped and

so |ā〉 must be a state related to
∣∣b̄〉 by a 4-site loop in the transition graph, and

the term is equal to 2 (since there are two empty bonds on each flippable plaquette

and the sum
∑

<i,j>/∈b is over all empty bonds). If the empty bond in
∣∣b̄〉 is not the

open side of a plaquette, then
∣∣(i, j) : b̄

〉
will contain a long-range bond, and therefore

cannot be equal to |ā〉, and so the term gives zero. Therefore, the behavior of this

term is captured by the symbol �a,b, defined in Sec. 5.1.

The second order term from Eq. 5.13 is a bit more complicated to simplify. This

term comes from second order processes which takes the system out of the nearest-

neighbor Hilbert space and then back into it, through two applications of Â†i,jÂi,j

operators for two different bonds. There are two scenarios which produce non-zero

matrix elements. These result in

∑
c/∈n

∑
<i,j>/∈c

∑
<i′,j′>/∈b

δa,(i,j):cδc,(i,j):b =


2(N +N p +N ), for a = b

4��a,b, for a 6= b.

(5.15)

The first case a = b is shown in Tab. 5.1. In these cases, the Â†i,jÂi,j acts on an

empty bond which is not part of a flippable plaquette. This results in the creation

of a single long-range bond in the intermediate state |c̄〉. Then, we require that the

second Â†i,jÂi,j acts on an empty bond in |c̄〉 and returns it to the original state.

The numbers N , N p, and N count how many times these three types of empty

bonds which contribute to these processes appear in the dimer covering. For example,
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|b〉 |c〉 |a〉 Multiplicity

t N/A 2

t’ 4

V |b〉 2

V |b〉 2

V |b〉 2

Table 5.1: Pictorial derivation of the t and t′ terms of the quantum dimer model
on a square lattice. Blue lines indicate dimer bonds, while yellow lines indicate the
empty bonds which Â†Â act upon to move the system from |b〉 to |c〉 to |a〉. The
multiplicity is the total number of terms in the Hamiltonian which produce identical
dimer resonances, and is the product of the number of yellow lines in one single row.
The kinetic resonances result in t : 2β�a,b and t′ : 4β2��a,b, while, the effective
potential becomes V : 2β2(N +N p +N ) ∝ −4β2Nflipδa,b.
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N counts the number of empty bonds which are sandwiched between two parallel

dimers, all along the same line. Additionally, all possible rotations and reflections

of these patterns are considered to be counted, so for example, N also counts all

vertical arrangements of this type. Tab. 5.1 shows that there are two ways each

of these processes occur, and so we include a factor of two. The second case, when

a 6= b, (term t′), and comes from a similar process, except that now the final state

is a nearest-neighbor-only that differs from the original state by a 6-site loop in the

transition graph, which may be represented ��a,b as defined in Sec. 5.1. In this case,

there are 2 ways of getting into the intermediate state, and 2 ways of getting back,

resulting in a factor of 4.

Before substituting these terms back into Eq. 5.13, we make use of the relation

Nempty = N + N p + N + Nq, where Nq is the number of empty bonds which

are part of a flippable plaquette, and Nempty is the total number of empty bonds.

These four types of empty bonds are the only types allowed on the square lattice,

and so the sum of them is simply the total number of empty bonds. Furthermore,

Nempty = (Nbonds − Nnn) = (2N − N/2) = 3
2
N and is constant for the nearest-

neighbor only subspace. Finally, each flippable plaquette contains 2 empty bonds, so

Nq = 2Nflip. With these considerations we find that we may write

N +N p +N =
3

2
N − 2Nflip, (5.16)

which by putting things in terms of Nflip allows for easy identification of the traditional

quantum dimer terms.

Using Eqs. 5.14, 5.15, and 5.16 we now rewrite the quantum dimer Hamiltonian

(Eq. 5.13), on the square lattice as

Ĥa,b =
J

g0

(
− 2

2f + 1
�ab −

4

(2f + 1)2
��ab +

4

(2f + 1)2
Nflipδab

)
, (5.17)
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where we have dropped the constant factor depending on N . The first term—

containing �ab—gives the two-bond resonance term with an amplitude t = 2
2f+1

J
g0

.

The second term—containing ��ab—gives the three-bond resonance term with an

amplitude t′ = 4
(2f+1)2

J
g0

. While the third term—containing Nflipδab—gives an ef-

fective interaction V = 4
(2f+1)2

J
g0

between the two parallel bonds around a flippable

four-site plaquette. We can then put in into the standard notation,

ĤQDM =
∑

plaquettes

[
−t
( ∣∣ 〉 〈 ∣∣+ H.c.

)
+ V

( ∣∣ 〉 〈 ∣∣+
∣∣ 〉 〈 ∣∣ )]

+ t′
∑

6-site plaquettes

[ ∣∣ 〉 〈 ∣∣+
∣∣∣ 〉 〈 ∣∣∣+ H.c.

]
. (5.18)

where first sum now runs over all 4-site plaquettes, and the second sum runs over

all 6-site plaquettes. In this notation t and t′ represent the kinetic dimer resonances,

while the V term represents the interaction energy between parallel bonds.

We then use the procedure outlined in this chapter to calculate a similar effective

model on different lattice geometries, where the amplitudes of the various terms (t,

t′, and V ) are given in Tab. 5.2. The ground state of these QDMs strongly depends

on the lattice geometry. For example, on a triangular lattice we find from Sec. 5.2

the
√

12 ×
√

12, as in Ref. [229]. However, the ground states for the 2D square

and 3D cubic lattices are in general a matter of contention [48, 231, 232], which an

experimental realization of our proposal could resolve.

5.5 The phase diagram of the quantum dimer

model

The effective model for our system from Eq. 5.18 has a rich phase diagram, which has

been well explored along t′ = 0 in a number of geometries [43, 44, 47, 48, 229–237].
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Lattice geometry t
J/g0

V
J/g0

t′

J/g0
Large-f ground state

Square 2
2f+1

4
(2f+1)2

4
(2f+1)2

columnar/mixed

Triangular 4(f+1)
(2f+1)2

4
(2f+1)2

4
(2f+1)2

√
12×

√
12

Honeycomb O (1/f 4) O (1/f 4) 6
(2f+1)2

plaquette

Kagome O (1/f 4) O (1/f 4) 6
(2f+1)2

Table 5.2: Coefficients of the quantum dimer model on different lattice geometries,
determined from the method demonstrated pictorially for a square lattice in Tabs. 5.1
and 5.1. The large-f ground states on square and triangular lattices are determined by
numerical diagonalization as discussed in section 5.2. The appearance of the second-
order, three bond resonance t′ is unique to the quantum dimer model as derived from
the singlet Hamiltonian, Eq. 5.1.

For 2D bipartite lattices with t′ = 0, one finds only valence bond solid phases, while

on 3D and non-bipartite 2D lattices dimer liquids may be found. The phase diagram

at finite t′ is less explored [238].

Expanding our singlet Hamiltonian into the nearest-neighbor dimer basis (Eq.

5.18) has the tremendous advantage of reducing the size of our Hilbert space. This

allows us to easily diagonalize the model for small system sizes. In particular, we seek

to show that the energies and ground states obtained agree with those predicted by

the numerical approach, and to determine where the experimentally realizable phases

lie with respect to the complete phase diagram. The results are shown in Fig. 5.6 for

a 4× 4 square lattice.

From Fig. 5.6 we see that that increasing f only samples a small portion of

the complete phase diagram. In particular, the RK point (v/t = 1), where the

equal superposition RVB wavefunction is the ground state, appears to be inaccessible.

However, we expect that by tuning the Feshbach parameters, one could explore a

larger region of the model’s phase diagram. If we tune the coupling and detuning

such that gF 6=0,2 � g2 > g0 � J , then the effective spin Hamiltonian at second order

103



Figure 5.6: The phase diagram for the quantum dimer model on a 4×4 square lattice,
obtained by exact diagonalization of Eq. 5.18. We find columnar and staggered phases
as shown in Fig. 2.10, as well as a mixed phase which contains components of both the
columnar and plaquette phase. We discover that the region accessible by using atoms
of different hyperfine spin f lies along a line approaching V/t = 0 as f →∞. Notably,
the RK point at V/t = 1 is not accessed directly by increasing the spin. Furthermore,
we find that the presence of the unique 3-bond resonance t′ widens the disordered
region between the columnar and staggered phases by increasing dimer fluctuations,
induces a 6-site plaquette phase at large t′, which is not present in QDMs derived
from electron superexchange. The dimer-dimer correlations used to distinguish these
phases are shown in Figs. 5.7 and 5.8.
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(a) (b) (c)

Figure 5.7: Dimer-dimer correlations for three phases of the quantum dimer model
on a 4× 4 square lattice with periodic boundary conditions (Eq. 5.18 and Fig. 5.6).
Reflection symmetry is utilized to enhance the readability of these correlations, by
doubling the visual size of the lattice in each figure. (a) The “mixed” phase contains
a linear superposition of the columnar and 4-site plaquette phases. (b) The physical
state realized by using f = 3 atoms (52Cr for example) contains weak correlations
which fall off rapidly with distance, and we note good agreement with the numerical
results shown in Fig. 5.4. (c) The RVB spin liquid phase is located at the RK point
(V/t = 1 and t′ = 0), and shows static correlations beyond nearest-neighbors, as all
possible dimer coverings are present in the superposition.

in the tunneling strength is

Ĥ = − J
g0

∑
〈ij〉

Â00†
ij Â

00
ij −

J

g2

∑
〈ij〉M

Â2M†
ij Â2M

ij , (5.19)

where Â2M†
ij =

∑
mC

2M
m,M−mb̂i,mb̂j,M−m creates a neighboring boson pair with total spin

F = 2 and azimuthal spin M . By applying the same large-f perturbation techniques,

we expect to obtain a dimer model (Eq. 5.18)), where V and t′ now depend on

(g2 − g0)−1. The amplitude t could also develop corrections at O (f−2). By tuning

g2 − g0 via the Feshbach laser intensity and detuning, we expect that V/t and t′/t

could be controlled to move the system into different regions of the phase diagram.
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(a) (b)

Figure 5.8: Dimer-dimer correlations for the plaquette phases of the quantum dimer
model on a 4 × 4 square lattice with periodic boundary conditions (Eq. 5.18). (a)
Due to the presence of a non-zero 3-bond resonance (t′ 6= 0) we find a 6-site plaquette
phase, which is unique to the QDM as derived from whole-atom exchange. (b) The
4-site plaquette phase found with QDMs derived from electron superexchange is not
found in our model, but is present as a component in the mixed phase.

5.6 The experimental accessibility of the quantum

dimer model

We consider a gas of atoms, with electronic orbital angular momentum, l = 0, rela-

tively large hyperfine spin f , but relatively weak dipole-dipole interactions. Alkali

metals such as 87Rb with f = 2, or 40K with f = 9/2 are ideal. Large spin atoms

such as 52Cr with f = 3 or 164Dy with f = 8 could be used if the DDI was tuned

to be small. To image the singlet bonds we propose shining a weak near-resonant

photoassociation laser on the system, tuned near a molecular state with angular

momenta L = 1 and S = 0. Then, when virtual hopping brings two atoms forming

an S = 0, L = 0 dimer onto the same lattice site, the near-resonant light drives

these atoms into the molecular state. The excited molecule has a short lifetime and

so those atoms are lost from the trap. The probability of losing adjacent atoms

which do not form a dimer is proportional to 1
(2f+1)2

, and so at large f , adjacent

atoms which do not form a dimer have a much smaller probability of being lost in

this manner. In light of this, we propose to image the system with a quantum gas

microscope [239, 240], after the gas has been probed with the photoassociation laser.
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From these images the fraction of dimer bonds in the system can be determined,

since all empty sites in the image were likely occupied by atoms previously entangled

in a dimer. Dimer-dimer correlations could then be extracted by analyzing data

from multiple realizations of this imaging process. We emphasize that the ability

to directly image the valence-bond correlations is one of the greatest strengths of

this system, and will allow unambiguous identification of the various valence-bond

ordered phases. Spin liquid phases will be characterized by the absence of long-range

valence bond order.
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Chapter 6: Conclusions

In this thesis, we have developed a proposal to use ultracold gases trapped in optical

lattices to study quantum spin liquid phases and quantum dimer models. This study

was motivated by the nature of the whole-atom exchange mechanism present in these

systems, which allows for magnetic spin fluctuations which grow with the magnitude

of the constituent spins through the increasing number of Zeeman sublevels, (2f +1).

This mechanism, along with several other properties unique to cold atoms, provides

numerous advantages compared to similar studies derived from solid state spin mod-

els. These include experimental control over the magnitude of spin fluctuations and

the ability to tune the interaction strengths through different scattering channels.

To investigate the possibility of a cold atomic spin liquid, we considered an

isotropic mean field theory which captures the competition between a spin liquid

and magnetically ordered Bose-Einstein condensates. With this approach we deter-

mined that a gapped spin liquid phase is favored for large spin (f > 2) and small

singlet scattering (a0 << aF 6=0). It also remarkably produced an analytic solution in

the case of (a0 → 0), which allowed us to derive the field ground state wavefunction

in a closed form. We observed that although spin fluctuations increase, the amplitude

of nearest-neighbor singlet pairing becomes static in the large-spin limit, leading to

the recasting of our problem in terms of a quantum dimer model.

We then rigorously derived the quantum dimer model for a system of ultracold

bosons to second order in f−1 using Rayleigh-Schödinger perturbation theory. This

mapping becomes exact in the f →∞ limit, and the possibility of physically accessing

the large-f limit through judicious choice of atoms gives our approach an advantage
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over QDMs derived from the Heisenberg model. We also find the appearance of an

additional kinetic 3-bond (6-site) resonance, which is absent in solid state QDMs.

When this resonance is large, we find new QDM ground states, such as the 6-site

plaquette phase. Since the ground state of the traditional QDM is unknown in certain

parameter regimes, a cold atom QDM system could be used to experimentally resolve

these theoretical questions. Finally, we anticipate that the ease at which cold atomic

systems can be created with different geometries provides a significant incentive to

engineer these phases using cold atoms. For example, by stabilizing a QDM or QSL

phase on a topologically non-trivial lattice—such as a disk with a hole in the center, or

a torus—one can envision using these systems to create and manipulate fractionalized

excitations in a quantum computer someday.

To conclude, Mott insulating ultracold bosonic systems provide a rich environ-

ment in which to study, and someday create, quantum dimer models and spin liquid

phases. The theoretical study of such phases has been critical in developing our un-

derstanding of how constraints lead to new emergent physics, and they have been used

as a theoretical foundation when attempting to understand phenomena ranging from

high-temperature superconductivity to quantum computing. The physical realization

of QDMs and QSLs using ultracold atoms, as proposed in this thesis, would revolu-

tionize our understanding of exotic magnetic phases, and would further shape the

landscape of condensed matter physics in the post-Landau era. As the experimental

manipulation of large-spin atoms in optical lattices steadily improves, we believe it is

only a matter of time before the elusive spin liquid phase may finally be captured.
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Appendix A: Calculations of atomic and

lattice energy scales

This appendix collects several formula used to calculate various atomic and lattice

energy scales, used to produce Tab. 3.6. Primarily, it provides the trapping frequency

ωtrap in Eq. A.1, the recoil energy Erecoil in Eq. A.2, the scale of the quadratic Zeeman

shift q Zeeman in Eq. A.3, the dipole-dipole interaction energy Edip in Eq. A.4, the

scale of the quadratic AC Stark shift q Stark in Eq. A.5, and the lattice scattering rate

Γscatter in Eq. A.6.

The trapping frequency of the optical lattice is found by Taylor expanding the

optical lattice potential V (x) = Vtrap sin2(kx) ' Vtrapk
2x2 and writing this in the

common oscillator potential form,

1

2
Mω2

trapx
2 = Vtrapk

2x2 −→ ωtrap =

√
2k2Vtrap

M
=

√
8π2Vtrap

λ2M
, (A.1)

where λ is the wavelength of the optical lattice, M is the mass of the trapped atoms,

and ωtrap is the fundamental frequency of the trap. This fundamental frequency sets

the scale of the oscillator modes within the optical lattice minima, and provided it is

less the than thermal energy kBT we may assume that the atoms reside in the ground

state oscillator mode of each site.

The recoil energy is given by

Erecoil =
~2k2

2M
=

2π2~2

Mλ2
, (A.2)
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where M is the mass of the atom, while k and λ are the wavevector and wavelength of

the optical lattice laser. The recoil energy is the natural energy scale used to measure

properties of the optical lattice, and represents the kinetic energy of an atom initially

at rest, after it has emitted a photon with a wavelength equal to the optical lattice

wavelength.

The second-order quadratic shift from a static external magnetic field B is given

by Ref. [127] as

q Zeeman =
(gjµB − giµN/i)

2

∆EHF(1 + 2i)2
B2 ' µ2

BB
2

∆EHF

, (A.3)

where ∆EHF is the hyperfine splitting of the nS1/2 manifold, gj and gi are the electronic

and nuclear Landé g-factors respectively, and i is the nuclear spin. Since µB/µN ≈

2000, where the Bohr magneton µB sets the scale for the electric magnetic moment

and the nuclear magneton µN sets the scale for the nuclear moment, we may neglect

the nuclear contribution to this term.

The maximum of the dipole-dipole interaction energy is given by

Edip(r) = − µ0µ
2

2π|r|3
, (A.4)

depends on the magnetic moment of the interacting atoms µ, where r = r1 − r2 is

the separation between the two atoms. Again, due to the large size of the electronic

moment relative to the nuclear moment we may retain only the contribution from the

electronic moment. We therefore only consider the dipolar interaction between the

total electronic magnetic moments µ ' µj.

The quadratic portion of the AC Stark shift, induced by the oscillating electric field

from incident light near resonant to the atomic D-line transition (nS1/2 −→n P1/2,3/2),

results in energy shifts which depend on the hyperfine projection m as ∝ q Starkm
2.
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For 87Rb in the F = 2 ground state manifold, following Ref. [193] we find

q Stark '
I

8π2c

(
λ3 ΓAP1/2

δ(δ − 2AP1/2
)

)
, (A.5)

for these shifts, which are also called tensor light shifts. Here, I is the laser intensity,

λ is the D-line transition wavelength, Γ is the natural linewidth of the excited nP1/2

state, δ is the laser detuning from the D-line transition, and AP1/2
is the hyperfine

splitting in the excited state. For the calculations which appear in Tab. 3.6 we have

used a rather strong laser intensity of I = 5000 W/cm2, since intense photoassociation

lasers may be needed to reach our required amount of Feshbach tuning.

Finally, the scattering rate from a blue detuned lattice (defined by δtrap > 0 with

δtrap ≡ 2π~c/λ− ED-line > 0) is given by Ref. [54] as

Γscatter = Γ
~ωtrap

4δtrap

, (A.6)

where the D-line corresponds to a transition from the nS1/2 −→n P1/2, 3/2, and Γ is

the natural linewidth (excited state lifetime) of this transition.
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Appendix B: Rotational symmetry and

related properties

B.1 The Clebsch-Gordan coefficients

The Clebsch-Gordan coefficients are a set of numbers used in quantum mechanics

when adding two uncoupled angular momenta into a total angular momentum. These

may be used for example in the coupling of the electronic and nuclear spins to de-

termine the total angular momentum of an atom, or the coupling the total angular

momentum for two atoms into the total angular momentum of a diatomic molecule.

They may be defined by the projection of a two-particle product state |f1,m1; f2,m2〉

into a total angular momentum state |F,M〉, as in

|f1,m1; f2,m2〉 =
∑
F,M

|F,M〉 〈F,M |f1,m1; f2,m2〉 , (B.1)

where the expansion coefficients 〈F,M |f1,m1; f2,m2〉 are known as the Clebsch-

Gordan coefficients. These may be determined through a set of recurrence relations

by using the formal definitions of the angular momentum operators F̂2, F̂z and F̂±,

or by explicit formulas derived from these relations.

Several properties of these coefficients greatly simplify our calculations. Addition-

ally, throughout this work we restrict ourselves to indistinguishable bosonic atoms,

for which f1 = f2 = 1, 2, 3, . . . = integer. Furthermore, the interaction between these

identical bosons occurs only through even total-spin channels as described in Chap.

3, such that F = 0, 2, 4, . . . = even. For clarity, we first present these properties in
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their general form, and then explicitly show how they further reduce with our specific

assumptions.

In the most common phase convention, the Clebsch-Gordan coefficients can be

chosen to be real, and so

〈F,M |f1,m1; f2,m2〉 = 〈f1,m1; f2,m2|F,M〉 . (B.2)

Furthermore, since we have f1 = f2 = f , we introduce a compact notation which

suppresses this index, giving

CFM
m1,m2

≡ 〈f,m1; f,m2|F,M〉 = 〈F,M |f,m1; f,m2〉 . (B.3)

The f index is then left as an arbitrary parameter, or specified before specific cal-

culations are carried out. For a given F and M this notation expresses the matrix

elements of a matrix in m1,m2-space. This is particularly useful when writing the

Hamiltonian in spinor form, as is frequently done throughout Chaps. 3 and 4.

To switch the labels for atoms 1 and 2 we have the relation

〈f1,m1; f2,m2|F,M〉 = (−1)F−f1−f2 〈f2,m2; f1,m1|F,M〉 , (B.4)

which for f1 = f2 = f and F = even we find

CFM
m1,m2

= CFM
m2,m1

, (B.5)

and so the Clebsch-Gordan coefficient matrix CFM
m1,m2

is both real and symmetric in

spin space.

To relate a Clebsch-Gordan coefficient for a given spin state, to the spin state

which is polarized in the opposite direction along the quantization axis, we may use
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the relation

〈f1,m1; f2,m2|F,M〉 = (−1)F−f1−f2 〈f1,−m1; f2,−m2|F,−M〉 , (B.6)

which for f1 = f2 = f and F = even gives

CFM
m1,m2

= CF,−M
−m1,−m2

, (B.7)

and so the sign of all projection indices may be flipped and leave the Clebsch-Gordan

coefficient unchanged.

A useful condition to determine when some Clebsch-Gordan coefficients are zero

is that the sum of the two individual spin projections must be equal to the total spin

projection, such that m1 +m2 = M . This allows us to frequently use the condition

〈f1,m1; f2,m2|F,M〉 = CFM
m1,m2

= 0 if m1 +m2 6= M, (B.8)

to reduce the number of terms in the Clebsch-Gordan matrix.

Finally, an explicit form of the Clebsch-Gordan coefficients for F = 0 are used

extensively throughout Chaps. 4 and 5. Since M = −F, . . . , F , in this case we also

have M = 0. This gives

〈f1,m1; f2,m2|0, 0〉 = δf1,f2δm1,−m2

(−1)f1−m1

√
2f1 + 1

, (B.9)

or when written in terms of our identical bosons

C00
m,−m =

(−1)m√
2f + 1

. (B.10)

The magnitude of this expression is independent of m, and contains the factor of

1/
√

2f + 1, which is crucial for the 1/f expansions used throughout this work.
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B.2 Spherical tensor operators

The characterization of spin model ground states—specifically those involving large-

spin spinor gases—often includes an analysis of the rotational properties of the spin

wavefunction. These properties are captured most readily by taking expectation

values of the spin wavefunction with respect to operators expressed in the spherical

basis—a complex orthogonal basis constructed from the Cartesian basis. Operators

written in the spherical basis, which are called spherical tensor operators, are classified

directly by their rotational properties, such as whether they rotate like a quantum

object with angular momentum k = 0, 1, 2, . . ., etc. This index k is called the rank of

the spherical tensor.

For example, a scalar operator such as the potential energy U(r) is rotationally

invariant under all rotations. This would be trivially rewritten as a spherical tensor

operator of rank k = 0. On the other hand, the total spin operator Ĵ = Ĵxex +

Ĵyey+ Ĵzez is a vector operator, which rotates like an object with angular momentum

k = 1. Note that this characterizes how the operator itself rotates, and so there is

no dependence on the angular momentum j of the particle being operated on. The

spherical basis vectors for a rank k = 1 spherical tensor are written in terms of the

Cartesian basis as

ez ≡ ez (B.11)

e± ≡
1√
2

(ex ± iey), (B.12)

which when applied to the spin vector operator turns the three Cartesian components

Ĵx, Ĵy, and Ĵz into three operators Ĵz, Ĵ+, and Ĵ−, where Ĵ+, and Ĵ− are the spin

raising and lowering operators. Note that for a k = 1 operator there are three

components, which correspond to the three possible values of the secondary quantum
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number for a spin-1 object, q = −1, 0,+1. In general, a spherical tensor of rank k is

denoted by T̂k, and has 2k + 1 components labelled by q = −k, . . . , k and denoted

by T̂ k,q. We again emphasize that in the case of the spin operator Ĵ, the angular

momentum j will determine the size of the Hilbert space, and therefore the size of

the matrices used to represent each component Ĵz, Ĵ+, and Ĵ−, but it will not change

the fact that this vector operator behaves like a rank k = 1 spherical tensor.

Tensor operators of higher rank are also of great interest to the characteriza-

tion of quantum systems. For example, the electronic quadrupole moment and the

spin nematic tensor operators are both represented by rank k = 2 spherical tensors.

Higher-order terms in a multi-pole expansion are represented by spherical tensors

of increasing rank. Therefore, a systematic way to determine the components T̂ k,q

are needed, as the approach of defining ez, e+, and e− are valid only for k = 1.

Instead, the components of higher-rank spherical tensors are either defined by their

commutation relations with the rank k = 1 operators, given by

[Ĵ±, T̂
k,q] = ~

√
(k ∓ q)(k ± q + 1) T̂ k,q±1 (B.13)

and

[Ĵz, T̂
k,q] = ~q T̂ k,q, (B.14)

or by their rotational properties under a unitary operator U , given by

U † T̂ k,q U =
k∑

q′=−k

Uk
q,q′ T̂

k,q′ , (B.15)

where U corresponds to a physical rotation of the Cartesian axes. It is therefore seen

that under a physical rotation, the rank of a spherical tensor remains unchanged, but

the projections along the spherical bases do change, and hence the description of the

rank k as an effective angular momentum quantum number for the operator itself.
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B.3 The SU(2) and SU(N) Lie groups

Rotating the Cartesian axes of a physical system in classical mechanics is equivalent

to operating on the position vector r = (x, y, z) with a time-independent 3× 3 Carte-

sian matrix R. To correspond to a physical rotation, the matrix R must leave the

origin invariant, the chirality of the coordinate system unchanged (such as right- or

left-handedness), and preserve the distance between all points in the space. Mathe-

matically these requirements imply that R must be orthogonal, such that RT .R = I

where RT is the transpose of matrix R, and with determinant det(R) = +1. Since

the total effect of successive coordinate rotations can be described in terms of a single

coordinate rotation, R possess the properties of a mathematical group—specifically,

the group known as SO(3), which stands for Special (det(R) = +1) Orthogonal

(RT .R = I) matrices of rank 3.

Implementing a rotation in a quantum mechanical description is a bit different

however, since the state vectors may have complex values and the state space may

have any number of dimensions. Therefore, the matrices U which describe the rota-

tions are not members of the SO(3) group, but instead are members of SU(N). For

this group, the orthogonality condition of SO(3) is replaced by a unitarity condition

U †U = I, where U † is the Hermitian conjugate or adjoint of matrix U , and N is the

dimensionality.

In the case of continuous groups (as with those corresponding to physical ro-

tations), which are known as Lie Groups, we may express the group elements as

exponential of a related set of matrices called a Lie Algebra. This gives elements the

form

U = Exp

[
i
∑
α

cαT̂
α

]
= 1 + i

∑
α

cαT̂
α + . . . , (B.16)

where the Lie Algebra elements Tα are known as the generators of the transformation

and are Hermitian (such that T̂ † = T̂ ), cα is a vector which spans the space of the
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Lie Algebra and defines the specific rotation, and α ranges over the dimensionality of

the Lie Algebra space. The dimensionality of a Lie Algebra for the SU(N) groups is

finite and equal to N2− 1. This makes them easier to deal with in principle than the

infinite number of continuous elements in a Lie Group. Therefore, as conditions on

U arise through our physical analysis, we often consider infinitesimal rotations such

that cα is small, and we retain only the first two terms in the Taylor expansion.

For a quantum mechanical Hamiltonian Ĥ to be invariant under some set of

rotations, we require that if the states are rotated by a unitary operator |a〉 → U |a〉

that the Hamiltonian remain unchanged. This typically requires

U †ĤU = Ĥ. (B.17)

Since the continuous group U has an infinite number of elements, this is a cumbersome

condition to verify. However, since all elements of U may be obtained by compounding

an infinite number of infinitesimal rotations U = dU1 dU2 . . ., it is sufficient to study

this condition for an infinitesimal rotation about single axis α. In that case we may

use U = 1 + i cαT̂
α to expand Eq. B.17 to obtain

Ĥ − i cαT̂
αĤ + i cαĤT̂

α +O(c2
α) = Ĥ

Ĥ, T̂α − T̂αĤ = 0[
Ĥ, T̂α

]
= 0, (B.18)

where [A,B] = AB−BA is the commutator. In this way, we determine the invariance

of the system under some set of rotations U by checking that the generators for those

rotations commute with the Hamiltonian.

When discussing the rotational symmetry of spin systems, the rotation group must

be able to rotate the states about the three distinct Cartesian axes. This requires

that the Lie Algebra consist of three elements, and so we find N2− 1 = 3 −→ N = 2.
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This means that when a quantum system is rotated in three-dimensional space, the

spin state must be rotated by a corresponding element of the SU(2) Lie Group, where

the three generators of rotation are proportional to the Pauli spin matrices σx, σy,

and σz. For a spin-1/2 system, the spin Hilbert space has a dimension of 2, and so the

generators are proportional to the usual 2 × 2 representation of the Pauli matrices,

given by

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , and σz =

1 0

0 −1

 . (B.19)

For a spin-1 system, the spin Hilbert space has a dimension of 3 and so the 3 × 3

generalizations of the Pauli matrices are used, such as

σx =
1√
2


0 1 0

1 0 1

0 1 0

 , σy =
1√
2


0 −i 0

i 0 −i

0 i 0

 , and σz =


1 0 0

0 0 0

0 0 −1

 . (B.20)

For an arbitrary spin f , the (2f + 1) × (2f + 1) dimensional representation of the

Pauli matrices are used as the generators for the group of continuous rotations.

In some scenarios, a Hamiltonian may be invariant under spin rotations with

N > 2. The largest symmetry group possible comes when a spin f Hamiltonian

is invariant under SU(2f + 1) rotations. These rotations do not correspond to a

physical rotation of the system, as the number of orthogonal axes is greater than the

3 physical Cartesian axes. Rather, a system with such a high spin symmetry reflects a

lack of spin-dependence to Hamiltonian, as is the case with the nuclear spin of Alkali

earth atoms. Enhanced SU(N) symmetry spin models and expansions in 1/N have

long been used as a tool for calculating magnetic ground states, and the symmetry

is believed to introduce additional frustration and therefore long-range entanglement

and topological order. These properties are characteristic of many interesting phases
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such as quantum spin liquids and toric code models. More fundamentally, SU(N)

symmetry appears directly in Quantum Chromodynamics (QCD), which successfully

describes intranuclear interactions.

An explicit example is given here for the SU(3) Lie Group. The generators of

SU(3) are commonly written in terms of the eight Gell-Mann matrices, given by

T1 =


0 1 0

1 0 0

0 0 0

 , T2 =


0 −i 0

i 0 0

0 0 0

 , T3 =


0 0 1

0 0 0

1 0 0

 , (B.21)

T4 =


0 0 −i

0 0 0

i 0 0

 , T5 =


0 0 0

0 0 1

0 1 0

 , T6 =


0 0 0

0 0 −i

0 i 0

 , (B.22)

T7 =


1 0 0

0 −1 0

0 0 0

 , and T8 =
1√
3


1 0 0

0 1 0

0 0 −2

 . (B.23)

Similarly, representations of the SU(N) Lie Algebra matrices can be generated for

all N , allowing straightforward determination of SU(N) symmetry in any particular

Hamiltonian.
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Appendix C: Path Integral Formulation of

the QSL MF Theory

This appendix reformulates the Hamiltonian description of Eq. 3.19 in terms

of a path integral over the Lagrangian density. This allows us to apply the

Hubbard-Stratonovich transformation—a means of formally reducing our action to

the quadratic form of Eq. 4.1—and deriving the mean field equations (Eqs. 4.3 and

4.4) as saddle-point equations of that action.

C.1 Deriving a suitable path integral

First, from our starting Hamiltonian, Eq. 3.19, we can construct the coherent state

slave boson path integral Z. This depends on the action S(b∗i,m, bi,m) = i
∫

dtL(t),

and is given by

Z =

∫
D[b∗i,m]D[bi,m]ei

∫
dtL(t), (C.1)

where the time-independent boson operators b̂†i,m and b̂i,m of the Hamiltonian descrip-

tion are now complex (c-number) functions of time b∗i,m(t) and bi,m(t), however we

will suppress their time index t in all work that follows. The Lagrangian L(t) is found

from the Hamiltonian by a Legendre transformation, given by

L(t) = i
∑
i,m

b∗i,m∂tbi,m −H(b∗i,m, bi,m), (C.2)

where H(b∗i,m, bi,m) is the Hamiltonian function written in terms of the boson fields.

The path integral measures D[b∗i,m] and D[bi,m] each represent an integration over all
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possible values of the boson fields for each lattice site, spin index, and at each time.

In this way, the integration is over all possible configurations or “paths” of the boson

fields, with a phase given by the exponential of the action.

Since our Hamiltonian is only valid in the one particle-per-site Hilbert space, we

must enforce this constraint directly in the path integral measure. This is because the

boson fields are integrated over all possible complex values, including variation in both

the magnitude and phase. While the phase variations do not affect the boson density,

the magnitude variations will. We implement the one-particle-per-site constraint by

inserting

Πi,t δ(
∑
m

b∗i,mbi,m − 1) =

∫
D[λi(t)] e−i

∫
dt

∑
i λi(t)(

∑
m b∗i,mbi,m−1), (C.3)

into the path integral. Here, Π denotes the product operator and δ(x) is the Dirac

delta function. This then requires that on each lattice site we have nb =
∑

m b
∗
i,mbi,m =

1 at each moment in time, otherwise the path integral is zero. The right-hand side is

obtained by applying a common definition of the delta function,

δ(x) ∝
∫ ∞
−∞

dλ e−ixλ (C.4)

where λ is a variable introduced to be integrated over all possible real numbers.

Since we introduce a delta function constraint for each i and t, the integration may

be written as a path integral measure D[λi(t)] over a new field, λi(t). This auxiliary

field plays the role of a Lagrange multiplier in the Hamiltonian formalism, and so will
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be occasionally referred to as such. Finally, by inserting Eq. C.3 into Eq. C.1 we

Z =

∫
D[b∗i,m, bi,m, λi] exp

[
i

∫
dt

(∑
i,m

b∗i,m (i∂t − λi) bi,m

+
∑
<i,j>

∑
F,M

J

gF
AFM∗i,j AFMi,j +

∑
i

λi

)]
(C.5)

for the path integral.

Next, we wish to employ a Hubbard-Stratonovich transformation to make our

action quadratic in the bosonic field variables. We begin by introducing an generic

Gaussian functional integral over an auxiliary complex field QFM
i,j (t),

∫
D[QFM

i,j , Q
FM∗
i,j ]e

−i J
gF
QFM∗i,j QFMi,j = 2πigF/J. (C.6)

The choice of a Gaussian functional is convenient since the integral can be done

exactly, and is equal to a constant. We then preform a change of variables to shift

QFM
i,j → QFM

i,j −AFMi,j , which leaves the measure and the result of the Gaussian integral

unchanged. This gives

∫ D[QFM
i,j , Q

FM∗
i,j ]

2πigF/J
exp

[
−i

J

gF

(
QFM∗
i,j − AFM∗i,j )(QFM

i,j − AFMi,j
)]

= 1 (C.7)

Now we insert this identity into the path integral of Eq. C.5 at each time t, for each

bond < i, j >, and each total spin state |F,M〉. The result is

Z =

∫ D[QFM
i,j , Q

FM∗
i,j ]

2πigF/J
exp

[
−i

J

gF

(
|QFM

i,j |2 −QFM
i,j A

FM∗
i,j −QFM∗

i,j AFMi,j
)]

(C.8)

which effectively removes the interaction term for the addition of two new fields.
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After dropping overall constants we have obtained

Z =

∫
D[b∗i,m, bi,m, Q

FM
i,j , Q

FM∗
i,j , λi]exp

[
i

∫
dt

(∑
i,m

b∗i,mi∂tbi,m −HMF

)]
, (C.9)

where HMF is just our mean field Hamiltonian, Eq. 4.1. This current formulation is

exact, since integrals over the HS fields and the Lagrange multiplier reproduce our

spin Hamiltonian exactly (Eq. 3.19).

We note that the functional integration over λi(t) makes it effectively behave like

a quantum field, and in this case that the constraint is exactly obeyed. During the

MF treatment of Chap. 4 the Lagrange multiplier λ is approximated to be site- and

time-independent, known as the zeroth order mean field theory. We find using this

approximation that the density fluctuations 〈(δn̂i)2〉 = 〈n̂2
i 〉 − 〈n̂i〉2 6= 0, and so while

the constraint 〈n̂i〉 = 1 is obeyed, there are still fluctuations out of the physical Hilbert

space. The path integral formulation clearly shows that to suppress these fluctuations,

we need to restore the dynamics of λi(t), as is done by the full integration in Eq. C.5.

However, due to the extensive mathematical treatment required by this approach and

many subtle difficulties encountered during its implementation, we instead derive an

effective quantum dimer Hamiltonian in Chap. 5.

C.2 The saddle-point approximation and the

Euler-Lagrange equations

We often want to approximate our path integral by power expansion around the saddle

points. These saddle points are defined by points where the action is stationary.

∂

∂QFM
i,j

L =
J

gF

(
AFM∗i,j −QFM∗

i,j

)
= 0→ AFM∗i,j = QFM∗

i,j

∂

∂λi
L =

∑
m

b∗i,mbi,m − 1 = 0→
∑
m

b∗i,mbi,m = 1
(C.10)
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Since the Lagrangian doesn’t depend explicitly on the time derivative of these vari-

ables, these equations correspond to the Euler-Lagrange equations. Therefore, the

action is stationary when the paths follow the conditions above, namely, the self-

consistency equation and the constraint equation.

To approximate the functional integral by its value at this saddle point we must

have a large parameter multiplying the action. In the case of Sachdev’s large-N, by

integrating over the boson fields he obtains a prefactor of N, which justifies the saddle

point solutions. In this problem, we believe that (at least for the Q00-only limit) the

degeneracy of the excitations with respect to the “spin”-index m gives a 2f + 1 out

front. Integrating over the bosons, and then taking the saddle points of the effective

action for Q and λ. The saddle point equations are the same in the Hamiltonian

formalism, (since the HS fields and the Lagrange multiplier λ contain no dynamic

terms in the action), and so we can equivalently use the Hamiltonian formalism to

find the bosonic eigenmodes and then solve the resulting saddle point equations.
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Appendix D: Spin liquid mean field theory

This appendix provides additional details related to the spin liquid mean field theory

presented in Chap. 4, including detailed descriptions of the diagonalization procedure

followed to solve the MF Hamiltonian.

D.1 The Born-von Karman boundary conditions

When we impose periodic boundary conditions on the lattice, we must also require

that all functions exhibit the same periodicity as the underlying lattice. This re-

quirement is known as Born-von Karman boundary conditions. This is to say, for all

functions f we have f(ri+Lαα̂) = f(ri), where ri is a lattice vector and Lα = aαNα is

the length of the system in the α̂ direction. The Fourier decomposition of a function

with this periodicity implies that

e−ik·(ri+Lαα̂) = e−ik·ri .

To satisfy this condition, we find that for each lattice direction α̂ we must have

kα =
2πmα

Nαaα
,

and so we may index the allowed values of k as

~k =
∑
α

mα

Nα

~bα,
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where ~bα are the reciprocal lattice vectors. Here we have ~aα · ~bβ = 2πδα,β and mα

labels Nα unique values. This is achieved by taking mα = 0, ..., Nα − 1 or mα =

−N/2 + 1, ..., Nα/2 for m = even, which define a region in k-space known as the

1st Brillouin zone (BZ). The latter is commonly utilized in this work, although both

provide identical results. The reciprocal lattice basis vectors ~bα are defined as ~bα =

(2π) ∗ ~aβ × ~aδ/Vc, where Vc is the volume of the primitive cell and is given by Vc =

(~aβ×~aδ) ·~aα. Integration over the 1st BZ can be done by taking
∑

~k /N →
∫

d2k/VBZ,

and becomes exact in the thermodynamic limit, N →∞.

We often utilize fractional coordinates to write vectors within the 1st BZ, such as

~k = k1
~b1 + k2

~b2, where ki = {−1/2 + 1/N, . . . , 1/2 − 1/N, 1/2}, for a 2D system, as

considered throughout this work. We then obtain specific forms of b1 and b2 when

we look at particular lattices. Sites on a square lattice are denoted located at real-

space lattice vectors ~ai = ax̂im, each of which has four nearest neighbors located at

~δ = {±~a1,±~a2}. The reciprocal lattice vectors for a square lattice are ~bi = 2π/a x̂i,

the volume of the unit cell in real-space is VC = a3, and the volume of each BZ in

k-space is VBZ = (2π)2.

For the triangular lattice, sites are located at ~a1 = a{1, 0} and ~a2 =

a{−1/2,
√

3/2}, and each have 6 nearest neighbors at ~δ = {±~a1,±~a2,±(~a1+~a2)}. The

reciprocal lattice basis vectors are ~b1 = (2π/a){1, 1/
√

3} and ~b2 = (2π/a){0, 2/
√

3}.

The volume of the unit cell is VC =
√

3/2 and the volume of the first BZ is

VBZ = 2(2π)2/
√

3. We can integrate over the fractional coordinates k1 and k2

from {−1/2, 1/2}, or directly over the Cartesian coordinates. However, in Carte-

sian coordinates we also need to parametrize the integration over just the 1st BZ.

This is more complicated, since for the reciprocal lattice vectors are not parallel to

the real-space x and y axes. Therefore, if we want ~k = k1
~b1 + k2

~b2 in the form

~k = kxx̂ + kyŷ, then we find kx = 2πk1 and ky = (kx + 4πk2)
√

3, or equivalently,

k1 = kx/(2π) and k2 = −(kx −
√

3ky)/(4π). For integrals on this lattice, we have
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dk1dk2 =
√

3/(2∗(2π)2). Lattice vectors and integrals utilize these ranges throughout

this work.

D.2 Fourier transform of HMF

We utilize imposed translational symmetries, where the λi and Qi,j fields are uniform,

to simplify the Fourier transform of our spin liquid MF Hamiltonian (Eq. 4.1). We

define our FT by,

b̂im =
∑
k

eik·r
√
N
b̂km,

where i is one of the N lattice sites, k is summed over vectors in the 1st BZ, and m is

the magnetic quantum number of the boson operator. With this, the ÂFM operators

become

AFMi,j =
∑
m,m′

〈m,m′|FM〉 b̂imb̂jm′ =
∑
m,m′

〈m,m′|FM〉
∑
k,k′

1

N
ei(k·ri+k′·rj)b̂kmb̂k′m′ .

We then can expand the sum over nearest neighbors by writing rj = ri + δ, so

k · ri + k′ · rj = (k + k′) · ri + k′ · δ. Then using the delta function relation

∑
i

ei(k+k′)·ri = Nδk,−k′ ,

we obtain for the pairing terms in Eq. 4.1 of the form

Hpair = − 1

āF
CFM
m,m′

∑
k

(εkQ
FM b̂†k,mb̂

†
−k,m′ + ε−kQ

FM∗b̂k,mb̂−k,m′),

where εk =
∑

δ e−ik·δ is the lattice contribution of the FT. In most cases, the nearest

neighbors are in opposite pairs of ±δ, and so this term is even in k such that εk = ε−k.

Meanwhile, in the case of a uniform λ, the constraint from Eq. 4.1 becomes diagonal
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in k, and is given by

HC = λ

(∑
k,m

b̂†k,mb̂k,m −Nnb

)
.

Additionally, we often symmetrize the number operator

∑
k,m

b̂†kmb̂km =
1

2

∑
k,m,m′

δm,m′
(
b̂†kmb̂km′ + b̂†−k,−mb̂−k,−m′

)
,

when writing the Hamiltonian in matrix form, as is done in the following sections.

D.3 The case of general QFM

Here we describe how to solve the MF Hamiltonian of Eq. 4.1 in its most general form,

with all pairings QFM allowed to be non-zero. We begin by writing the Hamiltonian

in spinor form, and making a change of basis to a new set of operators γ̂†k,m/γ̂k,m,

which create/annihilate quasi-particle excitations. To do this, we first write a spinor

Ψk, which is some column vector of the b̂’s. We chose to define the spinor Ψk =

(b̂k,f , ..., b̂k,−f , b̂
†
−k,f , ..., b̂

†
−k,−f ) during this work. The chosen spinor exists in a 2 ∗

(2f + 1) dimensional space, and is therefore twice as large as the physical on-site

Hilbert space of each spin, because it contains both the boson operators and their

conjugate. We can then write the Hamiltonian as

HMF =
∑
k

Ψ†kDk Ψk +

(
Nb

∑
FM

āF |Q̄FM |2 −Nsλ

(
nb +

2f + 1

2

))
,

where the term containing a factor of 2f + 1 comes when including the density con-

straint in the matrix Dk, since when doing so, one must commute the 2f+1 operators

in the lower half of the Hamiltonian matrix, and so 2f + 1 extra constants are picked

up. However, the constants can be generally ignored, and the main object of interest

is term in the Hamiltonian which contains the operators, and is characterized by a
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2(2f + 1)× 2(2f + 1) non-diagonal matrix Dk. This matrix is given by

Dk =

 λ/2 ∗ I2f+1 −εkQ̄FMCFM

−εkQ̄FM ∗CFM λ/2 ∗ I2f+1

 ,

where I2f+1 is a (2f + 1) × (2f + 1) identity matrix and CFM is a (2f + 1) ×

(2f + 1) dimensional matrix with elements given by the Clebsch-Gordan coefficients,

(CFM)m,m′ = 〈FM |f,m; f,m′〉. This non-trivial portion of the Hamiltonian is the

matrix that we must diagonalize to find the energies and eigenstates of the model.

We require linear transformations of the b̂s which diagonalize the Hamiltonian

matrix Dk, while maintaining the bosonic commutation relations of the operators—

[b̂k,m, b̂
†
k′,m′ ] = δk,k′ δm,m′ and [b̂k,m, b̂k′,m′ ] = 0 for both the b̂ and γ̂ operators. The

appropriate linear transformation is given by a matrix Mk such that Ψk = MkΓk,

where Γk = (γ̂k,f , ..., γ̂k,−f , γ̂
†
−k,f , ..., γ̂

†
−k,−f ) is a spinor of quasi-particle excitations.

To find a suitable matrix M , we can solve for a matrix with satisfies our requirements.

First, our diagonalization condition is M †
kDkMk = ωk, where (ωk)i,j = ωk,mδi,j is a

diagonal matrix of the quasiparticle excitations, and i = 1, . . . , 2(2f + 1) counts over

the states in the doubled space. Secondly, the commutation condition can be better

understood by introducing the matrix τ 3 whose element are (τ 3)i,j = [(Ψk)i, (Ψ
†
k)j],

where the i and j run over the whole 2(2f+1) space and pull a particular element from

Ψk. It is named τ 3, following Sachdev, due to its similarity in the two component case

with the Pauli σz matrix. This τ 3 matrix completely characterizes the commutations

for the b operators. Furthermore, for the γ̂ particles to be bosons we should also have

(τ 3)i,j = [(Γk)i, (Γ
†
k)
†
j]. Using this we can write,

(τ 3)i,j = [Ψi,Ψ
†
j] = Mi,aM

†
b,j[Γa,Γ

†
b] = MiaM

†
bjτ

3
a,b,

where all k subscripts have been dropped because this condition applies independently
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at each k point.

So we find that the M matrix must satisfy the relations Mk †DkMk = ωk and

Mkτ 3Mk † = τ 3. These conditions can combined into a single condition,

M−1(τ 3D)M = τ 3ω,

where we’ve again dropped the k indices since this condition holds separately

at each k point. From this equation it can be seen that the M matrix needs

to diagonalize the matrix τ 3D. When we find Mk and we use it change basis

in the Hamiltonian so that
∑

k Ψ†kDk Ψk =
∑

k Γ†kM
†
k DkMkΓk =

∑
k Γ†kωkΓk =∑

k,m ωk,m

(
ˆgamma†k,m ˆgammak,m + ˆgamma−k,m ˆgamma†−k,m

)
. Applying this trans-

formation gives a Hamiltonian diagonal in the ˆgamma basis, which is given by

ĤMF = 2
∑
k,m

ωk,m

(
γ̂†k,mγ̂k,m + 1/2

)
+

(
Nb

∑
FM

āF |Q̄FM |2 −Nsλ

(
nb +

2f + 1

2

))
.

This Hamiltonian gives a BEC, characterized by a non-zero expectation value of

〈γ̂〉 ∼ 〈b̂〉 in the ground state, when the spectrum is gapless, such that ωk,m = 0 for

some k and m. Otherwise, the state is specific completely by the set of QFM which

minimize the MF energy.

D.4 Diagonalization for the nematic ansatz

In the nematic ansatz, where all QF,M 6=0 = 0, we have just a 2-dimensional spinor

given by

Ψkm =

 b̂km

b̂†−k,−m

 ,
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and in this basis, we may write an m-dependent matrix Dk,m, in the form

Dk,m =

 λ/2 −εk Q̄F0CF0
m,−m

−εk Q̄F0 ∗CF0
m,−m λ/2

 .

Using this 2D spinor, the diagonalization conditions give

τ 3 =

 [b̂km, b̂
†
km] [b̂k,m, b̂−k,−m]

[b̂†−k,−m, b̂
†
k,m] [b̂†−k,−m, b̂−k−m]

 =

1 0

0 −1

 ,

and the 2× 2 matrix we have to diagonalize is given by

τ 3Dkm =

 λ/2 −εk Q̄F0CF0
m,−m

εk Q̄
F0 ∗CF0

m,−m −λ/2

 .

To diagonalize this matrix, we write in terms of two complex numbers a and b,

such that

τ 3D =

 a b

−b∗ −a


where a = λ/2 and b = −εk Q̄F0CF0

m,−m. All k and m indices will be suppressed for

now, as they can easily be added back in at the end. Therefore, in the most general

form, we find two eigenvalues of

Ω± = ±
√
a2 − |b|2.

With this, we construct the eigenvectors, v± = α±(v±1 , v
±
2 ), where α normalizes to

133



the τ 3 condition. The possible components of these eigenvectors are

v±1 = b

v±2 = (Ω± − a)

and

v±1 = (Ω± + a)

v±2 = −b∗.

We choose among these in a way that ensures proper behavior as b → 0. In this

limit, the Hamiltonian is diagonal, and the eigenvectors should be v+ = (1, 0) and

v− = (0, 1). So, keeping in mind Ω± → ±|a| as b→ 0, the correct choices for arbitrary

b are

v+ = α+

Ω+ + a

−b∗


and

v− = α−

 −b

−(Ω− − a)

 = α−

 −b

Ω+ + a

 ,

with

α± =
(
|Ω± ± a|2 − |b|2

)−1/2
=
(
|Ω+ + a|2 − |b|2

)−1/2
,

such that both normalizations are the same. This gives us

Mk,m = α

Ω+ + a −b

−b∗ Ω+ + a

 (D.1)

=
1√

2ωk,m(ωk,m + λ/2)

 λ/2 + ωk,m εkQ̄
F0CF0

m,−m

εkQ̄
F0 ∗CF0

m,−m λ/2 + ωk,m

 , (D.2)
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where the dispersion is identified to be the positive eigenvalues

ωk,m = Ω+ =
√

(λ/2)2 − (εkQ̄F0CF0
m,−m)2.

Diagonalizing in this way allows us to write down all observables and expectation

values in terms of integrals over elements of the M matrix.

D.5 Uniaxial and biaxial spin nematics

This section briefly discusses the difference between the two types of spin nematic

phases, the uniaxial and biaxial nematics. The uniaxial state corresponds to the QF0

states, where pairings with M 6= 0 are zero, while the biaxial is complicated to write

for general QFM . This is because different biaxial states can be rotated into each other

via spin space rotations [218]. However, the biaxial and uniaxial spin nematics have

different symmetries from each other, and are not related by SU(2) spin rotations,

though certain SU(N) rotations will connect the phases.

When the QFMs for a given ground state are expanded in terms of spherical

tensor operators, the rank-2 portion can be written as a 3 × 3 Cartesian matrix.

The mapping from the spherical basis to the Cartesian basis can be given by the

real form of the spherical harmonics, as related to the complex Y l
ms. For example,

the real spherical harmonic ∼ xy/r2 would give the x-y component of the Cartesian

matrix. With proper normalization, this matrix is equivalent to the rank-2 nematic

order parameter, and may be aligned with the nematic “director” axis via an SO(3)

rotation in real space. By comparison of this tensor to the nematic order tensor, we

are able to determine the nature of the nematic order apparent in our BEC phases.
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Appendix E: Raleigh-Schrödinger pertur-

bation theory

This appendix briefly reviews Raleigh-Schrödinger perturbation theory, as developed

in Ref. [241]. This method of fully-degenerate time-independent perturbation theory

is used to determine the effective Hamiltonian throughout this work.

First, we assume that the Hamiltonian is time-independent, and may be written

Ĥ = Ĥ0 + V̂ , where V̂ is the perturbation applied to a system described by Ĥ0. We

assume that the spectrum of Ĥ0 is discrete, and that its eigenvalues and eigenvectors

are known. For generality we define the eigenvectors of Ĥ0 by Ĥ0 |Ea
n〉 = Ea

n |Ea
n〉,

where n labels different energies, and a accounts for any degeneracy. We choose d

of these eigenvectors to define our target space, a subspace we define as D, which

is the subspace in which the effective Hamiltonian is valid. In all cases we consider,

the subspace D is defined by the d degenerate eigenvectors which share energy the

ground state energy E0.

We now define the projection operator

P̂ ≡
∑
a∈D

|Ea
0 〉 〈Ea

0 | , (E.1)

which projects a state of Ĥ0 into the target subspace D, and the resolvent operator

R̂ =
∑

(n,a)/∈D

|Ea
n〉 〈Ea

n|
E0 − Ĥ0

, (E.2)

which projects a state of Ĥ0 out of the target subspace, weighted by the inverse of
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the energy difference between the projected state and the ground state. With these

two operators, an effective operator may be defined,

Ĥeff = P̂ Ĥ0P̂ + P̂ V̂ R̂V̂ P̂ +O(V̂ ) + . . . , (E.3)

and provided V̂ is small relative to Ĥ0, the series can be approximated to any order

desired.
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Appendix F: Deriving a quantum dimer

model

F.1 Determining the Feshbach coefficients

In this section, we calculate the coefficients αF that parametrize the interactions UF

through the different spin channels. These properties depend crucially on the angular

momentum of the atoms being used, and the quantum numbers for 23Na and 87 Rb

are shown in Tab. F.1. When laser light is incident upon a diatomic molecule with

total orbital electronic momentum L = 1 and total spin electronic spin S = 0, and

the detuning of the laser δ is large compared to hyperfine coupling of the atoms, the

effective interaction between atoms to second order becomes

Ĥint =
Ω2

δ + iΓ/2

∑
jnn′

(
â†j↑nâ

†
j↓n′ − â

†
j↓nâ

†
j↑n′√

2

)(
âj↓n′ âj↑n − âj↑n′ âj↓n√

2

)
, (F.1)

where âjσn annihilates a particle on lattice site j with electronic spin projection

σ =↑, ↓ and nuclear spin projection n. The coefficient of this interaction is a ratio of

the Rabi frequency Ω, and the detuning δ, however, the a complex component to the

detuning iΓ, where Γ is the linewidth of the hyperfine transition, allows for the loss

of atoms through inelastic scattering. This is analogous to the laser coupling with

individual atomic states to induce an effective lattice potential, as described in Sec.

2.3.1

In terms of our ÂFM pair operators this interaction can be written in the total
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23Na 87Rb

Mass 22.99 amu 86.9 amu

s 1/2 1/2

l 0 0

i 3/2 3/2

f 1, 2 1, 2

µe/µB = gJ
√
j(j + 1) 1.73

µnuc/µN 2.22 2.75

Table F.1: Angular momentum quantum numbers for two commonly used species
of alkali atoms. Shown are the electronic spin s, the electronic orbital angular mo-
mentum l, the nuclear spin i, and the hyperfine spin f = i ± j, where j = s + l is
the total electronic angular momentum. The electronic magnetic moment relative to
the Bohr magneton (µe/µB) and the nuclear magnetic moment relative to the nuclear
magneton (µnuc/µN) are shown.

spin basis as

Ĥint =
Ω2

δ + iΓ/2

∑
jFM

αF Â
FM†
jj ÂFMjj , (F.2)

where αF is independent of M due to SO(3) spin rotation symmetry. Since this

interaction is local, we drop the spatial index from the operators in this section. We

find from Eqs. F.1 and F.2 that

αF = 〈0| ÂFM
∑
nn′

(
â†↑nâ

†
↓n′ − â

†
↓nâ
†
↑n′√

2

)(
â↓n′ â↑n − â↑n′ â↓n√

2

)
ÂFM† |0〉 . (F.3)

Since M is arbitrary, we set M = 0 for simplicity, and evaluate this expression by

projecting the operators âσn into the atomic hyperfine spin, using the relation

âσn = σ

√
f + 1/2− σn

2i+ 1
b̂

(f=i−1/2)

n+ 1
2
σ

− σ
√
f + 1/2 + σn

2i+ 1
b̂

(f=i+1/2)

n+ 1
2
σ

, (F.4)

where σ = +1(−1) corresponds to ↑ (↓) spins, and the operators b̂
(f=i±1/2)
m annihilate

particles with hyperfine spin f = i ± 1/2 and projection m. These hyperfine spin

manifolds correspond to the ground and excited states, depending on the atom, and
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we denote the ground state manifold as simply b̂m.

We may then derive an expression for αF which is an explicit function of F , by

using Eqs. F.3 and F.4, and several properties of the Clebsch-Gordan coefficients

presented in App. B.1. We obtain

αF =
(f + 1)(2f + 1)− F (F + 1)/2

2(i+ 1/2)2
. (F.5)

The behavior of this function is shown in Fig. 3.5, and since this function decreases

in magnitude with increasing F , our proposed OFR affects the F = 0 channel more

than any other, and so it becomes possible to tune U0 << UF 6=0, as required for our

QDM description to be valid.

F.2 Commutation relations of the Â00
i,j

The commutation relations of the Â00 operators are used extensively to calculate ex-

pectation values of the spin liquid and dimer order parameters. They are also used

extensively in our derivation of the QDM. This section briefly presents relevant prop-

erties of these operators, to be used elsewhere in this thesis. These properties follow

directly from the definition of the Â00 operators, as well as the bosonic commutation

relations for the boson operators b̂i,m.

The Â operators are symmetric under exchange of site labels, such that Â00
i,j = Â00

j,i.

They possess commutation relations with themselves of

[
Â00
i,j, Â

00
k,l

]
= 0

[
Â00
i,j, Â

00†
k,l

]
=


1 +

n̂i+n̂j
2f+1

, for same bond∑
m

b̂†l,mb̂i,m

2f+1
≡ B̂l,i, for one shared site, in this case, j = k

0, for different bonds

(F.6)
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and with B̂i,j, as defined above in Eq. F.6, and the number operator n̂, we find

[
n̂i, Â

00†
i,j

]
= Â00†

i,j[
B̂i,j, Â

00†
k,l

]
=

1

2f + 1
(δj,lÂ

00†
i,k + δj,kÂ

00†
i,l )[

B̂i,j, Â
00
k,l

]
= − 1

2f + 1
(δi,lÂ

00
j,k + δi,kÂ

00
j,l)

(F.7)

Importantly, we see from Eq. F.6 that the Â00 operators do not behave as pure

bosonic variables, except in the f →∞ limit. Furthermore, since Eq. F.7 shows that

n̂ and Â00 do not commute, the action of our MF Hamiltonian (Eq. 4.1) does not

conserve particle number.

F.3 A rigorous derivation of the QDM

This section presents details of the primary result of this thesis. Namely, that when

the scattering length tuned to favor singlet interactions, the effective Hamiltonian of

bosons in an optical lattice can be written as a quantum dimer model. We also find

that this derivation is rigorous in the large-f limit. We begin with the singlet-pair

Hamiltonian,

Ĥ = − J
g0

∑
<i,j>

Â†i,jÂi,j, (F.8)

where we set J/g0 = 1 and write Âi,j = Â00
i,j to simplify expressions, since all ÂFM 6=0 =

0 in the limit being studied. The basis states constructed from singlet coverings may

be written

|a〉 ≡ Π(i,j)∈aÂ
†
i,j |0〉 (F.9)

for some state |a〉. However, these states are not orthogonal, and have an overlap of

Sa,b ≡ 〈a|b〉 = δa,b +
1

2f + 1
�a,b +

1

(2f + 1)2
�(2)
a,b +O(f−3), (F.10)
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where

�a,b =


1, If |a〉 and |b〉 differ by a 4-site loop

0, otherwise,

(F.11)

and

�(2)
a,b =


1, If |a〉 and |b〉 differ by two 4-site loops or one 6-site loop

0, otherwise.

(F.12)

From the overlap between the non-orthogonal singlet coverings Sa,b = 〈a|b〉, we may

construct an orthogonal set of states |ā〉, which we call the dimer basis. These quan-

tum dimer coverings are defined as

|ā〉 ≡
∑
b

S
−1/2
a,b |b〉 (F.13)

such that

〈ā′|ā〉 = δa′,a. (F.14)

When we employ the expansion of Eq. F.10, we find that Eq. F.13 gives

S
−1/2
a,b = δa,b −

1

2(2f + 1)
�a,b −

1

2(2f + 1)2
�(2)
a,b +

3

8

1

(2f + 1)2

∑
c

�a,c�c,b +O(f−3).

(F.15)

To simplify these expressions, we let β ≡ 1/(2f + 1), such that

Sa,b = δa,b + β�a,b + β2�(2)
a,b (F.16)
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and define Ma,b =
(

1
2
�(2)
a,b − 3

8

∑
c�a,c�c,b

)
such that

S
−1/2
a,b = δa,b −

β

2
�a,b − β2

(
1

2
�(2)
a,b −

3

8

∑
c

�a,c�c,b

)
+O(f−3) (F.17)

= δa,b − β
1

2
�a,b − β2Ma,b +O(f−3). (F.18)

With these expressions, we are in a position to calculate the effective Hamiltonian.

To derive the effective Hamiltonian in the subspace of nearest-neighbor dimer cov-

erings, we utilize the method of Raleigh-Schrödinger perturbation theory, as outlined

in App. E. First we write our singlet Hamiltonian as

Ĥ = −N̂ −

(∑
<i,j>

Â†i,jÂi,j − N̂

)
(F.19)

where the operator

N̂ |ā〉 = Na |ā〉 (F.20)

counts the number of nearest-neighbor dimers in the orthogonal basis states. We

define the unperturbed Hamiltonian

Ĥ0 = −N̂ , (F.21)

which has a low-energy sector containing the completely degenerate set of states which

contain the maximum number of nearest-neighbor bonds, which we denote |ā〉n and

for which Ĥ0 |ā〉n = −Nn |ā〉n. The remaining portion,

V̂ = −

(∑
<i,j>

Â†i,jÂi,j − N̂

)
, (F.22)

serves as our perturbation, which connects different states in our target subspace. The

projection operator P̂ moves states into the target subspace of orthogonal nearest-
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neighbor-only dimer coverings, and is written as

P̂ =
∑
a

|ā〉n 〈ā|n , (F.23)

while the resolvent, which contains the higher-energy portion of the dimer Hilbert

space, weighted by the inverse of the energy difference from the ground state, and is

given by

R̂ =
∑
a/∈n

|ā〉 〈ā|
En

0 − Ea
0

=
∑
a/∈n

|ā〉 〈ā|
Na −Nn

. (F.24)

To compute the effective Hamiltonian, we must determine the action of the operators

PV P and PV RV P in the dimer basis. We start by calculating just V̂ . We have

〈ā| V̂
∣∣b̄〉 = −〈ā|

∑
<i,j>

Â†i,jÂi,j
∣∣b̄〉+Nbδa,b, (F.25)

and we then expand the dimer states in terms of the singlet coverings, since Â acts

most cleanly on states in that basis. This yields

〈ā|
∑
<i,j>

Â†i,jÂi,j
∣∣b̄〉 =

∑
c,d

S−1/2
a,c 〈c|

∑
<i,j>

Â†i,jÂi,j |d〉S
−1/2
d,b . (F.26)

We then utilize the action of the Â operators, as given in Eq. 5.4 to determine

∑
<i,j>

〈c| Â†i,jÂi,j |d〉 =
∑

<i,j>∈d

〈c| Â†i,jÂi,j |d〉+
∑

<i,j>/∈d

〈c| Â†i,jÂi,j |d〉 (F.27)

= Nd 〈c|d〉+ β
∑

<i,j>/∈d

〈c|(i, j) : d〉 (F.28)

= NdSc,d + β
∑

<i,j>/∈d

Sc,(i,j):d. (F.29)
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This can now be put back into Eq. F.25 to obtain

〈ā| V̂
∣∣b̄〉 = −

∑
c,d

S−1/2
a,c

NdSc,d + β
∑

<i,j>/∈d

Sc,(i,j):d

S
−1/2
d,b +Nbδa,b. (F.30)

We then apply the expansions of Sa,b and S
−1/2
a,b from Eqs. F.16 and F.18, to obtain

〈ā| V̂
∣∣b̄〉 = −

∑
c,d

(
δa,c − β

1

2
�a,c − β2Ma,c

)(
Nd

[
δc,d + β�c,d + β2�(2)

c,d

]
+ β

∑
<i,j>/∈d

[
δc,(i,j):d + β�c,(i,j):d

])(
δd,b − β

1

2
�d,b − β2Md,b

)
+Nbδa,b. (F.31)

Here, we can see that the O(0) terms cancel, such that −
∑

c,d δa,bNdδc,dδd,b = −Nbδa,b.

This a crucial cancellation, and it ensures that the matrix elements of our perturbing

Hamiltonian are small in the orthogonal basis, and ensuring the truncation of our

series expansion is valid. Working out the rest of the factoring, but keeping terms

only to O(β2) we find,

〈ā| V̂
∣∣b̄〉 = −β

 ∑
<i,j>/∈b

δa,(i,j):b +
1

2
(Nb −Na)�a,b


+ β2

(
(Na +Nb)Ma,b +

1

4

∑
c

Nc�a,c�c,b +
1

2
Nb

∑
c

�a,c�c,b −Nb�
(2)
a,b

+
1

2

∑
c

∑
<i,j>/∈c

δa,(i,j):c�c,b −
∑

<i,j>/∈b

�a,(i,j):b +
1

2

∑
c

∑
<i,j>/∈b

�a,cδc,(i,j):b

)
(F.32)

While this expression seems unwieldy, we find that it will simplify tremendously when

used to calculate PV P and PV RV P . The matrix elements of these operators need

only be taken between states in the nearest-neighbor only subspace, meaning we are

to calculate 〈ā|n PV P
∣∣b̄〉

n
= 〈ā|n V

∣∣b̄〉
n
, and 〈ā|n PV RV P

∣∣b̄〉
n

= 〈ā|n V RV
∣∣b̄〉

n
.

We have Na = Nb = Nn, where Nn is the number of nearest-neighbor dimers in

the nearest-neighbor-only subspace, and depends on the lattice. For PV P we then
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find

〈ā|n V
∣∣b̄〉

n
= −β

∑
<i,j>/∈b

δa,(i,j):b

+ β2

(
2NnMa,b +

1

4

∑
c

Nc�a,c�c,b +
1

2
Nn

∑
c

�a,c�c,b −Nn�
(2)
a,b

+
1

2

∑
c

∑
<i,j>/∈c

δa,(i,j):c�c,b −
∑

<i,j>/∈b

�a,(i,j):b +
1

2

∑
c

∑
<i,j>/∈b

�a,cδc,(i,j):b

)
. (F.33)

Meanwhile, for PV RV P , must calculate

〈ā|n V RV
∣∣b̄〉

n
=
∑
c/∈n

1

Nc −Nn

〈ā|n V |c̄〉 〈c̄|V
∣∣b̄〉

n
. (F.34)

We again make use of Eq. F.32, however, since we only are keeping to O(β2), and

Eq. F.34 is quadratic in V , we only require the O(β) from Eq. F.32. In this case,

the element between a ground and excited state is

〈c̄| V̂
∣∣b̄〉

n
= −β

 ∑
<i,j>/∈b

δc,(i,j):b +
1

2
(Nn −Nc)�c,b

 . (F.35)

This gives

〈ā|n V RV
∣∣b̄〉

n
= β2

∑
c/∈n

1

Nc −Nn

 ∑
<i,j>/∈c

δa,(i,j):c +
1

2
(Nc −Nn)�a,c

 (F.36)

 ∑
<i′,j′>/∈b

δc,(i′,j′):b −
1

2
(Nc −Nn)�c,b

 , (F.37)
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which becomes simplified to

〈ā|n V RV
∣∣b̄〉

n
= β2

∑
c/∈n

(
− 1

Nn −Nc

∑
<i,j>/∈c

δa,(i,j):c
∑

<i′,j′>/∈b

δc,(i′,j′):b

− 1

2
�c,b

∑
<i,j>/∈c

δa,(i,j):c +
1

2
�a,c

∑
<i′,j′>/∈b

δc,(i′,j′):b +
1

4
(Nn −Nc)�c,b�a,c

)
. (F.38)

We may now return to our determination of the effective dimer Hamiltonian, which

is given by

n〈ā|Ĥeff|b̄〉n = −Nnδa,b + 〈ā|n V
∣∣b̄〉

n
+ 〈ā|n V RV

∣∣b̄〉
n
. (F.39)

By plugging in what we have found from Eqs. F.33 and F.38, we obtain a rather

complicated form of Ĥeff. As we will show, this Hamiltonian takes on a very general

forms, even when put onto different lattices. Additionally, since the large-f limit

corresponds to β → 0, in this limit only terms of O(β) are relevant. However, for

physical spins of f = 1− 8, it is likely that the O(β2) terms are relevant. Retaining

to second order, we find for Eq. F.39:

n〈ā|Ĥeff|b̄〉n = −Nnδa,b − β
∑

<i,j>/∈b

δa,(i,j):b

+ β2

(
2NnMa,b +

1

4

∑
c

Nc�a,c�c,b +
1

2
Nn

∑
c

�a,c�c,b −Nn�
(2)
a,b

+
1

2

∑
c

∑
<i,j>/∈c

δa,(i,j):c�c,b −
∑

<i,j>/∈b

�a,(i,j):b +
1

2

∑
c

∑
<i,j>/∈b

�a,bδc,(i,j):b

−
∑
c/∈n

1

Nn −Nc

∑
<i,j>/∈c

δa,(i,j):c
∑

<i′,j′>/∈b

δc,(i′,j′):b −
∑
c/∈n

1

2
�c,b

∑
<i,j>/∈c

δa,(i,j):c

+
∑
c/∈n

1

2
�a,c

∑
<i′,j′>/∈b

δc,(i′,j′):b −
∑
c/∈n

1

4
(Nn −Nc)�c,b�a,c

)
. (F.40)

147



After a bit of simplification, we obtain a lattice-independent result, given by

n〈ā|Ĥeff|b̄〉n = −Nnδa,b − β
∑

<i,j>/∈b

δa,(i,j):b + β2

[
−

∑
<i,j>/∈b

�a,(i,j):b

+
∑
c/∈n

∑
<i,j>/∈b

�a,cδc,(i,j):b +
1

2

∑
c∈n

∑
<i,j>/∈c

δa,(i,j):c�c,b +
1

2

∑
c∈n

∑
<i,j>/∈b

�a,cδc,(i,j):b

−
∑
c/∈n

∑
<i,j>/∈c

∑
<i′,j′>/∈b

1

Nn −Nc

δa,(i,j):cδc,(i,j):b

]
. (F.41)

This can in fact be further simplified, to give

Ĥeff = −Nnδa,b − β
∑

<i.j>/∈b

δa,(i,j):b − β2
∑
c/∈n

1

Nn −Nc

∑
<i,j>/∈c

∑
<i′,j′>/∈b

δa,(i,j):cδc,(i′,j′):b,

(F.42)

which is the result presented in Sec. 5.3. However, how this simplification occurs is

most easily seen when examining the terms on specific lattices.

We apply Eq. F.42 term by term for the case of a square lattice, to obtain a QDM

as expressed in its the most common form. Tabs. 5.1 and 5.1 illustrate the processes

which lead to these terms. We find for the O(β) term

∑
<i,j>/∈b

δa,(i,j):b = 2�a,b. (F.43)
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The first four O(β2) terms give

∑
<i,j>/∈b

�a,(i,j):b = δa,b(N +N p +N + 2Nflip) + 4�2
a,b + 4��a,b (F.44)

∑
c/∈n

∑
<i,j>/∈b

�a,cδc,(i,j):b =
∑

<i,j>/∈P of b

�a,(i,j):b = δa,b(N +N p +N ) + 2��a,b

(F.45)

1

2

∑
c∈n

∑
<i,j>/∈c

δa,(i,j):c�c,b =
∑
c∈n

�a,c�c,b = δa,bNflip + 2�2
a,b +��a,b (F.46)

1

2

∑
c∈n

∑
<i,j>/∈b

�a,cδc,(i,j):b =
∑
c∈n

�a,c�c,b = δa,bNflip + 2�2
a,b +��a,b, (F.47)

which are seen to cancel out. Here �2
a,b is zero unless states a and b differ by exactly

two distinct flippable plaquettes, not to be confused with �(2)
a,b, which also allows for

states differing by a 3-dimer loop. The non-canceling second-order term yields

∑
c/∈n

∑
<i,j>/∈c

∑
<i′,j′>/∈b

1

Nn −Nc

δa,(i,j):cδc,(i,j):b = 2δa,b(N +N p +N ) + 4��a,b. (F.48)

At this point, we have matrix elements of the effective Hamiltonian in the nearest-

neighbor only dimer subspace, and it is given by

n〈ā|Ĥeff|b̄〉n = −2β�a,b + β2

[
− 2δa,b(N +N p +N )− 4��a,b

]
. (F.49)

The final step is to remove the overall energy shift. To do this, we use the fact that

Nempty = N + N p + N + NP and therefore N + N p + N = Nempty − NP for

a square lattice, and that Nempty = (Nlinks − Nn) = (2Nsites − Nsites/2) = 3
2
Nsites is

a constant in the nearest-neighbor only subspace. Therefore, we can subtract this

overall constant, and use that NP = 2Nflip to obtain an effective Hamiltonian of

n〈ā|Ĥeff|b̄〉n = −2β�a,b − 4β2��a,b + 4β2Nflipδa,b, (F.50)
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where β = (2f + 1)−1. To relate to the coefficients of a typical QDM, we use −t for

the coefficient of �a,b, −t′ for the coefficient of ��a,b, and V for the coefficient of

Nflipδa,b. This is shown in Tab. 5.2. We then write the Hamiltonian as

Ĥ� =
∑

plaquettes

[
−t
( ∣∣ 〉 〈 ∣∣+ H.c.

)
+ V

( ∣∣ 〉 〈 ∣∣+
∣∣ 〉 〈 ∣∣ )]

+ t′
∑

6-site plaquettes

[ ∣∣ 〉 〈 ∣∣+
∣∣∣ 〉 〈 ∣∣∣+ H.c.

]
. (F.51)

By following a similar procedure we may determine the quantum dimer Hamilto-

nian on different lattices. This process is assisted by the use of real-space diagrams of

the dimer resonances, similar to the approach taken for the square lattice (Tab. 5.1),

and is shown for the triangular lattice in Tab. F.2. For the triangular lattice we find

n〈ā|Ĥeff|b̄〉n = −2(β + β2)�a,b − 4β2��a,b + β2Nflipδa,b, (F.52)

where again, β = (2f +1)−1, and so we see that in this case the 4-site resonance picks

up a sub-leading contribution of O(f−2). The QDM on the triangular lattice may

expressed in the semi-pictorial form as

Ĥ4 =
∑

plaquettes

[
−t
( ∣∣ 〉 〈 ∣∣+ . . .+ H.c.

)
+ V

( ∣∣ 〉 〈 ∣∣+ . . .)

]
+ t′

∑
6-site plaquettes

[ ∣∣ 〉 〈 ∣∣+ . . .+ H.c.

]
, (F.53)

where the “. . .” represent the other orientations of the dimers on 4- and -6-site plaque-

ttes which are not shown. Other lattices, follow a similar approach, and the associated

QDM coefficients for the kagome and honeycomb lattice are presented in Tab. 5.2.
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|b〉 |c〉 |a〉 Multiplicity

t N/A 2

t 2

t’ 4

V |b〉 2

V |b〉 2

V |b〉 2

V |b〉 2

V |b〉 2

V |b〉 2

V |b〉 2

Table F.2: Pictorial derivation of the t and t′ terms of the quantum dimer model
on the triangular lattice. We note that there is a sub-leading contribution to the
4-site resonance. The kinetic resonances result in t : 2(β + β2)�a,b and t′ : 4β2��a,b.
Meanwhile, the effective repulsive potential becomes V : 4β2Nflipδa,b.
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[175] W. Salzmann, T. Mullins, S. Götz, M. Albert, J. Eng, R. Wester, M. Wei-
demüller, F. Weise, A. Merli, S. M. Weber, et al., arXiv:0903.454 (2009).

[176] B. Sundar and E. J. Mueller, Phys. Rev. A 93, 023635 (2016).

[177] J. Bohn and P. Julienne, Phys. Rev. A 56, 1486 (1997).

[178] T. Maier, I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T.
Pfau, K. Jachymski, and P. S. Julienne, Phys. Rev. A 92, 060702 (2015).

[179] M. Yan, B. J. DeSalvo, B. Ramachandhran, H. Pu, and T. C. Killian, Phys.
Rev. Lett. 110, 123201 (2013).

[180] C. Samuelis, E. Tiesinga, T. Laue, M. Elbs, H. Knöckel, and E. Tiemann,
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