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Abstract

In 2012, Bartholdi, Siegenthaler, and Zalesskii computed the rigid kernel for the only known

group for which it is non-trivial, the Hanoi towers group. There they determined the kernel

was the Klein 4 group. We present a simpler proof of this theorem. In the course of the

proof, we also compute the rigid stabilizers and present proofs that this group is a self-similar,

self-replicating, regular branch group.

We then construct a family of groups which generalize the Hanoi towers group and study

the congruence subgroup problem for the groups in this family. We show that unlike the

Hanoi towers group, the groups in this generalization are just in�nite and have trivial rigid

kernel. We also put strict bounds on the branch kernel. Additionally, we show that these

groups have subgroups of �nite index with non-trivial rigid kernel, adding in�nitely many

new examples. Finally, we show that the topological closures of these groups have Hausdor�

dimension arbitrarily close to 1.
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Introduction

The study of branch groups has its origin in the introduction of the Grigorchuk group in

1980. Grigorchuk originally de�ned this group as a group of Lebesgue measure preserving

transformations of [0,1]/{ k
2m ∣ k,m ∈ Z}. It was later understood that this group could be

viewed as a group of automorphisms of an in�nite, rooted binary tree and this viewpoint

became the dominant one. The Grigorchuk group was the �rst example of a group of inter-

mediate word growth and of an amenable but not elementary amenable group. Additionally,

it is an in�nite, �nitely generated group where every element has order a power of 2, adding

a very concrete example to the groups which provide a solution to the General Burnside

Problem. Later, the Gupta-Sidki branch groups were introduced as examples of in�nite

p-groups for primes p ≥ 3. To this day, the only tractable examples of Burnside groups come

from this class.

The importance of branch groups comes not just from their potential to have exotic

properties but also from their role in the classi�cation of just in�nite groups. In 2000,

Grigorchuk showed, building on the results of Wilson, that every just in�nite group falls into

one of three distinct categories, branch groups being one of them. Every �nitely generated

group quotients onto a just in�nite group. Thus, if one wishes to �nd a �nitely generated

in�nite group with some property and this property is maintained under taking quotients,

then it su�ces to search among groups that are just in�nite. Just in�nite groups arise in

the study of pro�nite groups as well. Since pro�nite groups have many �nite quotients, and

therefore can not be simple, just in�nite groups serve as the analogue of simple groups for

the class of pro�nite groups.

In this dissertation, we study a sequence of branch groups {Gn}∞n=3 which generalize

the Hanoi towers group, a group �rst introduced and studied by Grigorchuk and �Suni�k

in 2006. We focus on these groups to obtain a better understanding of the congruence

subgroup problem for branch groups which derives its name from the classical congruence

subgroup problem for SL(n,Z). The congruence subgroup problem for SL(n,Z) asks if

every subgroup of �nite index contains a principal congruence subgroup, the kernel of the

surjection SL(n,Z) ↠ SL(n,Z/mZ) for some m. This is false for n = 2 but was answered

a�rmatively for n ≥ 3 by Bass, Lazard, and Serre in 1964. Branch groups are de�ned in
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terms of their action on a rooted tree and so we say a branch group G has the congruence

subgroup property if every subgroup of �nite index contains the subgroup consisting of

elements which stabilize some level of the tree, i.e. StabG(m) for some m ≥ 1. Branch

groups have another family of �nite index subgroups, namely the rigid stabilizers which we

denote by RistG(m) form ≥ 1, and so a branch group has the congruence subgroup property

if and only if

1. every subgroup of �nite index contains a rigid stabilizer and

2. every rigid stabilizer contains a level stabilizer.

The congruence subgroup problem can be restated in terms of pro�nite groups and there-

fore pro�nite group theory will be in�uential here. A branch group G has the congruence

subgroup property if and only if the congruence kernel

ker( lim←Ð
N∈N

G/N ↠ lim←Ð
m≥1

G/StabG(m))

is trivial where N is the set of all �nite index normal subgroups.

For a branch group, the congruence kernel has two parts namely the branch kernel

ker( lim←Ð
N∈N

G/N ↠ lim←Ð
m≥1

G/RistG(m))

and the rigid kernel

ker(lim←Ð
m≥1

G/RistG(m) ↠ lim←Ð
m≥1

G/StabG(m)).

Thus the congruence subgroup problem for branch groups asks not only does a group have

the congruence subgroup property but to quantitatively describe the congruence, branch,

and rigid kernels.

Up until this point, the Hanoi towers group, which we refer to here as G3, was the only

group shown to fail property 2 and have a non-trivial rigid kernel. Hence, a motivating

factor for this work was to construct new examples of branch groups which fail property

2. Surprisingly, all of the groups in the generalization except the Hanoi towers group have

trivial rigid kernels. The structure of the group Gn depends on n and so this theorem and

others are proved in cases.

Theorem 2.9, 3.23, 3.26, 3.28. The group Gn has non-trivial rigid kernel if and only if

n = 3.

Likewise, the branch kernel for Gn with n ≠ 3 di�ers signi�cantly from the branch kernel

of the Hanoi towers group which contains free pro�nite abelian subgroups.

2



Theorem 3.30. For n ≠ 3, the branch kernel, and thus the congruence kernel, for Gn is the

inverse limit

lim←Ð
m≥1

Mm
n

where Mn is a �nite abelian group. When n ≥ 5 is even, Mn is cyclic of order n − 1 and

when n = 4 or n ≥ 5 is odd, Mn has exponent bounded between (n − 1) and 2(n − 1).

The groups in the generalization di�er from the Hanoi towers group not just in their

subgroup structure but also in the types of quotients they exhibit.

Theorem 3.32. Gn is just in�nite if and only if n ≠ 3.

Although the groups in the generalization do not fail the congruence subgroup property

in the same way that G3 does, we nevertheless �nd in�nitely many new examples of groups

failing property 2. These new examples live as �nite index subgroups of Gn.

Theorem 4.1. For n ≥ 4, let 1 ≠ d > 2 be such that d ∣ (n − 1) and let Hn,d be the set of

elements g of Gn with ε(g) ≡ 0 mod d. The Hn,d is a subgroup of index d in Gn and is a

branch group with non-trivial rigid kernel.

As a consequence of the work in proving these theorems, we are able to calculate the

Hausdor� dimension of Gn and show that for n su�ciently large the Hausdor� dimension

of Gn is arbitrarily close to 1.

Theorem 3.33. For n ≥ 3, the Hausdor� dimension for Gn is

dimH(Gn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − log(48)
log(331776) if n = 4

1 − log(2)
log(n!) if n ≥ 5 is even

1 − log(2)
n log(n!) if n is odd

Corollary 3.34. For all ε > 0, there exists n such that dimH(Gn) > 1 − ε.

We organize this work as follows. In Chapter 1, we provide all the necessary background

for the remaining chapters. In Chapter 2, we study the Hanoi towers group and provide

an alternative, more constructive proof of the 2012 result of Bartholdi, Siegenthaler, and

Zalesskii that it fails condition 2 by having the Klein 4 group as its rigid kernel. Chapter

3 contains the majority of the new results. There we study the generalization of the Hanoi

towers group. We �nd a solution to the word problem that also allows us to determine

the abelianization of Gn. We show that these groups are branch groups and also compute

precisely the rigid and level stabilizers of these groups. This is then used to quantitatively

describe the rigid, branch, and congruence kernels for these groups. From there we obtain

3



that Gn is just in�nite if and only if n ≠ 3. The computation of the rigid and level stabilizers

is ultimately applied to �nd the Hausdor� dimension. In Chapter 4, we provide the in�nitely

many new examples of branch groups with non-trivial rigid kernels. Finally, in Chapter 5,

we provide some questions which remain open in this subject.
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Chapter 1 Background

1.1 Notation

For two group elements g and h we write gh to indicate h−1gh and [g, h] for g−1h−1gh. For

a group G, G′ will mean the commutator subgroup of G. For a subset S ⊆ G, we write ⟨⟨S⟩⟩
for the normal closure of S in G.

1.2 Pro�nite groups and pro�nite completions

A main focus in this dissertation will be on understanding topological completions of groups

with various pro�nite topologies and using them to answer questions about the group. In

this section, we introduce pro�nite groups and pro�nite completions. For more information

the reader is directed to [19] or [23].

A topological group is a group endowed with a topology such that the group operations

are continuous, i.e. the map (g, h) ↦ gh−1 is a continuous function from G ×G to G. To

de�ne a topology on a group G it su�ces to de�ne a basis for the neighborhoods of {1} as a

basis for the neighborhoods around any other point can be obtained via left multiplication.

A partially ordered set I = (I,≲) is called directed if for all i, j ∈ I, there exists k ∈ I
with i, j ≲ k. Two directed sets I and I ′ which are subsets of a potentially larger partially

ordered set are said to be co�nal if for every i ∈ I there is an i′ ∈ I ′ such that i ≲ i′ and
likewise for every i′ ∈ I ′ there exists i ∈ I with i′ ≲ i.

An inverse system of �nite groups is a collection of {Hi ∣ i ∈ I} indexed by a directed

set I and along with a collection of homomorphisms ρij ∶Hi →Hj de�ned for any pair i and

j with j ≲ i and such that the homomorphisms are compatible, i.e. whenever k ≲ j ≲ i we
have ρik = ρjk ○ ρij .

The inverse limit

lim←Ð
i∈I

Hi

is the subgroup of ∏i∈I Hi consisting of tuples h = (hi)i∈I where hj = ρij(hi) whenever j ≲ i.

5



1.3. Tree automorphisms

A group G is a pro�nite group if it is the inverse limit of �nite groups. If we endow

�nite groups with the discrete topology and ∏i∈I Hi with the product topology, then the

inverse limit is a closed subgroup of ∏i∈I Hi. As a result, we get that as a topological group

G is compact, Hausdor�, and totally disconnected group. The converse is also true. A group

G is pro�nite if and only if it is compact, Hausdor�, and totally disconnected.

It is not hard to see that a subgroup of a pro�nite group G is open in G if and only if it

is closed and has �nite index.

Proposition 1.1. [19] Suppose {Hi ∣ i ∈ I} and {Hi′ ∣ i′ ∈ I ′} are two inverse systems where

I and I ′ are co�nal subsets of the same partially ordered set. Then

lim←Ð
i∈I

Hi ≅ lim←Ð
i′∈I′

Hi′

When I is countable, then there is a set I ′ co�nal to I that is countable and totally

ordered. This occurs in particular when G is �nitely generated (as a topological group).

Thus when I is countable we may assume it is totally ordered. In this case, there is a metric

compatible with the topology on

lim←Ð
i∈I

Hi

given by d(g, h) = 1
∣Hm∣

where m is the least value with gmh
−1
m ∈Hm.

For a group G, let C be a collection of normal, �nite index subgroups such that for all N

and Ñ in C there isM in C withM ≤ N ∩ Ñ . Then C provides a basis for the neighborhoods
of {1} and the collection {G/N ∣ N ∈ C} forms a directed set where G/N ≲ G/M whenever

M ≤ N where the maps ρMN ∶ G/M → G/N are the natural surjections.

The inverse limit

lim←Ð
N∈C

G/N

is called the pro�nite completion of G with respect to C because it is the topological

completion with respect to the basis C.

1.3 Tree automorphisms

The groups studied here are de�ned in terms of their actions on a rooted tree and so for

this reason we introduce some initial vocabulary and notation to aid in the discussion of

groups of this type.

A rooted tree is an acyclic connected graph with a designated vertex called the root.

For any two vertices in the tree, the distance between them is the length of the (unique)

geodesic between them. For any vertex u in the tree, its level will be de�ned as the

length of the path from the root to u and denoted ∣u∣. A rooted tree is called spherically

homogeneous if every vertex on the same level has the same (�nite) degree.

6



1.3. Tree automorphisms

∅

1 2 3

11 12 21 22 31 32

Figure 1.1: Rooted tree with X1 = {1,2,3} and X2 = {1,2}

An in�nite, spherically homogeneous, rooted tree is fully determined by a sequence of

integers n = (n1, n2, . . . ) where each vertex of level m − 1 has nm adjacent vertices of level

m. We will write Tn to denote the tree with de�ning sequence n. When the de�ning

sequence is either arbitrary or clear from the context, the subscript will be dropped. With

this notation, we will write ∅ for the root and we will identify a vertex v of level m with

a sequence v = v1v2⋯vm where vi ∈ Xi, an arbitrary set of size ni, and where the pre�xes

of the sequence correspond to the vertices on the geodesic between v and ∅. By placing an

order on each Xi, the set of vertices of level m in T (i.e. the elements in X1X2⋯Xm) can

be ordered linearly using the lexicographical ordering. Note that in general, the set Xi will

be assumed to be the set {1,2, . . . , ni} with the natural ordering and when convenient, the

vertices of level m will be numbered by the indexing set {1,2, . . . , n1⋯nm}. See Figure 1.1.
The set of all vertices of Tn will be denoted V (Tn).

De�nition 1.2. The automorphism group of Tn, denoted Aut(Tn), is the set of bijections

from V (Tn) to V (Tn) that �x the root and preserve edge incidences.

Thus, under an automorphism, vertices of the same level in Tn can only be permuted

among themselves. Further, if two vertices share a pre�x, then their image under an auto-

morphism will share a pre�x of the same length. Because of this, an element g in Aut(Tn)
can be regarded as a labeling of the vertices of Tn by permutations, {g(v)}v∈V (Tn), where
if ∣v∣ = m − 1 then g(v) ∈ Snm , the symmetric group on nm letters. Then for a vertex

v = v1v2⋯vm, the action of g is computed as

vg = vg(∅)1 v
g(v1)
2 ⋯vg(v1⋯vm−1)m .

7



1.4. Branch groups

Rules for composing and �nding inverses are given by the following proposition.

Proposition 1.3. [13]

1. Let h = fg where f, g, h ∈ Aut(Tn). Then h(u) = f(u)g(uf) for all u ∈ V (Tn).

2. Let f = g−1 where g ∈ Aut(Tn)). Then f(u) = (g(ug−1))−1 for all u ∈ V (Tn).

We say a vertex v ∈ V (Tn) is a descendant of u if the geodesic from v to ∅ includes the

geodesic from u to ∅. The set of descendants of u forms a subtree rooted at u, denoted Tu.
If Tn is a spherically homogeneous, rooted tree then for any m, each subtree of Tn rooted

at a vertex of level m is canonically isomorphic to Tψm(n), where ψ(n) = (n2, n3, . . . ) and

ψm is the m-fold iteration of the function ψ. As a result, there is a natural isomorphism

Aut(Tn) ≅ Aut(Tψm(n))≀Mm = (∏Aut(Tψn(n)))⋊Mm whereMm = (⋯(Snm ≀Snm−1)≀⋯)≀Sn1
.

The iterated wreath product Mm is the automorphism group of the �nite subtree of Tn
consisting of vertices of level less than or equal to m.

Throughout this work, we will canonically identify tree automorphisms g with their

decomposition (g1, . . . , gn1
)σ under the isomorphism Aut(Tn) ≅ Aut(Tψ(n)) ≀ Sn1

.

For g ∈ Aut(Tn) and for v a vertex of level m, we will denote by gv the vth coordinate of

g in the canonical identi�cation Aut(Tn) ≅ (Aut(Tψm(n)) ≀Mm, and we will call it the state

of g at v. We will also take πv to be the projection map g ↦ gv. Note that for a subgroup

G ≤ Aut(Tn), πv may not be a homomorphism.

Likewise, for a vertex v of level m and an element g ∈ Aut(Tψm(n)), v ∗ g will be used

to denote the automorphism of Tn which acts as g on the subtree rooted at v and trivially

outside of it. For a subgroup G ≤ Aut(Tψm(n)),

v ∗G = {v ∗ g ∣ g ∈ G}

and

X1 . . .Xm ∗G = {v ∗ g ∣ g ∈ G, ∣v∣ =m} ≅ ∏
n1⋯nm

G.

1.4 Branch groups

For any subgroup G of Aut(Tm), certain families of subgroups arise naturally.

De�nition 1.4. For a vertex v ∈ V (Tm), the vertex stabilizer of v, StabG(v), is the set of

elements in G which �x the vertex v.

In terms of the labeling of the vertices by elements in a symmetric group, this consists

of the elements that necessarily have trivial labeling on all vertices on the path between u

and ∅, except possibly at u.

8



1.4. Branch groups

De�nition 1.5. For a non-negative integer m, the mth level stabilizer, StabG(m), is the

normal subgroup ⋂
∣u∣=m

StabG(u).

In terms of the labelings, this consists of the elements of G with trivial labeling on all ver-

tices v where ∣v∣ ≤m−1. Note that for all m, StabG(m) has �nite index in G. Under the de-
composition, Aut(Tn) ≅ (Aut(Tψm(n))≀Mm, these are exactly the elements whose coordinate

in Mm has the trivial element. For that reason, elements in g ∈ StabG(m) will be described
by a tuple of the form (g1, g2, . . . , gn1⋯nm)m where each gi is the state of g for a vertex on the

mth level. Moreover, such elements appear in the quotient StabG(m)/StabG(m + 1) as the

direct product of n1⋯nm permutations in Snm+1 , where the ith coordinate is the permutation

at the root of gi.

The full automorphism group of the tree is itself a pro�nite group with a basis for the

neighborhoods of {1} consisting of the level stabilizers. In other words,

Aut(T ) ≅ lim←Ð
m≥1

Mm

where again Mm is the automorphism group of the �nite subtree of T consisting of the �rst

m-levels.

A group is said to be residually �nite if the intersection of its normal, �nite index

subgroups is trivial. Since

⋂
m≥1

StabAut(T )(m) = {1}

Aut(T ) is residually �nite as are all of its subgroups.

A subgroup of Aut(T ) is called spherically transitive if it acts transitively on every

level of the tree. We will be interested in a particular class of spherically transitive groups,

namely branch groups.

De�nition 1.6. The rigid stabilizer of a vertex u, RistG(u), consists of the elements of G

which act trivially outside of the subtree rooted at u.

In terms of the labeling, this consists of elements that have trivial labeling on all vertices

outside of Tu. If G is spherically transitive then for any two vertices u and v such that

∣u∣ = ∣v∣, RistG(u) ≅ RistG(v) (and in fact are conjugate in G).

De�nition 1.7. For a non-negative integer m, the mth level rigid stabilizer is the normal

subgroup RistG(m) = ⟨RistG(u) ∣ ∣u∣ =m⟩ = ∏
∣u∣=m

RistG(u), the internal direct product of

the rigid stabilizers of the vertices of level m.

For any groupG acting faithfully on Tn, RistG(m) ≤ StabG(m). In terms of the decompo-

sition Aut(Tn) ≅ Aut(Tψm(n))≀Mm, StabG(m) sits inside the direct product of n1⋯nm copies

9



1.4. Branch groups

of Aut(Tψm(n)). With this interpretation, RistG(m) is the largest subgroup of StabG(m)
which actually decomposes as a direct product.

De�nition 1.8. A group G is a branch group if there is an embedding of G into Aut(T )
such that G is spherically transitive and for all m, RistG(m) has �nite index in G. A

pro�nite group G is a branch group if in addition it embeds as a closed subgroup of Aut(T )
and RistG(m) is an open subgroup of G for all m.

It is worth noting that in some papers such as [6], the transitivity assumption is dropped.

Although, this de�nition relies on the existence of a tree in which the group is acting as

a branch group, the existence of such a tree is actually a group theoretic property.

A group is virtually abelian if it has a abelian subgroup of �nite index.

De�nition 1.9. A subgroup B of a group G is basal if B has only �nitely many distinct

conjugates and ⟨⟨B⟩⟩ is their internal direct product.

The rigid stabilizers are examples of subgroups of basal type. The following theorem was

proved in [15].

Theorem 1.10. [15] Let G be an abstract or pro�nite group. Then G is a branch group if

and only if each of the following conditions hold:

1. G is just non-(virtually abelian) with no non-trivial virtually abelian normal subgroups;

2. ⋂
B basal

NG(B) = {1};

3. For each non-trivial basal subgroup A, the normal closure in G of the subgroup

⋂
B basal
A∩B={1}

NG(B)

has �nite index in G.

Branch groups derive their importance from the exotic properties groups in this class can

possess. The �rst known example of an amenable but not elementary amenable group and

of a group of intermediate growth is a branch group. The tractable examples of Burnside

groups, �nitely generated in�nite torsion groups, come from this class as well.

Branch groups also arise in the classi�cation of just in�nite groups which serve as the

analogue of simple groups in the class of pro�nite groups.

An (abstract or pro�nite) group G is just in�nite if G is in�nite and every proper

quotient of G is �nite. A residually �nite group is hereditarily just in�nite if every normal

subgroup of �nite index is just in�nite. A pro�nite residually �nite group is hereditarily

just in�nite if every open subgroup is just in�nite.

10



1.5. Regular trees and self-similar groups

Proposition 1.11. [13] Let G be a �nitely generated in�nite group. Then G has a just

in�nite quotient.

Thus if one wishes to study some property of in�nite groups and this property is main-

tained under taking quotients, then it often reduces to studying the property for the class

of just in�nite groups.

Grigorchuk constructed a classi�cation of just in�nite groups, applying previous work of

Wilson [24].

Theorem 1.12. [13]

1. Let G be an abstract just in�nite group. Then either G is a branch group or G contains

a normal subgroup of �nite index which is isomorphic to the direct product of a �nite

number of copies of a group L, where L is either simple or hereditarily just in�nite.

2. Let G be a pro�nite just in�nite group. Then either G is a branch group or G contains

an open normal subgroup which is isomorphic to the direct product of a �nite number

of copies of some hereditarily just in�nite pro�nite group.

1.5 Regular trees and self-similar groups

Whenever the de�ning sequence for a spherically homogeneous rooted tree is constant the

tree is called regular. In particular, if n = n1 = n2 = ⋯, we call T an n-ary tree.

In this case, we �x a set X of size n, called the alphabet, and let X = X1 = X2 = ⋯.
Then the set of vertices on the mth level corresponds exactly to the set of words of length

m in the alphabet. We will denote this by Xm. The set of all �nite words, i.e. the set of

vertices of T , will thus be denoted by X∗.

For the regular n-ary tree T , Aut(T ) ≅ Aut(T ) ≀ Sn and so Aut(T ) contains naturally

occurring isomorphic copies of itself and it can have subgroups with similar properties.

De�nition 1.13. A group G ≤ Aut(T ) is called self similar if for all g = (g1, . . . , gn)σ ∈ G
and for each i, gi ∈ G.

A self-similar group is called self-replicating if πv(StabG(v)) = G.

De�nition 1.14. For T a regular tree, a subgroup G ≤ Aut(T ) is said to be regular branch if

it is sphericaly transitive and there is a subgroup K with �nite index in G such that v∗K ≤K
for all v ∈X∗ and such that Xm∗K has �nite index in G for all m. In this case, K is called

a branching subgoup.

If a group is regular branch then it is also branch as Xm ∗K ≤ RistG(m).

11



1.6. The congruence subgroup problem for branch groups

1.6 The congruence subgroup problem for branch groups

The congruence subgroup property for branch groups derives its name from the congruence

subgroup problem for SL(n,Z) which asks if every subgroup of �nite index in SL(n,Z)
contains a principal congruence subgroup, the kernel of the map SL(n,Z) → SL(n,Z/mZ)
for some m. This is false for n = 2 but was answered a�rmatively for n ≥ 3 in [7].

De�nition 1.15. A subgroup G ≤ Aut(T ) has the congruence subgroup property if every

subgroup of �nite index contains StabG(m) for some m.

Since for a branch group the rigid stabilizers are subgroups of the level stabilizers and

since the rigid stabilizers have �nite index, a branch group has the congruence subgroup

property if and only if every subgroup of �nite index contains a rigid stabilizer and every

rigid stabilizer contains a level stabilizer.

We can restate this in terms of pro�nite completions as follows. Since StabG(m) has

�nite index in G for all m and since this collection forms a descending collection of normal

subgroups, taking {StabG(m)∣m ∈ N} as a basis for the neighborhoods of {1} produces a

topology on G called the congruence topology. Likewise RistG(m) has �nite index for

all n, and in the same way produces a topology called the branch topology. Further, G

has a third natural topology, the full pro�nite topology where N = {N ⊴ G ∣ ∣G ∶ N ∣ < ∞}
is taken as a basis for the neighborhoods of {1}. Observe that the congruence topology is

weaker than the branch topology which is weaker than the full pro�nite topology. We can

complete G in terms of these topologies and obtain three pro�nite groups:

G = lim←Ð
m≥1

G/StabG(m) the congruence completion

G̃ = lim←Ð
m≥1

G/RistG(m) the branch completion

Ĝ = lim←Ð
N∈N

G/N the pro�nite completion

As G is a subgroup of Aut(T ), we see that ⋂m≥1 StabG(m) = {1}, G is residually �nite

and embeds into G, G̃, and Ĝ.

Thus G has the congruence subgroup property if and only if the congruence kernel,

ker(Ĝ → G), is trivial. The congruence subgroup problem for branch groups asks not

only whether a branch group has the congruence subgroup property but also to quantitatively

describe the congruence kernel. Since there is a third topology at play, namely the branch

12



1.6. The congruence subgroup problem for branch groups

topology, we can instead study two pieces of the congruence kernel, namely the branch

kernel, ker(Ĝ→ G̃), and the rigid kernel, ker(G̃→ G).
Although a group may have many realizations as a branch group, each of these kernels

are invariants of the isomorphism class of the group and are not dependent on the choice of

realization.

Theorem 1.16. [12] Let G be a group and let T1 and T2 be two spherically homogeneous

trees. Suppose G embeds into both Aut(T1) and Aut(T2) as a branch group. Then the branch,

rigid, and congruence kernels corresponding to T1 and T2 are the same.

Many of the most studied branch groups have been shown to have trivial congruence

kernel, including the Fabrykowsky-Gupta group and the Gupta-Sidki groups [3], [11], the

Grigorchuk group and an in�nite family of generalizations of the Fabrykowski-Gupta group

[13], and GGS-groups with non-constant accompanying vectors [18], [9].

Pervova [18] constructed the �rst branch groups without the congruence subgroup prop-

erty. Nevertheless, the groups in her in�nite family, periodic EGS groups with non-symmetric

accompanying vector, have non-trivial branch kernel but trivial rigid kernel. Likewise, the

twisted twin of the Grigorchuk group was found to have non-trivial branch kernel but trivial

rigid kernel [4].

Despite the existence of in�nite families of groups having either trivial branch and trivial

rigid kernel or non-trivial branch kernel but trivial rigid kernel, only one group appearing

previously in the literature has been shown to have non-trivial rigid kernel [6], [22]. This

kernel is studied in detail in Chapter 2 and new examples of groups with this property are

produced in Chapter 4.

Some general properties of the kernels are known in certain cases.

Theorem 1.17. [6] Let G be a self-similar, regular branch group. Then the branch kernel

is abelian and the rigid kernel has �nite exponent.

For any branch group G, the rigid kernel is

ker(G̃→ G) = lim←Ð
m≥1

StabG(m)/RistG(m)

where the maps ρm,m+k ∶ StabG(m + k)/RistG(m + k) → StabG(m)/RistG(m) come from

the natural inclusions StabG(m + k) ↪ StabG(m) and RistG(m + k) ↪ RistG(m). This is

because, by de�nition, G̃ is the subgroup of ∏m≥1G/RistG(m) consisting of sequences

(gmRistG(m))m≥1 where

gm+1RistG(m) = gmRistG(m)

13



1.6. The congruence subgroup problem for branch groups

for all m. Likewise, by de�nition G is the subgroup of ∏m≥1G/StabG(m) consisting of

sequences (hmStabG(m))m≥1 where

hm+1StabG(m) = hmStabG(m)

for all m. Thus the kernel of the map G̃→ G is precisely those sequences (gmRistG(m))m≥1

where for all m, gm ∈ StabG(m), i.e. lim←Ð
m≥1

StabG(m)/RistG(m). Note that the maps ρm,m+k

are far from being surjective.

By similar reasoning, the branch kernel is given by

ker(Ĝ→ G̃) = lim←Ð
m≥1
N∈N

RistG(m)N/N.

Fortunately, there are some tools available for studying the branch kernel. The following

theorem can be derived from the proof of Theorem 4 in [13]. Since this is not a direct

citation of a theorem, we include a proof.

Theorem 1.18. Let G be a branch group. If H is a �nite index subgroup of G then H

contains ristG(m)′ for some m.

Proof. Let G be a branch group acting on a tree Tn̄. Then it su�ces to show that for any

1 ≠ g ∈ G that ⟨⟨g⟩⟩ contains RistG(k)′ for some k.

Take g as above. There exists an m such that g ∈ StabG(m)/StabG(m + 1). Choose a

vertex u with ∣u∣ = m and such that the state of g at u decomposes as gu = (g1, . . . , gnm+1)θ
where θ is a non-trivial permutation. Write f = (g1, . . . , gnm+1)1 so that gu = fθ.

Choose x, y in Xnm+1 such that xθ = y ≠ x. Let h = ux ∗ hux = u ∗ hu be an element of

RistG(ux). Now
[g, h] = (1, . . . ,1, [gu, hu],1, . . . ,1)m

= (1, . . . ,1, θ−1f−1h−1
u fθhu,1, . . . ,1)m

= (1, . . . ,1, h−gxux ,1, . . . ,1, hux,1, . . . ,1)m+1

where h−gxux is in position uy and hux is in position ux. Take an arbitrary l ∈ RistG(ux) then

[[g, h], l] = (1, . . . ,1, [hux, lux],1 . . .1)m+1.

Since l and h were arbitrary elements of RistG(ux) we get that ⟨⟨g⟩⟩ contains RistG(ux)′.
Since G acts spherically transitively, we get that ⟨⟨g⟩⟩ contains RistG(m + 1)′.

A direct consequence of this theorem is a criterion for checking if a branch group is just

in�nite.
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1.6. The congruence subgroup problem for branch groups

Corollary 1.19. [13] A branch group G is just in�nite if and only if ristG(m)′ has �nite

index in G for all m.

The following proposition is also easy to see.

Proposition 1.20. [6] Let G be a branch group and let H be a subgroup of �nite index in

G. Then H contains RistG(m)e for some m,e ≥ 0.

Now the product RistG(m)eRistG(m)′ gives a �nite index subgroup. A consequence of

Proposition 1.20 and 1.18 is that for a branch group G, the sets

{RistG(m)eRistG(m)′ ∣m,e ≥ 0}

and

N = {N ⊴ G ∣ ∣G ∶ N ∣ < ∞}

are co�nal subsets of the collection of all �nite index normal subgroups.

Proposition 1.21. For a branch group G, the branch kernel is given by

ker(Ĝ→ G̃) = lim←Ð
m≥1
e≥1

RistG(m)/[RistG(m)eRistG(m)′].

In the case where G is just in�nite, it is not necessary to include RistG(m)e to obtain a

�nite index subgroup and so in this special case the kernel can be simpli�ed.

Proposition 1.22. For a just in�nite branch group, the branch kernel is given by

ker(Ĝ→ G̃) = lim←Ð
m≥1

RistG(m)/RistG(m)′.
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Chapter 2 Towers of Hanoi

The Hanoi towers group G3 was �rst introduced by Grigorchuk and �Suni�k in [14]. The

action of G3 on the �rst m levels of the tree models the �Towers of Hanoi� game with m

disks, hence the name.

In [6], the authors compute the rigid, branch, and congruence kernels for the Hanoi

Towers group. At the time, it was the only branch group that had been shown to have a

non-trivial rigid kernel. Knowing a group has a particular property and understanding why

are both equally important tasks, especially when the group is the �rst example having said

property. For this reason, in Section 2.2 we provide a simpli�ed, constructive proof that the

rigid kernel for the Hanoi towers group is the Klein 4 group, proving various properties of

the group along the way. The results in this section were published in [22].

For completeness, in Section 2.3 we discuss the remaining kernels.

2.1 The game and the group

We start by describing the game.

The �Towers of Hanoi� game for three pegs and m disks works as follows. It begins with

3 pegs and m disks each of varying size organized from largest to smallest on the �rst peg.

Figure 2.1 shows this initial game state for m = 6. The goal of the game is to move each of

the disks from the �rst peg to the third peg through a series of moves. Each move consists

of taking the top disk from one peg and placing it atop another peg with the restriction that

at no point can a larger disk be on top of a smaller disk.

Figure 2.1: The beginning game state for the �Towers of Hanoi�.
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2.1. The game and the group

The restriction on the moves in the game limits a player's options to three possibilities.

The �rst move, which will be called move a1, transfers the smallest disk on pegs 2 and 3

between them. Likewise, move a2 transfers the smallest disk on pegs 1 and 3 between them

and move a3 transfers the smallest disk on pegs 1 and 2 between them.

Any sequence of moves yields a game state which consists of the disks distributed across

the three pegs such that on each peg, starting at the bottom and working up, the disks

decrease in size. Thus, every game state in the m-disk game can be encoded as a sequence

of m integers between 1 and 3 in the following way: the �rst integer indicates the location

of the smallest disk, the second integer indicates the location of the next smallest disk and

so forth until the �nal integer indicates the location of the largest disk. For example, the

Figure 2.2 shows a possible game state for the 6-disk game corresponding to the sequence

(2,1,3,2,2,1).

Figure 2.2: The game state corresponding to (2,1,3,2,2,1).

Recall that integer sequences of length m where the integers are between 1 and 3 can also

be thought of as a vertex on the mth level in a rooted ternary tree as described in Section

1.3 and as seen in Figure 2.3.

∅

1 2 3

1 2 3 1
2 3 1

2 3

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Figure 2.3: The rooted ternary tree

Since any move in the game takes one game state to another game state, i.e. takes one

vertex on the mth level in the tree to another vertex on the mth level, each move can be
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2.1. The game and the group

thought of as an automorphism of the rooted ternary tree. Move a1 should search for the

�rst time a 2 or 3 appears in the path, and then switch it. Moves a2 and a3 should act

similarly but instead with the numbers 1 and 3 and the numbers 1 and 2 respectively. For

example, move a2 takes the sequence (2,1,3,2,2,1) to (2,3,3,2,2,1).
In the same way we can de�ne elements a1, a2 and a3 acting on the whole ternary tree

T . They are as follows:

a1 = (a1,1,1)σ1 a2 = (1, a2,1)σ2 a3 = (1,1, a3)σ3

where we are using the isomorphism Aut(T ) ≅ Aut(T )≀S3 and where σi is the transposition

which �xes i for 1 ≤ i ≤ 3.

σ1

σ1 1 1

σ1 1 1

σ1 1 1

σ2

1
σ2 1

1 σ2 1

1 σ2 1

1

σ3

1 σ3

1 1 σ3

1 1 σ3

Figure 2.4: The generators a1, a2, and a3 of the Hanoi towers group

Figure 2.4 shows the labeling of the vertices by elements in S3 for a1, a2, and a3 respec-

tively. Then the Hanoi towers group is G3 = ⟨a1, a2, a3⟩. In [6], a full presentation for G3 is

obtained. It is:

G3 = ⟨a1, a2, a3 ∣ a2
1, a

2
2, a

2
3, τ

n(w1), τn(w2), τn(w3), τn(w4) for all n ≥ 0⟩ (2.1)

where τ is an endomorphism of G3 de�ned by the substitution

a1 ↦ a1 a1 ↦ aa3

2 a3 ↦ aa2

3

and where

w1 = [a2, a1][a2, a3][a3, a1][a1, a3]a2[a1, a2]a3[a3, a2]

w2 = [a2, a3]a1[a3, a2][a2, a1][a3, a1][a1, a2][a1, a3]a2

w3 = [a3, a2][a1, a2][a2, a3]a1[a3, a2]2[a2, a1][a2, a3]a1[a2, a3]a1

w4 = [a2, a3]a1[a1, a2]a3[a2, a1]2[a1, a3][a1, a2]a3[a3, a1][a3, a2].
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2.2 Properties of the Hanoi towers group and computation of the rigid

kernel

In this section we compute the rigid kernel for G3:

ker(G̃3 → G3) = lim←Ð
m≥1

StabG3
(m)/RistG3

(m).

Since the maps ρn,n+k ∶ StabG3
(m + k)/RistG3

(m + k) → StabG3
(m)/RistG3

(m) are far

from being surjective most of our work in computing the rigid kernel for G3 will be in

determining the image ρm,m+k(StabG3
(m + k)/RistG3

(m + k)) for all m and k.

First we observe that since each generator of G3 has order 2, any element in G3 can be

expressed as a word in a1, a2, and a3 using only the positive alphabet. Further, since each

relator in presentation 2.1 can be written as a product of commutators G3/G′
3 ≅ (C2)3 where

C2 is a cyclic group of order 2. Thus a word in a1, a2, and a3 is in G′
3 if and only if the sum

of the exponents on each letter is congruent to 0 modulo 2.

Using the Reidemeister-Schreier method, we obtain a generating set for StabG3
(1):

α = a1a3a1a2 = (a1, a3a2, a1)1

β = a1a2a1a3 = (a1, a1, a2a3)1

δ = a2a3a2a1 = (a3a1, a2, a2)1

γ = a2a1a2a3 = (a2, a2, a1a3)1.

The details of this can be found in Appendix A.

Recall that a self-similar group G is self-replicating if πv(StabG(v)) = G. If G is both self-

replicating and acts transitively on the �rst level of the tree, then G is spherically transitive.

As G3/StabG3
(1) = S3, G3 clearly acts transitively on the �rst level of the ternary tree.

Thus to show it is level transitive, it is su�cient to show it is self-replicating.

Lemma 2.1. G3 is self-replicating.

Proof. From the generators obtained for StabG3
(1) above we see πv(StabG3

(v)) = G3 for

any vertex v of level 1. Now suppose for any vertex v of level m, πv(StabG3
(v)) = G3 and

let w be an immediate descendant of v. Then let p, q, r, and s be the elements in StabG3
(v)

that act as α, β, δ, and γ on the subtree rooted at v. Then, p, q, r, and s are in StabG3
(w)

and pw, qw, rw, and sw generate G3. Thus, πw(StabG3
(w)) = G3.

An important observation that will be used frequently is that for a group G ifXm∗H ≤ G,
then

StabG(m + k) ∩Xm ∗H =Xm ∗ StabH(k). (2.2)
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This is because Xm ∗H describes a disjoint action on each subtree rooted at the mth

level, and so on each of these subtrees StabG(m + k) ∩Xm ∗H describes the collection of

elements that are contained in H and stabilize the kth level.

Lemma 2.2. G3 is a self-similar, regular branch group with branching subgroup G′
3.

Proof. The de�nition of the generators of G3 easily implies that G3 is self-similar. We will

show by induction that Xm ∗G′
3 ≤ G′

3. For m = 1, observe that

(a1a3a2a3)2 = (a1a2a1a2,1,1)1 = ([a1, a2],1,1)1

(a1a2a3a2)2 = (a1a3a1a3,1,1)1 = ([a1, a3],1,1)1

a3(a2a1a3a1)2a3 = (a2a3a2a3,1,1)1 = ([a2, a3],1,1)1

and (a1a3a2a3)2, (a1a2a3a2)2, and a3(a2a1a3a1)2a3 are all in G′
3 since G3/G′

3 is an elemen-

tary abelian 2-group.

From the description of the generators for StabG3
(1), we see that for all g ∈ G3 there is

an element g̃ ∈ StabG3
(1) whose state in the �rst coordinate is g. Conjugating (a1a3a2a3)2

by g̃ produces the element ([a1, a2]g,1,1)1. Likewise, we can obtain the element that has

any conjugate of [a1, a3] or [a2, a3] in the �rst coordinate and 1 in the second and third

coordinates. As G3 is transitive on all levels of T , we obtain X ∗G′
3 ≤ G′

3.

Now assume for some m ≥ 1, that Xm ∗ G′
3 ≤ G′

3. By the base case, each copy of G′
3

contains a copy of X ∗G′
3. Therefore,

Xm ∗ (X ∗G′
3) ≤Xm ∗G′

3 ≤ G′
3.

But Xm ∗ (X ∗G′
3) =Xm+1 ∗G′

3.

Lemma 2.3. For all m ≥ 1, RistG3
(m) =Xm ∗G′

3.

Proof. The proof is by induction on the level. By Lemma 2.2,

X ∗G′
3 ≤ RistG3

(1) ≤ StabG3
(1) ≤X ∗G3.

Note that

(X ∗G3)/(X ∗G′
3) ≅ (G3/G′

3)3 ≅ [(Z/2Z)3]3 ≅ (Z/2Z)9.

Consider H, the rigid stabilizer of the �rst vertex of level 1. The image H in (Z/2Z)9 is

contained in the subspace W consisting of vectors which have 0 in the ith coordinate for

i ≥ 4. On the other hand, the image U of StabG3
(1) in (Z/2Z)9 is spanned by the images of

α, β, δ, and γ which are

α̃ = (1,0,0,0,1,1,1,0,0)
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2.2. Properties of the Hanoi towers group and computation of the rigid kernel

β̃ = (1,0,0,1,0,0,0,1,1)

δ̃ = (1,0,1,0,1,0,0,1,0)

γ̃ = (0,1,0,0,1,0,1,0,1).

It is a simple exercise to see that W ∩ U = {0}. It follows that H ≤ X ∗ G′
3 and thus

RistG3
(1) =X ∗G′

3.

Now assume for some m ≥ 1 that RistG3
(m) =Xm ∗G′

3. Then, again, by Lemma 2.2,

Xm+1 ∗G′
3 ≤ RistG3

(m + 1)

= RistG3
(m + 1) ∩Xm ∗G′

3

=Xm ∗RistG′
3
(1)

≤Xm ∗RistG3
(1)

=Xm+1 ∗G′
3

giving Xm+1 ∗G′
3 = RistG3

(m + 1).

Corollary 2.4. For all m, RistG3
(m)StabG3

(m + 1)/StabG3
(m + 1) = (A3)3m where A3 is

the alternating group on 3 letters.

Proof. The projection G3 → G3/StabG3
(1) ≅ S3 takes G

′
3 onto A3, hence G

′
3/StabG′

3
(1) ≅ A3.

Further,

RistG3
(m)StabG3

(m + 1)/StabG3
(m + 1)

≅ RistG3
(m)/[RistG3

(m) ∩ StabG3
(m + 1)

=Xm ∗G′
3/[(Xm ∗G′

3) ∩ StabG3
(m + 1)]

≅Xm ∗G′
3/Xm ∗ StabG′

3
(1)

≅ (G′
3/StabG′

3
(1))3m ≅ (A3)3m .

Corollary 2.5. The rigid kernel for G3 is an elementary abelian 2-group.

Proof. Since StabG3
(m) ≤Xm ∗G3, we have

StabG3
(m)/RistG3

(m) = StabG3
(m)/Xm ∗G′

3

is a subspace of

Xm ∗G3/Xm ∗G′
3 ≅ (G3/G′

3)3m

which is an elementary abelian 2-group. An inverse limit of elementary abelian 2-groups is

an elementary abelian 2-group.
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2.2. Properties of the Hanoi towers group and computation of the rigid kernel

Corollary 2.6. ∣StabG3
(1)/RistG3

(1)∣ = 16 and ∣StabG′
3
(1)/RistG′

3
(1)∣ = 4.

Proof. We have seen in the proof of Lemma 2.3 that

StabG3
(1)/RistG3

(1) = StabG3
(1)/X ∗G′

3 = U

is a four dimensional vector space over F2 (the images of α, β, δ, and γ form a basis). Hence

U has 16 elements.

Now, by Lemmas 2.2 and 2.3, we see that RistG3
(m) = RistG′

3
(m) =Xm∗G′

3. This gives

StabG′
3
(1)/RistG′

3
(1)

= (StabG3
(1) ∩G′

3)/RistG3
(1)

= U ∩ (G′
3/RistG3

(1)).

Moreover, since a word in a1, a2, and a3 is in G′
3 if and only if each generator appears in

it an even number of times, a word in α, β, δ, and γ is in G′
3 if and only if the number of

appearances of α and β have the same parity and the number of appearances of δ and γ

have the same parity. It follows that U ∩ (G′
3/RistG3

(1)) is the two dimensional subspace

spanned by α̃ + β̃ and δ̃ + γ̃.

As G3 is self-replicating, if g ∈ StabG3
(u), then gu must also be an element of G3.

Corollary 2.6 and the following lemma serve to elucidate the action of G3 on the top levels

of T .

Lemma 2.7.

1. G3/StabG3
(1) ≅ S3, the symmetric group on three letters.

2. StabG3
(1)/StabG3

(2) considered as a subgroup of (S3)3 is the kernel of the homomor-

phism φ ∶ (S3)3 → C2 where φ sums the signs of the permutation in each coordinate.

This quotient has order 22 ⋅ 33.

Proof. 1. We have already observed that G3/StabG3
(1) ≅ S3.

2. The images of α, β, δ, and γ in StabG3
(1)/StabG3

(2) are

α = (σ1, (1,2,3), σ1)

β = (σ1, σ1, (1,3,2))

δ = ((1,2,3), σ2, σ2)

γ = (σ2, σ2, (1,3,2)).
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2.2. Properties of the Hanoi towers group and computation of the rigid kernel

Thus α,β, δ, and γ are in ker(φ). Further δ
2 = ((1,3,2),1,1) and, by spherical tran-

sitivity, this implies that (A3)3 ≤ StabG3
(1)/StabG3

(2). Also, αβ = (1, σ2, σ2) and

δγ = (σ1,1, σ1). Collectively, these elements generate ker(φ).

Now we apply our knowledge of the permutations appearing on the top levels of the tree

to gain an understanding of action on subtrees rooted at the lower levels.

Lemma 2.8. For m ≥ 1, we have isomorphisms

StabG′
3
(m)/StabG′

3
(m + 1)

≅ StabG3
(m)/StabG3

(m + 1)

≅Xm−1 ∗ StabG3
(1)/Xm−1 ∗ StabG3

(2).

In particular, all three groups have order 22⋅3m−1 ⋅ 33m.

Proof. Since

StabG′
3
(m)/StabG′

3
(m + 1)

= StabG′
3
(m)/(StabG′

3
(m) ∩ StabG3

(m + 1)),

the group StabG′
3
(m)/StabG′

3
(m + 1) can be considered as a subgroup of

StabG3
(m)/StabG3

(m + 1).

By self-similarity, StabG3
(m)/StabG3

(m + 1) can be considered as a subgroup of

(Xm−1 ∗ StabG3
(1))/(Xm−1 ∗ StabG3

(2)),

a group of order 22⋅3m−1 ⋅ 33m . Therefore it su�ces to prove that

∣StabG′
3
(m)/StabG′

3
(m + 1)∣ ≥ 22⋅3m−1 ⋅ 33m .

Observe thatG′
3/StabG′

3
(1) ≅ A3, generated by the image of [a1, a2] = (a1a2, a1, a2)(1,2,3)

and recall that RistG3
(m) = Xm ∗G′

3 ≤ G′
3. It follows that StabG′

3
(m)/StabG′

3
(m + 1) con-

tains (Xm ∗G′
3)StabG′

3
(m + 1)/StabG′

3
(m + 1). Note that

(Xm ∗G′
3)StabG′

3
(m + 1)/StabG′

3
(m + 1)

≅Xm ∗G′
3/(StabG′

3
(m + 1) ∩Xm ∗G′

3)

=Xm ∗G′
3/Xm ∗ StabG′

3
(1)

≅ (G′
3/StabG′

3
(1))3m
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2.2. Properties of the Hanoi towers group and computation of the rigid kernel

≅ (A3)3m .

Therefore, StabG′
3
(m)/StabG′

3
(m + 1) has a subgroup of order 33m .

Now, StabG′
3
(m)/StabG′

3
(m + 1) also contains a subgroup isomorphic to

(Xm−1 ∗G′
3 ∩ StabG′

3
(m))/(Xm−1 ∗G′

3 ∩ StabG′
3
(m + 1)).

Moreover, by 2.2 this subgroup is isomorphic to (StabG′
3
(1)/StabG′

3
(2))3m−1 which has order

22⋅3m−1 by Corollary 2.6.

Now, we have all the tools needed to prove the main theorem.

Theorem 2.9. The rigid kernel ker(G̃3 → G3) is the Klein 4 group.

Proof. By Corollary 2.5, the rigid kernel is an elementary abelian 2-group, so we only need

to show that it has order 4.

For notational simplicity, for all m ≥ 1, de�ne mG3 = StabG3
(m)/RistG3

(m). Further,

under the natural map from m+kG3 to mG3, let m,m+kH be the image of m+kG3 in mG3, let

m,m+kK be the kernel of this map, and let m,m+kQ be the cokernel of this map (note that

m,m+kH ⊴ mG3).

Recall that the rigid kernel is lim←Ð
m≥1

mG3. We will show that for all m, m,m+1H = m,m+2H

and that both have order 4. This implies that for each m, the maps m+1,m+2H → m,m+1H

are isomorphisms and hence lim←Ð
m≥1

mG3 = lim←Ð
m≥1

m,m+1H also has order 4, completing the proof.

The �rst step in doing this is to determine m,m+1H. We have the exact sequence

1→ m,m+1K → m+1G3 → mG3 → m,m+1Q→ 1. (2.3)

Now

m,m+1K

= (StabG3
(m + 1) ∩RistG3

(m))/RistG3
(m + 1)

= (StabG3
(m + 1) ∩Xm ∗G′

3)/Xm+1 ∗G′
3

=Xm ∗ StabG′
3
(1)/Xm+1 ∗G′

3

≅ (StabG′
3
(1)/RistG′

3
(1))3m ,

hence ∣m,m+1K ∣ = 22⋅3m from Corollary 2.6.

Also, n,n+1Q = StabG3
(m)/RistG3

(m)StabG3
(m + 1) has 22⋅3m−1 elements by Lemma 2.8

and Corollary 2.4.

Since the sequence 2.3 is exact,

∣m+1G3∣
∣mG3∣

= ∣m,m+1K ∣
∣m,m+1Q∣ = 24⋅3m−1 .
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2.3. Branch kernel for the Hanoi towers group

Further, by Corollary 2.6, ∣1G3∣ = 16. Collectively, we obtain

∣mG3∣ = 24
m

∏
i=2

24⋅3i−2 = 22⋅(3m−1+1)

and the size of m,m+1H is

∣m+1G3∣
∣m,m+1K ∣ =

22(3m+1)

22⋅3m
= 4.

Now it remains to show that m,m+2Q = m,m+1Q as this would imply m,m+2H = m,m+1H

and moreover that m+1,m+2H maps isomorphically to m,m+1H for all m.

Now

m,m+iQ = StabG3
(m)/(Xm ∗G3

′)StabG3
(m + i).

Thus showing m,m+1Q = m,m+2Q is the same as showing

(Xm ∗G′
3)StabG3

(m + 1) = (Xm ∗G′
3)StabG3

(m + 2).

By Lemma 2.8,

StabG3
(m + 1)/StabG3

(m + 2)

≅Xm ∗ StabG3
(1)/Xm ∗ StabG3

(2)

≅Xm ∗ StabG′
3
(1)/Xm ∗ StabG′

3
(2).

Hence, StabG3
(m + 1) = StabG3

(m + 2)(Xm ∗ StabG′
3
(1)) and we obtain

(Xm ∗G′
3)StabG3

(m + 1)

= (Xm ∗G′
3)(Xm ∗ StabG′

3
(1))StabG3

(m + 2)

= (Xm ∗G′
3)StabG3

(m + 2).

2.3 Branch kernel for the Hanoi towers group

Bartholdi, Siegenthaler, and Zalesskii additionally computed the branch and congruence

kernel for the Hanoi towers group. For completeness, we include these here although we do

not include a proof.

Theorem 2.10. [6] The branch kernel of G3 is isomorphic to Ẑ3[[Xω]]. The congruence

kernel of G3 is an extension of Ẑ3[[Xω]] by the Klein 4 group where the action of the Klein

4 group is diagonal. Each non-trivial element of the Klein 4 group acts as a half-turn along

a coordinate axis on Ẑ3.

Here Ẑ3[[Xω]] is used to denote the free pro�nite Ẑ3 module on the pro�nite space

Xω = lim←Ð
m≥1

Xm.

25



Chapter 3 Generalized Groups

In this chapter, we introduce and study a natural generalization of the Hanoi towers

group acting on an n-ary tree. The groups in the generalization turn out to be surprisingly

di�erent from the Hanoi towers group.

We start by introducing the groups in Section 3.1. Then we give an algorithm for solving

the word problem in Section 3.2 which allows us to compute the abelianization. In Section

3.3, we determine the rigid stabilizers and level stabilizers for these groups and use them to

�nd the rigid, branch, and congruence kernels. This is then applied to show that the groups

in the generalization are just in�nite if and only if they are not the Hanoi towers group in

Section 3.4. And �nally, in Section 3.5, we compute the Hausdor� dimension.

We remark that the group G4 was studied brie�y in [21], but a subtle overgeneralization

in the hypotheses of earlier theorems led to some incorrect conclusions.

3.1 The groups

Let n ≥ 3 and let X = {1,2, . . . , n}. Let σi = (1,2, . . . , i−1, i+1, . . . , n−1, n), a permutation
in Sn. Let ai be the automorphism of the n-ary tree de�ned recursively as follows:

ai = (1, . . . ,1, ai,1, . . . ,1)σi

where on the right side of the equation ai appears in the i-th coordinate.

De�nition 3.1. The group Gn is the group generated by {a1, . . . , an}.

Our primary focus in this chapter will be on n ≥ 4, but we will recall facts about G3, the

Hanoi towers group, as they are necessary.

Lemma 3.2. For n ≥ 3, ⟨σi ∣ 1 ≤ i ≤ n⟩ is the alternating group on n letters, An, when n is

even and the symmetric group on n letters, Sn, when n is odd.

Proof. For all i, when n is even σi ∈ An and when n is odd σi ∉ An. Further, σ−1
i+1σi =

(i, i + 1, i + 2) for 1 ≤ i ≤ n − 2. Since {(i, i + 1, i + 2) ∣ 1 ≤ i ≤ n − 2} is a generating set of An,

the result follows.
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3.2. Word problem and abelianization

Recall that if a group is both self-replicating and acts transitively on the �rst level of the

tree, then it is spherically transitive.

Lemma 3.3. For all n, Gn is self-replicating.

Proof. If a vertex v is a descendant of a vertex u (i.e. v = uw for some w ∈X∗), then

πv(StabG(v)) = πw(πu(StabG(v))).

Thus G is self-replicating if and only if πu(StabG(u)) = G for every vertex u of level 1.

Suppose u is in the i-th coordinate. Then for each aj and ak where k ≠ i, there exists

a number l such that jσ
l
k = i. Moreover, σ

σlk
j �xes i. Therefore, a

alk
j is in StabGn(u) and

πu(aa
l
k

j ) = aj .

Corollary 3.4. For all n, Gn is spherically transitive.

3.2 Word problem and abelianization

A group G has a solvable word problem if it is �nitely generated and there exists and

algorithm in �nite time for determining when two words in the generating set represent the

same group element. Two words w1 and w2 represent the same element of the group if

and only if w1w
−1
2 = 1. Therefore, it is equivalent to �nding an algorithm which determines

whether or not a given word represents the identity element.

We remark that Gn is an example of an automaton group and as such there exists

an algorithm in exponential time that solves the word problem [25]. Here we outline an

alternative algorithm for Gn which also allows for the computation of the abelianization.

Let Fn be a free group with basis {s1, . . . , sn}. For a freely reduced word w(s1, . . . , sn) =
sr1i1 s

r2
i2
⋯srkik , de�ne the length of w to be ∣w∣ = k. Let γ ∶ Fn ↪ Fn ≀ Sn be the map de�ned by

γ(si) = (1, . . . ,1, si,1, . . .1)σi where si is in the i-th coordinate and σi = (1, . . . i−1, i+1, . . . , n)
as before. In other words, γ mimics the recursive de�nition of ai.

Proposition 3.5. Let w(s1, . . . , sn) be an element of Fn and suppose γ(w) = (w1, . . . ,wn)θ.
Then for all j, ∣wj ∣ ≤ ∣w∣+1

2 .

Proof. If w is of length 1, then w is of the form sri so γ(w) = (1, . . . ,1, sri ,1, . . . ,1)σri and the

claim is true.

Likewise if w = sr1i1 s
r2
i2

where i1 ≠ i2 then σr1i1 is a permutation of {1, . . . , n}/{i1}. In

particular, γ(w) is of the form

(1, . . . ,1, sr1i1 ,1, . . . ,1, s
r2
i2
,1, . . . ,1)σr1i1 σ

r2
i2

where sr2i2 is in the i
σr1i1
2 coordinate and i

σr1i1
2 ≠ i1. Again the claim holds.
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3.2. Word problem and abelianization

Now suppose w = sr1i1 s
r2
i2
⋯srkik has length k for some k ≥ 3 and γ(w) = (w1, . . . ,wn)θ. Then

for m = ⌈k2 ⌉, w can be written as u1⋯um where ∣ui∣ ≤ 2 for each i. In this case,

γ(ui) = (ui1 , ui2 , . . . , uin)θi

for some θi ∈ Sn and where for all i between 1 and m and all j between 1 and n, ∣uij ∣ is either
0 or 1. Therefore each wj is a product of m words of length 0 or 1 and ∣wj ∣ ≤ ⌈k2 ⌉ ≤

k+1
2 .

Now let 1 → Rn → Fn
φ0→ Gn → 1 be a presentation for Gn where φ0(si) = ai. Since γ

mimics the recursive de�nition of the generators of Gn, the following diagram commutes:

Fn Im(γ)

Gn

γ

φ0

φ1

where φ1((1, . . . ,1, si,1, . . .1)σi) = ai.
This fact along with Proposition 3.5 provide tools for solving the word problem. Indeed,

let w(s1, . . . , sn) be in Fn. If ∣w∣ = 1, then w(a1, . . . , an) is trivial if and only if w(s1, . . . , sn) =
s
r(n−1)
i for some i and r. If ∣w∣ ≥ 2, then we can apply γ to w to obtain γ(w) = (w1, . . . ,wn)θ
where ∣wj ∣ < ∣w∣. If θ is a non-trivial permutation then w(a1, . . . , an) ≠ 1 and we are done.

Similarly, if θ is trivial and each wj has length 0 or 1, then w(a1, . . . , an) = 1 if and only if

each wj(s1, . . . , sn) is of the form s
rj(n−1)
ij

. The remaining possibility is that θ is the trivial

permutation and for some wj , the length of wj is at least 2. In this case repeat the above

process to the each wj until either we �nd a non-trivial permutation or each obtained word

has length at most 1 and is of the form s
r(n−1)
i .

As a result of the word problem algorithm, the abelianization of Gn is straightforward

to compute. First, observe that the generators of Gn have order (n − 1) and so Gn/G′
n is a

quotient of (Z/(n−1)Z)n. Now for a word w(s1, . . . , sn), let εsi be the sum of the exponents

on the si terms in w. Consider now γ(w) = (w1, . . . ,wn)θ. By the way γ is de�ned

εsi(w(s1, . . . , sn)) =
n

∑
j=1

εsi(wj(s1, . . . , sn))

The algorithm states that if a word w(s1, . . . , sn) produces a trivial word in Gn, then af-

ter some number of iterations, the sum of the exponents of the si's over all the states

on a given level is equal to 0 modulo n − 1. But this is the same as εsi(w). In other

words, if w(a1, . . . , an) = 1 then εsi(w(s1, . . . , sn)) ≡ 0 mod (n − 1) for all i. Thus Rn ≤
⟨F ′

n, s
n−1
1 , . . . , sn−1

n ⟩ and Gn surjects onto (Z/(n − 1)Z)n.

Proposition 3.6. The abelianization of Gn is Gn/G′
n ≅ (Z/(n − 1)Z)n.

28



3.3. The congruence subgroup problem

A similar property to what is described in Proposition 3.5 is frequently studied in the

setting of self-similar groups.

De�nition 3.7. A self similar group G is called contracting if there exists a �nite set N ⊂ G
such that for every g ∈ G, there exists k ∈ N such that gv ∈ N for all words v ∈ X∗ of length

greater than or equal to k. The minimal set N with this property is called the nucleus of the

self-similar action.

Since the generators of Gn have �nite order every element of Gn can be expressed as a

positive word. Now the next result follows immediately from Proposition 3.5.

Corollary 3.8. Gn is contracting with nucleus

N = {1, aji ∣ 1 ≤ i ≤ n,1 ≤ j ≤ n − 2}.

The abelianization also allows us to put some functions on Gn which will be of use to us

later.

De�nition 3.9. Let g be an element of Gn. Let w(s1, . . . , sn) = sr1i1 s
r2
i2
⋯srkik be a word in

s1, s2, . . . , sn such that w(a1, . . . , an) = g, then

ε(g) = (
k

∑
j=1

ri) mod (n − 1).

Lemma 3.10. ε ∶ Gn → Z/(n − 1)Z is a well de�ned, surjective homomorphism.

Proof. Since Gn/G′
n ≅ (Z/(n − 1)Z)n, ε is the composition of the abelianization map [Ab] ∶

Gn → (Z/(n − 1)Z)n with the map ψ ∶ (Z/(n − 1)Z)n → Z/(n − 1)Z de�ned by ψ ∶
(b1, b2, . . . bn) ↦ ∑ni=1 bi. Clearly, this map is well de�ned and as both [Ab] and ψ are

surjective, ε is surjective.

De�nition 3.11. Let g = (g1, . . . , gn)σ ∈ Gn where gi ∈ Gn for all i. De�ne

ε1(g) =
n

∑
i=0

ε(gi) mod (n − 1).

Lemma 3.12. For an element g ∈ Gn, ε(g) = ε1(g).

Proof. This follows from the discussion preceding Proposition 3.6.

3.3 The congruence subgroup problem

The �rst step in computing the kernels for the groups Gn, n ≥ 4, is to understand their

rigid stabilizers and level stabilizers.

We make the following observation.
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3.3. The congruence subgroup problem

Remark 3.13. For any vertex v, conjugating any element h ∈ RistAut(T )(v) by an auto-

morphism g of T works as follows:

Let m = ∣v∣ and suppose

h = (1, . . . ,1, hv,1, . . . ,1)m

where hv is in the v-th coordinate. Let g decompose as

(g1, . . . , gnm)σ

where σ is in the m-fold iterated wreath product of Sn. Suppose σ sends the vertex v to the

vertex u. Then

hg = (1, . . . ,1, hguv ,1, . . . ,1)m

where hguv is in the u-th coordinate.

For spherically transitive, self-replicating groups, this signi�cantly reduces the calcula-

tions for rigid stabilizers as illustrated by Proposition 3.14.

Proposition 3.14. Suppose G is a level transitive, self-replicating group. If v ∗ g ∈ G, then

u ∗ ⟨⟨g⟩⟩ ≤ RistG(u)

for all u such that ∣u∣ = ∣v∣.

Proof. Suppose v ∗ g ∈ G and that G is a level transitive, self-replicating group. Let gh be a

conjugate of g in G. Since G is level transitive, for any vertex u on the same level as v there

exists h̃1 ∈ G such that h̃1 takes v to u. Then by Remark 3.13, (v ∗ g)h̃1 = u ∗ gh1 for some

h1 ∈ G. Since G is self-replicating there exists h̃ ∈ StabG(u) such that the state of h̃ at u is

h−1
1 h. Then (v ∗ g)h̃1h̃ = u ∗ gh.

Additionally, for the groups Gn there is another simpli�cation that comes from the sym-

metry of the generators.

Remark 3.15. Let ω be the permutation (1,2,⋯, n) and let λ be the automorphism of n-ary

tree de�ned recursively by

λ = (λ,λ, . . . , λ)ω.

Then conjugation by λ is an automorphism of the group Gn which takes an ↦ a1 and ai ↦ ai+1

for 1 ≤ i ≤ n − 1. Further, if

g = (g1, g2, . . . , gn)σ,

then

gλ = (gλn, gλ1 , . . . , gλn−1)σω.

Theorem 3.16. For all n, Gn is a regular branch group with branching subgroup G′
n.
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3.3. The congruence subgroup problem

Proof. By Lemma 3.3 and Corollary 3.4, Gn is level transitive and self-replicating. Therefore,

by Proposition 3.14, it su�ces to �nd v ∗ g for each g in some normal generating set for G′
n

and for some v ∈X. And �nally, by Remark 3.15, it su�ces to �nd a conjugate of v∗[a1, ai]
for each i between 1 and 1 + ⌊n2 ⌋ and for some v ∈X.

The case when n = 3 is dealt with in Chapter 2.

When n = 4, we have the following elements:

[a−a1

3 , a−a2

3 ](a−1
2 a1)3 = (1,1, [a1, a2]a2 ,1)1

[aa
−1
1

2 , aa3

2 ](a1a3)−3 = (1, [a1, a3]−a
−1
3 ,1,1)1

When n = 5, we have the following elements:

[(a1a
−1
4 )2, (a2a

−1
4 )2] = ([a1, a2],1,1,1,1)1

[(a−1
3 a1)2, (a3a

−1
1 )2] = (1, [a1, a3],1,1,1)1

When n = 6, we have he following elements:

[(a1a
−1
4 )2, (a2a

−1
4 )2] = ([a1, a2],1,1,1,1,1)1

[(a−1
3 a1)2, (a3a

−1
1 )2] = (1, [a1, a3],1,1,1,1)1

[(a−1
6 a1a2a

−1
1 )a3 , (a4a

−1
5 a−1

4 a3)] = (1,1,1, [a1, a4],1,1)1

For the remaining n, �x i, 1 ≤ i ≤ 1 + ⌊n2 ⌋ and let j = i + 2 ≥ 4. Then

[(a1a
−1
j )2, ((aia−1

j )2)a
−(i−2)
j ] = ([a1, ai],1, . . . ,1)1.

Since G′
n has �nite index in Gn and we obtain the result.

Remark 3.17. Note that G′
n is not the maximal branching subgroup for n ≥ 4. The maximal

branching subgroup for Gn, which depends on the size of n and whether n is even or odd,

will be computed in Thoerems 3.23, 3.26, and 3.28.

De�nition 3.18. Let In be the collection of elements of the form

(1, . . . ,1, g,1, . . . ,1, g−1,1, . . . ,1)1

where g ranges over all elements of Gn and the coordinates in which g and g−1 appear ranges

over the set {1, . . . , n}.

Proposition 3.19. When n ≥ 4, In is contained in G′
n.
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3.3. The congruence subgroup problem

Proof. First, we observe that if g = (g1, . . . , gn)1 is an element in StabGn(1) and h =
(h1, . . . , hn)σ is an element of Gn, then g

h = (gh1

1σ , . . . , g
hn
nσ)1 which is equivalent to

(g1σ , . . . , gnσ)1 mod G′
n

by Theorem 3.16.

Consider the element

[aa2

1 , a3] = (1, a−1
2 , [a1, a3], a2

2, a
−1
2 ,1, . . . ,1)1 ≡ (1, a−1

2 ,1, a2
2, a

−1
2 ,1, . . . ,1)1 mod G′

n

where the equivalence is again by Theorem 3.16. Letting δ = (1, a−1
2 ,1, a2

2, a
−1
2 ,1, . . . ,1)1, we

see that

δδ−a1a
−1
3 = (1, a−1

2 , a
a−13

2 ,1, . . . ,1)1 ≡ (1, a−1
2 , a2,1, . . . ,1)1 mod G′

n.

Since Gn acts as either An or Sn on the �rst level, by our �rst observation all elements of the

form (1, . . . ,1, a2,1, . . . ,1, a
−1
2 ,1, . . . ,1)1 with the a2 and a

−1
2 in any coordinate are contained

in G′
n. Similarly, by Remark 3.13 all elements of the form (1, . . . ,1, ai,1, . . . ,1, a−1

i ,1, . . . ,1)1

for 1 ≤ i ≤ n are likewise in G′
n.

Finally suppose g = ami1

i1
⋯amik

ik
. Then,

(1, . . . ,1, ai1 ,1, . . . ,1, a−1
i1 ,1, . . . ,1)

mi1

1 ⋯(1, . . . ,1, aik ,1, . . . ,1, a−1
ik ,1, . . . ,1)

mik

1

= (1, . . . ,1, g,1, . . . ,1, a−mi1

i1
⋯a−mik

ik
,1, . . . ,1)1

and

(1, . . . ,1, g,1, . . . ,1, a−mi1

i1
⋯a−mik

ik
,1, . . . ,1)1 ≡ (1, . . . ,1, g,1, . . . ,1, g−1,1, . . . ,1)1 mod G′

n.

Remark 3.20. Proposition 3.19 is explicitly not true when n = 3 which can be seen from the

generators for StabG3
(1) found in Section 2.2. This signi�cantly contributes to the change

in the rigid kernels for Gn starting at n = 4 described in Theorem 3.30.

Corollary 3.21. For n ≥ 4, (g1, . . . , gn)1 is in StabGn(1) if and only if

(1, . . . ,1, g1θ⋯gnθ ,1, . . .1)1

is in RistGn(1) for every permutation θ of {1, . . . , n}. In particular, for every θ

(g1, . . . , gn)1 ≡ (1, . . . ,1, g1θ⋯gnθ ,1, . . .1)1 mod ⟨In,X ∗G′
n⟩.
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3.3. The congruence subgroup problem

3.3.1 Rigid kernels

Since by Lemma 3.2,

⟨a1(∅), a2(∅), . . . , an(∅)⟩ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Sn n is odd

An n is even

and since the normal subgroup structure of the alternating and symmetric groups changes

starting at n = 5, we will split the next computations into three settings, when n = 4, when

n ≥ 5 is odd, and when n ≥ 5 is even.

Proposition 3.22. StabG4
(1) = ⟨a1a3a

−1
4 , a2a1a3a

−1
1 , a1a

−1
3 a4a3,X ∗G′

4, I4⟩.

Proof. This was done was done using the computer algebra system GAP (Groups, Algo-

rithms, and Programming) [10] and the GAP package AutomGrp [17] which applies the

Reidemeister-Schreier method to obtain a list of generators. We then eliminate the redun-

dant ones. See Appendix B for more details.

Let K4 = ⟨a1a3a
−1
4 , a2a1a3a

−1
1 , a1a

−1
3 a4a3,G

′
4⟩, a subgroup of index 3 in G4.

Theorem 3.23. K4 = ⟨⟨a1a2, a2a3, a3a4, a4a1⟩⟩ and K4 is the maximal branching branching

subgroup of G4. In particular, Xm ∗K4 = RistG4
(m) for all m. Consequently,

StabG4
(m + 1) =Xm ∗ StabG4

(1) ≤ RistG4
(m)

for all m and G4 has trivial rigid kernel.

Proof. Since G′
4 ≤ K4, K4 is a normal subgroup. Moreover, a2a1a3a

−1
1 ≡ a2a3 mod G′

4 and

similarly a1a
−1
3 a4a3 ≡ a4a1 mod G′

4. Further, a3a4 and a1a2 can be written as a product of

the generators of K4 and their conjugates. Let K̃4 = ⟨⟨a1a2, a2a3, a3a4, a4a1⟩⟩. Now clearly

K̃4 ≤ K4 and G4/K4 ≅ Z/3Z by Proposition 3.6, hence to check that K̃4 = K4 it su�ces to

show that G4/K̃4 has order at most three. This is immediate from the fact that

a1 ≡ a−1
2 ≡ a3 ≡ a−1

4 mod K̃4

and that each ai has order 3.

Now to show that K4 is a branching subgroup, by self-similarity it is only necessary

to show that K4 ≥ X ∗K4 = RistG4
(1). First observe that K4 has by index 3 in G4 by

Proposition 3.6 and therefore is a maximal subgroup. Now consider the elements

a1a3a
−1
4 = (a1, a3,1, a

−1
4 )1,

a2a1a3a
−1
1 = (a−1

1 , a2a3,1, a1)1,

a1a
−1
3 a4a3 = (a1a4, a

−1
3 , a3)1.
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3.3. The congruence subgroup problem

Thus by Corollary 3.21, (a1a3a
−1
4 ,1,1)1, (a2a1a3a

−1
1 )1, and (a1a

−1
3 a4a3,1,1)1 are in K4

(since only elements in the commutator subgroup are required to shift the coordinates).

To show that K4 is the maximal branching subgroup, observe that the generators ob-

tained in Proposition 3.22 for StabG4
(1) generate a subgroup of index 3 in X ∗G4 and so

in particular, for each vertex v on the �rst level RistG4
(v) must be a proper subgroup of

v ∗G4.

By Theorem 3.16, Proposition 3.19, and Proposition 3.22, StabG4
(1) ≤ K4 and the rest

follows from self-similarity.

Now we move to odd n ≥ 5.

Proposition 3.24. For odd n ≥ 5, if g is in StabGn(1), then ε(g) ≡ 0 mod 2. Conversely,

if g1, . . . , gn is such that ∑ni=1 ε(gi) ≡ 0 mod 2, then (g1, . . . , gn)1 ∈ StabGn(1).

Proof. First observe that since the ai(∅) is an element in Sn/An for all i, if a word in

a1, . . . , an produces an element g in StabGn(1), then it necessarily has even exponent sum.

In particular, ε(g) ≡ 0 mod 2.

Recall that In is the set of all elements of the form (g,1, . . . , g−1,1, . . . ,1)1 and that

In ⊆ StabGn(1). De�ne Hn = ⟨In,X ∗G′
n⟩ ⊴ Gn. Observe that Gn/X ∗G′

n is isomorphic to a

subgroup of

(Z/(n − 1)Z)n ≀ Sn = ((Z/(n − 1)Z)n ×⋯ × (Z/(n − 1)Z)n) ⋊ Sn.

and hence Gn/Hn isomorphic to a subgroup of (Z/(n − 1)Z)n × Sn. We claim that in fact

Gn/Hn is a subdirect product of (Z/(n − 1)Z)n × Sn. Indeed, Hn is contained in the kernel

of ε1, a surjective homomorphism onto (Z/(n − 1)Z)n, and Gn surjects onto Sn.

Let π1 ∶ Gn/Hn ↠ Sn and let π2 ∶ Gn/Hn ↠ (Z/(n − 1)Z)n. By Goursat's Lemma,

(Z/(n − 1)Z)n/ker(π1) ≅ Sn/ker(π2). Since the only non-trivial abelian quotient of Sn has

order 2, (Z/(n − 1)Z)n/ker(π1) is either trivial or order 2. But since a word in a1, . . . , an

has trivial permutation only if it has even exponent sum, ker(π1) is a proper subgroup of

(Z/(n − 1)Z)n. Therefore,

StabGn(1) = {(g1, . . . , gn)1 ∣
n

∑
i=1

ε(gi) ≡ 0 mod 2}.

De�nition 3.25. For odd n, de�ne Kn = {g ∈ Gn ∣ ε(g) ≡ 0 mod 2} ≤ Gn.

Theorem 3.26. For odd n ≥ 5, Kn is the maximal branching subgroup for Gn. In particular,

RistGn(m) =Xm ∗Kn for all m. Consequently,

StabGn(m + 1) =Xm ∗ StabGn(1) ≤ RistGn(m)
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3.3. The congruence subgroup problem

for all m and Gn has trivial rigid kernel.

Proof. Again, it su�ces to show that Kn ≥ X ∗ Kn = RistGn(1). By Proposition 3.24,

(1, . . . ,1, g,1, . . . ,1)1 ∈ Gn if and only if ε(g) ≡ 0 mod 2 which is if and only if g ∈ Kn.

Moreover, by Lemma 3.12 such a (1, . . . ,1, g,1, . . . ,1)1 is in Kn. Now by Lemma 3.12 and

Proposition 3.24, StabGn(1) ≤Kn and the rest follows from the above work.

Now, we work with the remaining groups: Gn where n ≥ 5 is even.

De�nition 3.27. A group G ≤ Aut(T ) is called layered if G contains the direct product of

∣X ∣ copies of G each acting on one of the subtrees of T rooted at the �rst level, i.e.

X ∗G ≤ G.

Theorem 3.28. For even n ≥ 5, StabGn(m) = RistGn(m) = Xm ∗Gn. In particular, Gn is

layered and consequently Gn has trivial rigid kernel.

Proof. It su�ces to show for m = 1. Let Hn be as in the proof of Proposition 3.24. By

the same arguments presented there, for even n ≥ 5, Gn/Hn isomorphic to a subgroup of

(Z/(n − 1)Z)n × An (since the root permutations generate An by Lemma 3.2). This time,

Gn/Hn is a subdirect product of (Z/(n − 1)Z)n ×An as Hn is again contained in the kernel

of ε1 and Gn surjects onto An.

Let π1 ∶ Gn/Hn ↠ An and let π2 ∶ Gn/Hn ↠ (Z/(n − 1)Z)n. By Goursat's Lemma,

(Z/(n − 1)Z)n/ker(π1) ≅ An/ker(π2). Since the only non-trivial abelian quotient of An is

the trivial group, (Z/(n−1)Z)n/ker(π1) is trivial and so StabGn(1) =X ∗Gn. Since X ∗Gn
is in fact a direct product, it is also RistGn(1). Moreover, as X ∗Gn ≤ Gn, for any m we

have Xm ∗Gn ≤ Gn. Since the group is self similar, the result follows.

Note that Theorem 3.28 tells us that for even n ≥ 5, Gn = Gn ≀ An. In particular, this

implies the following corollary.

Corollary 3.29. For even n ≥ 5, Gn = (⋯An ≀An) ≀An) ≀⋯An), the in�nitely iterated wreath

product of An.

3.3.2 Branch kernels

The combination of Theorems 3.23, 3.26, and 3.28 shows that, unlike when n = 3, when

n ≥ 4 the congruence kernel for Gn is the same as the branch kernel.

Recall that from Proposition 1.21, for a branch group G, the branch kernel is given by

ker(Ĝ→ G̃) = lim←Ð
m≥1
e≥1

RistG(m)/[RistG(m)eRistG(m)′].
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3.3. The congruence subgroup problem

Theorem 3.30. For n ≠ 3, the branch kernel, and thus the congruence kernel, for Gn is the

inverse limit

lim←Ð
m≥1

Mm
n

where Mn is a �nite abelian group. When n ≥ 5 is even, Mn is cyclic of order n − 1 and

when n = 4 or n ≥ 5 is odd, Mn has exponent bounded between (n − 1) and 2(n − 1).

Proof. For n = 4, RistG4
(m)/RistG4

(m)′ ≅ (K4)4m/(K ′
4)4m = (K4/K ′

4)4m . Now K4 is a

subgroup of index 3 containing G′
4 and hence surjects onto a subgroup of index 3 in G4/G′

4 =
(Z/3Z)4. The image ofK4 is then an abelian group of exponent 3 and soK4/K ′

4 has exponent

at least 3. It is easy to check that the normal generators of K4 given by Theorem 3.23 have

order 6. Since conjugating does not change the order of an element, K4 has a generating

set consisting of elements of order 6 and so K4/K ′
4 has exponent at most 6. Now since K4

has �nite index in a �nitely generated group, it is �nitely generated. Therefore K4/K ′
4 is a

�nite abelian group with exponent between 3 and 6.

For odd n ≥ 5, RistGn(m)/RistGn(m)′ ≅ (Kn)n
m/(K ′

n)n
m = (Kn/K ′

n)n
m

. Now Kn is

a subgroup of index 2 containing G′
n and as such surjects onto a subgroup of index 2 in

Gn/G′
n = (Z/(n − 1)Z)n. Since n ≥ 5, the image of Kn is an abelian group of exponent

(n− 1) and so Kn/K ′
n has exponent at least (n− 1). Moreover, since n is odd, a generating

set for Kn is {an−1a1, ana2, aiai+2 ∣ 1 ≤ i ≤ n − 2}. It is easy to check that each of these

elements has order 2(n − 1). Thus Kn/K ′
n has exponent at most 2(n − 1).

For even n ≥ 5,

RistGn(m)/RistGn(m)′ ≅ (Gn)n
m

/(G′
n)n

m

= (Gn/G′
n)n

m

= ((Z/(n − 1)Z)n)n
m

.

Now since for all n ≥ 4, RistGn(m)/RistGn(m)′ has �nite exponent, the collection

{RistGn(m)/RistGn(m)′} is co�nal with {RistGn(m)/RistGn(m)′RistGn(m)e}. Further,

since

RistGn(m)/RistGn(m + 1) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(Gn/G′
n)n

m

if n ≥ 5 is even

(Kn/K ′
n)n

m

if n = 4 or n ≥ 5 is odd

we see that similarly {(Gn/G′
n)m} and {(Kn/K ′

n)m} respectively also form co�nal sets. In

particular, the branch kernel is

lim←Ð
m≥1

Mm
n

where

Mn =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Gn/G′
n if n ≥ 5 is even

Kn/K ′
n if n = 4 or n ≥ 5 is odd
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Remark 3.31. Our techniques only put bounds on the exponent of Kn/K ′
n for n = 4 and

odd n ≥ 5. It would be desirable to precisely understand this group.

3.4 Just In�nite-ness

Recall that from Corollary 1.19, a branch group G is just in�nite if and only if for each

m ≥ 1, the index of RistG(m)′ in RistG(m) is �nite.
In [6], it is shown the G3/G′′

3 is an in�nite group and so G3 is not just in�nite. For

n ≥ 4, the proof of Theorem 3.30 shows RistGn(m)/RistGn(m)′ is �nite. Thus we obtain

the following result.

Theorem 3.32. Gn is just in�nite if and only if n ≠ 3.

3.5 Hausdor� Dimension

In this section, we de�ne the Hausdor� dimension for a metric space and describe a standard

metric on pro�nite group. We then use the work of the previous sections to compute the

Hausdor� dimension of Gn. For a more thorough discussion of Hausdor� dimension, the

reader is directed to Chapter 2 of [8].

Let (X,d) be a metric space and let X ′ be a subset of X. A δ-cover of X ′ is a �nite

or countable collection of subsets {Ui}∞i=1 such that for all i the diameter of Ui is at most δ

and X ′ ⊆ ∪∞i=1Ui.

For r ≥ 0, de�ne

Hrδ(Y ) = inf{
∞

∑
i=1

diam(Ui)r ∣ {Ui}∞i=1is a δ cover of Y}

Then the r-dimensional Hausdor� measure is

Hr(Y ) = lim
δ→0
Hrδ .

And �nally the Hausdor� dimension of Y is

dimH(Y ) = sup{r ≥ 0 ∣ Hr(Y ) = 0}.

Recall now that a pro�nite group

H = lim←Ð
m≥1

Hm

is metrizable via the metric given by d(g, h) = 1
∣Hi∣

where g = (gm)∞m=1 and h = (hm)∞m=1 and

i is the least value with gih
−1
i ∈Hi.

Thus for a closed subgroup H of Aut(T ), we can compute the Hausdor� dimension. It

was shown in [2] that the Hausdor� dimension of H is given by

dimH(H) = lim inf
m→∞

log ∣H/StabH(m)∣
log ∣Aut(T )/StabAut(T )(m)∣ . (3.1)
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3.5. Hausdor� Dimension

Abért and Virág showed that with probability 1 the closure of the subgroup generated by

three random automorphisms of a binary tree has Hausdor� dimension 1 [1]. Shortly there-

after, Siegenthaler constructed the �rst explicit examples of topologically �nitely generated

groups of Hausdor� dimension 1 [20].

As a consequence of the work in previous sections, we show that Gn has Hausdor�

dimension arbitrarily close to 1.

Theorem 3.33. For n ≥ 3, the Hausdor� dimension for Gn is

dimH(Gn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − log(48)
log(331776) if n = 4

1 − log(2)
log(n!) if n ≥ 5 is even

1 − log(2)
n log(n!) if n is odd

Proof. For n = 4, ∣G4/StabG4
(1)∣ = ∣A4∣ = 4!

2 by Lemma 3.2. It can easily be checked from

the generators of Proposition 3.22 that StabG4
(1)/StabG4

(2) is an index 3 subgroup of

A4 ×A4 ×A4 ×A4, so ∣StabG4
(1)/StabG4

(2)∣ = 4!4

3⋅24 . For m ≥ 2, ∣StabG4
(m− 1)/StabG4

(m)∣ =
∣StabG4

(1)/StabG4
(2)∣4m−2 by Theorem 3.23. Hence equation 3.1 yields

dimH(G4) = lim inf
m→∞

log ( 4!1+4+⋯+4
m−1

21+4+⋯4m−131+4+⋯4m−2 )
log(4!1+4+⋯4m−1)

= lim inf
m→∞

log(4!
4m−1

3 ) − log(2 4m−1
3 ) − log(3 4m−1−1

3 )
log(4!

4m−1
3 )

= lim inf
m→∞

1 − log(2)
log(4!) −

(4m−1 − 1) log(3)
(4m − 1) log(4!)

= 1 − log(2)
log(4!) −

log(3)
4 log(4!)

= 1 − log(48)
log(331776) .

For even n ≥ 5, Gn/StabGn(1) = An and StabGn(m−1)/StabGn(m) = (An)n
m−1

by Lemma

3.2 and Theorem 3.28. Therefore

dimH(Gn) =
log (n!1+n+⋯n

m−1

21+n+⋯nm−1 )
log(n!1+n+⋯nm−1)

= lim inf
m→∞

log((n!)n
m−1
n−1 ) − log(2nm−1

n−1 )
log(n!

nm−1
n−1 )

= 1 − log(2)
log(n!) .
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Finally, when n is odd ∣Gn/StabGn(1)∣ = ∣Sn∣ = n! by Lemma 3.2. Additionally,

∣StabGn(1)/StabGn(2)∣ =
n!n

2

by Proposition 3.24. Moreover,

∣StabGn(m − 1)/StabGn(m)∣

= ∣StabGn(1)/StabGn(2)∣4
m−2

= n!n
m−1

2nm−2

by Theorem 3.28 and Lemma 2.8. Thus

dimH(Gn) = lim inf
m→∞

log (n!1+n+⋯n
m−1

21+n+⋯nm−2 )
log(n!1+n+⋯nm−1)

= lim inf
m→∞

log(n!
nm−1
n−1 ) − log(2nm−1−1

n−1 )
log(n!

nm−1
n−1 )

= lim inf
m→∞

1 − (nm−1 − 1) log(2)
(nm − 1) log(n!)

= 1 − log(2)
n log(n) .

Corollary 3.34. For all ε > 0, there exists n such that dimH(Gn) > 1 − ε.
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Chapter 4 New examples of groups with non-trivial rigid

kernel

In this �nal chapter, we present examples to show that triviality of the rigid kernel is not

necessarily preserved when moving to subgroups of �nite index, even if they are maximal.

In doing so, we present in�nitely many new examples of branch groups with non-trivial rigid

kernel, adding to the only currently known example of the Hanoi towers group.

Theorem 4.1. For n ≥ 4, let 1 ≠ d > 2 be such that d ∣ (n − 1) and let Hn,d be the set of

elements g of Gn with ε(g) ≡ 0 mod d. The Hn,d is a subgroup of index d in Gn and is a

branch group with non-trivial rigid kernel.

Proof. We will construct explicit elements that are in StabHn,d(m) but not in RistHn,d(k)
for all k ≤ m. For any n and d as in the theorem, Hn,d is a subgroup of Gn of index d by

Lemma 3.10. Let β = a1a2⋯an.
If n ≥ 4 is odd, then

β = (a1a3⋯an,1, . . . ,1, a2a4⋯an−1)(1, n)

and

β2 = (a1a3⋯ana2a4⋯an−1,1, . . . ,1, a2a4⋯an−1a1a3⋯an)1.

Clearly, β2 has exponent sum 2n and is not an element of Hn,d. But Hn,d does contains G
′
n

and therefore also X ∗G′
n and all elements of the form (g,1, . . . ,1, g−1)1 for g ∈ Gn. Combin-

ing these elements we get that β2 ≡ (β2,1, . . . ,1)1 mod Hn,d and so likewise (β2,1, . . . ,1)1

is not contained in Hn,d. Inductively we get for any m,

β2 ≡ (β2,1, . . . ,1)m mod Hn,d

and so (β2,1, . . . ,1)m is not contained in Hn,d.

But again, since Hn,d contains all elements of the form (g,1, . . . ,1, g−1)1, the element

(β2,1, . . . ,1, β−2)1 ∈ StabHn,d(1) and again inductively for allm, (β2,1, . . . ,1, β−2)m ∈ StabHn,d(m).
But (β2,1, . . . ,1, β−2)m ∉ RistHn,d(k) for any k, otherwise (β2,1, . . . ,1)m−k would be in the

group Hn,d, a contradiction.

Now if n ≥ 4 is even, then

β = (a1a3⋯an−1,1, . . . ,1, a2a4⋯an)1
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and so by the same discussion above β ∉Hn,d and for all m,

β ≡ (β,1, . . . ,1)m mod Hn,d

so (β,1, . . . ,1)m is not an element of Hn,d but (β,1, . . . ,1, β−1)m is. The same arguments

show that (β,1, . . . ,1, β−1)m is not in RistHn,d(k) for any k.
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Chapter 5 Open questions

In this �nal chapter we discuss some open questions and avenues for additional research

related to the above material.

The �rst comes from an alternative generalization of the Hanoi towers group. Instead of

playing the game on three pegs, one could play the game on n-pegs (n ≥ 3) and produce a

group acting on the n-ary tree. For each i and j where 1 ≤ i ≤ j ≤ n we de�ne automorphisms

αij to model the moves in the game as

αij = (αij , . . . , αij ,1, αij , . . . , αij1, αij , . . . , αij)(i, j)

where αij repeats in every coordinate excepts the i and j ones.

Then the n-ary Hanoi towers group Γn is de�ned to be ⟨αij ∣ 1 ≤ i ≤ j ≤ n⟩. Very little is

known about Γn for n ≥ 4.

Question 5.1. For n ≥ 4, does Γn have the congruence subgroup property?

Many of the tools available for G3 are not available yet for Γn without further study. In

particular, the following is still open.

Question 5.2. For n ≥ 4, is Γn a branch group?

It is known that Γn is weakly branch. A group G is weakly branch if there is an

embedding of G into Aut(T ) such that G acts transitively on every level and for all m ≥ 1,

RistG(m) ≠ {1}. This can be shown by observing that αij , αjk, and αik generate a subgroup

of Γn isomorphic to G3. Part of the di�culty in studying Γn comes from the fact that Γn is

not contracting for n ≥ 4.

Another more general open question about the congruence subgroup property is the

following.

Question 5.3. Does there exist a branch group with the congruence subgroup property that

is not just in�nite?

This question is still open because the standard technique for showing a branch group

G has the congruence subgroup property is to use Theorem 1.18 and then to show that for

all m, RistG(m)′ contains a level stabilizer. In fact, to the author's knowledge this is the
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only technique so far that has been succesfully applied to obtain a positive answer to the

congruence subgroup problem. Unfortunately, this technique fails if the group is not just

in�nite.
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Appendix A Generators of StabG3
(1) via the

Reidemeister-Schreier Method

The Reidemeister-Schreier method is a method for determining a presentation for a �nite

index subgroup of a group with a given presentation. Here we are only interested in �nding

a generating set for StabG3
(1) and so we only discuss this part of the process. For a more

detailed description and justi�cation of the procedure the reader is directed to Chapter 2

Section 3 of [16].

Let G be a group with a symmetric generating set and let H be a �nite index subgroup.

We construct the Schreier graph S for H in G. This graph has vertices corresponding to

cosets of H in G and two vertices are connected by an edge if one can get from one coset to

the other via left multiplication by a generator. The edge is then labeled by the appropriate

generator. Next we choose a maximal spanning tree T inside the coset graph.

For each edge e ∈ S/T , let ei be the unique path in T from the vertex H to one endpoint

of e and let et be the unique path in T from the vertex H to other endpoint of e. Then the

set {eie(et)−1 ∣ e ∈ S/T} forms a generating set for H.

Recall that G3/StabG3
(1) ≅ S3 and so from this we construct the Schreier graph for

StabG3
(1) in G3 seen in Figure A.1. We choose the red edges to form the spanning tree T .

Recalling that ai = a−1
i , we obtain the following list of generators.

a1a3a1a2 a1a2a1a3 a2a3a2a1 a2a1a2a3

These generators are precisely α, β, δ, and γ as de�ned in Section 2.2.
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Appendix B Generators of StabG4
(1) via GAP

Here we include the remaining details of the proof for Proposition 3.22.

Proposition 3.22. StabG4
(1) = ⟨a1a3a

−1
4 , a2a1a3a

−1
1 , a1a

−1
3 a4a3,X ∗G′

4, I4⟩.

Computing the Reidermeister-Schreier method by hand becomes unwieldy as the index

of the subgroup grows. For the group G4, the index of the stabilizer of the �rst level in

G4 is 12. Since G4 has four generators, the Schreier graph for StabG4
(1) in G4 would have

12 vertices and 48 edges. Rather than drawing this, we using the computer algebra system

GAP (Groups, Algorithms, and Programming) [10] and the GAP package AutomGrp [17]

to produce the generators of StabG4
(1). We include here the code necessarily to obtain

Proposition 3.22 and an explanation of the reductions made.

gap> LoadPackage("AutomGrp");;

gap> G4:=AutomatonGroup("a1=(a1,1,1,1)(2,3,4), a2=(1,a2,1,1)(1,3,4),

a3=(1,1,a3,1)(1,2,4), a4=(1,1,1,a4)(1,2,3)");;

gap> StabilizerOfLevel(G4,1);

< a1^3, a1*a3*a4^-1, a2*a1*a3*a1^-1, a2^3, a2*a3*a2^-1*a1^-1,

a2*a4*a1^-1, a3*a1*a2^-1, a3*a2*a4^-1*a1^-1, a3^3, a3*a4*a2^-1*a1^-1,

a4*a1*a2^-1*a1^-1, a4*a2*a3^-1, a4*a3^2*a1^-1, a4^3, a1^-1*a2*a4,

a1^-1*a3*a4^-1*a1^-1, a1^-1*a4*a3^-1, a2^-1*a1*a4^-1, a2^-1*a3*a1,

a2^-1*a4*a3*a1^-1, a3^-1*a1*a4^-1*a1^-1, a3^-1*a2*a1^-1, a3^-1*a4*a2,

a4^-1*a1*a3, a4^-1*a2*a3*a1^-1, a4^-1*a3*a2^-1, (a1*a2)^2, a1*a2^2*a3,

a1*a2*a3*a4, a1*a2*a4*a1, (a1*a4)^2, a1*a4*a2*a4^-1, a1*a4*a3*a2,

a1*a4^2*a2^-1, (a1*a3^-1)^2, a1*a3^-1*a2*a1, a1*a3^-1*a4*a3 >

Recall now that a1, a2, a3, and a4 each have order 3. This allows us to immediately

remove a3
1, a

3
2, a

3
3 and a3

4 from the list GAP produced. This also gives us that a−1
i = a2

i for

1 ≤ i ≤ 4.

Let α = a1a3a
−1
4 , β = a2a1a3a

−1
1 , and γ = a1a

−1
3 a4a3. It now su�ces to write each of the re-

maining generators as a product of α, β, and γ modulo ⟨I4,X∗G′
4⟩. We will use the following
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reduction obtained in Corollary 3.21: (g1, g2, g3, g4)1 ≡ (1, . . . ,1, g1θg2θg3θg4θ ,1, . . .1)1 mod

⟨I4,X ∗G′
4⟩ for any permuation θ of {1,2,3,4}.

a2a3a
−1
2 a−1

1 ≡ αγ mod ⟨I4,X ∗G′
4⟩

a2a4a
−1
1 ≡ α2β mod ⟨I4,X ∗G′

4⟩

a3a1a
−1
2 ≡ α2β2γ2 mod ⟨I4,X ∗G′

4⟩

a3a2a
−1
4 a−1

1 ≡ βγ2 mod ⟨I4,X ∗G′
4⟩

a3a4a
−1
2 a−1

1 ≡ α2β2 mod ⟨I4,X ∗G′
4⟩

a4a1a
−1
2 a−1

1 ≡ αβ2γ2 mod ⟨I4,X ∗G′
4⟩

a4a2a
−1
3 ≡ αβγ2 mod ⟨I4,X ∗G′

4⟩

a4a
2
3a

−1
1 ≡ α2 mod ⟨I4,X ∗G′

4⟩

a−1
1 a2a4 = α2β mod ⟨I4,X ∗G′

4⟩

a−1
1 a3a

−1
4 a−1

1 ≡ α mod ⟨I4,X ∗G′
4⟩

a−1
1 a4a

−1
3 ≡ α2 mod ⟨I4,X ∗G′

4⟩

a−1
2 a1a

−1
4 ≡ αβ2 mod ⟨I4,X ∗G′

4⟩

a−1
2 a3a1 ≡ α2β2γ2 mod ⟨I4,X ∗G′

4⟩

a−1
2 a4a3a

−1
1 ≡ α2β2 mod ⟨I4,X ∗G′

4⟩

a−1
3 a1a

−1
4 a−1

1 ≡ α2γ mod ⟨I4,X ∗G′
4⟩

a−1
3 a2a

−1
1 ≡ αβγ mod ⟨I4,X ∗G′

4⟩

a−1
3 a4a2 ≡ αβγ2 mod ⟨I4,X ∗G′

4⟩

a4−1a1a3 ≡ α mod ⟨I4,X ∗G′
4⟩

a4−1a2a3a
−1
1 ≡ β2γ2 mod ⟨I4,X ∗G′

4⟩

a−1
4 a3a

−1
2 ≡ α2β2γ mod ⟨I4,X ∗G′

4⟩

(a1a2)2 ≡ αβ2γ mod ⟨I4,X ∗G′
4⟩

a1a
2
2a3 ≡ α2β2γ2 mod ⟨I4,X ∗G′

4⟩

a1a2a3a4 ≡ βγ mod ⟨I4,X ∗G′
4⟩

a1a2a4a1 ≡ α2β mod ⟨I4,X ∗G′
4⟩

(a1a4)2 ≡ γ2 mod ⟨I4,X ∗G′
4⟩
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a1a4a2a
−1
4 ≡ α2βγ2 mod ⟨I4,X ∗G′

4⟩

a1a4a3a2 ≡ βγ mod ⟨I4,X ∗G′
4⟩

a1a
2
4a

−1
2 ≡ αβ2 mod ⟨I4,X ∗G′

4⟩

(a1a
−1
3 )2 ≡ α + δ mod ⟨I4,X ∗G′

4⟩

a1a
−1
3 a2a1 ≡ αβγ mod ⟨I4,X ∗G′

4⟩
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