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Abstract 

Chloride contamination of streams and groundwater has become a prevalent issue 

throughout urbanizing areas in the last half century, particularly in northern latitudes where 

deicing salts are applied to roadways.  This study determined how deicer impacted runoff 

disperses through sub-urban and urban areas on seasonal and multi-year scales. Chloride 

concentration changes were then modelled under varying pollutant loading scenarios through 

an integrated catchment model (INCA-Cl).  

Six in-stream conductivity/stage/temperature sondes, recording at 15-minute intervals, 

were installed within the small (~9.6 km
2
) Fuler Hollow Creek multi-landuse watershed in 

Broome County NY and monitored over a 1-year period. Weekly grab samples were taken at 

each sonde site and analyzed for dissolved cations and anions to help interpret the sensor 

results. Data from these sensors and local weather stations were used as inputs to the INCA-Cl 

model. Conductivity and Discharge measurements from stream sondes were used to construct a 

concentration/discharge hysteresis model of six storm events to determine seasonal variability 

in stream pollutant source. Results from weekly Fall and Spring stream and groundwater grab 

samples from 2006-2016 were used in conjunction with the model results to interpret long term 

trends.  

Stream response to storm events was found to be dependent on season as well as amount 

of impervious surface. In contrast to the urban locations, sub-urban sites did not have an initial 

increase in total dissolved solids (TDS) before dilution during summer and fall runoff events and 

had overall smaller TDS increases from winter and spring de-icer flushing events, as well as 

slower discharge response times. TDS of stream water within the watershed showed increasing 

concentrations over the 10-year period that cannot be solely accounted for by an increase in 
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impervious surface, thus suggesting an accumulation of deicers in groundwater as well. These 

observations are consistent with seasonal cation and anion data which suggests baseflow 

composition retains elevated de-icer levels year-round in parts of the watershed.  

Concentration/Discharge (C/Q) hysteresis models indicate groundwater is the dominant 

pollutant source in non-salting seasons compared to surface water being the dominant source in 

salting seasons. Response to storm events was also influenced by land use in addition to season. 

INCA-Cl was able to model seasonal discharge and chloride trends within Fuller Hollow Creek 

under variable loading conditions throughout the study period. However, chloride increases 

from individual deicer flushing events could not be accurately replicated with the model. By 

quantifying and understanding the effects of road salting practices on variable land use areas, 

better estimates of chloride export and retention can be developed in order to protect salt 

sensitive freshwater ecosystems.  
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Chapter 1 - Introduction 

 Since the mid-20th century the use of road deicers has been commonplace within the 

northern United States. The most commonly used, and cost-effective, road deicing agent is 

sodium chloride (NaCl). Deicing agents applied to road surfaces can create a brine solution upon 

contact with snow or water. These solutions can form at sub-zero Celsius temperatures and 

prevent buildup of snow on road surfaces or create an aqueous layer between the snow and 

road surface that enables easier snow removal. Road salting practices have been shown to 

greatly reduce traffic accidents, with pre-salting accident rates 8 times higher on two lane roads 

and 4.5 times higher on multilane freeways when compared to post icing conditions (Kuemmel 

et. al 1992). 

Figure 1.0- Sales of rock salt for public highway use in the U.S. from 1940-2004. Wet 

atmospheric NaCl deposition taken from 1999-2003 data. (Jackson and Jobbagy, 2005) 



2 
 

In the United States over 15-18 million metric tons of road salt per year are applied to 

public roads (Figure 1.1), most of which is applied to urban areas. Despite these benefits, deicer 

contamination of urban streams and reservoirs has become a prevalent issue throughout 

urbanizing areas in the last half century (Daley et. al 2009, Jin et. al 2011, Shaw et. al 2012); 

particularly in northern latitudes where the use of road salts is the primary source of this 

contamination (Kelly et. al 2007, Mullaney et. al 2009, Gutchess et. al 2016).  

Runoff from urban surfaces can be characterized as both a non-point pollution source, 

as well as a conduit for these contaminants to directly enter surface waters by bypassing natural 

biological or geological filters (Lee et. al 2000, Zhu et. al 2008, Ledford et. al 2016). As the 

importance of natural riparian buffers becomes more widely recognized as a way to mitigate 

levels of dissolved solids, sediment loads, and rates of erosion, more emphasis has been placed 

on preserving and promoting these buffers. Chronic elevated levels of NaCl in streams have 

been found to be toxic to aquatic organisms, increase organism susceptibility to pathogens, and 

harm aquatic and riparian vegetation (Daley et. al 2009, NRC 1991). 

Chloride makes an ideal ion for analysis of quantification of road salting pollution due to 

its conservative nature (Kelly 2008). While dissolved sodium may represent 50 mole percent of 

the initial road salt pollutants, much is thought to be retained in soils by means of cation 

exchange resulting in molar Na+/Cl- ratios in contaminated urban streams ranging between ~1/1 

to ~1/2 (Mullaney et. al 2009, Jin et al. 2011, Kelly et al. 2007). Chloride was also selected as a 

target ion in this study due to its toxicity to aquatic organisms and potential human health 

hazard as increasing concentrations may mobilize toxic metals in soils and water infrastructure 

(Kaushal 2016).  
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Large amounts of sodium have also been shown to displace nutrients in soil and ground 

water through cation exchange; this may result in the release of potassium, magnesium, 

calcium, and other metals, creating conditions toxic to native species (Amrhein et. al 1992, 

Kaushal et. al 2017). Additionally, sodium exchange with soil organic matter causes a significant 

reduction in soil permeability, thus increasing erosion and direct runoff to streams leading to 

higher contaminant concentrations in surface waters (Amrhein et. al 1992).  

In many instances, the effects of road salting on streams are not only present in winter 

months, but year-round due to elevated chloride levels in baseflow from the long-term 

accumulation of these contaminants in groundwater (Corsi et. al 2015, Kelly et. al 2007, Novotny 

et. al 2009, Sun et.al 2012).  This long-term accumulation also makes chloride contamination a 

human health issue, particularly for those who rely on unregulated private wells for drinking 

water (Daley et. al 2009). This is particularly true for much of the northern United States and 

Canada, which heavily relies on the glacial aquifer system for private and municipal drinking 

water (Mullaney et. al 2009). This shallow aquifer system is often highly interconnected with 

surface waters which may contribute to a degradation of surficial water quality. Long term 

studies on watersheds exposed to road salting practices have concluded that chloride 

concentrations steadily increase over time, even in areas with no net increase in urbanization, 

suggesting salts can be accumulated in groundwater; therefore, sustained road salting practices 

may have serious implications regarding the fate of aquatic and riparian ecosystems and access 

to potable groundwater (Kelly et. al 2007, Daley et. al 2009, Fay and Shi 2012) 

1.1 Study Area  

The Fuller Hollow Creek watershed is a small (9.6km2) watershed in Brome County NY, 

located within the Upper Appalachian Plateau (Figure 1.1.1). Soil types within the Fuller Hollow 
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Creek Watershed are heavily influenced by the last glaciation, which peaked about 23kya. Valley 

floor sediments within the Glaciated Appalachian Plateau region are primarily comprised of 

glacial outwash, as well as alluvium from active stream channels; whereas soils of valley walls 

and highlands are generally comprised of glacial till. Soils formed from glacial till are typically 

more impermeable than those formed from glacial outwash and alluvium. These glacial till soils 

have a characteristic fragipan layer, which restricts infiltration into the deeper soil horizons and 

may contribute to “flashier” stream responses to storm events (Gburek et. al 2006). Underlying 

glacial soils is low permeability Devonian age mudstones and shale bedrock of the Upper Walton 

formation (Horton et. al 2017).  This material overlying the impermeable bedrock creates a 

shallow unconfined aquifer system, typical in northern latitudes, that is highly sensitive to 

surficial inputs and highly connected to surficial waters (Mullaney et. al 2009).  

 

 

 

 

 

 

Figure 1.1.1- Location of the Fuller Hollow Creek Watershed within Broome County, NY. The 

Susquehanna River is outlined within Broome County.  
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The scale of the Fuller Hollow Creek watershed makes it an ideal place to study urban 

hydrology and geochemistry by eliminating the possibility for large scale geo-spatial and climatic 

variations. The southern portion of the watershed is largely rural, with few residential areas, and 

includes the Binghamton University Nature Preserve (Figure 1.2.2). This dramatically contrasts 

with the northern portion of the watershed which is dominated by the Binghamton University 

campus and surrounding suburban areas, where the majority of runoff from urbanized surfaces 

intersects Fuller Hollow Creek at the confluence of three sub-watershed tributaries before 

emptying into the Susquehanna River (Figure 1.2.2). The drastic variation in land use between 

the upper and lower portions of the watershed provides an excellent opportunity to compare 

the effects of urbanization with non-urban contaminant levels. Several groundwater wells that 

penetrate both the surface glacial aquifer and deeper into the underlying shale bedrock aquifer 

are situated in the northern half of the watershed enabling the study of contaminants in 

groundwater as well as stream water to provide a more detailed assessment of the watershed.  

1.1.2 Sub-watersheds  

Fuller Hollow Creek is a 4.0 km long, Strahler classification 2nd order stream (Strahler, 

1957). The lower 2.5 km of the creek have been artificially straightened and reinforced with 

riprap to promote and protect local real estate. This is done at the expense of riparian 

ecosystems, which are virtually non-existent for much of the streams length (Figure 1.1.2). The 

Fuller Hollow Creek watershed can be divided into sub-watersheds which have varying land use 

characteristics (Figure 1.1.3). Each sub-basin corresponds with a monitoring site of the same 

name which are located at the terminus of each sub-watershed (Figure 1.1.4, Appendix A). 
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Figure 1.1.2- Sub-basins within the Fuller Hollow Creek Watershed. RF sub-basin includes 

inputs from SPNPO, MHO, and LLO. The DCW sub-basin includes inputs from SPNPO, MHO, 

LLO, CC, and RF.  Aerial imagery courtesy of New York Sate GIS Clearinghouse, Broome 

County Ortho Imagery, 2014. 
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The SPNPO sub-watershed has the largest percentage of naturally forested area and 

lowest percentage of urban surface. This area encompasses the upper portion of the watershed 

and includes the Binghamton University Nature Preserve and rural and sub-urban areas. Fuller 

Hollow Creek flows through a small urban development and forested area in its upper portion 

which transitions into an artificially straightened stream channel for 63% of its length.   

 The MHO sub-basin encompasses a suburban area east of the Binghamton University 

campus. This area is drained by a small, 750m first order stream that intersects Fuller Hollow 

Creek just below the SPNPO sub-basin. Most of this stream channel is significantly altered and 

artificially reinforced to protect residential areas.  

 The LLO sub-basin is the smallest in area and has a very high urbanized percentage. 

Runoff from campus urban surfaces is directed into the Lake Lieberman retention pond before 

discharging into Fuller Hollow creek by way of a 160m 1st order stream.  

 The CC sub-basin has the highest urban percentage and drains the northwestern 

portions of the Binghamton University campus. Campus runoff is redirected through a series of 

culverts and storm drains that discharge into a roadside channel before entering Fuller Hollow 

Creek.  
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Figure 1.1.3- 2m landcover of the Fuller Hollow Creek watershed courtesy of Chesapeake 

Conservancy.  
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Figure 1.1.4- Stream sonde and groundwater well sites within the Fuller Hollow Creek 

Watershed (outlined in black). Aerial imagery courtesy of New York Sate GIS Clearinghouse, 

Broome County Ortho Imagery, 2014. 
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1.1.3 Groundwater Wells 

The five monitoring wells sampled in this study are all located in the northern portions 

of the watershed between the buildings on the university campus and Fuller Hollow Creek 

(Figure 1.1.4, Appendix A). Of these five, four are positioned within the surficial alluvium and the 

remaining one within the shale bedrock. NSW and SSW sites are both 6.7m deep wells, that lie 

within the glacial till material on the east edge of the university campus, and are separated 

laterally by 20m. CDW is in the immediate vicinity of these wells but is open to the fractured 

shale bedrock aquifer at a depth of 37m. MSW is a 9.1m deep well that is positioned at the 

corner of a parking lot with casing recessed into the ground, but open to a surficial glacial 

outwash aquifer. RFW is a 12.2m deep well positioned just north of the university campus near 

Fuller Hollow Creek and is also open to the surficial glacial outwash aquifer.  

1.2 Previous Work 

The Fuller Hollow Creek Watershed (FHCW) has been host to several studies pertaining 

to both biologic and geological systems, conducted by Binghamton University researchers. 

Stream and groundwater sampling of the FHCW has been part of ongoing studies involving 

undergraduate and graduate education at Binghamton University for the last 10 years (Graney 

et. al 2008, Zhu et. al 2008). Specifically, students sample and lab test Fuller Hollow Creek and 

several groundwater wells at regular intervals throughout the Fall and Spring semester, 

additionally collecting streamflow and well head measurements. McCann (2013) was the first to 

use continuous recording of stage and conductivity from stream sondes to study the effects of 

retention pond structures, stream responses to storm events, and model contaminant transport 

through the FHCW by using the TR-20 model, with limited success.  Johnson (2015) concluded 
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that continuous stream conductivity records from sondes could be used to accurately estimate 

chloride contaminant processes on nearby watersheds of comparable size and composition.  

Evan and Davies (1998) assessed solute transport pathways within a watershed by 

means of Conductivity/Discharge (C/Q) hysteresis of storm events. Stream inputs may be 

modeled as a combination of surface runoff, soil water, and groundwater; which typically have 

varying solute concentrations which result in the formation of a hysteresis, or loop, when 

plotted against discharge over an event period. This model has been applied to a variety of 

watersheds in both salting and non-salting areas with varying results (Evans and Davies 1998, 

Rose 2003, Long et. al 2017).  

 Jin et. al (2011) refined and utilized the INCA-Cl model to quantify chloride levels within 

a larger eastern NY watershed, and subsequently simulated changes in stream chloride 

concentrations due to variable anthropogenic deposition. INCA-Cl is a dynamic mass balance 

model that simulates temporal variations of hydrologic flow within stream, soil water, and 

groundwater stores. Its proven success in modeling chloride values in a larger road salting 

impacted watershed make it an ideal choice for simulating responses in the small, multi-land use 

Fuller Hollow Creek Watershed.  

1.3 Hypothesis  

This study aims to achieve the following goals; (1) determine what impact impervious 

surfaces and road salting have on long-term stream and groundwater chloride concentrations. 

(2) Determine how road salts disperse through watersheds and identify areas of pollutant 

storage. Determine if a C/Q hysteresis model can identify variable pollutant contributions from 

groundwater, soil water, and surface runoff in an urban environment.  (3) Determine if the 
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INCA-Cl model can accurately quantify stream chloride concentrations in a small urban 

watershed and predict chloride levels under alternative depositional scenarios.  

 Based upon the characteristics of the Fuller Hollow Creek watershed and sub-

watersheds, the following hypothesis are proposed:  

1. Total dissolved ions in stream and groundwater will increase over time with rates higher 

in more urbanized sub-watersheds than less urban ones. All major cations within both 

stream and groundwater are expected to increase in concentration over the study 

period, with sodium having the most dramatic increase.  

2. Several reservoirs of pollutant storage will be identified of varying contribution to 

stream conductivity based upon season and landuse as well as hysteresis loop analysis. 

Surface runoff will be the dominant chloride contributor during the salting season 

(December-March), while groundwater will be the dominant contributor in the non-

salting season (April-November).   

3. INCA-Cl will be able to reasonably simulate chloride values within Fuller Hollow Creek 

but may fail to predict behavior in the more complex sub-watersheds. Variable chloride 

deposition scenarios will have a moderate impact on the model output.  

The results of this study may be used to better understand how road salting practices 

impact urban watersheds by assessing how road salts disperse after deposition. By quantifying 

the effects of these practices through the utilization of a readily applied model, one can 

determine the minimum amount of change in chloride loading necessary to make a significant 

impact on threatened urban ecosystems, which is applicable to many areas.  As far as we know 

this is the first study to couple the use of geochemistry with hysteresis curves and the INCA-Cl 



13 
 

model to document long term surface and groundwater chloride storage and movement within 

a multi-landuse watershed.  
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Chapter 2 Methods 

2.1 Road Salt Contamination Proxies    

Electrical conductivity is the measurement of the electrical current passing through a 

solution, with units of micro Siemens per centimeter (µS cm-1). This measurement is dependent 

on the type and concentration of ions in a solution and temperature of the solution; therefore, it 

is necessary to normalize all specific conductivity measurements to a standardized 25°C.  

Conductivity may be used as a proxy for total dissolved solids (TDS) of a solution by multiplying 

by a constant. This paper will use the commonly used freshwater scale factor to estimate the 

TDS of solution (Eq. 2.1) 

Eq. 2.1 

TDS= SC* 0.7 

TDS = Total dissolved solids (mg/L) 
SC = Specific Conductance (µS/cm) 
0.7= Freshwater scaling factor  

 

2.2 Historical Data  

Data from Binghamton University undergraduate field studies over a 10-year period (fall 

2006-spring 2016) provided an excellent source of information for a long-term study of stream 

and groundwater geochemistry within the Fuller Hollow Creek watershed.  To determine if the 

Fuller Hollow Creek watershed is subjected to accumulation of NaCl contamination, and the 



15 
 

degree of its effects, existing archives of long-term stream and groundwater cation and TDS 

concentration data within the watershed were evaluated.  

In the archived datasets, stream and groundwater samples were collected regularly at 1-

week intervals during the spring and fall semesters (6-12 weeks total), along with streamflow 

and ground water head measurements (with the exception of groundwater data for fall 06, 07, 

and 08).  Groundwater and stream total dissolved solids (TDS) were measured from in-lab 

electrical conductivity probe measurements.  Cation concentrations were determined by direct 

current plasma spectroscopy (DCP) prior to fall 2011. After 2012 period ion concentrations were 

determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Of the 

cations measured, Na, Ca, Mg, and K were analyzed in this study. 

SPNPO sites were only sampled in the spring, however, its sub-basin components (SP 

and NPO) were sampled in the fall. Concentrations of TDS and cations for SPNPO were obtained 

using discharge measurements from the SP and NPO sites to approximate the SPNPO site values 

(Eq. 2.2).  

Eq. 2.2 

(QSP x CSP) + (QNPO x CNPO) = (QSPNPO x CSPNPO) 

((QSP x CSP) + (QNPO x CNPO))/ QSPNPO = CSPNPO 

Q = Discharge (l/s) 
C = Solute Concentration (mg/L) 
SP = Stair Park sub-basin 
NPO = Nature Preserve sub-basin 
SPNPO = Combined Stair Park and Nature Preserve sub-basins 

 

The archived data used in this study consists of median values from each sampling 

season. Median values were used rather than season averages because of the small sample size 

(6-12/ site/ season) and because any significantly large storm event during the time of collection 
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may provide a low seasonal average for TDS measurements. Standardizing TDS concentrations 

with streamflow is challenging over this long-term study due to some inconsistencies in 

measurement technique, equipment, and unrecorded data.  The geochemistry and hydrology of 

Fuller Hollow Creek varies drastically by season; therefore, analysis of historical data is 

presented both separately by season as well as holistically to more accurately identify trends 

within the data.  

2.3 Sonde Deployment  

 To better understand how road salts disperse through watersheds, a stream sonde 

network was deployed to obtain high frequency geo-chemical and physical data over a one-year 

period. These devices gathered data on stream conductivity, temperature, and stream stage in 

15-minute intervals at 6 locations corresponding with each sub-watershed and the outlet of the 

Fuller Hollow Creek watershed (Figure 1.2.4, Appendix B). These measurements were recorded 

using Hydromet® OTT sondes to provide a continuous 12-month dataset for each site (Figure 

2.3.1). A sonde was positioned in the FHC prior to any culverted inflows to the stream at site 

SPNPO, thus representing less urbanized conditions (Figure 1.2.4). Three sondes were placed at 

major inflows of urban runoff to the FHC (sites MHO, LLO, CC). The remaining two sondes (sites 

DCW and RF) were placed in the main channel, one near the terminus of the watershed and the 

other in the lower channel.  
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Figure 2.3.1- Recording interval for all deployed sondes. Several hour to day long gaps exist in 
the DCW recording data. RF data was only acquired towards the end of the study period. 

 

2.3.1 Water Sampling  

Grab samples of stream water corresponding to each sonde location were collected on a 

weekly basis over the study period of June 2015 – June 2016. These samples were lab tested for 

electrical conductivity, anions and major cations. Groundwater samples were collected at five 

well locations on the Binghamton University campus near Fuller Hollow Creek (Figure 1.2.4). 

Groundwater head, temperature, and grab samples from each of the wells were collected every 

1-2 weeks. Samples were lab tested for electrical conductivity, anions, and major cations in the 

same manner as stream samples.  

2.3.2 Sonde Calibration  

 Prior to installation, each sonde was calibrated for temperature and conductivity with 

the provided software and a 500µS/cm conductivity standard. Weekly stream grab samples, 
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corresponding with each sonde site, were lab tested for conductivity by an Omega® CDH-42 

conductivity probe. Sonde conductivity values were recorded at each grab sample interval and 

compared to calibrate conductivity at a range of values throughout the duration of their 

deployment (Appendix D).  

 Stream discharge was measured weekly to estimate discharge at each sonde location 

(Eq. 2.3.1). Under variable flow conditions, measurements were conducted using a Swoffer® 

model 2100 velocity meter in accordance with USGS standards (Rantz et al, 1982).  

Eq. 2.3.1 

Q = (W1D1v1 + W2D2v2... + WnDnvn)  

Q = Discharge (m3/s) 
W = Width of stream sub-section (m) 
D = Depth at the center of the stream sub-section (m) 
v = Average water velocity at 0.6 of the water depth (m/s) 
n = Number of measurement points 

  

  A rating curve was generated for each sonde relating recorded stage with measured 

discharge at each site (Appendix C). At the DCW and RF sites multiple rating curves were used 

due to dislodgment and subsequent repositioning of stream sondes during storm events.  A pre-

existing weir was used for determination of discharge at the CC site. McCann (2012) determined 

the optimal equation for the CC site weir (Eq. 2.3.2). 

Eq. 2.3.2 

Q= K (L − 0.2H) H1.5 

Q = Discharge (l/s) 
L = Width of the weir (m)  
H = Height of the water over the sub-section being measured  
K = Constant determined by weir type and output units, equal to 1838 (for L/s) 
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Low baseflow conditions and the flashy nature of Fuller Hollow Creek made it difficult to 

conduct discharge measurements during high flow, this is especially true of the MHO site. Due 

to these circumstances high flow is not calibrated with the same accuracy as low flow 

conditions, and in some instances discharge values were determined by extrapolating beyond 

the calibrated range of the rating curve.   

2.3.3 Dissolved Ion Calibration  

Continuous conductivity data from stream sondes was used as a proxy for dissolved ions 

within solution. Concentrations of Cl anions as well as common cations Na, Ca, Mg, and K from 

weekly grab-samples were calibrated with their corresponding conductivity values with an 

empirical linear regression (Eq. 2.3.3, Appendix D).  

Eq. 2.3.3 

Cion=SC(µS/cm)*β 

Cion= ion concentration (mg/L) 
SC= Specific Conductivity (µS cm-1) 
β= Conversion factor 

  

 

 

 

 

Table 2.3- Calibration slopes of dissolved ion concentrations relative to sonde conductivity at 
each site. (Appendix D) 

 

Dissolved Ion Increase (mg/L) per 
Increase in Conductivity (uS/cm) 

  Chloride  Sodium  Calcium  

DCW 0.280 0.142 0.071 

RF 0.370 0.114 0.069 

SPNPO 0.181 0.087 0.111 

MHO 0.310 0.131 0.051 

LLO 0.293 0.163 0.046 

CC 0.297 0.208 0.028 
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2.3.4 Precipitation  

Precipitation measurements were continuously collected by an Onset® tipping-bucket 

rain guage positioned within the watershed (Figure 1.2.4). Due to the small size of the 

watershed a single site was deemed sufficient for estimated precipitation over the study area. In 

addition, a single precipitation collector was used to capture rainfall to measure precipitation 

conductivity and dissolved ions (Figure 1.1.4).  

2.4 Pollutant Retention  

Total sodium and chloride loads were calculated for each site on a daily basis to better 

understand retention of these two components within the watershed (eq. 2.4.1). Sodium and 

chloride concentrations of stream loads were determined through calibrated sonde conductivity 

data (Appendix D).  

Eq. 2.4.1 

Na load (kg/day) = (Na+ (mg/L) x 1kg/1000000mg) x (Q(m3/s) x 1000L/m3) x 900s/day 

Cl load (kg/day) = (Cl- (mg/L) x 1kg/1000000mg) x (Q(m3/s) x 1000L/m3) x 900s/day 

 Na+ = Calibrated sodium concentration from sondes  
Cl- = Calibrated chloride concentration from sondes 
Q = Discharge 
s= Seconds  

 

Calculated loads were compared to atmospheric and road application deposition 

estimates to give the percentage of each ion retained within soil and groundwater. Differences 

in sodium and chloride loads can be used to identify NaCl saturation state within soil reservoirs 

and estimate cation exchange within the Fuller Hollow Creek watershed.  
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2.5 C/Q Hysteresis, Identifying Pollutant Concentration Sources 

Conductivity/Discharge (C/Q) hysteresis of storm events provide a method for assessing 

solute transport pathways within a watershed. For a given storm event, stream inputs may be 

modeled as a combination of surface runoff (SE), soil water (SO), and groundwater (G) inputs 

(Figure 2.5.1c). These three water components typically have varying solute concentrations 

which result in dynamic chemical fluctuations over storm event periods. Solute concentrations 

plotted against discharge over an event period form a hysteresis, or loop (Evans and Davies 

1998). Variations in loop direction, curvature, and slope determine the relative importance of 

each input constituent.  

 

Rotational direction is influenced by the timing of the discharge peak relative to the 

concentration peak (figure 2.5.1a). If the concentration peak occurs before the discharge peak 

Figures 2.5.1-(a) Figure detailing C/Q parameters of rotational direction, slope, and 

amplitude (curvature). (b) Figure illustrating the association between slope and 

flushing/dilution. (c) Figure depicting the modeled 3-component hydrograph for use in the 

C/Q hysteresis model (Evans and Davies 1998).   
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(CSE>CSO), then the rotation will be clockwise. Conversely, If the concentration peak occurs after 

the discharge peak (CSE<CSO), then the rotation will be anti-clockwise (Evans and Davies 1998). 

The curvature of the hysteresis loop is mostly influenced by the groundwater 

concentration. If groundwater concentration is intermediate relative to the other components 

the loop will be completely convex. If groundwater is higher or lower than surface and soil water 

than one limb of the loop will be concave (Evans and Davies 1998).  

The slope of the C/Q plot is indicative of flushing high concentration water over the 

course of an event or dilution from high discharge surface and soil water. The general trend or 

slope of a concave system will determine whether groundwater has the highest or lowest 

concentration. A positive slope indicates high conductivity surface flow from a flushing event 

whereas a negative slope indicates higher concentrations in baseflow (Evans and Davies 1998, 

Long et al 2017).  

Figure 2.5.2- The six classifications of C/Q hysteresis curves with accompanying interpretations 
(Evans and Davies 1998) 
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Chloride values within most watersheds are primarily controlled by the mixing of low 

chloride surface water from storm events and higher concentration groundwater. This pattern 

becomes inverted during the winter months when urban surfaces contribute salt loads resulting 

in high surface and groundwater concentrations. Considering the dominant source of these ions 

are derived from road salt application, an Evans-Davies C1 or C2 type behavior is expected to be 

observed due to flushing from urban surfaces during the salting season. It is also expected that a 

variation from this trend may be observed at the LLO site, in which A1 type behavior would be 

most characteristic of a retention pond outlet that mitigates pollutant concentration and large 

fluctuations in discharge. Pollutant storage and subsequent concentration in groundwater 

during summer and fall months will likely produce C3 or A3 type curves with groundwater being 

the highest concentration source.   

2.5.1 Storm Selection  

Storm events of various intensity and time of year were examined to determine the 

amount of variability in concentrations present within the watershed. Six storm events were 

subsequently selected for Conductivity/Discharge (C/Q) Analysis. Half of the events selected 

were chosen within the salting season (December-March), while the other half were within the 

non-salting season (April-November). Selecting events from throughout the one-year study 

period allows for the analysis of changes that may occur in differing areas of pollutant 

contribution. Hysteresis curves from each event were produced for each sonde site to 

determine how spatial variations affect changes in component concentration throughout the 

watershed. The interpretations of each hysteresis loop are based upon the assumption that 

each event has a relatively constant precipitation rate throughout the event duration, as 

changes in precipitation rate may add additional hysteresis curves or lead to wrong 
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interpretations due to deviations from a normal hydrograph; therefore, only events that met 

these criteria were analyzed. 

Conductivity was selected as the modeled component to be plotted against discharge 

due to the high frequency data from stream sondes and all elemental concentrations having a 

linear correlation with observed conductivity. Based on prior studies Na+ and Cl- are the primary 

dissolved ions within the watershed, and thus the primary contributors to stream conductivity.   

2.6 INCA-Cl Model Setup  

Inputs to the INCA model include geospatial data from a GIS interface, estimation of 

chloride inputs to the watershed based upon land cover and chloride loading, and weather data 

for daily moisture balances. The Fuller Hollow Creek watershed was divided into five sub-basins 

corresponding with each sonde site; an upstream basin (SPNPO), a midstream basin (RF), three 

basins corresponding with major urban tributaries (MHO, LLO, CC), and the overall watershed 

(DCW). Sub-basin dimensions were determined using ArcGIS® basin delineation tool with a 2m 

digital elevation model (NYSGIS Portal). National land cover data (NLCD 2011) was used to 

determine land cover within the entire watershed and each sub-basin. The 13 classifications 

present in the watershed were combined into four, those being forest, short vegetation (grass 

and shrub), arable (agriculture), and urban (Figure 2.6.1a-b). 
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Figure 2.6.1a- Combined NLCD land cover classification for input to the INCA-Cl model.  

Figure 2.6.1b- Fuller Hollow Creek Watershed land cover from 2011 NLCD dataset reduced to 
four INCA-Cl land cover inputs.  
 

Estimation of chloride input to the Fuller Hollow Creek watershed was constrained to 

three major sources; road salt application to campus roadways and parking lots, as well as town 

roadways, and atmospheric deposition. Road length within the watershed, necessary for salting 

NLCD 2011 Land Cover Classification  INCA-Cl Land Cover Classification  
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estimations, was determined through ArcGIS®. There is a total of 22.5km of lane roadways on 

Binghamton University campus with 55.4km of municipal lane roadways in the surrounding 

area. The Binghamton University campus uses approximately 1085 metric tons/ year of NaCl on 

road surfaces, this equates to 48.35 metric tons NaCl/ lane km per year (Donald Williams, 

Binghamton University Physical Facilities, personal communication). Deposition to town roads 

was based upon NYS DOT estimates of an average application rate of NaCl for residential roads 

at approximately 9.36 metric tons NaCl/ lane km per year (National Research Council, 1991); 

totaling 518.8 metric tons of NaCl per year deposited within the FHC watershed. Atmospheric 

wet chloride deposition within the FHC watershed was estimated to be 0.997 kg/ha/year 

totaling just 1.6 metric tons/ year (National Atmospheric Deposition Program). The total annual 

NaCl deposition to the FHC watershed is estimated at 1606 metric tons/ year, 67.6% from 

campus roadways, 32.3% from town roadways, and 0.1% atmospheric.  

The INCA-Cl model calculates stream discharge by estimating daily hydrologically 

effective rainfall (HER), and soil moisture deficits (SMD). Hydrologically effective rainfall can be 

defined as “the amount of precipitation that penetrates the soil surface after allowing for 

interception and evapotranspiration losses” (whitehead 1998a). Soil moisture deficit estimates 

were derived from the calculated actual evapotranspiration (AET) and precipitation. Soil 

moisture was assumed to be zero for the initial starting conditions on January 1, 2015 (Eq. 2.6.1, 

Appendix E). This results in an initial SMD and HER value of zero, as it is reasonable to assume 

these values for winter in upper New York State (Limbrick, 2002).  AET was determined by 

applying a root constant to the potential evapotranspiration (PET) calculated with the United 

Nations Food and Agriculture Organization Pennman-Monteith Soil Moisture Model (Eq. 2.6.2). 

Model inputs include daily mean, maximum, and minimum temperature, minimum and 

maximum air pressure and humidity, as well as mean dew point temperature. Estimated values 
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for wind speed, vapor pressure, and net solar radiation were estimated rather than directly 

measured; wind speed was assigned a constant of 2 m/s, with radiation being function of 

latitude (Allen et. Al 1998).  

Eq. 2.6.1 

  

 

 

 

 

 

 

 

Eq. 2.6.2 

 

 

 

 

 

 

Soil Moisture Deficit (SMD): 

SMDi = SMDi-1 – Pi + AETi   SMDi-1 > Pi – AETi  

SMDn = 0     SMDi-1 < Pi – AETi  

 

Hydrologically Effective Rainfall (HER): 

HERi = Pi – AETi – SMDi    SMDi < Pi – AETi  

HERn = 0     SMDi > Pi – AETi 

 

Actual Evapotranspiration (AET) Root Constant Thresholds: 

<74mm = 100% PET  

>75mm = 65% PET 

>100mm = 45% PET 
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2.6.1 Model Input and Calibration  

Calculated discharge and chloride concentration values obtained from stream sonde 

data, corresponding with the terminus of each sub-basin, provides a method for calibrating 

model parameters. Calculated discharge from an empirically generated rating curve at each 

sonde site was used to calibrate discharge within the INCA model by adjusting groundwater and 

soil water velocity and retention time parameters (Appendix E). Chloride concentrations from 

campus groundwater wells were used to approximate initial concentrations within the modeled 

variable soil and groundwater land cover reservoirs. Chloride levels from calibrated sonde 

conductivity, validated by ion chromatography of weekly grab samples, were compared to INCA-

Cl estimates to ensure accurate results.  

The model parameters were calibrated to the DCW, RF, and SPNPO sites before being 

applied to the remainder of the watershed. The  main stream sites were first calibrated because 

each tributary has its own unique influences (storm sewers at CC, and retention pond at LLO) 

that are not applicable to the watershed as a whole. Calibrating INCA to a larger, more “normal” 

stream allowed for an easier understanding of how each model component influenced outputs 

which could then be adjusted for each tributary independently. INCA-Cl was modeled for a 535-

day period from January 1st, 2015 through June 18th, 2016 to encompass the entire study period. 
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Figure 2.6.2- Illustration of the INCA-Cl catchment model component distribution (from Jin 
et. al 2011). See Appendix E for model equations.  
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Chapter 3 Results and Discussion 

3.1.1 Long-Term Study, Fall Data 

 Median fall stream TDS, cation, and anion concentrations represent baseflow conditions 

within Fuller Hollow Creek.  A large soil moisture deficit, persistent throughout late summer and 

throughout autumn, is typical in upstate NY (figure 3.1.1). Water within Fuller Hollow Creek 

during this season is largely confined to pools within its upper portions and average discharge is 

typically under 50 L/s in the lower portions.  
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Figure 3.1.1- Climate data from Greater Binghamton Airport 1960-2000. SMD represents 
monthly average soil moisture deficits. HER represents monthly average hydrologically 
effective rainfall. These conditions represent baseflow from May through November 
observed in Fuller Hollow Creek. 
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All sampled sub-basins show a slightly increasing trend in TDS over the 10-year interval 

(Figure 3.1.2). Based on the slope of the linear trends, the MHO site showed the least amount of 

increase of 11.5mg/L per year. CC and LLO sites have the largest increase of 31.8mg/L and 

34.7mg/L per year respectively.  Of the two main channel stream sites sampled, the SPNPO site, 

which has roughly 3% impervious surface, experiences an increase of 14.1mg/L/year while the 

downstream RF site showed an increase of 26.2 mg/L/year.  Fall of 2011 experienced record 

high rainfall of over twice the seasonal average. This corresponds with a minimum all stream 

TDS values for all sites (except CC) due to dilution of stream waters from precipitation.  

Figure 3.1.2- Stream fall median TDS values from archived and acquired data.  

 

 

 

 

Stream TDS Increase/ Year- Fall 

Site TDS Increase (mg/L/year) 

CC 31.84 

LLO 34.67 

MHO 11.49 

RF 26.19 

SPNPO 14.03 
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Table 3.1.1- Fall stream TDS increase/year determined by linear regression. 
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Calcium values are highest at the CC and LLO sites but have no significant trend over the 

study period. The SPNPO, RF, and MHO sites all have a general increase in calcium between 2 

and 4mg/L/year. All sites show a general increasing trend with respect to sodium over the last 5 

years. Sodium also is the most abundant major element analyzed. CC, LLO, and RF sites all 

experience an average increase in sodium of approximately 20mg/L/year whereas MHO and 

SPNO experience a 5 and 10mg/L/year increase respectively.  

3.1.2 Long-Term Study, Spring Data 

Streamflow within Fuller Hollow Creek in the spring is significantly higher than the fall; 

with an average downstream baseflow discharge typically exceeding 170 L/s. Snowmelt and 

decreased evapotranspiration are the primary source of groundwater recharge and subsequent 

increased baseflow over this interval.   

As with fall values, all stream sites experience an increase in TDS over the study period 

(Figure 3.1.3). CC and LLO sites have elevated TDS values compared to their fall values and the 

other sampling sites. Increasing TDS trends range from as high as 146.4mg/L/year at the CC site 

to just 3.8/year at the SPNPO site.  

 Figure 3.1.3- Stream spring median TDS values from archived and acquired data. 
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Calcium concentrations in the spring show a slightly increasing trend at all sites while 

magnesium values stay generally constant throughout the study period. All sites show a 

definitive increasing trend in Sodium over the 5-year period. Tributaries CC, LLO, and MHO have 

a higher rate of sodium increase in the spring while the opposite is true of the main channel RF 

and SPNPO sites.  

3.1.3 Discussion of Overall Trends in Streams  

TDS concentrations within Fuller Hollow Creek appear to be increasing at all the sites 

sampled over the duration of the sonde deployment with higher variability in sub-watersheds 

with higher TDS concentrations (Figure 3.1.4). The two sub-basins with the highest impervious 

surface (CC and LLO) consistently have the highest concentrations of all four major cations; 

however, they tend to have a negative trend with regards to Ca in the fall and K in the fall and 

spring. Calcium values are also significantly lower in the fall and higher in the spring at these two 

sites (Appendix F). 

 

Stream TDS Increase/ Year- Spring 

Site TDS Increase (mg/L/year) 

CC 146.42 

LLO 66.56 

MHO 7.58 

RF 8.89 

SPNPO 3.83 

Table 3.1.2- Spring stream TDS increase/year determined by linear regression. 
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 Figure 3.1.4- Stream median TDS values from archived and acquired data. 

 

 

 

 

The Binghamton University campus applies approximately 16.3 metric tons of calcium-

magnesium acetate (CaMg2(CH3COO)6) to walkways during winter months as an alternative de-

icing agent to NaCl (in contrast to the 1607 metric tons of NaCl applied to roadways). This was 

considered when identifying the source of elevated calcium levels, however, magnesium 

concentrations do not exhibit the same behavior as calcium despite being applied in similar 

concentrations in this deicer. Therefore, calcium magnesium acetate was not considered to be a 

significant contributor to calcium concentrations within the Fuller Hollow Creek watershed. The 

source of the anomalously high calcium concentrations during the spring likely involves 

processes in the urban runoff dominated systems at these two sites. The large amounts of NaCl 

Stream TDS Increase/ Year 

Site TDS Increase (mg/L/year) 
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Table 3.1.3- Stream TDS increase/ year determined by linear regression. 
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applied during the winter months will leach calcium from concrete surfaces at an accelerated 

rate, thus resulting in elevated dissolved calcium in these reaches in the spring (Wan et al 2005, 

Kaushal et. al 2017).  

The LLO and CC site show much more variability in TDS concentrations than other sites 

with lesser TDS levels. Similar trends were observed by Kelly et al. 2008 and Daley et al. 2009 in 

multi-decade studies on northeastern streams. In both studies, concentrations increase steadily 

until reaching a threshold level, then greatly fluctuate while maintaining a slightly increasing 

trend. The trends in sub-basins with high TDS values within Fuller Hollow Creek appear similar to 

these large-scale fluctuations observed in these studies. Analysis of sodium and chloride 

retention is needed to determine the extent of road salt saturation in shallow aquifers and 

potential differences in saturation between the sub-watersheds.  

Urban hydrology also influences the sodium and overall TDS values when comparing 

tributaries and the main stream. The RF and SPNPO sites consistently experience lower sodium 

and TDS values in the spring whereas CC and LLO have lower values in the fall. Bypassing natural 

systems of infiltration, water in these more urbanized systems at CC and LLLO flows directly to 

streams thus increasing sodium and TDS values during salting seasons.  

3.1.4 Correlation with Impervious Surface  

TDS values in streams over the course of the study have a positive correlation with the 

percent imperviousness of their corresponding sub-basin, which is consistent with a watershed 

where the primary pollutant is road salt. Figure 3.1.5 relates the imperviousness of each sub-

basin with the averaged median seasonal TDS values over the study period. Results are similar 

to findings in Daley et al. (2009) and Heisig (2000), which have Na and Cl concentrations in 

baseflow with impervious surface in several northeastern streams over several 
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 decades. This study finds Na and Cl to have a direct relationship with the percent of 

impervious surface in the sub-basins of the Fuller Hollow Creek watershed.   

Figure 3.1.5- Plot relating the percent impervious surface of each sub-watershed with the 
average median stream total dissolved solids over the 10-year study period.  

 

The two sites that fall below the best fit linear regression are MHO and LLO, these 

discrepancies can be explained by the variation in road salt inputs and hydrology at these sites. 

The MHO site drains a suburban area adjacent to the university campus; the road salt 

application rate for these roads is estimated to be only 20% per lane mile of the amount applied 

to campus roads that contribute to the RF, LLO, and CC sites. The LLO site may be lower than 

expected due to the retention pond immediately upstream of the sample site. McCann (2013) 

showed that retention pond structures, and specifically the Lake Lieberman pond, will mitigate 

TDS levels entering Fuller Hollow Creek due to groundwater contributions. Concentrations of 

major cations Na, Ca, Mg, and K also strongly correlate with percent imperviousness of each 

sub-basin (Appendix G). This lends support to the hypothesized cation exchange occurring in 

soils and urban surfaces due to a large influx of sodium as discussed later. 
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Changes in impervious surface were also considered over the study interval to be a 

potential source for the increasing TDS values over the study period as an alternative to the 

pollutant retention in soil and groundwater hypothesis.  Beginning in spring of 2008, the 

Binghamton University campus constructed several large on-campus housing structures adding 

to the imperious surface of the FHC watershed and greatly affecting drainage to Fuller Hollow 

Creek from the LLO site (Appendix A). This building project expanded the Lake Lieberman 

retention pond structure, which captures runoff from a significant portion of the impervious 

surfaces on campus. The average rate of TDS increase per year over the study period was 

plotted against the amount of increase in impervious surface to determine any significant 

relationships (Figure 3.1.6). Despite no change in imperviousness in the SPNPO sub-basin, and a 

less than 1% increase in the MHO sub-basin, TDS rates still increase. This indicates that a change 

in impervious surface alone cannot account for an increasing trend in TDS. Furthermore, the CC 

site experiences a much larger rate of TDS increase than the LLO and RF sites despite a smaller 

increase in impervious surface percentage (Table 3.1.4). 

 

  

 

 

 

 

 

Table 3.1.4- Table of impervious surface change in the Fuller Hollow Creek watershed.  

Impervious Surface Percentages of  
FHC Sub-basins                  

  2006 2011 % Increase  

DCW 10.62 11.15 5.04 

RF 7.31 7.7 5.42 

SPNPO 2.8 2.8 0 

MHO 15.51 15.62 0.72 

LLO 27.72 30.97 11.72 

CC 32.34 33.9 4.83 
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Figure 3.1.6- Plot relating the increase in percentage of impervious surface of each sub-
watershed with the increase in average median stream total dissolved solids per year over the 
10-year study period.  
 

3.1.5 Groundwater Analysis 

Samples from MSW and CDW show little to no net increase in TDS over the past 10 

years, however, the CDW site experiences an interval of elevated TDS from spring of 2010 

through spring of 2012 (Figure 3.1.7). MSW also experiences an anomalous peak in spring of 

2011. These intermittent periods of elevated TDS are not shared by the NSW or SSW sites.  A 

potential explanation for the elevated TDS levels at the CDW site may be the expansion of 

university housing in the well site’s vicinity, which began in fall of 08 and was completed in 

spring of 13. 
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Figure 3.1.7- Groundwater median TDS values from archived and acquired data. 

 

 

 

 

Samples from SSW and NSW have an increase in TDS of 11.7mg/L/year and 

88.8mg/L/year over the study interval (Appendix F). The NSW site also has TDS concentrations 

that are consistently over twice as high as the SSW site, despite being separated laterally by 20m 

and drilled to the same depth within the surficial aquifer. The NSW well also has the highest 

vales of Ca, Mg, and Na and the only consistent increase of these cations over the study period. 

This includes an increase of 10.2mg/L/year and 2.2mg/L/year for Ca and Mg, and a 4.0mg/L/year 

increase in Na over the last five years.  

Groundwater TDS Rate of Increase  

Site  TDS Increase (mg/L/year) 
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Preferential flow paths within the glacial till sediment provide an explanation for the 

discrepancy between these two sites.  A study by Bianchi et al. 2011 demonstrates how the 5% 

fastest flow paths within a shallow heterogeneous aquifer can account for 40% of groundwater 

flow.  A similar situation of high permeability sub-surface lenses within the Fuller Hollow Creek 

watershed could account for elevated contaminant levels in the NSW well by providing a 

conduit for contaminated infiltration from urban sources. Contaminated groundwater sourced 

from urban runoff would follow paths of low permeability thus reducing mixing with 

uncontaminated groundwater. These hypothesized preferential flow paths may either be the 

result of natural glacial deposits or alternatively “urban karst” (Perera et. al 2013). The term 

urban karst is used to distinguish urban sub-surface features, such as artificial fill or electrical 

conduit pathways that can potentially affect groundwater flow within shallow aquifers.  

The primary cations observed within groundwater are calcium and sodium, both 

occurring in similar concentrations. Of the major cations, calcium is the only one to consistently 

fluctuate by season over the study period, with concentrations elevated in the spring months 

relative to the fall for all sample sites (Appendix F). One potential mechanism for this drastic 

fluctuation of calcium could be cation exchange within soils (as discussed later). This would 

provide an explanation for the elevated levels during the spring, during and immediately 

following the salting season.  

3.2 Real-Time Stream Data, Seasonal Variations  

Sonde generated data at each site is divided into hydrologic season; summer (June, July, 

August), fall (September, October, November), winter (December, January, February), and 

spring (March, April, and May) to identify characteristics in hydrology and stream chemistry 

associated with each period. Summer conditions in the Fuller Hollow Creek are characterized by 
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low flow (baseflow <50L/s) and elevated baseline conductivity. Baseflow reaches a minimum in 

early July and remains at these low levels until the beginning of December. During the summer 

and fall streams respond rapidly to storm events, quickly reaching peak discharge before rapid 

baseflow recession. The DCW site has large fluctuations in conductivity that coincide with 

precipitation events (Figure 3.2.1b). These fluctuations are characterized by a large conductivity 

increase at the onset of the storm event followed almost immediately by the dilution of surface 

waters from precipitation. The range of conductivity over a single event period at the DCW site 

may rise as high as 2000µS/cm and rapidly drop to 500µS/cm because of influence by the CC 

tributary.  

The SPNPO site is not subjected to conductivity increases at the onset of storm events 

during this season, nor does it experience the range in conductivity that the DCW site does 

(Figure 3.2.1). Conductivity values within this sub-basin are primarily controlled by the mixing of 

low concentration surface water from storm events and higher concentration groundwater. This 

produces the characteristic drop in conductivity at the beginning of a storm event followed by 

the gradual return to higher baseline values (Figure 3.2.1a).  

Baseline conductivity in Fuller Hollow Creek starts increasing in early May and reaches 

its maximum in late September, coinciding with maximum soil moisture deficit. This suggests the 

presence of a high TDS shallow groundwater reservoir that contributes to elevated stream 

conductivity values in the Fall after evapotranspiration has depleted soil water stores. Baseline 

conductivity at the SPNPO site continues to decline through winter and spring, interrupted by 

large sudden increases in conductivity at the onset of precipitation events (Figure 3.2.1c). These 

are interpreted to be flushing events likely from deicers applied to roadways in the upper 

watershed. Conductivity becomes elevated at the DCW site for a period of several months 
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during the salting period and rapidly drops to a lower baseline for the spring months after a very 

large precipitation and snow melt event.  
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Figure 3.2.1a-d – Figures showing varying stream response between salting and non-salting 
seasons at the SPNPO and DCW site.  

 

Stream TDS response to storm events during the winter season is opposite of the other 

seasons. Both less and more developed stream sites experience an increase in conductivity over 

the event period before returning to lower baseflow concentrations. This proves runoff has a 

higher TDS concentration than groundwater during this interval causing the rise in conductivity 

over the event period followed by a gradual dilution by groundwater to baseflow concentration 

(Figure 3.2.1). The transition between these two different response regimes can be sudden, as 

observed at the DCW site (Appendix I). The period of elevated stream conductivity abruptly ends 

after the 2/16 event, this event likely removed most of the salt deposition from urban surfaces 

and flushed soils with a large volume of melt water.  

3.2.1 Cation Exchange Mechanisms for Pollutant Retention 

Cation exchange is a naturally occurring process within soils where negatively charged 

sites on clays and organic matter adsorb and hold cations by electrostatic force, which may be 
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Hollow Creek Watershed, a bivariate plot of Na:Cl concentrations from baseflow at three 

locations along Fuller Hollow Creek (Figures 3.2.2a-f).  

All three sites within Fuller Hollow Creek have a molar Na:Cl ratio of less than one, with 

28%-30% of sodium absent from each site, assuming an initial 1:1 Na:Cl molar ratio (Eq. 3.3). In 

order to determine that cation exchange is the primary factor influencing the Na:Cl imbalance, 

Calcium, Potassium, and Magnesium concentrations were added to the measured Sodium 

concentration then subtracted by the summation of the background value of each cation in an 

attempt to achieve a 1:1 ratio with Cl (Figures 3.2.2a-f)(Eq. 3.4). Background values were 

determined by plotting cation vs Cl milliequivalent concentrations and selecting a baseline 

value, which was determined to be 0.65 mEq for each site. Since sorption is an electrostatic 

reaction, milliequivalents were used to represent cations and anions (eq. 3.2).  

Eq. 3.2  

Millimolar Cation Exchange 

2Na+ + Ca2+(adsorbed) + 2K+(adsorbed) + Mg2+(adsorbed) → Ca2+ + 2K + Mg2+ + 2Na+(adsorbed) 

Eq. 3.3 

Expected Relation with No Cation Exchange 

NamEq = ClmEq 

Eq. 3.4 

Expected Relation with Cation Exchange  

NamEq + *CamEq + *MgmEq + *KmEq = ClmEq  

Ca2+mM = 0.5mEq                         (*value after background correction) 

Mg2+mM = 0.5mEq 

 
mEq = milliequivalents  
mM = millimolar 
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This correction produces a near 1:1 mEq ratio with chloride at each reach, suggesting 

cation exchange plays a significant role in influencing the aqueous geochemistry of groundwater 

in the Fuller Hollow Creek watershed. This finding also indicates that soils have not reached 

saturation with respect to sodium and will continue to adsorb and retain sodium ions until 

saturation has been achieved. Meriano et al. 2009 obtained similar results in a small Southern 

Ontario watershed impacted by road salting.  

Alternative road salt storage methods in the subsurface include soil pore retention, 

where both Sodium and Chloride may be mechanically retained within soils (Kincaid and Findlay 

2009). This storage method is more susceptible to being mobilized in first flush events (Robinson 

et al. 2017). Robinson et al. 2017 determined that sodium and chloride are typically retained in 

soils for a minimum of 2.5-5 months after salting, suggesting that soils are a significant pollutant 

reservoir that contribute to elevated Na and Cl concentrations year-round. This is consistent 

with conductivity increases at the onset of storm events observed within Fuller Hollow Creek 

during the non-salting seasons, interpreted to be a result of flushing of ions from soil 

micropores. Alternatively, this may represent flushing of atmospheric deposition to roadways 

and parking areas.  
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Figures 3.2.2a-f – Plots comparing Na/Cl ratios for each main stream site with Na plus 
additional cations vs Cl. The restoration of the expected near 1:1 Na/Cl mEQ ratio after 
addition of the major cations indicates the role of cation exchange within Fuller Hollow Creek 
soils.  
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3.2.2 Estimated Sodium and Chloride Retention Through Yearly Calculated Loads   

Dissolved sodium and chloride loads were calculated at the outlet of each sub basin and 

the Fuller Hollow Creek watershed over the year-long study period. Calculated Na and Cl loads 

were compared to estimated atmospheric deposition and roadway application estimates to give 

the percentage of each ion retained within each watershed (Table 3.2). The amount of sodium 

retained ranges from 76% in the CC sub-basin to 23% in the SPNPO sub-basin. Chloride retention 

has a similar range of 76% at the CC sub-basin to just 9% at the SPNPO sub-basin. Percent of 

retained chloride loads are consistently less than sodium at all sites providing further evidence 

for a mechanism, such as cation exchange, that preferentially retains sodium.  

Sites with higher impervious surface have less of a difference in retention between 

sodium and chloride, despite retaining more of these components overall. This suggests a 

significant portion of pollutant storage occurs through soil pore retention and storage in 

groundwater. Differences in sodium vs chloride retention at each site may be influenced by 

sodium saturation within soils in a cation exchange system.   

  
Estimated Deposition 

(kg) 
Measured Load 

(kg) 
% 

Retained 

Sodium       

DCW 632937 292351 54 

SPNPO 110558 84889 23 

CC 255481 60582 76 

LLO 100588 62973 31 

MHO 62672 20677 67 

Chloride       

DCW 976064 557615 43 

SPNPO 170493 154927 9 

CC 393982 90871 74 

LLO 155119 119319 15 

MHO 96647 42544 56 

Table 3.2- Estimated sodium and chloride deposition compared to observed chloride loads over 
the 1-year study interval. 
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3.3 C/Q Hysteresis 

 The following analysis of six storm events attempts to determine the primary pollutant 

sources through C/Q hysteresis modeling. Three events from non-salting periods were selected 

in addition to three events from salting periods to determine if there was a change in primary 

pollutant source due to road salting. All of the events selected had a generally constant rate of 

precipitation, as variable or intermittent precipitation may influence hysteresis loop shape. 

3.3.1 8/20/2015 Event  

The 8/20 storm event occurs during the late summer pre-salting season, approximately 

17.5 mm of rain precipitated over a 5-hour interval. The DCW Site is the only one which 

experiences a conductivity spike during the event. DCW, CC, and MHO sites all exhibit an Evans-

Davies C3 type loop (CG>CSE>CSO), while the LLO site exhibits a C1 type loop (CSE>CG>CSO). The 

SPNPO site has a distinctive A1 type loop (CSO>CG>CSE) which is expected from a suburban site 

during a non-salting season (Figure 3.3.1). 
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3.3.2 11/10/2015 Event 

The 11/10 storm event captures a late fall, pre-salting, interval which precipitated 

approximately 50mm of rain over a 17-hour period resulting in similar hysteresis curves for all 

sonde sites (Appendix H). DCW and CC, exhibit a small conductivity spike at the onset of the 

event whereas the other three sites do not. All sites, however, exhibit an overall C3 type loop 

indicating CG>CSE>CSO. The CC site has several smaller curves within the main C3 loop 

corresponding with various conductivity spikes throughout the event. This is likely due to the 

large storm sewer component of this site that drains various impervious surfaces, including 

parking lots, at different intervals throughout the event.  
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Figure 3.3.1- C/Q Hysteresis of the 8/20 storm event representing conditions during the non-

salting season.  
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3.3.3 12/29/2015 Event  

The 12/29 storm event captures a small winter event with approximately 10mm of 

precipitation over a 5-hour period. Rather than dilution and return to baseline values, all sites 

exhibit an increase in conductivity over the event period before returning to pre-event levels 

because of flushing from impervious surfaces. Both sites within the main channel of Fuller 

Hollow Creek (DCW and SPNPO) exhibit a C1 type loop indicating CSE>CG>CSO. This behavior of a 

surface contaminant dominated system is expected in winter months with a large road salting 

component. The CC site exhibits a C3 type loop, which is counter intuitive, considering it is the 

most urbanized site, however as aforementioned, conductivity and discharge spikes seen 

throughout the event are likely due to the large parking lot and storm sewer components of this 

site. The tributary MHO and LLO sites both experience a C2 type event (CSE>CSO>CG) (Appendix 

H). 

3.3.4 2/4/2016 Event 

The 2/4 storm event captures a winter event with 17mm of precipitation over a 6.5-

hour period. Increased conductivity is observed over the event period at all sites other than LLO 

and MHO. Rather than dilution and return to baseline values, all sites exhibit an increase in 

conductivity over the event period before returning to pre-event levels associated with flushing 

from impervious surfaces. All Fuller Hollow Creek main channel sites (DCW, RF, and SPNPO) 

exhibit a C1 type loop similar to the 12/29 event (Figure 3.3.2). The CC site exhibits a C3 type 

loop and is once again attributed to conductivity spikes throughout the event associated with 

variable storm sewer lag times. The LLO and MHO sites, do not experience a conductivity spike 

though the event, rather they experience a C3 and C1 type loop respectively. The C3 behavior of 
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the LLO site is most probably due to the storage and dilution capacity of the retention pond 

immediately prior to the site.  
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3.3.5 2/16/2016 Event   

The 2/16 storm event captures a large winter event with approximately 40mm of 

precipitation over a 9-hour period. All sites have an increase in conductivity early in the event 

like the 12/29 storm. All sites exhibit a C3 type hysteresis loop, differing from the predicted C1 

curves at main stream channel sites observed in the 12/29 event (Appendix H). This change in 

hysteresis pattern may be due to the large amount of snowmelt accompanying this event. Large 

amounts of snowmelt would continue to supply uncontaminated surface water throughout the 

event period, thus mimicking soil and groundwater hydrograph inputs when compared with 

other events.  

3.3.6 5/6/2016 Event 

The 5/6 event captures a late spring event precipitating 14mm over a 4-hour period. 

Most sites experience a small conductivity increase at the onset of the event before dilution 

except for the SPNPO site, which gradually increases in conductivity over the event period 
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Figure 3.3.2- C/Q Hysteresis of the 2/4 storm event representing conditions during the 

salting season.  
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(Appendix H). All sites show a C3 type hysteresis loop over the event period excluding the 

SPNPO site which has an A1 type trend (CSO>CG>CSE). The C3 trend is consistent with 

expectations for late spring events which marks the beginning of evapotranspiration related 

contributions to the increase in baseflow conductivity. The A1 trend at the SPNPO site, is 

consistent with a rural stream response coupled with a small urban surface component.  

3.3.7 Summary of Event Interpretations  

C/Q hysteresis analysis of storm event from non-salting seasons at sites within the Fuller 

Hollow Creek watershed primarily produced C3 type curves, contrary to the predicted A1 and A3 

type curves (Table 3.3.1). Rose (2003) and Evans and Davies (1998) also observed C3 type curves 

in non-salting periods and/or non-salting environments. Groundwater conductivity values to 

event water being greater than surface and soil water suggests pollutant retention within 

groundwater as well as evapotranspiration concentration over the summer and fall seasons, 

corresponding to a negative water balance. An exception to this trend is the SPNPO site, where 

an A1 type loop was dominant during the non-salting season. The limited impervious surface of 

this sub-basin causes surface event water to be the lowest contributor and results in soil water 

contributing more to stream conductivity than groundwater.  This, along with cation exchange, 

suggests a three-component pollutant storage model in the sub-surface is appropriate for road 

salt contaminants. The 1st storage reservoir is electrostatic sites within soils which retain sodium 

cations. The 2nd storage reservoir is soil micropores which retain both sodium and chloride ions 

after infiltration. As these two reservoirs approach saturation, groundwater storage becomes 

the third reservoir for infiltrating contaminants.      

A combination of C1, C2, and C3 events were observed during salting seasons rather 

than a consistent C3 pattern observed during non-salting season events (Table 3.3.1). Main 
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stream sites DCW, RF, and SPNPO differed in that they were dominated by C1 type curves, 

signifying surface water derived from urban runoff as the primary conductivity source. The C3 

patterns observed during the 2/16 event at main stream sites may be due to the large amount 

of contaminated snowmelt from roadside locations accompanying this event. Large amounts of 

this contaminated snowpack would continue to melt throughout the event duration, thus 

mimicking soil and groundwater hydrograph inputs after peak discharge. The MHO site behaves 

like main stream sites during the salting season, with surface event water being the highest 

conductivity contributor, while conductivity sources vary in the other tributaries throughout the 

salting period. 

The retention abilities of the Lake Liberman structure, immediately upstream from the 

LLO site, influence the C/Q hysteresis of this site during the salting season. The Lake Liberman 

retention pond mitigates the discharge and conductivity from storm events, removing or 

reducing road surface flushing associated with winter urban sites, and distributing pollutant 

loads and discharge over the event duration.  This mitigation of components alters the 

distribution of the three-component hydrograph by effectively mixing components within the 

retention pond before discharging to the outlet site. Because of this feature the LLO site has a 

dominant C2/C3 nature in both salting and non-salting seasons.  

The CC site maintains a C3 signature throughout the salting season as well. However, 

unlike the LLO site which mitigates conductivity during events, the CC site experiences very large 

increases in conductivity and discharge throughout the event duration. This is a direct result of 

lag times from the variable parking lot and storm sewer component of this sub-basin that drains 

campus surfaces. This makes the CC reach flashy in nature regarding both discharge and 
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conductivity. Because of the variability in lag times of surface event water superimposed over 

the soil and groundwater components, the three-component hysteresis model is deemed not  

applicable at CC.   

Table 3.3.1- Evans-Davies classification hysteresis loop types for each site and storm event.   
“N/A” indicates no data available, “?” indicates no definitive loop  
 

3.4 INCA-Cl Results: 

The INCA-Cl model utilizes landcover, soil moisture, precipitation, and chloride 

deposition data to simulate stream discharge and chloride concentrations in daily increments 

over the modeled period. INCA-Cl calculates surface runoff, soil water, and groundwater 

contributions in order to simulate the daily stream discharge and chloride concentrations at 

each modeled site. INCA-Cl model inputs for this study are found in Appendix I.  

 Observed and modeled discharge at each of the main stream sites correlate reasonably 

well, with r2 values ranging from 0.56 to 0.66 (table 3.4.1). Due to the large impervious surface 

component in the watershed, and near ubiquitous fragipan layer preventing infiltration (Broome 

County Soil Survey 1971), streams were generally flasher and saw a return to baseflow more 

quickly than could be predicted by the model.  

C/Q Hysteresis Patterns 

Site Salting Non-Salting 

  29-Dec 4-Feb 16-Feb 20-Aug 10-Nov 6-May 

DCW C1 C1 C3 C3 C3 C3 

RF N/A C1 N/A N/A N/A C3 

SPNPO C1 C1 C3 A1 C3 A1 

MHO  C2 C1 N/A C3 C3 C3 

LLO C2 C3 C3 C1 C3 C3 

CC C3 C3 C3 C3 ? C3 
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Table 3.4.1- r2 values of INCA-Cl modeled discharge and chloride concentrations. While r2 may 
not be the best statistical method for correlation analysis, it’s ubiquity allows some insight into 
modeling accuracy. Methods, such as Willmott’s index of agreement, may be better suited for 
determining correlation with observed results. 

 

The results for chloride concentrations within the main stream were less well modeled 

than discharge. The DCW and SPNPO sites have the highest correlation with an r2 of 0.35 and 

0.24 respectively. The highest correlation at these two sites is due to the lack of large 

fluctuations in chloride from flushing events due to the large non-urban percentage of landcover 

at these sites (Appendix I). Due to the complex runoff from impervious surfaces and the 

inherent simplicity of the INCA-Cl model, large conductivity increases from urban flushing events 

are not accurately represented in the modeling scenarios.  At present, INCA-Cl distributes 

chloride deposition over the entire watershed area rather than scaling deposition to proximity 

to roadways. By confining road salt deposition to urban landcover, model parameters of 

residence times and initial flow velocity may be altered to better fit observed results. Applying 

chloride deposition equally over the entire watershed may be acceptable in a larger and more 

homogenous watershed, but in the small and highly urbanized Fuller Hollow Creek watershed 

this feature creates discrepancies between modeled and observed results. The INCA-Cl model 

does however accurately represent baseline chloride conditions within the watershed as well as 

Observed vs Modeled Q 

Site   r2 

DCW 0.66 

RF 0.56 

SPNPO 0.59 

MHO  .06 

LLO 0.39 

CC 0.31 

Observed vs Modeled Cl  

Site   r2 

DCW 0.35 

RF 0.05 

SPNPO 0.24 

MHO  0.02 

LLO 0.03 

CC 0.20 
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fresh water dilution from storm events (Figure 3.4.1). INCA-Cl can also predict the chloride 

increase over an event period followed by recession to baseflow values during the winter 

months at the DCW, RF, and SPNPO sites. This result is consistent with C/Q hysteresis models 

which identified surface water as the largest contributor to dissolved stream loads during the 

salting season.  

While INCA-Cl can reasonably predict chloride values within Fuller Hollow Creek, values 

within the 1st order tributaries do not correlate as well with observed results (Appendix I). This is 

likely due to the infrastructure in each tributary, ranging from large storm sewer components to 

retention ponds which requires a more complex model to simulate.  
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3.4.1 Chloride Loads 

Chloride load estimates from each site represent the model’s combined ability to 

estimate coupled discharge and chloride concentrations (Figure 3.4.2). Model results are lower 

than observed loads, except at the CC and MHO sites where underestimated low-flow discharge 

resulted in a lower total chloride load (Table 3.4.2). r2 values of loads from main stream sites, 

Figure 3.4.1- Modeled and observed discharge and chloride concentrations of the CC and 

SPNPO sites representing an urban and sub-urban sub-watershed response in the Fuller 

Hollow Creek Watershed. 
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which have the highest discharge correlation, range from 0.49 to 0.54. Lower modeled values of 

chloride loads are mainly due to the model inability to accurately estimate impervious surface 

flushing during storm events and modeled baseflow discharge being less than observed values.  

 

 

 

 

 

 

 

Observed vs Modeled Loading Results  

Site  Observed (kg/year Cl) INCA-Cl (kg/year Cl) Percent of Observed  

DCW 529723 473740 89.4 

SPNPO 152432 118890 80.0 

MHO  42981 62027 144.3 

LLO 131339 89770 68.4 

CC 103185 250815 243.0 

Observed vs Modeled Loading r2 

Site   r2 

DCW 0.49 

SPNPO 0.54 

MHO  0.1 

LLO 0.28 

CC 0.46 

Table 3.4.2- Observed chloride loads compared to modeled INCA-Cl chloride loads and 
accompanied r2 values of modeled chloride loads. 
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Figure 3.4.2- Modeled and observed chloride loads of the DCW, SPNPO, and CC sites 
representing the total watershed, sub-urban, and urban watershed chloride export throughout 
the study period.  
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3.4.2 Alternative Deposition Scenarios   

 By adjusting depositional amount to the Fuller Hollow Creek watershed, the INCA-

Cl model can predict how stream chloride concentrations will react to those changes. Several 

different depositional scenarios were input to the model to ascertain changes to chloride 

concentrations and loads after a 50% reduction and 50% addition to chloride deposition (Figure 

3.4.3). A 50% reduction in chloride deposition to the Fuller Hollow Creek watershed would lead 

to a 28% immediate reduction in chloride loads over the study period. A 50% increase in 

chloride deposition would lead to a 24% increase in chloride loads over the study period. 

Modeled chloride levels under variable loading conditions have identical values during the 

summer period due to the model only including groundwater contributions over this period. 

Over many seasons the groundwater concentration would gradually increase or decrease 

dependent on long term changes to salt application rates to roadways, however over the yearly 

modeled period these systems are still dependent on the existing groundwater concentrations.  
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Figure 3.4.3- Modeled chloride concentrations at the DCW site under variable deposition 
scenarios. These results also indicate the sensitivity of the model to inaccuracies in salt 
application rate estimates.   
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Chapter 4 Conclusions 

4.1 Long Term Trends  

Levels of total dissolved solids within streams have increased at all sub-basin stream 

sites within the Fuller Hollow Creek Watershed over the past 10 years. Total dissolved solids 

within streams also correlate with the amount of impervious surface in each sub-basin with TDS 

levels increasing by 33mg/L for every percent increase in impervious surface. However, rates of 

Increase were not explainable by an increase in the amount of impervious surface over the 

study period alone. Levels of all major cations also correlate with impervious surface 

percentage. Sodium concentrations have substantially increased at all stream sites. Sodium was 

the most abundant cation, and had the highest rate of increase, with higher rates of increase in 

the spring at tributary sites versus main channel sites. Despite an overall increase in stream 

water TDS, two of the four groundwater wells sampled showed no conclusive TDS increase 

because high conductivity surface runoff infiltration was confined to shallow preferential flow 

paths. 

4.2 Pollutant Storage  

 Cation exchange in soil is a factor in retaining sodium from road salt deposition. This 

became less of a factor in sub-basins with higher NaCl deposition and suggests soil reservoirs 

may be near saturated with respect to sodium. In the non-salting season, C/Q hysteresis plots 

indicate groundwater is the dominant conductivity contributor (CG>CSE>CSO) at all sites except 

SPNPO where soil water is the dominant conductivity contributor (CSO>CG>CSE). During the 
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salting season all site’s response to storm events are dominated by surface water contribution, 

with main stream sites having a secondary contribution from groundwater (CSE>CG>CSO) and 

tributaries a mix of groundwater and soil water as secondary conductivity contributors 

(CSE>CSO>CG). C/Q hysteresis results from the CC site were inconclusive due to the large parking 

lot surface and storm sewer network of that sub-basin which influenced discharge lag times.  

4.3 INCA-Cl 

INCA-Cl was able to accurately model stream discharge and baseline chloride trends 

within the Fuller Hollow Creek Watershed, with greater success in the main stream channel than 

the smaller tributaries. INCA-Cl was unable to model large chloride increases associated with 

flushing events from impervious surfaces due to the way the modeled chloride deposition is 

distributed across the entirety of the watershed and the flashy nature of the storm response in 

the watershed. By increasing or decreasing the chloride deposition to the watershed by 50%, an 

immediate 28% reduction or 24% increase in chloride levels were predicted.  
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Chapter 5 Future Work 

 5.1 Historical Data 

 The continuation of groundwater and stream water sampling within the Fuller Hollow Creek 

watershed by Binghamton University students would continue to provide data on long-term 

stream and groundwater conditions. These analyzed samples provide an archive of data that 

may be utilized to assess predictions of future contaminant accumulation, and more accurately 

quantify the effects of road salt pollution. Multi-site long term stream and groundwater 

geochemistry archives is generally rare and provides a unique opportunity for future studies in 

this mixed landuse watershed.  

5.2 Sonde Data  

 To better discern conditions within the Fuller Hollow Creek Watershed, more accurate 

discharge measurements may be necessary. The CC site was subject to underestimated low-flow 

data due to use of the existing weir for discharge calibration. McCann (2013) determined the 

best fit weir equation for this site, however under low flow conditions calibration becomes 

increasingly difficult to assess. Better rating curve calibration at the MHO site would also 

improve observational quality, as this site was prone to sonde burial and dislodgement.  

 Better quantification of sonde calibration during high discharge events at all sites would also 

improve the accuracy of calculated hydrographs. The flashy nature of the watershed makes it 

difficult to capture these high-discharge events due to timing and safety constraints. Continued 



67 
 

monitoring at the DCW site sonde is advocated so that long term changes in discharge and 

chloride may be modeled in the future.   

 

5.3 INCA-Cl 

 Applying the INCA-Cl model to other regional watersheds would allow for the continued 

assessment and refinement of the INCA-Cl model, as well as to compare the effects of road salt 

deposition under varying conditions. We tried to apply INCA-Cl to the Apalachin creek 

watershed using the parameters calibrated for the Fuller Hollow Creek Watershed. The 

Apalachin Creek Watershed is a 112.6 km2 watershed located approximately 15.5 km west of the 

Fuller Hollow Creek watershed. Data from the Apalachin Creek Watershed Is collected and 

compiled by the Susquehanna River Basin Commission (SRBC) and includes stream conductivity, 

temperature, and dissolved oxygen levels. The lack of stage measurement and large agricultural 

component and low urban component relative to the FHC watershed made the calibration for 

the Apalachin creek watershed incompatible (figure 5.3.1). Due to no discharge component 

being collected, calibrating modeled discharge was not possible.  

 The INCA-Cl model has also been used to simulate long-term, multi-decade, chloride 

concentrations under changing climate conditions (Gutchess et. al 2018). A similar scenario 

could be applied to the Fuller Hollow Creek Watershed and be refined using archived historical 

data and continued stream monitoring using sondes.  
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Figure 5.3.1- Apalachin Creek watershed landcover used for input to the INCA-Cl model (NLCD 
2011). The Apalachin creek watershed differs from Fuller Hollow Creek in that it has a large 
agricultural component and small urban surface percentage, opposite of Fuller Hollow Creek.  
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Appendix A 

 

Fuller Hollow Creek Maps  
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*RF sub-basin includes inputs from SPNPO, MHO, and LLO 
*DCW sub-basin includes inputs from SPNPO, MHO, LLO, CC, and RF 
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*RF sub-basin includes inputs from SPNPO, MHO, and LLO 
*DCW sub-basin includes inputs from SPNPO, MHO, LLO, CC, and RF 
*Data from National Land Cover Database 2011 

DCW 
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DCW 

*RF sub-basin includes inputs from SPNPO, MHO, and LLO 
*DCW sub-basin includes inputs from SPNPO, MHO, LLO, CC, and RF 
*Data from National Land Cover Database 2011 
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DCW 

*RF sub-basin includes inputs from SPNPO, MHO, and LLO 
*DCW sub-basin includes inputs from SPNPO, MHO, LLO, CC, and RF 
*Data from National Land Cover Database 2011 
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Appendix B 

 

Stream Sonde and Groundwater Well Locations and Descriptions  
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Sonde Locations  Description  

DCW: (42° 5'45.34"N, 75°57'56.06"W) Located approximately 0.35km upstream of 
Fuller Hollow Creek’s confluence with the 
Susquehanna River. Includes all inputs from 
subsequent sites.  
 

CC: (42° 5'42.73"N, 75°57'58.70"W) Located in drainage ditch along the 4 lane 
Vestal Parkway. Most discharge is from two 
storm sewer culverts that drain a large 
portion of the Binghamton University 
Campus.  
 

RF: (42° 5'39.01"N, 75°57'48.42"W) Located within the northern portion of Fuller 
Hollow Creek and represents stream 
conditions prior to input from the CC sub-
basin.  
 

LLO: (42° 5'15.09"N, 75°57'39.66"W) Located at the outlet of the Lake Liberman 
retention pond that accumulates runoff from 
the Binghamton University Campus then 
discharging into Fuller Hollow Creek.  
 

MHO: (42° 5'15.26"N, 75°57'34.85"W) Located within 1st order stream that drains a 
large residential, suburban area east of the 
Binghamton University campus before 
intersecting Fuller Hollow Creek.  
 

SPNPO: (42° 5'14.33"N, 75°57'36.19"W) Site located approximately 30m upstream of 
MHO site in main stream channel, inputs 
include a few suburban areas and large rural/ 
natural areas in the southern regions of the 
watershed.  
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Well Locations  Description  

RFW (42° 5'40.12"N, 75°57'52.77"W) 12.2m deep well with opening in surficial 
glacial aquifer. Steel casing. 
 

MSW (42° 5'33.49"N, 75°57'45.07"W) 9.1m deep well at corner of parking lot with 
casing at ground level. Opening to surficial 
glacial aquifer. Steel casing. 
 

CDW (42° 5'22.10"N, 75°57'38.69"W) 37m deep well with opening to shale bedrock 
of the Upper Walton Formation. Steel casing 
 

NSW (42° 5'22.62"N, 75°57'38.80"W) 6.7m well with opening in surficial glacial 
aquifer. PVC casing. 
 

SSW (42° 5'22.02"N, 75°57'38.25"W) 6.7m well with opening in surficial glacial 
aquifer. PVC casing. 
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Appendix C 

 

Stream Sonde Rating Curves    
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Appendix D 

 

Stream Sonde Conductivity and Dissolved Ion Calibration 
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Appendix E 

 

INCA-Cl Model Input 

 

  



91 
 

 



92 
 

INCA-Cl Input Parameters 
Basin  DCW RF SPNPO MHO LLO CC 

Area (km2) 9.59 8.30 6.20 1.11 0.55 1.07 
Reach Length (m) 2950 2650 1817 730 500 1545 
Land Cover Classification (%)             
Forested 59.4 65.4 77.2 35.0 36.3 23.1 
Short Veg. 15.1 13.6 9.6 30.3 9.3 20.4 
Arable 4.1 4.7 6.2 0.0 0.0 0.0 
Urban 21.4 16.4 7.0 34.7 54.4 56.5 
Baseflow Index  0.1 0.1 0.2 0.5 0.1 0.1 
Flow Parameter "a" 10 10 10 10 10 10 
Flow Parameter "b" 0.7 0.7 0.7 0.2 0.7 0.7 
Land Cover Parameters              
Forested             
Soil Water              
Residence Time (days) 5 5 5 5 5 5 

Initial Flow (m3/s) 0.1 0.1 0.1 0.1 0.1 0.1 
Initial Chloride Concentration (mg/L) 20 20 20 20 20 20 
Groundwater              
Residence Time (days) 15 15 15 15 15 15 

Initial Flow (m3/s) 0.01 0.01 0.01 0.01 0.01 0.01 
Initial Chloride Concentration (mg/L) 15 15 15 15 15 15 
Short Veg.             
Soil Water              
Residence Time (days) 1 1 1 1 1 1 

Initial Flow (m3/s) 0.06 0.06 0.06 0.06 0.06 0.06 
Initial Chloride Concentration (mg/L) 200 200 200 200 200 200 
Groundwater              
Residence Time (days) 20 20 20 20 20 20 

Initial Flow (m3/s) 0.06 0.06 0.06 0.06 0.06 0.06 
Initial Chloride Concentration (mg/L) 200 200 200 200 200 200 
Arable             
Soil Water              
Residence Time (days) 3 3 3 3 3 3 

Initial Flow (m3/s) 0.10 0.10 0.10 0.10 0.10 0.10 
Initial Chloride Concentration (mg/L) 150 150 250 150 150 150 
Groundwater              
Residence Time (days) 15 15 15 15 15 15 

Initial Flow (m3/s) 0.06 0.06 0.06 0.06 0.06 0.06 
Initial Chloride Concentration (mg/L) 200 200 200 200 200 200 
Urban              
Soil Water              
Residence Time (days) 4 4 3.5 3.5 4 4 

Initial Flow (m3/s) 0.50 0.50 0.50 0.50 0.50 0.50 
Initial Chloride Concentration (mg/L) 200 200 200 400 800 800 
Groundwater              
Residence Time (days) 18 18 17 16 18 18 

Initial Flow (m3/s) 0.05 0.05 0.05 0.05 0.05 0.05 
Initial Chloride Concentration (mg/L) 750 750 350 350 750 750 
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Relationship Between Inflow, Outflow, 
 and Storage   

Soil and Groundwater Flow Models  

Travel Time Parameter    

Relationship Between Flow Velocity and Discharge     

Chloride Mass Balance in Soil and Groundwater      

Chloride Mass Balance in Stream Reach      

I= Inflow 
Q= Outflow  
S= Storage 
T=Travel time parameter (days) 
L= Reach length (m) 
V= mean flow velocity (m/s) 
X= flow in soil and groundwater (m3/s) 
a+b= Flow constants  
c= Daily chloride concentrations (mg/L) 
U2= Baseflow Index 
V= Water volumes for soil and 
groundwater zones (m3) 
U3= Daily chloride loading (kg) 

u = upstream  

d =downstream  
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Appendix F 

 

Long Term Stream and Groundwater Data  

 

 

 

 

 

 

 

 

 

 

 

Note: The change in analytical method is evident for some of the measured sodium cations. 
The increase in Na, for sample sites consistently over 100mg/L post spring 2011, is 
attributed to false low readings, obtained with the DCP, from samples exceeding its 
detection limits. Due to this feature all sodium data prior to fall 2011 was omitted from 
analysis. 
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Groundwater Dissolved Cation Increase/ Year 

Site 
Sodium 

(mg/L/year) 
Calcium 

(mg/L/year) 
Magnesium 
(mg/L/year) 

Potassium 
(mg/L/year) 

CDW -2.9 1.6 0.3 0 
NSW 4.0 10.4 2.2 0 
SSW -3.7 0.8 0.2 0 
MSW 1.1 -5.0 -0.7 -0.1 

 

Stream Dissolved Cation Increase/ Year, Spring 

Site 
Sodium 

(mg/L/year) 
Calcium 

(mg/L/year) 
Magnesium 
(mg/L/year) 

Potassium 
(mg/L/year) 

CC 56.7 4.7 0.3 -0.3 

LLO 32.7 2.1 0.3 -0.4 

MHO 8.6 1.7 0.1 0.1 

RF 6.1 1.2 0.1 0.2 

SPNPO 3.1 0.6 0 0 

Stream Dissolved Cation Increase/ Year, Fall 

Site 
Sodium 

(mg/L/year) 
Calcium 

(mg/L/year) 
Magnesium 
(mg/L/year) 

Potassium 
(mg/L/year) 

CC 19.9 -0.7 0.2 -0.2 

LLO 22.2 -0.5 0.7 -0.2 

MHO 5.1 2.0 0.3 -0.1 

RF 20.7 3.8 0.6 -0.1 

SPNPO 10.3 2.9 0.4 0 
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Appendix G 

 

Cation Correlation with Impervious Surface  
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Appendix H 

 

Concentration/Discharge Hysteresis  
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Appendix I 

 

INCA-Cl Model Results  
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