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Abstract  

With the development of modern information and technology (IT), smart grids 

became one of the major components of smart cities, to take full advantage of the smart 

grid, the capability of intelligent scheduling and planning of electricity delivery is 

essential. For this purpose, researchers have investigated methodologies for power 

consumption prediction and demand side management (DSM). In addition, conducting 

a comprehensive analysis and obtaining an accurate evaluation of power consumption 

are the premise and basis for a more robust and efficient power grid design and 

transformation. Therefore, it is meaningful to explore forecasting models that are able 

to reflect the power consumption change effectively. 

Making electricity consumption prediction based on neural network has been a 

popular research topic in recent years, and backpropagation neural network (BPNN) 

algorithm has been recognized as a mature and effective method. This thesis applies the 

BPN to predict the electricity consumption of Pecan Street, a community with a 

relatively large scale smart grid, and takes more factors into account, such as weather 

condition, weekend and holiday. The influences of each factor have been evaluated for 

a deeper insight. While what presented in this thesis is not mature, it may inspire more 

discussion and further study to guide the design of future smart grids.  
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Chapter 1. Introduction 

Electricity consumption prediction has been considered an effective measure 

that helps the power grid designers and planners build robust, adaptive, efficient, and 

economic smart grids. It is aimed as modeling the electricity consumption under 

different constraints along with environmental factors and the rules. A pre-estimated 

and calculated electricity demand can be obtained based on the history data including 

dates, economic, climate and so on. Considering the dynamic pricing mechanism in 

today’s market, an accurate power load forecasting is an effective tool for companies to 

optimize the scheduling load balance decisions to maximize their profit and minimize 

the probability of accidents like disturbance, overload, etc. Different prediction periods 

and precision are required for the large scale and complicated smart power grid 

systems.  

This thesis is focused on the effects of different factors that may bring impacts 

on the prediction accuracy. For this purpose, leveraging a backpropagation neural 

network (BPNN) algorithm will allow multiple factors to be considered and their 

impacts studied. The accurate analysis and prediction of electrical consumption will
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help government agencies and the power industry make appropriate electricity utility 

policies and power scheduling plans. For individual households and the communities 

on the smart grid, the prediction will help people arrange their electricity usage with 

more intelligence. 

1.1 Motivation 

Electricity consumption forecasting is a work which is easy to iterate, but the 

amount of effort required to improve the quality for each incremental step is huge. The 

comprehensive consideration of various influencing factor, and the analysis and 

utilization of diverse types of data to the electricity consumption forecasting module 

are the requirements of the modern smart power grid. Mastering the way of electricity 

consumption forecasting with a decent prediction accuracy is a foundation for regional 

electric power planning, as well as the region's industrial layout, energy distribution, 

electric power dispatching and power grid investment as a reliable reference. 

For better competition in the power market, participants need to accurately 

predict how much power they will need in a given cycle. On one hand, the 

underestimation of power demand will lead to higher operation cost [1], which cannot 

meet the development needs of local economy. On the other hand, overestimation of 

power demand results in the waste of power resources and investment costs. Therefore, 
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electricity consumption forecasting is one of the most essential tasks in the power 

market. Electricity consumption prediction can be classified into super-short, short, 

medium and long term, based on the prediction cycles.  

Currently, more and more researchers turn their attention to increase the 

accuracy of the electricity consumption prediction using multiple factors. Because of 

the limited access of real-world data set, most of the reported works are focused on a 

single factor or only historical data. There is not much reported research using multiple 

factors.  

1.2 Contributions 

This thesis considers the historical electricity consumption, the weather, and 

weekend/holiday information to get a better performance of prediction. The effects of 

different factors are analyzed for deeper understanding. More specifically, using the 

historical data of the Pecan Street smart community and the corresponding weather 

information, a BP neural network-based prediction has been conducted. The 

performances under different time resolutions, hourly, daily, weekly, and monthly, are 

investigated. In addition, the optimal setting of the BPN is explored according to the 

data set features by adjusting the parameters to reach the highest performance.  

The rest of thesis is organized as follows. In Chapter 2, the research background 
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and related work are introduced. Chapter 3 reviews the principles and design of the BP 

neural network model for power consumption prediction, The Pecan Street data set and 

its process are discussed in Chapter 4. Chapter 5 reports the experimental results in 

detail. Chapter 6 is the conclusion.
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Chapter 2 Background and Related Work 

2.1 Pecan Street Project 

The Pecan Street Project is an advanced smart community project which located 

in Austin, Texas, USA. Technologies implemented in the participating homes include 

energy management systems, distributed solar photovoltaic energy, plug-in electric 

vehicles, smart meters, distributed energy storage, smart appliances, in-home displays, 

and programmable communicating thermostats [2]. 

The Pecan Street Smart Grid maintains over 1,000 households who shared their 

home or businesses’ electricity consumption data with the project, through the methods 

such as green button protocols, smart meters, home energy monitoring system and so 

on. The households in the Pecan Street Project were just like pioneers, they have great 

interest in smart community products and services. They have relatively high education 

and income level in Texas State [2]. 

Through the Pecan Street Project, massive data can be obtained. Electricity 

utility data is available with 1-hour resolution, electric data at 1- minute resolution. The 

gas meter data and the water meter data are collected by ERT (encoded radio



6 

 

transmission). These data have some notable features for researching and modeling: 

large quantity, high resolution, sustainable access, high reliability and high integrity. It 

is an ideal candidate for modeling, forecasting and analyzing. 

2.2 Energy Consumption Prediction 

The relationship between the residential electricity consumption and influence 

factors is not a simple linear relationship. Quantity analysis-based electricity 

consumption prediction may get opposite results or unsatisfactory performance [3]. 

Researchers pay more attention to more intelligent algorithms and models. At first, the 

most popular method was linear regression [4]. Nowadays, new algorithms like the 

grey forecasting model, artificial neural network, support vector machine and their 

corresponded optimization and deformation algorithms becomes more and more 

popular and mature [5].   

Currently, the research on residential electricity consumption is mainly based 

on household economic theory [6]. Every household purchases electricity 

corresponding to the household electrical appliance. If there are sufficient data, the 

model of residential electricity consumption based on household economic theory 

contains many significant factors, such as electricity price, household income, personal 

income, alternative energy price, household electrical appliances price, citizens 
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population density, household size, and household area [7-11]. And there are many 

other factors which may have significant impacts on electricity preference, such as 

weather or climate condition, holiday, weekend and so on [12].  

In some developed countries and areas, such as Europe, the United States, Japan, 

Hong Kong, there are many researches on multifactor residential electricity 

consumption models [13-16], due to the powerful data collection work system. But 

most of these researches only consider one or few of the factors mentioned above. 

Some researches even only focused on historical records of the electricity consumption 

and ignore all other factors.  

Some researchers have done multiple indicators annual prediction. Most of 

them introduced the factors of installed power capacity, historical yearly electricity 

consumption, gross domestic product, popularity, imports, exports and so on [13], 

[14], [20]. Some of them only consider the historical consumption data [16]. 

According to the existing records and experimental results, the annual prediction is 

suitable for extra-large zone (e.g. a country). And when it is accessible to obtain data 

like gross domestic product and popularity, the artificial neural network (ANN) is 

mostly applied, if not, the grey model can take its advantages [16], [21]. 

For short-term and medium-term predictions, the ANN is also widely used. 
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Many researchers have done optimizations based on the neural network itself. GA, 

PSO and Elman Neural Network [15], [19], [22], [27], [29] are some examples that 

have good performance. After optimization, the training speed, the prediction 

accuracy become better at certain degree.  

Some researchers have made changes on input factors or indicators, for 

example, introducing temperature, weekday or weekend, seasons [18], [23], [25]. 

According to some experimental results, changes of the number of historical 

consumption data will affect the prediction performance [26], [31], [32], [33], like the 

results of 1 hour before input and 24 hours input are different. Also, for the structure 

and parameters of neural network, there are more spaces to adjust, like the number of 

layers, the number of neurons in each hidden layer, the learning rules, the transfer 

function between each layer and so on [13], [20]. 

Besides ANN and GM (Grey Model), there are many excellent algorithms and 

models, such as SVM (Support Vector Machine), regression analysis, detail model 

simulation, statistical methods, and decision tree and so on. There are many 

comparisons among these methods [13], [18], [20], [23], [24], [30]. For different 

cases, different areas, different data set types, these methods have different 

performance and adaptation, and different methods have different model complexity, 
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usability, running speed, input needs and accuracy. For example, in principle, the 

regression analysis does not have higher accuracy than ANN, but its model 

complexity is lower than ANN, sometimes the cost performance ratio is an important 

consideration basis.  

2.3 BP Neural Network 

Neural network is a complex nonlinear system that consists of numerous 

neurons. In this system, every neuron has a relatively simple function and construction. 

However, when they are merged together into the entire system, the behavior can be 

very complex. In artificial neural networks, strength and condition of every connection 

between nodes are adjustable, it has strong ability of self-learning and self-adaption. 

The artificial neural network can be applied to many aspects and research areas. 

Dividing the data samples into three parts: the training data set, the validation data set 

and the testing data set. The training data set and the validation data set are used in the 

process of “training”, and the validation data set is randomly picked up from training 

data set in some proportion.  

In an artificial neural network, the neurons can be classified into three types 

according to their position and the information they process: input units, hidden units 

and output units. The input units receive the input information of the system, which 
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represent the outside signals or data. The output unit give the output after neural 

network processes, which represent the result. Hidden units form a layer between the 

input units and the output units. While they don’t represent any information of the 

entire system, but they are significant to the entire neural network and have profound 

impact on the prediction results. The connection between each neuron mainly reflect 

the process of information from input to output. This process is repeated many epochs, 

it is the important part of artificial neural network learning and training.  

The BP Neural Network is one of the artificial neural networks that are widely 

used in many research areas. This technique is also sometimes called backward 

propagation of errors are calculated because the error is calculated at the output layer 

and feedback through the network layers. 

There are two main processes in BP Neural Network learning: The first one is 

propagation, which include the generation of the output from each layer and the error 

(the difference between actual output and target value); the second one is updating the 

weight.  

For weight update, multiplying the error of weight’s output and input 

activation, then finding the gradient of the weight. A ratio of the gradient of the 

weight is subtracted from the weight. This ratio is named as learning rate which can 
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affect the training speed and performance. 

If the learning rate is low, the training will become more reliable, but the 

optimization will take a long time, because each step of the minimum value of the 

orientation loss function is small. 

If the learning rate is high, the training may not converge at all or even spread 

out. The change in weight can be so large that the optimization goes over the minimum, 

making the loss function worse. 

The weights need to be updated in the opposite direction of the gradient, thus 

this method is called as gradient descent.
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Chapter 3 BP Neural Network for Power Consumption Prediction 

The BP neural network is an algorithm which calculates the errors and 

propagates the error in the opposite direction of network computation. The simplest BP 

neural network has three layers. There is no connection between neurons in a single 

layer, and no direct connection between the input layer and the output layer.  

The BP neural network algorithm is one of the most widely used ANN models. 

It is a multi-layer feedforward network and its key feature is back propagating the error. 

It is applied to learn and memory huge amount of mapping relations of input-output 

models, and there is no need to disclose in advance the mathematical equation that 

describes these mapping relations. Its learning rule is to adopt the steepest descent 

method, where the back propagation is used to regulate the weight value and threshold 

value of the network to achieve the minimum error sum of square.
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3.1 BP Neural Network Model 

       o1     …   ok     …   om 

            ○    ○     ○      

    ω11                       ωjk 

     h1○    h2○  …   ○ hj …  ○hl  

 ω11                                                   ωij 

 ○     ○       ○        ○     ○  

 x1        x2   …    xi      …    xn-1           xn     
 

Figure 3.1 Structure of BP Neural Network. 

In Figure 3.1, x1, x2, …, xn are the neurons in the input layer, h1, h2, …, hn are the 

neurons in the hidden layer, o1, o2, …, on are the neurons in the output layer. ωij is the 

weight from neuron i in the input layer to neuron j in the hidden layer. ωjk is the weight 

from neuron j in the hidden layer to neuron k in the output layer.  

As shown by Fig. 3.2, the BP learning process can be described as follows: 

1. Forward propagation of operating signals: the input signals are propagated from 

the input layer via the hide layer to the output layer. During the forward 

propagation of operating signals, the weight values and offset values of the 

network are constant. The status of each layer of the neurons will only exert an 

effect on the next layer of the neurons. In case that the expected output cannot 

be achieved in the output layer, it can be switched into the back propagation of 

error signal. 

2. Back propagation of error signals: the difference between the actual output and 
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the expected output of the network is defined as the error signals. In the back 

propagation, the error signals are propagated from the output end to the input 

layer in a layer-by-layer manner. During the back propagation of error signals, 

the weight values of network are regulated by the error feedback. The 

continuous modification of weight values and offset values is applied to make 

the obtained output of network be closer and closer to the expected one. 
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Figure 3.2 Flow Chart of Error Calculation. 

3.2 Theoretical Analysis  

In BP neural networks, the activation function of neurons is a simulation of 

mathematic processes between each layer of neurons. The mathematic functions reflect 

the relationship between each layer. In the traditional 3-layer BP neural network, the 

most commonly used activation function is a standard sigmoid function. The standard 
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sigmoid function’s mathematic expression is shown below: 

1
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1 x
g x

e−
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                                  (1) 

The first work is network initialization. Let’s define the following parameters: 

• n: the number of input layer nodes;  

• l: the number of hidden layer nodes; 

• m: the number of output layer nodes; 

• ωij: the weight from neuron i of the input layer to neuron j of the hidden 

layers; 

• ωjk: the weight from neuron j of the hidden layer to neuron k of the 

output layer; 

• aj: the bias from the input layer to the hidden layer; 

• bk: the bias from the hidden layer to the output layer; 

• Ƞ: the learning rate; and  

• g(x): the activation function.  

In this case, the g(x) is the sigmoid function. Thus, the output of the hidden layer 

is  
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The output of the output layer is  
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The error calculation is  
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In Eq. (4), Yk is the expectation output, and Ok is the actual value of output. To 

simplify the process, the following equation was introduced: 
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where i, j, and k are integers, i = 1, 2, …, n, j = 1, 2, …, l, and k = 1, 2, ..., m. 

Thus, the weight updating equations are shown below. Eq. (7) shows the 

weight updating from the input layer to the hidden layer. Eq. (8) shows the weight 

updating from the hidden layer to the output layer. 
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The process is explained as follows. During the process of errors back 

propagation, the target makes the error function maintain the minimum value. In this 

case, the gradient descent algorithm is adopted, which means the weight update 

should be in direct proportion to the descent of error gradient.  
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The updated weight from the hidden layer to the output layer is: 
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Thus, the updating formula is: 
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The updated weight from the input layer to the hidden layer is: 

j

ij j ij

HE E

H 

 
= 

  
                              (11) 

The above equation leads to following process: 

1
1 1( )( ) ... ( )( )m

m m

j j j

OOE
Y O Y O

H H H


= − − + + − −

  
              (12) 

1 1 1

1

1

( ) ... ( )

( )

j m m jm

m

k k jkk

m

k jkk

Y O Y O

Y O

e

 





=

=

= − − − − −

= − −

= −





 

Another equation process is: 

1
( )

n

ij i jj i

ij ij

g x aH 

 
=

 +
=

 


                                 (13) 

1

1 1

( )
( ) [1 ( )]

(1 )

n

n n ij i ji
ij i j ij i ji i

ij

j j i

x a
g x a g x a

H H x


 


=

= =

 +
= +  − + 



= −


 

 

Thus, the updating formula of weight is: 
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The bias updating equations are shown below. Eq. (15) shows the bias 

updating from the input layer to the hidden layer. Eq. (16) shows the bias updating 
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from the hidden layer to the output layer. 
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The process of calculation for the bias updating equation is as below, which 

follows a process similar to the weight updating formula. It also uses the gradient 

descent algorithm. 

The update of bias from the hidden layer to the output layer: 

( )( )k
k k k

k k

OE
Y O e

b b


= − − = −

 
                      (17) 

Thus, the bias updating formula is: 

k k kb b e= +                                   (18) 

The update of bias from hidden layer to output layer 
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More specifically:   
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Thus, the updating formula of bias is  

1

(1 )
m

j j j j jk k

k

a a H H e 
=

= + −                             (22) 

3.3 Selection of Parameters  

In this project, the initial weight and bias of each layer are randomly picked by 

the MATLAB neural network tool box. The larger the learning rate, the quicker the 

learning processes; however, quicker learning processes have lower accuracy. To get 

a balance between learning speed and accuracy, the learning rate is selected as 0.01.  

There is one node in the output layer and it reflects the predicted electricity 

consumption.  

The number of input layer nodes will vary depending on various factors. For 

example, if the historical electricity consumption is the only factor considered, there 

will be fewer nodes examined than when other factors are taken into account, such as 

the weather and weekend/holiday. 

For the number of nodes in the hidden layer, two necessary conditions are 

considered: 
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1. The number of nodes in the hidden layer must be fewer than N-1. Here N 

is the number of training samples. Otherwise, the error of the network 

model will have no relationship with the training samples’ features and it 

will race to zero. Thus, there is not a generalization ability of network 

model; and 

2. The number of training samples should be larger than the connection 

weight of the network model.  

According to these two conditions and previous research [34], there are four 

empirical formulas to quantify the hidden layers. 

                    

              0

n
i

m

i

C k
=


 

                                    (23) 

where k is the number of training samples, m is the number of nodes in hidden layer, n 

is the number of nodes in input layer, and i is a constant value locate in [0, n]. 

The second equation is as follows: 

                       1n n m a= + +
                                   (24) 

where n1 is the number of nodes in the hidden layer, n is the number of nodes in the 

input layer, m is the number of nodes in the output layer, and a is a constant value locate 

in [1, 10]. 

The third equation is as follows: 
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                      1 2logn n=
                                         (25) 

where n1 is the number of nodes in the hidden layer and n is the number of nodes in the 

input layer. 

The fourth equation is as follows: 

n1=2n+1                                     (26) 

where again n1 is the number of nodes in the hidden layer and n is the number of nodes 

in the input layer. 

In the actual implementation of experimental study, the trial and error method 

will be used to test these empirical formulas in order to find the optimal number of 

nodes in the hidden layer. This method will be discussed in Chapter 5. 
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Chapter 4 Data Processing 

4.1 Data acquiring  

he historical electricity consumption data is downloaded from the Pecan Street 

Project, as collected by the Pecan Street Inc. (www.pecanstreet.org). It provides the 

electricity consumption data per hour in its smart grid community. For this thesis, ten 

households’ electricity consumption were collected. This ten households were 

randomly picked up from the community. These households have been offering their 

power consumption information for many years. As such, it is a stable and reliable 

source of data, which makes it convenient for future research and validation. 

Considering the size of the data set, two years (2016 and 2017) data are collected, 

which shows the households’ hourly electricity consumption. The data has more than 

17,000 record points which meets the requirement for the BP neural network 

prediction model. 

The weather condition data of Austin, Texas was downloaded from the 

National Climatic Data Center (NCDC). In this thesis, two factors were taken into 

consideration: temperature and humidity.

http://www.pecanstreet.org/
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 Weekend information was gathered through observing general calendar 

trends. Because different states have different holidays, holiday information was taken 

from the Office Holidays of Texas State (www.officeholidays.com ).  

Thus, the raw data set has three main parts: historical electricity consumption, 

weather information and weekend/holiday information.  

4.2 Limitations  

The raw data from real-world is not perfect, there are two issues need to be 

addressed, missing data and data errors.  

There are a few data errors where the information was recorded incorrectly. 

For example, Fig. 4.1 shows the temperature or humidity was recorded as -999.99 for 

a given hour.  

 

Figure 4.1 Error Data Example. 

To deal with this kind of error, the average value of two hours before the 

recorded error and two hours after the recorded error is used. If xi is a wrong data, 

then the refilling value is as below: 

2 1 1 2

4

i i i i
inew

x x x x
x − − + ++ + +

=                        (23) 

In addition to data errors, there are many data points missing. While some 

missing data consists of single hour, in some cases, there are several continuous hours 

http://www.officeholidays.com/
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missing for the entire day. Theoretically speaking, there should be 17544 records for 

hourly electricity consumption for 2016 and 2017. However, the raw data only 

contains 17427 records. Even if the missing part is less than 1% of the entire data set, 

it will bring negative effects on the final prediction accuracy. Since the power 

consumption information is sequential, any missing data will break the 

consecutiveness of information. For example, if data is missing from 1 pm to 7 pm, 

the MATLAB program will automatically read 7 pm data to fill in 2 pm data slot and 

so on.  

When an individual hour record is missing, the error is resolved in a manner 

similar to correcting data errors, using the average value of two hours before the 

missing value and two hours after the missing value.  

If the missing data covers several continuous hours, a different method is 

applied. For example, the power consumption records for 2016/07/08 and 2016/07/09 

are incomplete because there are many hourly data records missing. Figure 4.2 

demonstrates this situation.   
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Figure 4.2 Missing Data Example 1. 

In this case, it is not feasible to simply calculate the average value of two 

hours before and two hours after because so many hours are missing. Instead, the data 

of two days before the missing value range and two days after the missing value range 

that cover the missing data range are considered. After identifying these four days, the 

values of the missing data range are averaged to refill the missing data. 

To illustrate this process using the example described in Fig. 4.2, four sets of 

data are slected: 2016/07/06 15:00 to 2016/07/07 19:00, 2016/07/05 15:00 to 

2016/07/06 19:00, 2016/07/10 15:00 to 2016/07/11 19:00, 2016/07/11 15:00 to 

2016/07/12 19:00. Then the average value of the data range within the four sets of 

data is calculated. Then this average value is used to refill the missing data.  

There is one case where this resolution did not work. On 2017/12/31, there 

were only records from 00:00 to 17:00. Many sequential hours were missing. As it 

was the last day of data set, no following records were available to calculate the 
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average value. To maintain accuracy and performance, the 2017/12/31 record was 

deleted from entire data set. This occurrence is demonstrated in Fig. 4.3. 

 

Figure 4.3 Missing Data Example 2. 

4.3 Data Categories 

In order to achieve higher prediction accuracy, the data sets have been 

adjusted accordingly depending on defferent prediction scales: hourly, daily, weekly 

and monthly.  

For hourly prediction, the data set has 17520 rows and eight columns. Rows 

represent the hourly time (for example: 6:00, 7:00 and so on). The eight columns 

follow the given format: electricity consumption (in kWh), month, temperature (in 

Fahrenheit), humidity (in %), hour (which hour in a day), day (which day in a week), 

whether or not it is a weekend, and whether or not it is a holiday. 

For daily prediction, the data set has 730 rows and nine columns. Each row 

corresponds to each day. The nine columns follow the given format: electricity 

consumption (in kWh), highest temperature of the day (in Fahrenheit), lowest 

temperature of the day (in Fahrenheit), average temperature of the day (in Fahrenheit), 
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highest humidity of the day (in %), lowest humidity of the day (in %), average 

humidity of the day (in %), whether or not it is a weekend, and whether or not it is a 

holiday. 

For weekly prediction, the data set has 104 rows and eight columns. Each row 

represents each week. The eight columns follow the given format: electricity 

consumption (in kWh), highest temperature of the week (in Fahrenheit), lowest 

temperature of the week (in Fahrenheit), average temperature of the week (in 

Fahrenheit), the highest humidity of the week (in %), lowest humidity of the week 

(in %), average humidity of the week (in %), and the number of holidays in the week. 

For monthly prediction, the data set has 48 rows and nine columns. Rows 

represent each month. The nine columns follow the given format: electricity 

consumption (in kWh), highest temperature of the month (in Fahrenheit), lowest 

temperature of the month (in Fahrenheit), average temperature of the month (in 

Fahrenheit), highest humidity of the month (in %), lowest humidity of the month 

(in %), average humidity of the month (in %), the number of weekends in the month, 

and the number of holidays in the month. 

The daily, weekly and monthly data are actually statistics of the hourly data. 

For example, to calculate the daily data set, the electricity consumption data is 
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obtained by adding the total hourly electricity consumption on that day. The highest 

and lowest temperatures are found among the hourly reports for the day. The average 

temperature is the mean value of the 24-hour period. Calculating daily humidity 

follows the same process as calculating daily temperature. The weekend and holiday 

information can be checked using the calendar.  

To calculate the weekly data set, the electricity consumption data is obtained 

by adding the total hourly electricity consumption for that week. The highest and 

lowest temperatures are found among the hourly reports for the week. The average 

temperature is the mean value of the 168-hour period. Calculating weekly humidity 

follows the same process as calculating weekly temperature. Because there are always 

two weekend days in a week, thus weekend information is meaningless in weekly data 

set. The holiday information can be checked using the calendar. 

For the monthly data set, the electricity consumption data is calculated by 

adding the total hourly electricity consumption for that month. The data cannot be 

pulled from weekly reports, because a given month does not always have the same 

number of weeks as another month. For example, the first part of a week could belong 

to June and the rest of the week could belong to July. The highest and lowest 

temperatures are found among the hourly reports for the month. The average 
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temperature is the mean value of the hourly records for the month. Calculating 

monthly humidity follows the same process as calculating monthly temperature. The 

weekend and holiday information can be checked using the calendar. 

Following these data processing steps, the possible errors in the obtained four 

data sets are minimized. 

4.4 Data Normalization 

In machine learning area, different evaluation indicators have different 

measurement units and order magnitude, these indicators refer to each column in the 

data set talked about. The original data with original measurement units and 

magnitude will make it hard to get satisfactory analysis result and training 

performance. To reduce this effect, standardization process is necessary and important. 

Among many standardization methods, the normalization process is one of the most 

typical approaches.  

In this thesis, the normalization is processing input matric by map row 

minimum and maximum values to [-1,1]. Using processing instruction mapminmax in 

MATLAB tool box, this instruction can normalize the data set row by row. The 

computational formula is: 

y = (ymax-ymin)*(x-xmin)/(xmax-xmin) + ymin
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Chapter 5 Experimental Results 

5.1 Experimental environment 

The prediction scheme is tested using MATLAB. MATLAB software has both 

a powerful computing ability and good visualization ability. The program contains a 

lot of toolboxes, with the neural network toolbox being one of them. In this thesis, 

most computation, simulation and output results were finished by MATLAB. 

5.2 Experimental Settings  

There are two methods for obtaining hourly prediction: with and without the 

weather and weekend/holiday factors in the data set. When omitting the weather and 

weekend/holiday factors, the inputs only contain the historical electricity consumption 

data.  

To find how many historical data inputs should be taken into consideration to 

achieve the highest accuracy and lowest mean square error (MSE) for hourly 

prediction, several tests were conducted by considering:  

• 0 hour (only considering weather and weekend/holiday information);  

• 1 hour (with & without weather and weekend/holiday information); 
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• 2 hours (with & without weather and weekend/holiday information);  

• 4 hours (with & without weather and weekend/holiday information);  

• 6 hours (with & without weather and weekend/holiday information);  

• 12 hours (with & without weather and weekend/holiday information);  

• 24 hours (with & without weather and weekend/holiday information).  

For daily prediction, several tests were conducted following a pattern similar 

to hourly prediction by considering:  

• 0 day (only considering weather and weekend/holiday information);  

• 1 day (with & without weather and weekend/holiday information);  

• 3 days (with & without weather and weekend/holiday information);  

• 5 days (with & without weather and weekend/holiday information);  

• 7days (with & without weather and weekend/holiday information);  

• 9 days (with & without weather and weekend/holiday information);  

• 11 days (with & without weather and weekend/holiday information);  

• 13 days (with & without weather and weekend/holiday information).  

For weekly prediction, several tests were conducted by considering:  

• 0 week (only considering weather and weekend/holiday information); 

• 1 week (with & without weather and weekend/holiday information);  
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• 2 weeks (with & without g weather and weekend/holiday information);  

• 3 weeks (with & without weather and weekend/holiday information);  

• 4 weeks (with & without weather and weekend/holiday information);  

• 5 weeks (with & without weather and weekend/holiday information).  

For monthly prediction, several tests were conducted by considering:  

• 0 month (only considering weather and weekend/holiday information);  

• 1 month (with & without weather and weekend/holiday information);  

• 2 months (with & without weather and weekend/holiday information);  

• 3 months (with & without weather and weekend/holiday information);  

• 4 months (with & without weather and weekend/holiday information). 

For the different tests above, the number of neurons in the input layer and the 

hidden layer must be adjusted correspondingly.  

5.3 Experimental Results 

5.3.1 Hourly prediction 

a. With weather and weekend/holiday factors  
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Figure 5.1 Accuracy Variation Diagram of Different Hours Input (with weather). 

 

Figure 5.2 MSE Variation Diagram of Different Hours Input (with weather). 

Figures 5.1 and 5.2 demonstrate that with the recorded historical electricity 

consumption data considered, the higher accuracy and lower MSE are obtained. 

Obviously, the historical electricity consumption data tells more than only considering 

the weather and weekend/holiday can do. However, there is not much benefit by 

applying longer history record.  

83

84

85

86

87

88

89

90

91

92

0 1 2 4 6 12 24

Accuracy

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 1 2 4 6 12

MSE



35 

 

b. Without weather and weekend/holiday factors included (date information) 

 

Figure 5.3 Accuracy Variation Diagram of Different Hours Input (without weather). 

 

Figure 5.4 MSE Variation Diagram of Different Hours Input (without weather). 

Figures 5.3 and 5.4 demonstrate that with more historical electricity 

consumption records, higher accuracy and lower MSE are obtained. It is really 

interesting that when the weather information and weekend/holiday factors are not 

taken into account, the historical electricity consumption record plays a more 
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significant role and the longer a history is counted, the better performance is achieved. 

The trend does not stop even 24 hours history has been counted.  

c. Comparison between cases a) and b) 

Figures 5.5 and 5.6 demonstrate that for hourly prediction, considering 

weather and weekend/holiday factors has higher accuracy and smaller MSE than 

omitting these factors. While in general, the history information is useful to improve 

the prediction accuracy, much less historical records is needed to achieve the decent 

level when the weather and weekend/holiday factors are available. This actually 

implies lower computing and transmission overhead. 

 

Figure 5.5 Comparison of Two Types Hourly Predictions’ Accuracy Variation. 
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Figure 5.6 Comparison of Two Types Hourly Predictions’ MSE Variation. 

5.3.2 Daily Prediction  

a. With weather and weekend/holiday factors included (date information) 

Figures 5.7 and 5.8 demonstrate that there is not a clear relationship between 

prediction performance and the amount of historical electricity consumption data 

applied. However, it may be an experience that using seven days of historical record 

has the highest accuracy with a fair MSE. 
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Figure 5.7 Accuracy Variation Diagram of Different Days Input (with weather). 

 

Figure 5.8 MSE Variation Diagram of Different Days Input (with weather). 

b. Without weather and weekend/holiday factors included (date information) 

When the weather and weekend/holiday factors are not considered, the results 

shown by Fig. 5.9 and Fig. 5.10 are really interesting. It looks the accuracy becomes 

worse when longer history record is applied, and the MSE is not related to the length 

of history records.  
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Figure 5.9 Accuracy Variation Diagram of Different Days Input (without weather). 

 

Figure 5.10 MSE Variation Diagram of Different Days Input (without weather). 

c. Comparison between a) and b) 

Putting the results from cases a) and b) together, Fig. 5.11 and Fig. 5.12 

demonstrate that, for daily prediction, considering weather and weekend/holiday 

factors yields much higher accuracy and lower MSE. Meanwhile, the historical record 

does not help the prediction. 
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Figure 5.11 Comparison of Two Types Daily Predictions’ Accuracy Variation. 

 

Figure 5.12 Comparison of Two Types Daily Predictions’ MSE Variation. 
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Figure 5.13 Accuracy Variation Diagram of Different Weeks Input (with weather). 

 

Figure 5.14 MSE Variation Diagram of Different Weeks Input (with weather). 

Figure 5.13 and Figure 5.14 demonstrate that, for weekly prediction, when the 

weather and weekend/holiday factors are considered, including more weekly 

historical electricity consumption data actually decreases the prediction accuracy. 

When we consider the historical data input for three weeks, the performance is the 
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b. Without weather and weekend/holiday factors included (date information) 

 

Figure 5.15 Accuracy Variation Diagram of Different Weeks Input (without weather). 

 

Figure 5.16 MSE Variation Diagram of Different Weeks Input (without weather). 

As shown by Fig. 5.15 and Fig. 5.16, for weekly prediction, when the weather 
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consumption data does not always contribute to the predictions. Using three weeks 

historical data got the best prediction with the highest accuracy and the lowest MSE. 
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But two weeks of the historical data leads to the worst result.   

c. Comparison between a) and b) 

 

Figure 5.17 Comparison of Two Types of Weekly Predictions’ Accuracy Variation. 

 

Figure 5.18 Comparison of Two Types of Weekly Predictions’ MSE Variation. 

Figure 5.17 and Figure 5.18 demonstrate that, for weekly prediction, including 

weather information and weekend/holiday factors yields more accurate prediction 

performance than omitting these factors. However, the amount of historical record 
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does not bring much difference. 

5.3.4 Monthly prediction 

a. With weather and weekend/holiday factors included (date information) 

 

Figure 5.19 Accuracy Variation Diagram of Different Months Input (with weather). 

 

Figure 5.20 MSE Variation Diagram of Different Months Input (with weather). 

The curves shown in Fig. 5.19 and Fig. 5.20 demonstrate the change of 
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weekend/holiday factors included. The accuracy decreases when more monthly 

historical electricity consumption data is used. When two months of historical data is 

used, the accuracy is the lowest. The performance recovers after that, however, due to 

the limited data set, this work could not try more.  

b. Without weather and weekend/holiday factors included (date information) 

It is very interesting as shown by Fig. 5.21 and Fig. 5.22, for monthly 

prediction, when the weather information and weekend/holiday factors are not 

considered, the prediction performance will improve as more historical electricity 

consumption data inputs are added. 

 

Figure 5.21 Accuracy Variation Diagram of Different Months Input (without weather). 
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Figure 5.22 MSE Variation Diagram of Different Months Input (without weather). 

c. Comparison between a) and b) 

Putting the performance curves of these two scenarios together, Fig. 5.23 and 

Fig. 5.24 verified that for monthly prediction, including the weather information and 

weekend/holiday factors yields more accurate prediction performance than omitting 

these factors. But again, the influences of the length of historical data is not 

significant. 
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Figure 5.23 Comparison of Two Types of Monthly Predictions’ Accuracy Variation. 

 

Figure 5.24 Comparison of Two Types of Monthly Predictions’ MSE Variation. 
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should be leveraged to achieve the optimal prediction result.  

Because of the randomness of computer training and the drawback of the 

BPNN, the initial weight and bias are generated randomly. The computer training 

results can easily run into the local optimization solution but not the global 

optimization solution. For each experiment, the program run ten times and the average 

value is adopted as the final result. 

Figures 5.25 to 5.28 show the best prediction performance in four time scales 

with the weather condition factor considered. 

 

Figure 5.25 Best Performance of Hourly Prediction. 



49 

 

 

Figure 5.26 Best Performance of Daily Prediction. 

 

Figure 5.27 Best Performance of Weekly Prediction. 
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Figure 5.28 Best Performance of Monthly Prediction. 

As shown in Figs. 5.25, 5.26, 5.27 and 5.28, among the four prediction time 

resolutions, the hourly prediciton and the daily prediction have achieved better fit than 

the weekly and the monthly predictions. However, the average accuracy of the 

monthly and the weekly predictions were slightly higher than the hourly prediction. 

The average MSE of the hourly and the daily predictions are lower than the weekly 

and the monthly predictions. However, the prediction performance of the monthly and 

the weekly predictions are unstable. For example, the accuracy of prediction varies 

from 69% to 93%. The performance of the daily and the hourly predictions is much 

more stable with the variation below 2%. 
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It is not a surprise that this researh confirms the data size is the dominant 

factor that brings impact to the variation in accuracy. The hourly prediction and the 

daily prediction have much larger training and testing data sets. Under the repeated 

experiments, the chance factor and local optimum are removed. Theoretically, the 

larger the data size, the better the prediction performance.  

Sometimes, there are several data points that deviate from the norm range. But 

their influences can be mitigated when a sufficiently large data set is available. 

Meanwhile, if the data set is limited, the abnormal data points will make the 

prediction result fluctuate wildly, even make the misprediction where the predicted 

result has the opppsite changing trend with actual value.  

 

Figure 5.29 The accuracy of predictions on four time scales with weather factors 

considered. 
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Figure 5.30 The MSE of predictions on four time scales with weather factors considered. 

Without weather condition, best performance of four kinds of predictions 

 

Figure 5.31 The Accuracy of predictions on four time scales without weather factors 

considered. 
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Figure 5.32 The MSE of predictions on four time scales without weather factors 

considered. 

b. Influence of each individual factors 

In this work, the impacts of each individual factors are studied, in all four 

prediction time scales. Figures 5.33, 5.34, 5.35, and 5.36 present the drop of 

prediction accuracy when one of the factors is ignored.   

 

Figure 5.33 The influences of each individual factors on the prediction accuracy:  

hourly prediction. 
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Figure 5.33 illustrates the impacts on prediction accuracy for hourly prediction 

when one of the factors is ignored. The temperature and humidity have the largest 

influence on the prediction performance. However, omitting a given day in a week or 

a month in a year does not introduce a significant effect in prediction performance. 

For daily prediction, the impacts of each factor are illustrated in Fig. 5.34. The 

highest and the lowest temperatures have the largest effect on prediction performance. 

However, the average humidity has the least effect on prediction performance. 

 

Figure 5.34 The influences of each individual factors on the prediction accuracy:  

daily prediction. 

Figure 5.35 shows the case of the weekly prediction. The maximum and the 

minimum temperatures have the most significant influence on the prediction 
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weeks at a stable level, it did not greatly affect prediction accuracy. 

 

Figure 5.35. The influences of each individual factors on the prediction accuracy:  

weekly prediction. 

For monthly prediction, delete one of the input factors, the accuracy drops 

down figure. Because nearly all the months had a max humidity of 99%, max 

humidity did not affect prediction accuracy. 

 

Figure 5.36 The influences of each individual factors on the prediction accuracy: 

monthly prediction. 
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c. Influence of BPNN hidden layer design 

To find the most appropriate number of nodes in the hidden layer, this thesis 

validates multiple empirical formulas because there is not a universal formula for 

prediction models. Therefore, the method of trial and error is utilized. The test case is 

the daily prediction with the weather and weekend/holiday factors considered, using 

seven days’ historical electricity consumption history. Because this model has 

relatively stable performance. Here the number of input nodes is 15 and the number of 

output nodes is 1.  

For the four different empirical formulas, the number of nodes in the hidden 

layer should be as follows: 

1. 0

n
i

m

i

C k
=


, in this case, because the number of samples is larger than 700, the 

number of nodes in the hidden layer should be larger than 10. 

2. 1n n m a= + +
, the number of nodes in the hidden layer should be around 5 

to 14. 

3. 1 2logn n=
, the number of nodes in the hidden layer should be around 4. 

4. n1=2n+1, the number of nodes in the hidden layer should be around 31. 

The experimental result is shown in Figs. 5.37 and 5.38. When the number of nodes in 

the hidden layer increases, the prediction accuracy appears a constant flux wave, but 
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follows a downward trend. In terms of MSE, the best prediction performance occurs 

when the number of nodes in the hidden layer is 15 or 16. 

 

Figure 5.37 Prediction Accuracy with Different Number of Nodes in Hidden Layer. 

 

Figure 5.38 Prediction MSE n with Different Number of Nodes in Hidden Layer. 
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values based on empirical formula, there is not a clear rule.
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Chapter 6 Conclusions and Discussions 

This thesis has explored to apply BPNN in electricity consumption prediction. 

Leveraging the data set from the Pecan Street Project, the influences of different 

factor are experimentally investigated. According to the experimental results, it is 

clear that including weather and weekend/holiday factors will increase the accuracy 

and reduce the MSE for all four prediction scales: hourly, daily, weekly, and monthly. 

For different prediction scales, the effects of including weather and 

weekend/holiday factors are different. For example, the maximum humidity has an 

insignificant effect on weekly and monthly predictions than for hourly and daily 

predictions. 

Hourly and daily predictions have relatively better performance than weekly 

and monthly predictions. One of the most important reasons could be the size of the 

data set. Theoretically, the more data we train the computer to process, the higher the 

accuracy. Therefore, the experiments will be improved. 

Regarding the BPNN, there are many empirical formulas or commonly used 

values, such as learning rate, epoch times, proportion of different data set (training,
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testing and validation), the number of nodes in hidden layer and so on. However, 

when conducting real experiments, we have to repeat experiments to find the best 

value because there are not well-defined guidelines for choosing the parameters.  

Although this thesis has made relatively satisfactory prediction performance 

for hourly and daily prediction, there are multiple insufficiencies, which can be solved 

through future research. 

The size of the data set is not large enough to conduct a decent weekly and 

monthly prediction, which causes fluctuations in prediction results. It is expected that 

better performance can be achieved if more data sets are available. If the data set is 

large enough, long-term prediction can be explored, such as quarterly prediction or 

even annual prediction. 

If more data sets are acquired, the hourly and daily predictions will have 

numerous inputs samples. Due to the drawback of the BP Neural Network, the 

computer training time will be quite long. It will be easily trapped into the local 

optimum value but not the global optimum value. This case cannot be solved easily 

by repeating the experiments more times. Some optimization methods can be 

introduced to speed up the training process and avoid getting into the local optimum 

solution, such as PSO (particle swarm optimization), GA (genetical algorithm) and so 
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on. 

Because of the limitation of data set, in this thesis, there is not an obvious 

effect of GA optimized BPNN, the improvement of training speed and prediction 

accuracy is little.   

Compared with other methods, the traditional BPNN is suitable for short-term, 

multifactor electricity consumption prediction of the Pecan Street Project. Before 

determining which method to use, many research works have been done, and some 

methods have been tried.  

The grey model is aimed at information poor and data incomplete cases, 

although it has following advantages: light computation work, easily modeling, 

finding unobvious relationship and information from unregular raw data, relatively 

high accuracy. Its advantages cannot be fully used in this high resolution, rich data 

type’s prediction case.  

The regression analysis is a simple model but has good extrapolation. But it is 

mainly used in single factor modeling, such as only considering historical 

consumption data. It has following disadvantages: not very fit for complex forecasting 

case, cannot include multifactor effects.  

The BPNN is a mature algorithm which has a long history. There are new 
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neural network models that avoid the drawback of the BPNN, like the LSTM (long 

short-term memory) Neural Network, which is suitable for time series. In future work, 

these two kinds of neural networks can be compared in various aspects, including 

learning speed, accuracy, MSE and so on. 
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