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Abstract 

There is a growing body of evidence supporting the association between 

inflammation and major depressive disorder (MDD). One plausible mechanism for this 

association is sensitization of the immune response, possibly due to prior exposure to 

stressors. To investigate the validity of this hypothesis, a series of three complimentary 

cross-species studies was conducted. Study 1 examined the associations between 

circulating levels of inflammatory markers and in vitro immune reactivity with women’s 

history of recurrent MDD (rMDD) and their current symptoms of anhedonia. The 

potential moderating role of women’s history of childhood abuse was also examined.  

Study 2 and 3 focused on animal models of the influence of adolescent stress on LPS-

induced changes in adult anhedonic behavior (Study 2) and inflammatory gene 

expression in brain areas associated with reward processing and stress (Study 3). 

Although there was no evidence of increased circulating or stimulated levels of 

inflammation among women’s history of rMDD in Study 1, current level of anhedonia 

was associated with increased stimulated levels of inflammatory markers. Results of 

Study 2 showed a marginally significant trend for the effect of adolescent stress exposure 

on anhedonia-like behavior in adult rats, such that rats subjected to an acute stressor in 

adolescence showed a decreased preference for palatable substance (sucrose) as adults. 

Finally, the results of Study 3 provided no support for altered neuroinflammatory 

response in the brain areas related to reward processing and stress based on the 

adolescent stress exposure. Overall, the findings highlight the importance for integration 
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of interdisciplinary methodology in psychological studies, yield initial support for the 

role of the immune system in anhedonia and provide important directions for future 

research.  
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Depression and Inflammation 

Major depressive disorder (MDD) is the leading cause of disability worldwide 

(“WHO | Depression,” 2016), with 10% of men and 20% of women in the U.S. 

experiencing at least one episode of MDD during their lives (Vos et al., 2012). 

Additionally, up to 60% of individuals who experience an initial MDD episode are 

expected to relapse following recovery and the risk of recurrence increases with each 

subsequent episode (Bulloch, Williams, Lavorato, & Patten, 2014; Solomon et al., 2000). 

Recurrent MDD (rMDD) is characterized by distinct genetic, neurobiological, and 

hormonal profiles compared to a single MDD episode (sMDD; Admon et al., 2014; 

Levinson et al., 2003), carries a greater risk for more adverse and chronic 

consequences,(Burcusa & Lacono, 2007; Lewinsohn, Allen, Seeley, & Gotlib, 1999), and 

is less responsive to antidepressant medication (Kaymaz, van Os, Loonen, & Nolen, 

2008).  

Although multiple neural mechanisms are likely to contribute to depression 

susceptibility later in life, a rapidly growing body of research suggests that immune-

derived signaling factors, such as pro-inflammatory cytokines, play an important role in 

the pathogenesis of depression.  For example, otherwise healthy individuals with MDD 

display elevated peripheral and cerebrospinal fluid (CSF) levels of inflammatory immune 

markers (e.g., IL-6, IL-1β, C-reactive protein; Dowlati et al., 2010; Ford & Erlinger, 

2004; Levine et al., 1999; Liu, Ho, & Mak, 2012). In addition, individuals suffering from 

chronic and acute inflammatory conditions demonstrate increased levels of inflammatory  
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markers and depressive symptoms (Capuron et al., 2002; Musselman et al., 2001; Owen, 

Eccleston, Ferrier, & Young, 2001). Furthermore, up to 50% of patients undergoing 

cytokine immunotherapy develop MDD (Miller, Maletic, & Raison, 2009). Moreover, 

animals that were administered inflammatory cytokines demonstrate sickness behavior, 

which closely resembles the depressive phenotype in humans (Miller & Raison, 2016). 

Finally, higher levels or circulating inflammatory markers in childhood prospectively 

predicted greater risk of developing depression and psychopathology in adulthood 

(Khandaker, Pearson, Zammit, Lewis, & Jones, 2014).  

Several cytokines have emerged from previous research as strong candidates for 

playing a significant role in MDD, including IL-1β, IL-6, IL-1β, and IL-10 (Anisman, 

Ravindran, Griffiths, & Merali, 1999; Dowlati et al., 2010; Goshen & Yirmiya, 2009; 

Mesquita et al., 2008; Omrani et al., 2009).  IL-6 has emerged as one of the strongest 

candidates from several meta-analyses that examined human studies of inflammatory 

processes and depression (Dowlati et al., 2010; Howren, Bryant, Lamkin, & Suls, 2009; 

Liu et al., 2012). Recent evidence suggests that one of the ways in which IL-6 impacts 

neurotransmission and subsequent behavior is by exerting direct regulatory control over 

serotonin transporter (SERT) activity, potentially linking this cytokine to one of the 

hypothesized mechanisms underlying the development and maintenance of depression 

Delgado (2000). Providing additional support for this link, there is evidence that IL-6 

leads to decreases in mRNA and protein levels of SERT in vitro and in vivo (Kong et al., 

2015). Conversely, the hippocampal tissue of mice lacking IL-6 expression (IL-6 KO) 

has been shown to contain increased levels of SERT, which corresponded to decreased 
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depression-like behaviors and blunted response to antidepressant medication (Kong et al., 

2015). 

 Another cytokine that has been frequently implicated in MDD and depression-

like behavior is IL-1β. An ample body of human and translational animal research 

suggests that MDD and depression-like behavior are frequently accompanied by 

increased levels of IL-1β (Michael Maes, Song, & Yirmiya, 2012). As with IL-6, IL-β 

has been shown to modulate SERT levels (Zhu, Blakely, & Hewlett, 2006), and mediate 

the effects of changes in SERT activity on subsequent depression-like behavior following 

exposure to a common pathogen, lipopolysaccharide (LPS), that it typically used in 

research to induce the immune response (Zhu et al., 2010). 

 Each of the cytokines reviewed thus far are proinflammatory cytokines and are 

associated with T helper 1 cells (Th1).  In addition to these, there is evidence that Th2 

cytokines, or anti-inflammatory cytokines, including IL-10, also play a role in MDD and 

depression-like behaviors, such that the circulating levels of IL-10 increase following 

anti-depressant treatment (Tavakoli-Ardakani, Mehrpooya, Mehdizadeh, Hajifathali, & 

Abdolahi, 2015). Providing further support for the role of IL-10 in MDD and depression-

like behavior, Mesquita et al. (2008) showed that IL-10 knockout (KO) mice displayed 

increased depression-like behaviors, while mice that overexpressed IL-10 evidenced 

decreased depression-like behaviors. Moreover, systemic IL-10 administration has been 

shown to decrease depression-like behavior in rodents (Mesquita et al., 2008). Lastly, 

similarly to IL-6 and IL-1β, IL-10 has been shown to alter SERT levels. Specifically, 

high concentrations of IL-10 has been shown to induce SERT production in vitro, while 

low levels of IL-10 decrease SERT production (Latorre et al., 2013).  
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 In addition to these well-established cytokines, there is growing evidence for the 

potential role of IL-33 in depression.  IL-33 is a multifunctional ligand within the IL-1 

superfamily (Baekkevold et al., 2003; Schmitz et al., 2005). By binding to the ST2 

receptor, the ligand for which remained unknown until 2005, (Ali et al., 2007; Schmitz et 

al., 2005), IL-33 activates nuclear factor kappa B (NF-κB) and p38 mitogen-activated 

protein kinases (MAPK), culminating in altered expression of downstream pro-

inflammatory cytokines, chemokines, and anti-inflammatory cytokines (Allakhverdi, 

Smith, Comeau, & Delespesse, 2007; Kakkar & Lee, 2008; Mirchandani, Salmond, & 

Liew, 2012; Moulin et al., 2007; Yasuoka et al., 2011). Thus, IL-33 appears to be 

embedded within key signaling pathways that are already known to link cytokine 

signaling with MDD. Additionally, previous research suggests the involvement of IL-33 

in neuroinflammatory processes (Chapuis et al., 2009; Yu et al., 2012) and bipolar 

disorder (Barbosa et al., 2014). There is also preliminary evidence that IL-33 may 

increase risk for rMDD. Specifically, our laboratory previously examined whether 

naturally occurring variation in the IL-33 and IL-1β genes would moderate the link 

between women’s history of childhood abuse and their risk for MDD. We found that, 

among women with a history of childhood abuse, the protective IL-33 CT haplotype was 

associated with their history of rMDD. We also found that circulating IL-33 and IL-1β 

levels were significantly higher among women with rMDD than among women with a 

single MDD episode (sMDD) and women with no history of depression. Additionally, we 

expanded the project to the CNS using rat brain tissue. We found that an acute stressor 

increased IL-33 expression in the paraventricular nucleus of the hypothalamus (PVN) 

and, to a lesser extent, the rat analogue of the prefrontal cortex (PFC). In combination, 
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these results provide preliminary evidence for the role of IL-33 in stress response and risk 

for rMDD.  Given the aforementioned findings, this proposal aims to focus on IL-6, IL-

1β, IL-10, and IL-33 in the context of depression.  

In addition to examining the association between circulating levels of 

inflammatory markers and depression diagnosis and symptoms, researchers developed a 

paradigm in which a stimulated in vitro cytokine response in peripheral blood 

mononuclear cells (PBMCs) to an immune stressor is measured. Early studies that 

employed this paradigm reported greater levels of induced IL-1β and IL-6 among 

psychiatric inpatients with MDD (Maes et al., 1993), compared to never depressed 

controls. However, interpretation of these findings is complicated by multiple factors that 

could impact immune functioning, including changes in usual diet, sleep schedule, and 

additional stress levels, which are all associated with inpatient hospitalization (Weizman 

et al., 1994). Similar studies conducted with outpatients with current MDD report 

increased production of inflammatory cytokines following an in vitro challenge with 

cortisol and dexamethasone (Heiser, Lanquillon, Krieg, & Vedder, 2008). To capture the 

potential association between history of rMDD and both ambient levels of peripheral 

inflammatory markers as well as the magnitude of a cytokine response to an immune 

challenge, we aimed to assess both circulating and stimulated levels of IL-1β, IL-6, IL-10 

and IL-33. 

In addition to examining the presence of depression generally, there is evidence 

that inflammation may play a key role in specific depressive symptoms suggesting the 

possible existence of different biological subtypes of MDD (Holtzheimer & Mayberg, 

2011). Although only a small number of studies examined the effects of inflammation on 



 

� 6 

MDD features that go beyond somatic and vegetative symptoms (Slavich & Irwin, 2014), 

this growing body of literature suggests that inflammation could be particularly 

associated with symptoms of anhedonia. For instance, inflammation was shown to affect 

functional connectivity within reward neurocircuitry among patients with current MDD, 

such that higher circulating levels of CRP, IL-1β, IL-1RA, and IL-6 were associated with 

decreased connectivity in corticostriatal reward and motor neurocircuitry (Felger et al., 

2015), suggesting that inflammation may play an important role in motor deficits and 

decreased motivation observed in depressed individuals. Moreover, an endotoxin-

stimulated decrease in the activity of the ventral striatum, a key brain region involved in 

reward processing, mediated the link between increased circulating levels of 

inflammatory markers and depressed mood among adult participants with no history of 

chronic medical or psychiatric conditions (Eisenberger et al., 2010). Together, these 

finding point to an association between both circulating and induced inflammation levels 

and reward circuitry underlying anhedonia. Activity in the reward-processing network 

commonly referred to as the mesolimbic dopamine circuit that connects ventral tegmental 

area and nucleus accumbens, has been strongly linked to manifestations of anhedonia and 

depressive symptoms in previous research (Heshmati & Russo, 2015). However, these 

studies examined inflammation and depressive symptoms without isolating anhedonia 

symptoms, and whether the levels of inflammatory markers are associated specifically 

with current anhedonia symptoms remains unclear. This is important, as there is a 

growing recognition of the need to study dimensional constructs underlying core features 

of psychopathology as opposed to focusing on specific diagnoses (Carcone & Ruocco, 

2017; Zalta & Shankman, 2016). Additionally the presence of anhedonia is hypothesized 
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to play a critical role in developing treatment resistant depression and is predictive of 

poor response to first-line antidepressant treatments in prospective clinical studies (Uher 

et al., 2012). Therefore, the project examined the association between circulating and 

stimulated cytokines and current levels of anhedonia among women. 
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Early Life Stress, Inflammation, and Depression 

Stress is a well- known risk factor for depression (e.g., Hammen, 2005) and has 

been strongly linked to lasting changes in the inflammatory processes (Slavich & Irwin, 

2014). For example, exposure to childhood adversity, including abuse, neglect, and low 

socioeconomic status, prospectively predicted greater levels of inflammation in adulthood 

(Danese, Pariante, Caspi, Taylor, & Poulton, 2007; Raposa, Bower, Hammen, Najman, & 

Brennan, 2014; Slopen et al., 2010).  In parallel, findings from rodent models of early life 

stress support the link between early life stress exposure and abnormal immune function, 

including immune over-activation assessed via hippocampal IL-1β expression, later on in 

life (Kanitz, Tuchscherer, Puppe, Tuchscherer, & Stabenow, 2004; Llorente et al., 2007; 

Stiller, Drugan, Hazi, & Kent, 2011). One of the biological pathways for the link between 

early life stress and MDD is through the sensitization of the immune responses (Anisman, 

Merali, & Hayley, 2003; Hymie Anisman, Merali, & Hayley, 2008; Michael Maes, Berk, 

et al., 2012). Intriguingly, exposure to early life stress may also impact the link between 

inflammation and depression. For example, depressed adults who also had a history of 

childhood abuse had greater levels of inflammatory markers compared to adults with no 

history of childhood abuse (Danese et al., 2008). In addition, early life stress moderated 

the magnitude of inflammatory responses to a laboratory-based stressor later in life, such 

that participants with a history of childhood abuse displayed greater levels of 

inflammatory markers following the stressor, compared to individuals

with no history of abuse (Carpenter et al., 2010). Together, these findings provide 
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evidence for altered stress-induced immune responding among those exposed to early life 

stress.  What remains unclear is whether the alterations in immune functioning persist 

after full remission of depression and could be detected among participants with a history 

of rMDD with no current depression diagnosis. Additionally, whether or not history of 

childhood abuse would moderate this association is unknown. To fill this gap, the current 

project will examine the association between cytokine reactivity following an immune 

challenge and rMDD history and the potential moderating effect of childhood abuse 

history on this link. 

Previously described literature points to the link between early life stress and 

inflammation and connects inflammation to anhedonia. The next question then focuses on 

whether early life stress impacts anhedonia later in life. Intriguingly, findings from cross-

sectional neuroimaging studies in humans show that history of childhood adversity was 

associated with greater current anhedonia symptoms, particularly among individuals who 

evidenced low levels of activation in the ventral striatum during a reward-focused task 

(Corral-Frías et al., 2015), suggesting that exposure to stress may have a prolonged affect 

on depressive symptoms. Animal studies, which generally allow assessment of causality, 

show that exposure to early life stress and chronic prenatal stress may lead to increased 

depression-like behaviors in adulthood (Ślusarczyk et al., 2015; Wohleb et al., 2012). 

Multiple paradigms have been developed to assess depression-like behaviors in studies 

utilizing animal models of depression, including those measuring animal’s socialization, 

locomotion, spatial exploration, swimming, and preference for appetitive foods. 

Measuring preference for a sucrose solution, which is highly palatable to rodents, over 
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regular water is commonly used to assess anhedonia, a core symptom of depression, in 

animals (Der-Avakian & Markou, 2012). 

Increase in depression-like behaviors, including anhedonia, can also be observed 

following an exposure to an immune challenge, such as a systemic administration of a 

known endotoxin, including LPS, to produce a robust immune response (Bison et al., 

2009). Indeed, previous research suggests that LPS-stimulated anhedonia, expressed by a 

decrease in preference for sucrose, is one of the defining features of animal models of 

depression (De La Garza, 2005; Frenois et al., 2007). Although some previous studies 

found an increase in depression-like behaviors in mice following injections of LPS 

(Bison et al., 2009), others have failed to find any effects of LPS on depression-like 

behaviors (Deak et al., 2005). For instance, Deak et al. (2005) report no depressogenic 

effects of LPS administration on behavior during a subsequent forced swim test (FST) in 

rats. This could be partly due to differences in behavioral tests that were used to assess 

depression-like behaviors. To clarify previous findings, this project used a well-

established measure of anhedonia-like behavior, the sucrose preference paradigm 

(O’Connor et al., 2009; Smolinsky, Bergner, LaPorte, & Kalueff, 2009). Additionally, the 

effect of the immune challenge in adult animals could be greatly enhanced by early life 

stress exposure. Therefore, building on previously mentioned findings regarding the 

impact of early life-stress on depression-like behaviors, we aimed to examine whether 

exposure to an adolescent stressor would impact behavioral responses, specifically 

sucrose preference, to an immune challenge in adulthood.  

Findings from research focusing on biological sequalae of stress in the brain, 

typically conducted in rodents, suggests that exposure to stress leads to time and region-
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dependent neuroinflammation. For example, exposure to an acute stressor via exogenous 

stress hormone administration generated a robust neuroinflammatory response in the key 

structures comprising the HPA axis in adult rats (Hueston & Deak, 2014). Similarly, 

chronic stress has been noted to lead to microglia activation and increase in inflammatory 

markers in the brain (for review, see Calcia et al., 2016). For example, repeatedly 

restrained adult rats evidenced increased number and activation in immune cell 

population (microglia) in stress-sensitive areas, including amygdala, paraventricular 

nucleus of the hypothalamus, nucleus accumbens, and hippocampus (Tynan et al., 2010). 

Another study that examined the time course of chronic stress-induced alterations in the 

immune system showed increased microglia activation following the first few days of 

stress exposure, which was followed by a decrease in a number of immune cells in the 

prefrontal cortex and hippocampus, suggesting that chronic stress could contribute to 

reduction in neurogenesis observed among depressed individuals (Kreisel et al., 2013). 

Stress exposure at an earlier age appears to have similar effects on the immune processes, 

as repeatedly socially defeated adolescent mice evidenced elevated and prolonged 

induction of IL-1β and TNF-α and microglia activation in the amygdala, paraventricular 

nucleus of the hypothalamus, prefrontal cortex, and hippocampus, following a subsequent 

immune challenge (Wohleb et al., 2012). Similarly, prenatal stress resulted in greater 

microglia activation in the rat prefrontal cortex and hippocampus, as well as increased 

levels of inflammatory markers, including IL-1β, IL-6, IL-18, TNF-α in microglia 

cultures. Moreover, these alterations in immune responses were associated with increase 

in depression-like behaviors, including decreased sucrose preference and prolonged 
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social withdrawal and among rodents subjected to stressors (Kreisel et al., 2013; Wohleb 

et al., 2012).  

What remains unclear is whether early life stress affects neuroimmune responses 

to stress in brain regions associated with stress and anhedonia, a key symptom of 

depression, in adulthood. Given the previously mentioned findings from neuroimaging 

studies in humans linking peripheral inflammation with changes in connectivity in the 

brain regions underlying reward processing, animal studies showing the relation between 

early life stress and immune processes in the brain, we further extended the scope of our 

investigation to examine the role of early life stress in neuroinflammatory responses in 

the brain regions comprising a reward processing network to an immune challenge in 

adulthood. 
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Specific Aims of the Present Investigation 

The overarching goal of the current study was to examine the association between 

inflammatory markers and depression. The project was comprised of a series of human 

and translational animal studies and employed interdisciplinary, cross-species assessment 

methods. This allowed us to capitalize on the strength of both human and animal research 

methodology to build a comprehensive investigation that examined research questions 

ranging from cross-sectional associations to prospective causality and underlying 

biological mechanisms (Figure 1).  

In Study 1, we examined (a) the concentration of circulating cytokines and (b) 

levels of cytokines released from stimulated peripheral blood mononuclear cells 

(PBMCs) in vitro, which allowed us to overcome both technical and conceptual 

limitations associated with either technique alone. Thus, Study 1 focused on examining 

the association between women’s history of rMDD and circulating and stimulated levels 

of cytokines (IL-1β, IL-6, IL-10, and IL-33). We hypothesized that women with a history 

of rMDD would evidence increased levels of both circulating and stimulated 

inflammatory markers compared to participants with no depression history. Additionally, 

Study 1 aimed to examine whether the link between history of rMDD and circulating and 

stimulated levels of cytokines was moderated by women’s history of childhood abuse. 

We hypothesized that, among women with a history of rMDD, those who were also 

abused as children would evidence the highest levels of circulating and stimulated 

inflammatory markers. To begin to examine immune processes linked to different
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 depressive phenotypes, Study 1 also explored whether participants’ current levels of 

anhedonia were associated with increased levels of circulating and stimulated cytokines 

(IL-1β, IL-6, IL-10, and IL-33). Exploratory analyses were also conducted to examine the 

potential association between anhedonia and other cytokines produced by monocytes and 

macrophages (e.g., Th-17 cytokines), which were selected due to their role in maintaining 

the balance between immunity and inflammation and involvement in the pathogenesis of 

multiple inflammatory and autoimmune conditions characterized by increased anhedonia 

(Guglani & Khader, 2010). 

Studies 2 and 3 sought to extend the results of Study 1 to an animal model of 

depression.  The goal of Study 2 was to examine whether exposure to stressors in 

adolescence would affect anhedonia-like behavior following exposure to an in vivo 

immune challenge in adulthood. A well-established sucrose preference paradigm was 

used to index anhedonia-like behavior in rats. We hypothesized that rats exposed to 

stressors in adolescence would evidence greater levels of anhedonia-like behavior 

following an immune challenge. Additionally, we aimed to assess two distinct challenges 

during adolescence on later adhedonia-like behavior in adulthood. Specifically, we 

investigated the potential effect of the number of stress exposures (chronic vs. single) as 

well as variation in the stressor type (combination of restraint, forced swim, and acute 

footshock vs. acute footshock only). Although a single exposure to a severe stressor has 

been shown to induce depression-like phenotype in rodents (Chu et al., 2016), chronic 

stress paradigms are generally considered to have greater translational potential and the 

outcomes more closely resemble depressive symptoms in humans (Strekalova et al., 

2011; Willner, 2017). Therefore, we included both types of stress paradigms to compare 
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the magnitude of their potential effect on adhedonia-like behavior. Specifically, one 

group of rats went through the Chronic Escalating Stress paradigm developed by Deak 

and colleagues (Doremus-Fitzwater, Paniccia, Gano, Vore, & Deak, 2018), which 

incorporates the use of several stressors that gradually increase in severity. The other 

group was subjected to a single exposure to a severe stressor (AFS).  

Finally, Study 3 examined whether mRNA levels of IL-1β, IL-6, IL-33, and IL-10 

were modulated in brain areas underlying reward processing and stress reactivity (i.e., 

nucleus accumbens [NAc], ventral tegmental area [VTA], amygdala [AMG], and the 

paraventricular nucleus of the hypothalamus [PVN]) following an in vivo immune 

challenge in adult rats with and without a history of adolescent stress. We hypothesized 

that adult rats with a history of adolescent stress exposure would evidence higher 

cytokine gene (IL-1β, IL-6, IL-10 and IL-33) expression in response to an LPS challenge 

in adulthood in the NAc, VTA, AMG, and PVN, compared to animals without a history 

of adolescent stress exposure or saline-injected rats. As in Study 2, we used two types of 

stress paradigms (chronic escalating stress vs. acute). 
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Study 1 

This study investigated whether rMDD would be associated with potentiated 

immune reactivity. Based on our laboratory’s earlier research suggesting that altered 

cytokine reactivity may be more strongly associated with rMDD than sMDD (Kudinova 

et al., 2017), we focused on immune reactivity of participants with a history of rMDD 

versus those with no lifetime depression. We collected biological samples from adult 

human participants in an ongoing study (R01 HD057066; PI: Gibb).  

Method 

Participants and Procedure. Participants were 39 adults recruited from the 

community as part of a larger study of depression and anxiety in children (Table 1). 

Participants were required to either have a history of recurrent MDD (rMDD; n = 20) or 

have no lifetime history of MDD (n = 19).  The average age of participants was 36.81 

years (SD = 7.55) and the majority were women (87.2%). In terms of race/ethnicity, the 

majority were Caucasian (76.3%) and the rest were African American (15.8%), 

Asian/Pacific Islander

 (2.6 %), or from other racial/ethnic groups (5.3%). The median annual family income 

was between $45,001 and $50,000. Upon arrival at the laboratory, participants were 

asked to provide informed consent and then administered the SCID-I. Following this, 

participants completed questionnaires. Finally, peripheral blood samples, height, weight, 

and body temperature were collected. Blood samples of the majority of participants 

(66.7%) were collected between 3-7PM and the rest were collected between 9AM -2PM. 
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All participants were compensated $80 for their participation in the larger project, which 

was approved by the university’s institutional review board. 

Clinical diagnoses. The Structured Clinical Interview for DSM Disorders (SCID-I) (First, 

Spitzer, Gibbon, & Williams, 2002) was used to assess for lifetime histories of DSM-IV 

psychiatric disorders. The SCID-I is a widely used diagnostic interview with well-

established psychometric properties (First et al., 2002). A subset of 20 SCID-I interviews 

was coded by a second interviewer and interrater reliability for diagnoses of MDD was 

excellent (κ = 1.00). Out of 39 participants, 20 women (51.3%) had a history of rMDD in 

this study. Distribution of lifetime occurrences of other diagnoses was a follows: Alcohol 

Use Disorder = 14 (35.9%), Post-Traumatic Stress Disorder (PTSD) = 9 (23.1%), Panic 

Disorder (PD) = 8 (20.5%), Social Phobia (SP) = 6 (15.4%), Substance Use Disorder = 6 

(15.4%), Obsessive Compulsive Disorder (OCD) = 4 (10.3%), and Generalized Anxiety 

Disorder (GAD) = 4 (10.3%). Of those women, the distribution of participants who met 

criteria for current diagnoses was as follows: PD = 6 (15.4%), GAD = 4 (10.3%), SP = 3 

(7.7%), OCD = 2 (5.1%), MDD = 2 (5.1%), and PTSD = 1 (5.1%). 

Childhood abuse history. The Childhood Trauma Questionnaire (CTQ; 

Bernstein, Ahluvalia, Pogge, & Handelsman, 1997) was used to assess participants' 

histories of childhood emotional, physical, and sexual abuse. In this population sample, 

CTQ exhibited good to excellent internal consistency (emotional abuse α = .92, physical 

abuse α = .84, sexual abuse α = .91). Using the established cutoffs on the CTQ (Bradley 

et al., 2014), moderate levels of abuse were defined as an emotional abuse (EA) subscale 

score greater than 12, a physical abuse (PA) subscale score greater than 9, and/or sexual 

abuse (SA) subscale score greater than 7. Of the women in our sample, 4 reported EA 
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only (10.3%), 1 reported PA only (2.6%), 6 reported SA only (15.4%), 2 reported EA and 

SA (5.1%), 3 reported PA and SA (7.7%), none reported EA and PA, and 4 reported all 

three types of abuse (10.3%). Consistent with prior research using the CTQ (Rebekah G. 

Bradley et al., 2008), women were coded as having a history of no or mild abuse (n = 19) 

or having a history of moderate to severe levels of abuse (n = 20). Thirteen (65%) 

participants with a history of CA also had a history of rMDD and 7 (35%) did not. Seven 

(36.8%) participants with no history of CA had a history of rMDD and 12 (63.2%) had no 

history of either CA or rMDD. 

Anhedonia symptoms. Levels of anhedonia were assessed using the anhedonic 

depression subscale of the Mood and Anxiety Symptom Questionnaire (MASQ; Kendall 

et al., 2015). This is a well-established measure of anhedonia that demonstrated good 

reliability and validity in previous research (Bredemeier et al., 2010), with higher scores 

reflecting greater levels of symptomatology. In this sample, the MASQ-AD subscale 

exhibited excellent internal consistency (α = .92).  

Depressive symptoms. The Beck Depression Inventory-II (BDI-II) was used to 

assess women’s levels of current depressive symptoms (Beck, Steer, & Brown, 1996). 

This measure demonstrated good reliability and validity in previous research (Arnau, 

Meagher, Norris, & Bramson, 2001) and showed good internal consistency in the current 

sample (α = .88). 

Circulating cytokine levels. Whole blood was collected via BD Vacutainer Blood 

Collection Sets into 4.0 mL tubes, coated with ethylenediaminetetraacetic acid (EDTA). 

Plasma was separated by centrifugation (1000 × g for 10 min at 4° C) and stored at –

80°C. We used the Bio-Plex Pro Human Cytokine Panel (171-AA001M) and Bio-Plex 
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MAGPIX system to assay IL-1β, IL-6, IL-10, and IL-33 concentrations (Bio-Rad, 

Philadelphia, PA). MAGPIX system is a magnetic bead-based multi-analyte fluorescent 

detection system. Each sample was run in triplicate. The average intra- assay coefficients 

of variation were as follows: IL-1β = 5.0%, IL-6 = 5.4%, IL-10 = 3.8%, IL-33 = 4.2%. 

The average inter- assay coefficients of variation were as follows: IL-1β = 2.7%, IL-6 = 

4.4%, IL-10 = 1.7%, IL-33 = 8.6%. The lower limits of quantification were as follows:  

IL-1β = 0.24 pg/mL, IL-6 = 1.65 pg/mL, IL-10 = 1.99 pg/mL, IL-33 = 4.18 pg/mL. 

Circulating levels of IL-1β for the majority of our participants (97.4%) were below the 

detection limit of our assay and we therefore excluded IL-1β from all subsequent 

analyses related to peripheral levels of inflammation. Values for the other three cytokines 

were not normally distributed and were log transformed.  

Cytokine reactivity. We followed a well-established protocol for conducting an 

in vitro lipopolysaccharide (LPS) immune challenge (e.g., Schildberger, Rossmanith, 

Eichhorn, Strassl, & Weber, 2013). Whole blood was collected by certified phlebotomists 

using BD Vacutainer Blood Collection Sets into BD Vacutainer Cell Preparation silicon-

coated 4.0 mL tubes with sodium citrate. PBMCs were isolated and stored using 

previously described methods (Mallone et al., 2011). Briefly, PBMCs were separated by 

centrifugation (1500 × g for 20 minutes at 23± 1ºC) and washed three times in phosphate 

buffered saline (PBS) suplemented with 10% fetal bovine serum (FBS, Fisher Scientific, 

Pittsburg, PA). The cells were re-suspended in RPM Media-1640 with 10% dimethyl 

sulfoxide sterile solution (DMSO, Sigma-Aldrich, St. Louis, MO) and 20% FBS and 

placed into a Coolcell® freezing container (Biocision, San Rafael, CA), which was kept 

in a –80 ºC freezer for 12h. After that, cryo vials with cells were transferred into liquid 
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nitrogen storage until furter testing. The average cell survival rate was > 98.00%, which 

is comparable or higher than the rates obtained in previous research (Mallone et al., 

2011).  On the day of the testing, a fraction of the cells from each sample (10 μl) were 

stained with Trypan Blue Stain solution (Thermo Fisher Scientific, Waltham, MA) and 

the live/dead cells were counted via a hemocytometer. Cells were then pelleted by 

centrifugation at 250 × g and re-suspended in 10% cell-culture grade Fetal Bovine Serum 

(Seradigm Life Sciences, Philadelphia, PA) and LPS-enriched RPMI 1640 media 

(Invitrogen, Waltham, MA) containing at 1 × 106 cells/mL and incubated for 24h at 37 

ºC. LPS concentration (10 ng/mL) and duration were selected based on recommendations 

from previous research (Schildberger et al., 2013). After 24h, the cells were pelleted by 

centrifugation (2000 rpm for 5 min) and the supernatants removed and stored at –80°C.  

Levels of IL-1β, IL-6, IL-10, and IL-33 protein were subsequently measure using Bio-

Plex Pro Human TH17 Cytokine assay (Bio-Rad, Philadelphia, PA). The average intra- 

assay coefficients of variation were as follows: IL-1β = 5.7%, IL-6 = 4.0%, IL-10 = 

5.1%, IL-33 = 2.5%. The average inter- assay coefficients of variation were as follows: 

IL-1β = 3.8%, IL-6 = 3.0%, IL-10 = 2.5%, IL-33 = 3.3%. The lower limits of 

quantification were as follows:  IL-1β = 0.24 pg/mL, IL-6 = 1.65 pg/mL, IL-10 = 1.99 

pg/mL, IL-33 = 4.18 pg/mL. Values for all cytokines were not normally distributed and 

were log transformed. Levels of stimulated cytokines were not significantly associated 

with the levels of corresponding circulating cytokines (lowest p = .81). 

Total Protein Concentration.  Total plasma protein concentrations were 

assessed via bicinchoninic acid (BCA) protein assay (Thermo Fisher Scientific, Waltham, 

MA). The lower limit of quantification was 20 ug/mL. The average inter and intra- assay 
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coefficients of variation were both below 1%. All circulating and stimulated cytokine 

values were normalized to the total protein levels, as recommended by previous research 

(Ber et al., 2014; Collins, An, Peller, & Bowser, 2015; Hepworth et al., 2012). 

Lifetime smoking history.  Participants’ lifetime smoking history was assessed 

using the modified version of the Semi-Structured Assessment of the Genetics of 

Alcoholism (SSAGA; Bucholz et al., 1994), which is a comprehensive psychiatric 

interview used to assess physical, psychological, social, and psychiatric manifestations of 

alcohol abuse or dependence and other psychiatric disorders in adults. Modifications 

were introduced to collect data on maternal smoking and drinking patterns during 

pregnancy (Knopik et al., 2005). Similarly to previous research (Kudinova et al., 2016), 

participants were dichotomized based on their smoking history into a group that smoked 

100 or more cigarettes in their lifetime and those who smoked less. 

Physiological Measures. To control for potential confounding effects of 

participants’ Body Mass Index (BMI) and body temperature, participants’ height and 

weight were measured for BMI calculation. Body temperature was measured by sliding 

the probe of an infrared thermometer across the participant’s forehead (Exergen, 

Watertown, MA). 

Results  

Circulating cytokine levels.  To examine whether circulating levels of IL-6, IL-

10, and IL-33 were linked to participants’ history of rMDD, we conducted a series of 

ANOVAs using circulating levels of each of the cytokines (IL-6, IL-10, and IL-33) as a 

dependent variable and rMDD history as an independent factor. There was no significant 

rMDD group differences for any of the three cytokines: IL-6, F(1, 38) = 0.87, p = .36, η2 
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= .02, IL-10, F(1, 38) = 0.33, p = .57, η2 = .01, or IL-33, F(1, 38) = 0.16, p = .69, η2 = 

.004 (Figure 2).  

Following this, to test whether women’s history of CA moderated the relation 

between participants’ history of rMDD and their circulating cytokine levels, we ran a 

series of ANOVAs using circulating levels of each cytokine (IL-6, IL-10, and IL-33) as a 

dependent variable and rMDD, CA, and the rMDD × CA interaction as independent 

factors. We found a significant main effect of CA history on circulating levels of IL-6, 

F(1, 38) = 4.00, p = .05, η2 = .10, but not IL-10, F(1, 38) = .02, p = .90, η2 < .001, or IL-

33, F(1, 38) = 0.50, p = .48, η2 = .01, with participants reporting a history of CA 

exhibiting greater levels of circulating IL-6 (M = 0.03 log pg/mg) compared to 

participants with no CA history (M = 0.01 log pg/mg; Figure 3). The rMDD × CA 

interaction was not significant for any of the cytokines: IL-6, F(1, 38) = 0.49, p = .49, η2 

= .01, IL-10, F(1, 38) = 0.23, p = .63, η2 = .01, or IL-33, F(1, 38) = 0.10, p = .75, η2 = 

.003. The results remained unchanged, for the most part, when we excluded participants 

with a current MDD diagnosis (n = 2), men (n = 5), or both (n = 6). Please see Study 1 

supplementary data section for detail. 

Stimulated cytokines. To test our hypotheses regarding cytokine reactivity, we 

again ran a series of ANOVAs with reactivity for each of the cytokines (IL-1β, IL-6, IL-

10, and IL-33) as a dependent variable and rMDD history as an independent factor. We 

found no significant main effect of rMDD history on stimulated levels of IL-1β, F(1, 38) 

= 0.24, p = .88, η2 = .001, IL-6, F(1, 38) = 0.002, p = .96, η2 < .001, IL-10, F(1, 38) = 

0.77, p = .39, η2 = .02, or IL-33, F(1, 38) = 2.19, p = .15, η2 = .06 (Figure 4).  
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Following this, to test whether women’s history of CA moderated the relation 

between participants’ history of rMDD and stimulated cytokine levels, we ran a series of 

ANOVAs using immune reactivity for each of the cytokines (IL-1β, IL-6, IL-10, and IL-

33) as a dependent variable and rMDD, CA, and the rMDD × CA interaction as 

independent factors. We found no significant main effect of CA history on stimulated 

levels of IL-1β, F(1, 38) = 0.54, p = .47, η2 = .02, IL-6, F(1, 38) = 1.34, p = .25, η2 = .04, 

IL-10, F(1, 38) = 0.03, p = .86, η2 = .001, or IL-33, F(1, 38) = 0.002, p = .96, η2 < .001.  

In addition, the rMDD × CA interaction was not significant for any of the cytokines: IL-

1β, F(1, 38) = 0.15, p = .70, η2 = .004, IL-6, F(1, 38) = 0.90, p = .35, η2 = .02, IL-10, F(1, 

38) = 0.50, p = .48, η2 = .01, or IL-33, F(1, 38) = 1.23, p = .27, η2 = .03. Again, the 

results remained unchanged, when we excluded participants with a current MDD 

diagnosis (n = 2), men (n = 5), or both (n = 6). Please see Study 1 supplementary data 

section for detail. 

Exploratory analyses. To examine whether levels of anhedonia, assessed using 

MASQ –AD subscale, were associated with increased circulating levels of cytokines, we 

conducted exploratory correlations analyses using all circulating (n = 4; IL-6, IL-10, IL-

33, and TNFα) and stimulated (n = 14; IL-1β, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, 

IL-23, IL-25, IL31, IL-33,TNFα, IFNγ, and sCDL40) cytokines for which the data was 

available in the multiplex array. There was no significant association between current 

anhedonia and circulating levels of IL-6, r(37) = –.11, p = .51, IL-10, r(37) = –.01, p = 

.96, or IL-33, r(37) = –.13, p = .45.  

To examine whether levels of anhedonia were associated with increased 

stimulated levels of cytokines, we conducted similar analyses. We found that higher 
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levels of anhedonia symptoms were associated with increased stimulated levels of IL-33, 

r(37) = .46, p = .006 (Figure 5), but not IL-1β, r(37) = .17, p = .31,  IL-6, r(37) = .14, p = 

.38, or IL-10, r(37) = .23, p = .15. Notably, the association between anhedonia and 

stimulated levels of IL-33 was maintained when we statistically controlled for 

participants’ age, r(36) = 0.40, p = .38, sex, r(36) = 0.44, p = .006, ethnicity (Caucasians 

vs. others), r(39) = 0.45, p = 0.005, income, r(36) = 0.45, p = .01, body mass index 

(BMI), r(36) = 0.45, p = .005,  body temperature, r(36) = 0.44, p = .006, time of sample 

collection r(36) = 0.46, p = .004, or lifetime smoking, r(36) = 0.41, p = .01.  

We conducted similar analysis to examine the association between current 

anhedonia symptoms and stimulated cytokine levels among individuals with no current 

MDD diagnosis (n = 37). The results remained unchanged and we found that higher 

levels of anhedonia symptoms were associated with increased stimulated levels of IL-33, 

r(35) = .38, p = .02, but not IL-1β, r(35) = .11, p = .53,  IL-6, r(35) = .09, p = .59, or IL-

10, r(35) = .22, p = .19. The results were maintained when we conducted similar analyses 

among women only (n = 34): IL-33, r(33) = .47, p = .005, IL-1β, r(33) = .21, p = .24,  IL-

6, r(33) = .21, p = .23, and IL-10, r(33) = .27, p = .13. Lastly, the results were also 

maintained when we excluded both individuals with a current MDD diagnosis and men 

(n = 33): IL-33, r(32) = .42, p = .01, IL-1β, r(32) = .13, p = .48,  IL-6, r(32) = .14, p = 

.45, or IL-10, r(32) = .26, p = .14.  Intriguingly, exploratory analyses showed significant 

association between anhedonia symptoms and other cytokines, including IL-17A, IL-17F, 

IL-21, IL-22, IL-23, IL-31, IFNγ, and sCDL40. Full results can be found in the Study 1 

supplementary data section.  
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Additionally, to examine whether the association between anhedonia symptoms 

and stimulated cytokine levels were moderated by participants’ history of rMDD, we 

conducted a series of ANOVAs using stimulated cytokine levels as a dependent variable, 

and rMDD history, anhedonia symptoms, and their interaction as independent variable. 

We found a significant main effect of rMDD history on stimulated levels of IL-1β, F(1, 

38) = 8.99, p = .005, η2 = .20, and a significant rMDD × anhedonia interaction,  F(1, 38) 

= 8.75, p = .006, η2 = .20, but no significant main effect of anhedonia on stimulated levels 

of IL-1β, F(1, 38) = 1.79, p = .19, η2 = .05.  To examine the form of this interaction, we 

ran correlation analysis separately among individuals with and without rMDD history. 

We found that anhedonia was significantly associated with stimulated IL-1β levels 

among individuals with rMDD history, r(18) = .54, p = .02,  but not among individuals 

with no rMDD history, r(17) = –.31, p = .20.  

Similarly, for stimulated IL-6 levels, we found a significant main effect of rMDD 

history, F(1, 38) = 8.02, p = .008, η2 = .19,  and a significant rMDD × anhedonia 

interaction,  F(1, 38) = 7.73, p = .009, η2 = .18, but no significant main effect of 

anhedonia on stimulated levels of IL-1β, F(1, 38) = 1.43, p = .24, η2 = .04. As before, we 

ran correlation analysis separately among individuals with and without rMDD history.  

We found that anhedonia was significantly associated with stimulated IL-6 levels among 

individuals with rMDD history, r(18) = .58, p = .007,  but not among individuals with no 

rMDD history, r(17) = –.25, p = .31.  

For stimulated levels of we found no significant main effect of rMDD history, 

F(1, 38) = 0.001, p = .98, η2 <.001,  anhedonia, F(1, 38) = 1.27, p = .27, η2 = .04, or 

rMDD × anhedonia interaction,  F(1, 38) <0.001, p = 1.00, η2 < .001. 
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Lastly, for IL-33, we found a significant main effect of anhedonia, F(1, 38) = 

6.35, p = .02, η2 = .15, but not rMDD history, F(1, 38) = 1.91, p = .18, η2 = .05, or rMDD 

× anhedonia interaction,  F(1, 38) = 2.03, p = .16, η2 = .06. 

In summary, the results of this first study provided no support for the association 

between participants’ history of rMDD and circulating or stimulated levels of IL-1β, IL-

6, IL-10, or IL-33. Additionally, there was no evidence supporting the hypothesis that a 

history of CA would moderate the relation between rMDD and circulating or stimulated 

levels of IL-1β, IL-6, IL-10, or IL-33. However, the results of exploratory analyses 

suggest a link between participants’ current levels of anhedonia and stimulated, but not 

circulating, levels of IL-33, and other T-helper 17 cytokines that were included in the 

array, such as IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-31, IFNγ, and sCDL40, 

highlighting the association between stimulated, but not circulating cytokine levels and 

anhedonia symptoms. Intriguingly, rMDD moderated the association between anhedonia 

and stimulated IL-1β and IL-6 levels, such that greater levels of anhedonia were 

associated with higher stimulated IL-1β and IL-6 levels only among individuals with a 

history of rMDD. 
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Study 2 

Building on the reported association between inflammation and anhedonia 

symptoms in humans, Study 2 focused on investigating the influence of adolescent stress 

exposure on anhedonia-like behavior in response to an in-vivo immune challenge in adult 

rats. Additionally, we aimed to test whether different type of stressors could affect the 

magnitude of the behavioral response to an immune challenge in adulthood and employed 

chronic escalating stress (CES) and acute stress paradigms (AFS). We hypothesized that 

animals exposed to adolescent stressors receive would exhibit greater levels of 

anhedonia, assessed via sucrose preference test, following an LPS challenge in adulthood 

compared to animals with no history of adolescent stress exposure or vehicle-injected 

animals.  

Method 

Subjects and Procedure. Figure 6 illustrates the timeline of the present study. 

Specifically, 32 female Sprague–Dawley rats, which were bred on site using pathogen-

free breeders originally derived from Harlan (Envigo), were randomly assigned to one of 

four conditions: (i) chronic escalating stress (CES) + adult LPS challenge, (ii) acute 

footshock only (AFS) + adult LPS challenge, (iii) no adolescent stress + adult LPS 

challenge, and (iv) no adolescent stress or adult LPS challenge. Rats were allowed to

 develop normally until P21, at which point animals were weaned and housed 

with age and sex-matched partners (non litter-mates), 2 per cage, under standard 

conditions. Following a 6-day acclimation to colony conditions (P27), rats were handled 



 

� 28 

by researchers for 2–3 min to familiarize them with human contact prior to 

experimentation. Rats in the CES condition went through the adolescent stress challenge 

procedure described in detail below from P28-P39, whereas animals in the AFS condition 

were stressed for one day only (P39). Animals were treated in accordance with Public 

Health Service (PHS) policy and all experimental protocols were approved by the 

Institutional Animal Care and Use Committee (IACUC) at Binghamton University. 

Adolescent stress paradigm.  These studies used a novel model of Chronic 

Escalating Distress involving an 11-day procedure culminating in footshock exposure on 

the last day, which has recently been shown to produce robust neuroimmune changes and 

altered alcohol sensitivity (Doremus-Fitzwater et al., 2018). Rats assigned to the 

escalating chronic stress paradigm were first subjected to 5 days of whole body restraint 

lasting 60 minutes (P28). Starting at P33, the 60-minutes of restraint was preceded by a 

30-minute forced swim each day for 5 days. Finally, on P39, rats were subjected a 120-

minute foot shock. The footshock chamber measured 30.5 (L) × 26.5 (W) × 33 (H) cm 

(Habitest Chamber, Model H10-11R-TC-SF, Coulbourn Instruments, Allentown, PA). 

The sidewalls of the chamber were constructed of stainless steel except the front doors 

that were constructed of clear Plexiglas. The chambers were adapted to deliver scrambled 

shocks through the grid floor (18 bars spaced 1.1 cm apart with a diameter of 4.0 mm) 

from a shock generator (LABLINC Model H01-01, and Precision Animal Shocker Model 

H13-15, Coulbourn Instruments, Allentown, PA). The sound-attenuating chambers were 

illuminated by a 20-W white light bulb and background noise was provided by individual 

ventilation fans. Animals were exposed to inescapable footshocks (1.0 mA, 5 s each, 90 s 

variable intertribal interval [ITI]) for 120 min (approximately 80 shocks). Timeline for 
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this CES procedure is depicted in  6. Animals in the AFS condition remained undisturbed 

in their home cages from P28 until P39, when they were subjected to the footshock 

procedure, identical to that in the CES condition. 

In vivo LPS challenge. Rats remained undisturbed in their home cages until P70, 

at which point all animals (n = 24) except those in the no adolescent stress/no adult LPS 

challenge condition were administered an intraperitoneal (i.p.) injection of LPS.  The 

LPS (L6529, Sigma- Aldrich, St. Louis, MO) solution was diluted to 1.0 mg/mL using 

sterile endotoxin-free isotonic saline and stored in frozen aliquots at −20°C until use. On 

the day of experimentation, an aliquot of LPS was thawed and mixed fresh daily to the 

working concentration of 100 μg/mL LPS and delivered on a 1 mL/kg basis, also in 

pyrogen-free physiological saline. The dose of LPS was selected on the basis of its 

reported ability to induce depression-like behaviors in rats (Bison et al., 2009). 

Immediately following injection of LPS, the animals were returned to their home cages 

where they remained undisturbed for 0.5h. The rest of the animals were administered (n = 

8) sterile endotoxin-free isotonic saline. 

Sucrose preference time course. Given that sucrose is a palatable solution for 

rats, its decreased consumption was used as an index of anhedonic symptoms. Initially, 

all animals were granted free access to a 1% sucrose solution, in addition to regular food 

and water, for 4 days for habituation (P66-P70; Bison et al., 2009). On P70, all animals 

were presented with water and a 1% sucrose solution in graduated bottles with fitted 

sipper-tubes in their home cages, in addition to regular food.  Specifically, Plexiglas 

dividers were installed in each cage to separate animals and ensure that each animal has 

access to their own bottles of sucrose solution and water. Total cumulative fluid 
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consumption (mL) defined as the sum of water and sucrose solution intake, was assessed 

30 minutes, 1h, 2h, 4h, 8, and 16h later. The timing was chosen based on previous 

research (Bison et al., 2009). A sucrose solution preference score was calculated as the 

percentage of sucrose solution intake (%= sucrose solution intake × 100/total fluid 

consumption).  

Results  

First, to examine the potential effect of group on rats’ body weight, we ran an 

ANOVA using weight as a dependent variable and group as an independent factor. We 

found no significant effect of group on animals weight at P66, which was the beginning 

of sucrose habituation procedure, F(3,31) = .24, p = .87, η2 = .02. To examine the effect 

of adolescent stress exposure on anhedonia-like behavior (sucrose preference) in 

adulthood, we conducted a 4 (Group: AFS+LPS, CES+LPS, NS+LPS, and NS+Veh) × 6 

(Time: 0.5, 1, 2, 4, 8, and 16h) repeated measures ANOVA with sucrose preference 

serving as the dependent variable. Sucrose preference was calculated using sucrose and 

water consumption data normalized by individual animal’s weight. The values were then 

winsorized to normalize their distribution. We found a significant main effect of time on 

animal’s sucrose preference, F(5,135) = 4.41, p = .001, η2 = .14, with animals generally 

exhibiting a linear increase in sucrose preference over time. The main effect of group on 

sucrose preference was a nonsignificant trend, F(5,135) = 2.36, p = .09, η2 = .21, and the 

group × time interaction was nonsignificant,  F(5,135) = 1.13, p = .33, η2 = .11 (Figure 

8). Sucrose and water consumption analyses and time course during the sucrose 

preference test can be found in the supplementary section (Supplementary Figure 1). 

There was no support for the effect of adolescent stress exposure and in-vivo immune 
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challenge in adulthood on adult levels of anhedonia-like behavior in rats. However, the 

marginally significant trend found in this study suggests that conducting similar studies 

using fewer stress conditions and/or increased group sample sizes is warranted. 
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Study 3 

 Whereas Study 2 examined the potential impact of early life stress on the 

behavioral response to an immune challenge in adulthood, the current study focused on 

the impact of early life stress on the neurobiological processes potentially underlying that 

behavioral response. Translational studies as such frequently use animals injected with 

the cytokine inducer LPS (Kujawa et al., 2015) and describe an LPS-stimulated increase 

in cytokine gene expression (Erickson & Banks, 2011; Rey, Randolf, Wildmann, 

Besedovsky, & Jessop, 2009). Given that inflammation may be linked to increased levels 

of psychopathology in many, but not all individuals (Slavich & Irwin, 2014), 

identification of factors that may potentiate immune responses and specific biological 

processes underlying this process is critical for improving prevention effort and 

developing targeted interventions. Exposure to early life stress is emerging as one such 

factor in a rapidly growing body of literature (Muscatell, Slavich, Monroe, & Gotlib, 

2009; Slavich & Irwin, 2014). For example, a stressful early life environment has been 

associated with increased immune reactivity in adolescence (Miller & Chen, 2010). 

Additionally, findings from a prospective study suggest that cumulative stress exposure 

in childhood was related to greater circulating levels of inflammation in adolescence 

(Slopen, Kubzansky, McLaughlin, & Koenen, 2013). Findings from animal translational 

research are similar and suggest that adolescent stress exposure may magnify peripheral 

immune response to a predatory stressor in adulthood (Barnum, Pace, Hu, Neigh, & 

Tansey, 2012). What remains unclear is whether adolescent stress exposure leads to a 
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potentiated neuroimmune response specifically to immune challenges in adulthood in the 

brain areas related to reward processing and stress and whether this sensitization was 

related to a specific type of stressors. Therefore, Study 3 focused on examining the 

influence of adolescent stress exposure on cytokine gene expression in brain regions 

associated with reward and emotion processing in response to an in vivo LPS challenge in 

adult rats. Additionally, to examine the potential effect of different stressor 

characteristics, including length and stressor variability, we employed two types of 

stressors: Chronic Escalating Stress (CES) and Acute Footshock (AFS) that were used in 

Study 2. We hypothesized that animals in the CES and AFS groups would evidence the 

greatest expression of inflammatory genes (IL-1β, IL-6, IL-10, IL- 33) in the VTA, AMG, 

NAc, and PVN in response to an LPS challenge in adulthood, compared to rats that had 

no exposure to an adolescent stressor. 

Method 

Subjects and Procedure. The subjects and procedure were similar to those used in Study 

2 (Figure 9). Briefly, 32 female Sprague–Dawley rats, bred on site using pathogen-free 

breeders were randomly assigned to one of the four conditions: CES +LPS, AFS+LPS, 

NS+LPS, and NS+Veh. Rats were allowed to develop normally until P21, at which point 

animals were weaned and housed with age and sex-matched partners (non litter-mates) 

under standard conditions. Rats were handled by researchers (P27) for 2–3 min to 

familiarize them with human contact prior to experimentation. Rats in the CES went 

through the adolescent stress challenge procedure described in detail below from P28-

P39, whereas animals in the AFS condition were stressed on one day only (P39). Animals 

were treated in accordance with Public Health Service (PHS) policy and all experimental 
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protocols were approved by the Institutional Animal Care and Use Committee (IACUC) 

at Binghamton University. 

Adolescent stress paradigm.  The procedure was identical to that used in Study 

2. Briefly, rats that were assigned to the escalating chronic stress paradigm were first 

subjected to 5 days of whole body restraint lasting 60 minutes (P28). At P33, 60-minute 

restrain was preceded by a 30-minute forced swim for 5 days. On P39 rats were exposed 

to inescapable footshocks for 120 min (approximately 80 shocks). Timeline for this CES 

procedure is depicted in Figure 7. Animals in the AFS condition remained undisturbed in 

their home cages from P28 until P39, when they were subjected to the footshock 

procedure, identical to that in the CES condition. 

In vivo LPS challenge.  This procedure was also identical to that described in 

Study 2. Specifically, on P70, all animals (n = 24) except for those in the NS + Veh 

condition were administered an i.p. injection of 100 μg/mL LPS and delivered on a 1 

mL/kg basis in pyrogen-free physiological saline.  Immediately following injection of 

LPS, the animals were returned to their home cages where they remained undisturbed for 

1h. 

Cytokine gene expression. All RT-PCR was conducted using previously 

described procedures (Hueston & Deak, 2014). Rats were sacrificed via rapid 

decapitation (unanesthesized) 1h following LPS/Saline injections. Brains were removed 

and stored at −80°C. The VTA, AMG, NAc, and PVN  were identified using a rat brain 

atlas (Watson & Paxinos, 2005), punched using biopsy punches, and stored at –80 °C 

until the time of RNA extraction. Tissue samples were homogenized in Trizol RNA 

reagent (Invitrogen) using a TissueLyser and 5 mm stainless steel beads (Qiagen, 
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Germantown, MD). Total RNA was then extracted via RNeasy mini columns (Qiagen, 

Germantown, MD) following manufacturer’s instructions. RNA yield and purity were 

evaluated using a Nanodrop system (Thermo Fisher Scientific, Waltham, MA) and cDNA 

was synthesized using a QuantiTect reverse transcription kit (Qiagen, Germantown, MD). 

All RT-PCR was run using a CFX384 real-time PCR detection system (Bio-Rad, 

Philadelphia, PA).  Relative gene expression was quantified using the 2- ΔΔCT method. 

Primer sequences for all targets run can be found in Table 2. Results were normalized to 

GAPDH as a housekeeper gene. Significant group differences in GAPDH expression 

were observed in the AMG, F(3,31) = 3.14, p = .04, η2 = .25 (Supplementary Figure 2). 

Thus, non-normalized data was used in all analyses of cytokine gene expression for that 

region. There were no significant group differences in GAPDH expression in any of the 

other brain regions (lowest p = .27). Values > 2 SDs away from the mean were classified 

as outliers and excluded from the analysis. Two outliers identified in the expression of 

GAPDH in the NAc also produced extreme values in the expression of several cytokines 

in other regions and were therefore excluded from all subsequent analyses.  

Results 

To test the hypotheses from Study 3, we conducted a series of 4 (region: NAc, 

VTA, AMG, and PVN) × 4 (group: CES+LPS, AFS+LPS, NS+LPS, and NS+Veh) 

repeated measures ANOVAs separately for IL-1β, IL-6, IL-10, and IL-33.  For IL-1β, we 

found a significant main effect of region, F(3,78) = 3.48, p = .02, η2 = .12, but no 

significant effect of group, F(3, 26) = 1.19, p = .33, η2 = .12, or group × region 

interaction, F(9,78) = 1.18, p = .32, η2 = .12. Post hoc analysis revealed that IL-1β 
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expression was significantly higher in the NAc compared to the VTA, p = .02, and AMG, 

p < .001, with no differences between any other groups (lowest p = .08).  

For IL-6, we found a significant main effect of region, F(3,66) = 4.64, p = .005, η2 

= .17, but no significant effect of group, F(3, 26) = 0.90, p = .46, η2 = .11, or region or 

group × region integration, F(9,66) = 0.72, p = .69, η2 = .09. Post hoc analysis revealed 

that IL-6 expression was significantly lower in the NAc compared to the VTA, p = .05, 

and PVN, p = .004, with no differences between any other groups (lowest p = .08).  

For IL-10, we found a significant main effect of region, F(3,72) = 3.39, p = .02, η2 

= .12, but no significant effect of group, F(3, 24) = 1.06, p = .40, η2 = .12, or region or 

group × region integration, F(9,66) = 0.72, p = .69, η2 = .09. Post hoc analysis revealed 

that IL-10 expression was significantly lower in the AMG compared to the NAc, p = .03, 

VTA, p = .01, and PVN, p = .02, with no differences between any other groups (lowest p 

= .38).  

For IL-33, we found a significant main effect of region, F(3,78) = 3.27, p = .03, η2 

= .11, but no significant effect of group, F(3, 26) = 0.36, p = .78, η2 = .04, or region or 

group × region integration, F(9,78) = 1.09, p = .38, η2 = .11. Post hoc analysis revealed 

that IL-33 expression was significantly lower in the AMG compared to the NAc, p = 

.009, VTA, p = .004, and PVN, p = .03, with no differences between any other groups 

(lowest p = .31). The results are depicted in Figure 10. 

We found no support for differences in the expression of IL-1β, IL-6, IL-10, or IL-

33 in the brain areas associated with reward processing and stress based on animal’s 

history of early life stress. Lack of a significant increase in the cytokine expression 

among animals who had no stress exposure in adolescence but went through an immune 
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challenge in adulthood suggests that the timing between the LPS injection and tissue 

collection might have been insufficient for an expected neuroinflammatory response to 

develop. 

 

 

 

 

  



 

� 38 

Discussion 

The current investigation aimed to answer a line of research questions related to 

the role of stress and inflammation in depression and anhedonia. The project consisted of 

a series of complimentary human and animal studies and integrated multiple modes of 

assessment (circulating levels, cytokine reactivity, gene expression) to examine the 

following research areas: (1) the link between history of recurrent major depressive 

disorder (rMDD) and inflammatory markers and how this may be moderated by history 

of childhood abuse in women, (2) the association between inflammatory markers and 

current anhedonia symptoms in the same sample of women, (3) the effect of early life 

stress on anhedonia-like behavior in adult rats, and (4) effect of early life stress on 

inflammatory gene expression in brain areas related to stress and reward processing in 

adult rats. The use of both human and animal research methodologies allowed us to 

extend the scope of our investigation from using in vitro techniques in humans to in-vivo 

immune challenge in rats to examining the causal effects of early life stress on immune 

responses, as well as to expand the investigation from peripheral markers of 

inflammation in humans to potential brain mechanisms in rats. 

Specifically, Study 1 examined whether a history of rMDD was associated with 

greater circulating and stimulated levels of inflammatory markers (IL-1β, IL-6, IL-10, or 

IL-33) in adult women and whether this relation was moderated by their history of 

childhood abuse. Additionally, this study examined the association between stimulated 
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levels of inflammatory markers and current symptoms of anhedonia. We found no 

support for the first two aims and some support for the latter one. Specifically, 

participants’ history of rMDD was not related to either circulating or stimulated levels of 

any of the cytokines examined, which contradicts our hypothesis of increased 

inflammation being a trait-like marker of depression, independent of current depression. 

Furthermore, women’s retrospectively reported history of childhood abuse did not 

moderate the link between rMDD and circulating or stimulated cytokine levels, which is 

inconsistent with previous research (Danese et al., 2008). One difference between the two 

studies is that Danese et al. (2008) examined the moderating effect of early life stress 

among individuals with a current depression diagnosis, whereas we investigated those 

with a history of MDD, which could have impact the results. Therefore, future research 

could concentrate on the moderating role of childhood abuse in the context of 

inflammation during a current depressive episode. Another limitation of this study, 

particularly for the moderation analyses, is the sample size and future research using 

more participants is needed. We should also note that, in the current study, women with a 

history of childhood abuse evidenced higher circulating levels of IL-6 than women with 

no history of childhood abuse. This is consistent with previous meta-analysis showing 

that history of childhood trauma was associated with greater circulating levels of 

inflammatory markers, including IL-6 (Baumeister, Akhtar, Ciufolini, Pariante, & 

Mondelli, 2016). 

As noted above, a secondary aim of Study 1 was to examine the association 

between anhedonia and inflamamtion. Although levels of anhedonia were not 

significantly related to circulating levels of any of the cytokines examined, we found that 
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higher stimulated levels of IL-33 and eight other Th17 cytokines produced by monocytes 

and macrophages (IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IFNγ, and 

sCDL40) were associated with higher levels of anhedonia in women, suggesting the 

potential involvement of inflammatory processes in anhedonia, a key symptom of 

depression.  Moreover, we found that participants’ history of rMDD moderated the 

association between current anhedonia and induced levels of IL-1β and IL-6, such that 

greater levels of anhedonia were associated with greater levels of IL-1β and IL-6 only 

among participants who also had a history of rMDD. This is consistent with a growing 

body of research focusing on the role of inflammation in anhedonia. Despite the growing 

recognition of the need to study dimensional constructs underlying core features of 

psychopathology, including MDD, in addition to focusing on specific diagnoses (Carcone 

& Ruocco, 2017; Zalta & Shankman, 2016), research examining depression beyond 

vegetative and somatic manifestations of depression is scarce (Slavich & Irwin, 2014). 

However, this growing body of literature highlights the role of inflammation in 

anhedonia. For example, increased circulating levels of CRP, IL-1β, IL-1RA, and IL-6 

were found to be associated with decreased connectivity in corticostriatal reward and 

motor neurocircuitry (Felger et al., 2015) underlying anhedonia symptoms (Heshmati & 

Russo, 2015).  Moreover, previous research points out that as a trans-diagnostic symptom 

of many psychiatric and medical conditions, anhedonia may be impacted by common 

immune mechanisms that impact reward processing, including TH-17 mediated immunity 

(Contreras et al., 2016; Escalona & Fawcett, 2017; Swardfager, Rosenblat, Benlamri, & 

McIntyre, 2016). The current findings, therefore, provide promising evidence that 

supports and extends this research to stimulated, but not circulating levels of cytokines 
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and points to new targets among inflammatory markers. However, because the analyses 

of those cytokines were exploratory, conclusions must remain tentative pending 

replication. This said, the results do suggest the utility of exploring the role of more novel 

inflammatory markers beyond those most commonly researched in this context and 

testing the moderating role of rMDD.  

The main aim of Study 2 was to examine the role of adolescent stress exposure on 

behavioral response to an immune challenge in adult rats. We were particularly interested 

in anhedonia-like behavior and employed a well-established sucrose preference paradigm 

that is commonly used to index anhedonia in rodents (Der-Avakian & Markou, 2012). 

We also compared two different types of stressors, chronic escalating stress (CES) and 

acute footshock (AFS) to examine the potential effects of stressor characteristics. In 

addition, rather than only examining the effect of an immune challenge on anhedonia 

during a single time point, we assessed sucrose preference at 6 different timepoints: 0.5, 

1, 2, 4, 8, and 16 hours following systemic LPS administration. We found a marginally 

significant trend for stress condition differences in sucrose preference. Specifically, rats 

in the AFS group generally evidenced decreased preference for sucrose compared to 

animals that were not exposed to stress as adolescents (whether they received a vehicle 

injection or LPS challenge in adulthood). This trend is consistent with previous research 

suggesting that an exposure to a severe stressor (24-h restraint) may induce a lasting 

depression-like phenotype, including decreased glucose uptake in the brain and 

hippocampal neurogenesis in mice (Chu et al., 2016). When sucrose consumption vs. 

preference was examined, there was a significant time × group interaction, such that 

animals that were not subjected to adolescent stress and were administered saline instead 
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of LPS in adulthood (NS+Veh) evidenced significantly higher sucrose consumption 

compared to rats in all other groups (NS+LPS, CES+LPS, and AFS+LPS) 8 hours 

following the immune challenge. There are several possible reasons why marginally 

significant vs. significant results were obtained with sucrose preference including lack of 

power to detect significant differences in animal behavior. Indeed, this study evidenced 

an effect size that was medium in magnitude (η2 = .21), supporting the effect of group 

assignment on sucrose preference and encouraging of future research using larger sample 

sizes. A second potential reason for our overall lack of significant results may have been 

due to the developmental timing of the stressor. Our timing (P28) allowed us to avoid the 

stress hyporesponsivity phase described by previous research, during which animals 

evidence blunted corticosteroid response to stressors (Levine, 2001). Although no  

studies, of which we know, compared the long-term impact of post-natal vs. adolescent 

stress on adult functioning, there is evidence that adolescent rats display severely blunted 

neuroimmune responses, compared to adult animals (Doremus-Fitzwater, Gano, Paniccia, 

& Deak, 2015). Thus, future research may consider this aspect when studying the effect 

of early life stress on behavioral responses to an immune challenge in adult rodents. 

 Building from the previous two studies, Study 3 focused on the role of early life 

stress in neuroinflammatory response to an immune challenge later on in life. 

Specifically, the main aim of Study 3 was to examine the effect of adolescence stress 

exposure on inflammatory gene expression in brain areas underlying reward processes 

and stress, including the nucleus accumbens (NAc), ventral-tegmental area (VTA), 

amygdala (AMG), and paraventricular nucleus of the hypothalamus (PVN). Similar to 

Study 2, we used two types of adolescent stress, CES and AFS, and an identical 



 

� 43 

procedure for the immune challenge in adulthood. We found no significant group 

differences in IL-1β, IL-6, IL-10, or IL-33 gene expression in any of the brain areas we 

examined. The reason for this may lie in an insufficient time (1h) between an LPS 

administration and tissue collection. Specifically, we did not observe the expected 

increase in inflammatory markers among animals who were not exposes to an adolescent 

stressor but were administered LPS as adults, suggesting that the brain samples were 

collected before the immune response fully unfolded. For example, LPS in-vivo challenge 

has been shown to increase IL-1β and IL-6 expression in the PVN and AMG of adult rats 

3 hours following the injection (Doremus-Fitzwater et al., 2015). Moreover, a study that 

examined a range of LPS doses (1, 5, 15, 50, 125, and 250 μg/kg) reported an increase in 

circulating IL-1β, IL-6, IL-10 levels 2 hours post injection starting at 5 μg/kg (Bison et 

al., 2009). In a separate study that used a much higher dose of LPS (2mg/kg), levels of 

circulating inflammatory markers (IL-1β) increased 30 minutes following an injection, 

while IL-1β hippocampal gene expression significantly increased 24h following an 

immune challenge and peaked at day 7 (Fu et al., 2014). Future research examining the 

time course for the LPS-induced neuroinflammation in the brain areas related to 

anhedonia is needed to inform studies in this area.  

The primary strength of this study was the integration of human and animal 

methodologies that allowed us to examine a range of research questions related to the 

interplay between stress, inflammation, and depression.  Additional strengths included (i) 

the use of structured clinical interviews to obtain women’s diagnostic histories in Study 

1, (ii) the focus on both circulating and stimulated levels of inflammatory markers in 

Study 1, (iii) the assessment of change in anhedonia-like behavior over time, as opposed 
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to only a single assessment, in Study 2, and (iv) the focus on cytokine gene expression in 

several specific brain regions related to anhedonia in Srudy 3. Despite these strengths, 

there are limitations that provide directions for future research. For example, the cross-

sectional design of Study 1 precludes us from making any causal conclusions and future 

research utilizing prospective design is needed to determine whether higher levels of 

immune reactivity are a cause, consequence, or only a correlate of anhedonia symptoms. 

Additionally, estrous phase was not monitored in Studies 2 and 3, which may have 

impacted the results. Estrous cycle is known to affect animal behaviors, including food 

intake (Asarian & Geary, 2006) as well as inflammatory response to stress (Arakawa, 

Arakawa, Hueston, & Deak, 2014). Therefore, including estrous cycle data is 

recommended for future research using female rodents. Additionally, we did not assess 

for where women were in their menstrual cycle, which has been shown to affect 

peripheral inflammation levels (Bertone-Johnson et al., 2014) and, therefore, could have 

impacted the results. Moreover, no information about participant’s habitual dietary intake 

or exercise was collected. Given that previous research describes the impact of dietary 

composition (Galland, 2010) and exercise routine (Kelley & Kelley, 2006) on systemic 

inflammatory markers, future studies that include these data in the analyses are 

warranted. 

In summary, this investigation found no support for our hypotheses regarding the 

association between a history of rMDD and circulating or stimulated levels of cytokines, 

which may be due to study limitations or lack of a robust relation between inflammation 

and history of depression, which could be more evident among currently depressed 

individuals. Additionally, we found no support for the moderation of this association by a 
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history of early life stress. There was a significant relation between a history of childhood 

abuse and circulating levels of IL-6, which is consistent with previous research 

highlighting the link between early life-stress and inflammation in adulthood, 

corroborating existing evidence for the lasting effects of early life stress on immune 

processes. Additionally, there was evidence of an association between stimulated levels 

of inflammatory markers and current symptoms of anhedonia, which was maintained 

when we statistically controlled for potential confounders, including relevant 

demographic and physiological variables. This finding is in line with a small, but 

growing body of literature supporting the role of inflammation in anhedonia and extends 

previous research by showing the link between levels of cytokines released in response to 

an in vitro immune challenge with a known endotoxin and andhedonia. Pending 

replication and longitudinal research, these findings could lead to more detailed 

understanding of this trans –diagnostic phenomenon and inform treatment development. 

We extended this line of research questions to examining the causal relationship between 

early life stress and the andhedonia in adulthood following an in-vivo immune challenge 

using an animal sample. We found a marginally significant trend for the effect of early 

life stress on increased in andhedonia-like behavior in rats following an immune 

challenge with a known endotoxin. Additionally, we expanded the scope of our 

investigation to examining the effect of early life stress on neuroinflammation in the 

brain areas underlying stress and anhedonia processes following an immune challenge in 

adulthood. We found no support for increased expression of inflammatory genes in those 

areas following an immune induction in adulthood among animals that were stressed as 

adolescents. This investigation demonstrates the value of cross-species interdisciplinary 
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design in psychopathology research that is currently underutilized, yet much needed in 

the field. Indeed, researchers in our field commented on how psychological science is 

uniquely positioned due to its natural overlap with many other disciplines, to benefit from 

the interdisciplinary effort (Cacioppo, 2007). Additionally, pending future replication, the 

findings related to the association of current anhedonia symptoms and anhedonia-like 

behavior highlight the emerging research initiative to focus on processes that manifest in 

various forms of psychopathology, rather than solely diagnosis-based design.  
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Table 1. Descriptive statistics for participants in Study 1 
   

No rMDD History 
 

History of rMDD 
 

 
 reffect size 

(n = 19)  (n = 20) 
 

    
Parent Age (M, SD) 38.68 (8.29) 35.03 (6.47) – .25 
    
Parent Ethnicity                    
(% Caucasian) 

78.9 73.7 – .01 

    
Sex (% female) 89.5 85.0 – .01 
    
Annual Family Income 45,001-50,000 25,001-30,000 – .26 
    
BDI-II (M, SD) 5.71(6.83) 10.43 (9.50)    .66** 
    
MASQ AD (M, SD) 52.83 (13.17) 68.81 (12.38)    .54** 
    
CTQ (% with a history of 
moderate or severe abuse) 

36.8 65.0    .28 

    
BMI (M, SD) 31.88 (5.12) 36.10 (8.58)    .29 
    
Body Temperature (M, SD) 98.22 (.59) 98.20 (.56) – .02 
    
Lifetime cigarette smoking 
(% who smoked >100) 

42.1  57.9      .28 

    
Note. BDI-II = Beck Depression Inventory-II, rMDD = Recurrent Major Depressive 
Disorder, MASQ AD = Mood and Anxiety Symptom Questionnaire- Anhedonia 
subscale, MASQ AA = Mood and Anxiety Symptom Questionnaire- Anxious Arousal 
subscale, BMI = Body Mass Index  
*p < .05. **p < .01 
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Table 2. Primer sequences used in Study 3. 

    
Name: Sequence: 
  
GAPDH Forward 5' GTG CCA GCC TCG TCT CAT AG 3' 
  
GAPDH Reverse 5' AGA GAA GGC AGC CCT GGT AA 3' 
  
IL-1β Forward 5' CAG CTT TCG ACA GTG AGG AGA 3' 
  
IL-1β Reverse 5' TGT CGA GAT GCT GCT GCT GTG AG 3' 
  
IL-6 Forward 5' TAG TCC TTC CTA CCC CAA CTT CC 3' 
  
IL-6 Reverse 5' TTG GTC CTT AGC CAC TCC TTC 3' 
  
IL-10 Forward 5' TGC GAC GCT GTC ATC GAT TT 3' 
  
IL-10 Reverse 5' TGG CCT TGT AGA CAC CTT TGT 3' 
  
IL-33 Forward 5' CCT GAG CAC ATA CAA CGA CCA 3' 
  
IL-33 Reverse 5' TTC TTC CCA TCC ACA CCG TC 3' 
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Figure 1. Schematic of the parallels between human and animal research questions in this 
project. In vitro and in-vivo challenges = Lipopolysaccharide (LPS) treatment/injections. 
Combining human and animal research allowed us to parallel an in vitro immune 
challenge in humans with an in-vivo challenge in rats and extend the scope of our 
investigation from assessing PBMC cytokine production to mRNA levels in the bran 
regions of interest.   
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Figure 2. Differences in circulating levels of cytokines based on participants’ history of 
rMDD. No significant differences in circulating levels of IL-6 (A), IL-10 (B) or IL-33 (C) 
were detected based on participants’ history of rMDD. Bars represent the mean and 
standard error of the mean (SEM). 
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Figure 3. Differences in stimulated levels of IL-6 based on participants’ history of CA. 
Parcipants with a history of CA evidenced higher stimulated levels of IL-6. Bars 
represent the mean and standard error of the mean (SEM). 
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Figure 4. Differences in stimulated levels of cytokines based on participants’ history of 
rMDD. No significant differences in stimulated levels of IL-1β (A), IL-6 (B), IL-10 (C) 
or IL-33 (D) were detected based on participants’ history of rMDD. Bars represent the 
mean and standard error of the mean (SEM). 
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Figure 5. Levels of anhedonia and IL-33. Greater levels of current anhedonia symptoms 
were significantly associated with higher stimulated levels of IL-33. 
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Figure 6. Schematic of the experimental design and timeline for Study 2. 
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Figure 7. Time course and stressors for the chronic escalating stress (CES) paradigmused 
in Studies 2 and 3. Animals in the acute footshock condition (AFS) remained undisturbed 
in their home cages until P39, on which they went through a single session of footshock. 
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Figure 8. Sucrose preference over time. There was a marginally significant trend for the 
between-subject effect of group on sucrose preference. Bars represent the mean and 
standard error of the mean (SEM). 
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Figure 9. Schematic of the experimental design and timeline for Study 3.  
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Figure 10. Expression of IL-1β (A), IL-6 (B), IL-10 (C), and IL-33 (D) in the NAc, VTA, 
AMG and PVN. There were no significant main effects of group or group × region 
interaction.
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Appendix A  

Study 1 Supplementary data 

Circulating cytokines. We conducted a series of ANOVAs using circulating 

levels of each of the cytokines (IL-6, IL-10, and IL-33) as a dependent variable and 

rMDD history as an independent factor among participants with no current MDD 

diagnosis (n = 37) only and the results were maintained. Specifically, there was no 

significant rMDD group differences for any of the three cytokines: IL-6, F(1, 36) = 0.81, 

p = .37, η2 = .02, IL-10, F(1, 36) = 0.24, p = .62, η2 = .01, or IL-33, F(1, 36) = 0.15, p = 

.70, η2 = .004. We also conducted the same analyses among women only (n = 34) and the 

results remained unchanged: IL-6, F(1, 33) = 0.28, p = .60, η2 = .01, IL-10, F(1, 33) = 

0.56, p = .46, η2 = .02, or IL-33, F(1, 33) = 0.27, p = .61, η2 = .008. Lastly, we excluded 

both individuals with a current MDD diagnosis and men  (n = 33) and obtained similar 

results: IL-6, F(1, 32) = 0.30, p = .59, η2 = .01, IL-10, F(1, 32) = 0.37, p = .55, η2 = .01, 

or IL-33, F(1, 32) =0.52, p = .47, η2 = .02.  

Following this, we ran a series of ANOVAs using circulating levels of each 

cytokine (IL-6, IL-10, and IL-33) as a dependent variable and rMDD, CA, and the rMDD 

× CA interaction as independent factors among participants with no current MDD 

diagnosis (n = 37). We found a significant main effect of CA history on circulating levels 

of IL-6, F(1, 36) = 4.16, p = .05, η2 = .11, but not IL-10, F(1, 36) = .001, p = .97, η2 < 

.001, or IL-33, F(1, 36) = 0.09, p = .76, η2 = .003, with participants reporting a history of 

CA exhibiting greater levels of circulating IL-6 (M = 0.03 log pg/mg) compared to 

participants with no CA history (M = 0.01 log pg/mg). The rMDD × CA interaction was 
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not significant for any of the cytokines: IL-6, F(1, 38) = 0.26, p = .61, η2 =.008, IL-10, 

F(1, 38) = 0.09, p = .76, η2 = .003, or IL-33, F(1, 38) = 1.16, p = .28, η2 = .03.  

We then conducted the same analyses among women only (n = 34).  We found no 

significant main effect of CA history on circulating levels of IL-6, F(1, 33) = 3.09, p = 

.09, η2 = .09, IL-10, F(1, 33) = .03, p = .87, η2 = .001, or IL-33, F(1, 33) = 0.29, p = .86, 

η2 = .01. The rMDD × CA interaction was not significant for any of the cytokines: IL-6, 

F(1, 33) = 0.24, p = .63, η2 = .008, IL-10, F(1, 33) = 0.22, p = .64, η2 = .007, or IL-33, 

F(1, 33) = 0.69, p = .79, η2 = .002.   

Lastly, we conducted the same analyses excluding individuals with a current 

MDD diagnosis and men (n = 33). We found no significant main effect of CA history on 

circulating levels of IL-6, F(1, 32) = 3.12, p = .09, η2 = .10, IL-10, F(1, 32) = .03, p = .87, 

η2 = .001, or IL-33, F(1, 32) = 0.03, p = .86, η2 = .01. The rMDD × CA interaction was 

not significant for any of the cytokines: IL-6, F(1, 32) = 0.18, p = .67, η2 = .006, IL-10, 

F(1, 33) = 0.22, p = .64, η2 = .007, or IL-33, F(1, 32) = 0.07, p = .79, η2 = .002. 

Stimulated cytokines. We conducted a series of ANOVAs using stimulated 

levels of each of the cytokines (IL-1β, IL-6, IL-10, and IL-33) as a dependent variable 

and rMDD history as an independent factor among participants with no current MDD 

diagnosis (n = 37) and the results were maintained. Specifically, there was no significant 

rMDD group differences for any of the cytokines: IL-1β, F(1, 36) = 0.008, p = .93, η2 < 

.001, IL-6, F(1, 36) = 0.001, p = .97, η2 < .001, IL-10, F(1, 36) = 0.55, p = .46, η2 = .02, 

or IL-33, F(1, 36) = 1.15, p = .29, η2 = .03. We also conducted the same analyses among 

women only (n = 34) and the results remained unchanged: IL-1β, F(1, 33) = 0.26, p = .62, 

η2 = .008, IL-6, F(1, 33) = 0.38, p = .54, η2 = .01, IL-10, F(1, 33) = 1.11, p = .30, η2 = 
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.03, or IL-33, F(1, 33) = 2.50, p = .12, η2 = .07. Lastly, we excluded both individuals with 

a current MDD diagnosis and men  (n = 33) and obtained similar results: IL-1β, F(1, 32) 

= 0.06, p = .81, η2 = .002, IL-6, F(1, 32) = 0.14, p = .71, η2 =.004, IL-10, F(1, 32) = 0.98, 

p = .33, η2 = .03, or IL-33, F(1, 32) = 1.83, p = .19, η2 = .06.  

Following this, we ran a series of ANOVAs using stimulated levels of each 

cytokine (IL-1β, IL-6, IL-10, and IL-33) as a dependent variable and rMDD, CA, and the 

rMDD × CA interaction as independent factors among participants with no current MDD 

diagnosis (n = 37). We found no significant main effect of CA history on stimulated 

levels of IL-1β, F(1, 36) = 0.07, p = .79, η2 = .002, IL-6, F(1, 36) = .41, p = .52, η2 = .01, 

IL-10, F(1, 36) = 0.03, p = .86, η2 = .001, or IL-33, F(1, 36) = 0.002, p = .97, η2 < .001.  

In addition, the rMDD × CA interaction was not significant for any of the cytokines: IL-

1β, F(1, 36) = 0.71, p = .41, η2 = .02, IL-6, F(1, 36) = 2.16, p = .15, η2 = .06, IL-10, F(1, 

36) = 0.47, p = .49, η2 = .01, or IL-33, F(1, 36) = 1.16, p = .29, η2 = .03.  

We then conducted the same analyses among women only (n = 34).  We found no 

significant main effect of CA history on stimulated levels of IL-1β, F(1, 33) = 0.36, p = 

.55, η2 = .01, IL-6, F(1, 33) = 1.32, p = .26, η2 = .04, IL-10, F(1, 33) = 0.01, p = .92, η2 < 

.001, or IL-33, F(1, 33) = 0.18, p = .68, η2 <=.006.  In addition, the rMDD × CA 

interaction was not significant for any of the cytokines: IL-1β, F(1, 33) = 0.51, p = .48, η2 

= .02, IL-6, F(1, 33) = 2.27, p = .14, η2 = .07, IL-10, F(1, 33) = 0.46, p = .50, η2 = .01, or 

IL-33, F(1, 33) = 0.52, p = .48, η2 = .02.  

Lastly, we conducted the same analyses excluding individuals with a current 

MDD diagnosis and men (n = 33). Again, the results remained unchanged, as we found 

no significant main effect of CA history on stimulated levels of IL-1β, F(1, 32) = 0.17, p 
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= .69, η2 = .006, IL-6, F(1, 32) = 0.92, p = .03, η2 = .04, IL-10, F(1, 32) = 0.04, p = .95, 

η2 < .001, or IL-33, F(1, 32) = 0.06, p = .81, η2 = .002.  In addition, the rMDD × CA 

interaction was not significant for any of the cytokines: IL-1β, F(1, 32) = 0.86, p = .36, η2 

= .03, IL-6, F(1, 32) = 2.98, p = .09, η2 = .09, IL-10, F(1, 32) = 0.49, p = .50, η2 = .02, or 

IL-33, F(1, 32) = 0.80, p = .38, η2 = .03.  

Exploratory analyses. By way of testing the exploratory aim (1d), we examined 

whether levels of anhedonia, assessed using MASQ –AD subscale, were associated with 

increased circulating levels of cytokines. Specifically, we conducted exploratory 

correlations analyses using other circulating (n = 1) and stimulated (n = 10) cytokines on 

the panel in addition to IL-1β, IL-6, IL-10, and IL-33. All of the circulating IFNγ levels 

were below the detection limit and were thus excluded from the analyses. The 

percentages of the values for other circulating cytokine levels that were below the 

detection limit of our assay were as follows: IL-4 (33.3%), IL17A (69.2%), IL17F 

(97.4%), IL-21 (94.9%), IL-22 (74.4%), IL-23 (94.9%), IL-25 (82.1%), IL-31 (89.7%), 

and sCD40L (97.4%). These cytokines were, therefore, excluded from our analyses as 

well. We found no significant associations between current anhedonia symptoms and 

circulating levels of the remaining TNFα, r(39) = 0.005, p = .97. 

In relation to stimulated cytokine levels, we excluded IL-4 from the analyses due 

to high percented of values that were below the detection limit (97.4%). We found 

significant associations between anhedonia and stimulated levels of IL-17A, r(37) = .39, 

p = .01, IL-17F, r(37) = .36, p = .02, IL-21, r(37) = 0.44, p = .005, IL-22, r(37) = .33, p = 

.04, IL-23, r(37) = .33, p = .04, IL-25, r(37) = .40, p = .01, IL-31, r(37) = .38, p = .02, 

IFNγ, r(37) = .33, p = .04, and sCDL40 cells, r(37) = .43, p = .007 (Supplementary  
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Figure 1), but not TNFα, r(39) = .25, p = .13. Notably, the results remained largely 

unchanged when we statistically controlled for participants’ age, sex, ethnicity, income, 

body mass index (BMI), body temperature, time of sample collection, or lifetime 

smoking (Supplementary Table 1).  

We conducted similar analyses among to examine the association between current 

anhedonia levels and stimulated Th-17 cytokine levels among participants with no 

current MDD diagnosis (n = 37). We found significant associations between anhedonia 

and stimulated levels of IL-17A, r(35) = .34, p = .04, IL-21, r(35) = 0.38, p = .02, IL-25, 

r(35) = .33,  p = .05, IL-31, r(35) = .33, p = .04,  p = .04, and sCDL40 cells, r(35) = .37, p 

= .02, but not  IL-17F, r(35) = .29, p = .08, IL-22, r(35) = .29, p = .09, IL-23, r(35) = .29, 

p = .08, IFNγ, r(35) = .24,  p = .16, or  TNFα, r(35) = .19, p = .26. 

We then conducted the same analyses among women only (n = 34). We found 

significant associations between anhedonia and stimulated levels of IL-17A, r(33) = .41, 

p = .02, IL-17F, r(33) = .39, p = .02, IL-21, r(33) = 0.48, p = .004, IL-22, r(33) = .36, p = 

.04, IL-23, r(33) = .39, p = .02, IL-25, r(33) = .44,  p = .009, IL-31, r(33) = .42, p = .01, 

IFNγ, r(33) = .41,  p = .02, and sCDL40 cells, r(33) = .46, p = .007, but not  TNFα, r(33) 

= .29, p = .10. 

Lastly, we conducted the same analyses excluding individuals with a current 

MDD diagnosis and men (n = 33). We found significant associations between anhedonia 

and stimulated levels of IL-17A, r(32) = .37, p = .03, IL-21, r(32) = 0.43, p = .01, IL-23, 

r(32) = .35, p = .05, IL-25, r(32) = .37,  p = .03, IL-31, r(32) = .38, p = .03,  p = .04, and 

sCDL40 cells, r(32) = .41, p = .02, but not  IL-17F, r(32) = .33, p = .06, IL-22, r(32) = 

.32, p = .07, IFNγ, r(32) = .33,  p = .06, or  TNFα, r(32) = .21, p = .23. 
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Additionally, we found significant associations between current depressive 

symptoms and stimulated levels of IL-17A, r(37) = .33, p = .04, IL-17F, r(37) = .31, p = 

.05, IL-21, r(37) = .36, p = .02, IL-25, r(37) = .34, p = .04, IL-31, r(37) = .38, p = .02, 

IFNγ, r(37) = .31, p = .05, and sCDL40 cells, r(37) = .34, p = .03, but not IL-22, r(37) = 

.23, p = .13, IL-23, r(37) = .31, p = .06, or TNFα, r(37) = .26, p = .11. 

Study 2 Supplementary data 

To examine the potential impact of adolescent life stress on sucrose and water 

consumption separately, as opposed to sucrose preference, we conducted a 6 (time: 0.5h, 

1h, 2h, 4h, 8h, and 16h) × 4 (group: CES+LPS, AFS+LPS, NS+LPS, and NS+Veh) 

repeated measures ANOVA separately for sucrose and water consumption values 

normalized by body weight. We found a significant main effect of time, F(5,140) = 

139.89, p <.001, η2 = .83 and time × group interaction, F(15,140) = 3.24, p <.001, η2 = 

.26, on sucrose consumption. There was no significant between-subject effect of group, 

F(3,28) = 2.12, p = .12, η2 = .18. Post hoc analysis revealed that IL-6 expression was 

significantly lower in the NAc compared to the VTA, p = .12 and PVN, p = .004, with no 

differences between any other groups (lowest p = .08). When we broke this interaction 

down to examine its form and conducted separate analyses for each timepoint, we found 

that group effect on sucrose consumption was significant 8h following LPS 

administration, F(3,31) = 3.52, p = .03, η2 = .27, but not at any other timepoint (lowest p 

= .14).  

Post hoc analysis showed that 8h following an immune challenge, rats in the NS+Veh 

consumed significantly more sucrose compared to animals in NS+LPS, p = .01, 
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CES+LPS, p = .03, or  AFS+LPS, p = .01, groups (Supplementary Figure 2). There were 

no significant differences between any other groups, (lowest p = .70). 

We conducted similar analysis using water consumption as a dependent variable. We 

found a significant main effect of time, F(5,140) = 26.85, p <.001, η2 = .49 and a 

significant time × group interaction, F(15,140) = 1.88, p =.03, η2 = .17. There was no 

significant between-subject effect of group, F(15,140) = 0.92, p =.44, η2 = .09. When we 

conducted separate analyses for each timepoint, we found that no significant group effect 

on water consumption at any of the six timeponts (lowest p = .18).  
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Supplementary Table 1. Results of the partial correlation analysis (r-values) between 
participants’ current anhedonia levels and stimulated cytokines, controlling for various 
demographic and physiological factors.  

  Current Anhedonia Levels 

Controlling 
for: Age  Sex Income Ethnicity BMI BT TOD Smoking 

Cytokine: �� �� �� �� �� �� �� ��

� � � � � � � � �

IL-17A .35* .38* .35* .39* .40** .39* .41** .36* 
� � �

IL-17F .32* .36* .34* .37* .38* .36* .40** .34* 
� � �

IL-21 .39* .44** .40** .45** .45** .44** .47** .44** 
� � �

IL-22 .31 .33* .28 .32* .35* .33* .37* .29 
� � �

IL-23 .26 .33* .30 .33* .34* .33* .34* .37* 
� � �

IL-25 .36* .40* .38* .42** .42** .40** .43** .39* 
� � �

IL-31 .36* .38* .34* .40** .39* .38* .42** .36* 
� � �

IFNγ .30 .33* .29 .31* .33* .33* .32* .31 
� � �

sCDL40  .41** .43** .41** .44** .44** .43** .46** .38* 
                  

Note. *p < .05. **p < .01 Degrees of freedom for all analyses = 36 
BMI = Body Mass Index; BT = body temperature; TOD = time of day 
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Supplementary Figure 1. Levels of anhedonia symptoms and stimulated cytokines. 
 Levels of current anhedonia were significantly associated with stimulated levels of IL  
17A (A), IL-17F (B), IL-21(C), IL-22 (D), IL-23 (E), IL-25 (F), IL-31 (G), IFNγ (H), and  
sCD40L (I) cells. 
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Supplementary Figure 2. Sucrose (A) and water (B) consumption time course during 
the sucrose preference test. Rats in the NS+Veh group consumed significantly more 
sucrose compared to animals in any other group 8h following the systemic administration 
of the LPS. There were no significant group differences in water consumption at any of 
the timepoints. 
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Supplementary Figure 3. GAPDH gene expression in the NAc (A), VTA (B), AMG 
(C), and PVN (D). There was a significant effect of group on GAPDH in the AMG. Thus, 
we used non-normalized data for all analysis for that region. There was no significant 
effect of group in any of the other brain regions. 
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