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Abstract 

 The relationship between criticality of gene regulatory networks (GRNs) and 

dynamics of GRNs at a single cell level has been vigorously studied. However, the 

relationship between the criticality of GRNs and properties of multicellular organisms at 

a higher level has not been fully explored. Here we aim at revealing potential roles of the 

criticality of GRNs at a multicellular and hierarchical level, using a random Boolean 

network as a GRN. We perform three studies. Firstly, we propose a GRN-based 

morphogenetic model, and delve into the role of the criticality of GRNs in morphogenesis 

at a multicellular level. Secondly, we include an evolutionary context in our 

morphogenetic model by introducing genetic perturbations (e.g., mutations) to GRNs, 

and examine whether the role of the criticality of GRNs can be maintained even in the 

presence of the evolutionary perturbations. Also, we look into what the resulting 

morphologies are like and what kind of biological implications they have from the 

epigenetic viewpoint in morphology. Lastly, we present multilayer GRNs consisting of an 

intercellular layer and an intracellular layer. A network in an intercellular layer represents 

interactions between cells, and a network in an intracellular layer means interactions 

between genes. All the nodes of an intercellular network have identical intracellular 

GRNs. We investigate how the criticality of GRNs affects the robustness and evolvability 

of the multilayer GRNs at a hierarchical level, depending on cellular topologies and the 

number of links of an intercellular network. From the three studies, we found that the 

criticality of GRNs facilitated the formation of nontrivial morphologies at a multicellular 
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level, and generated robust and evolvable multilayer GRNs most frequently at a 

hierarchical level. Our findings indicate that the roles of the criticality of GRNs are hard 

to be discovered through the single-cell-level studies. It justifies the value of our research 

on the relationship between criticality of GRNs and properties of organisms in the context 

of multicellular settings. 
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Chapter 1 Introduction 

 Many complex biological structures including tissues and organs are formed 

through a developmental process from a single fertilized cell to a multicellular embryo 

[5]. The morphogenesis of those complex patterns are driven by a gene regulatory 

network (GRN) that exists within each cell and responds to cell-cell interactions [40, 41]. 

As a theoretical model of such GRNs, random Boolean networks (RBNs) were proposed 

by Kauffman [31]. In RBNs, genes (nodes) have binary states (either ON or OFF), whose 

dynamics are determined by a set of Boolean functions over the states of other genes. 

Although RBNs are a highly simplified model, they have been extensively utilized in 

artificial life and complex systems research [1, 3, 23, 24, 43, 50, 60, 66]. 

 In the context of GRNs, the concept of criticality of RBNs has been discussed as 

a phase transition point between ordered and chaotic regimes for the dynamics of those 

networks [32, 33]. The criticality of GRNs has been recognized as a property which 

makes robustness and adaptability coexist in living organisms [2]. When perturbations 

are added to GRNs, ordered GRNs are so robust that they just sustain existing cellular 

functions. On the contrary, chaotic GRNs are so adaptable that they vigorously create 

new functions rather than conserving existing ones. Meanwhile, critical GRNs stably 

sustain their functions against the perturbations, and at the same time flexibly generate 

new phenotypes, which may help organisms to adapt to new environments because they 

have an optimal balance between robustness and adaptability. 

 Whereas many studies have been performed to elucidate the relationship between 
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criticality of GRNs and dynamics of GRNs at a single cell level based on RBNs [6, 48, 

52, 57, 58, 61], the relationship between their criticality and properties of multicellular 

organisms at a higher level has not fully explored. Only a few studies have determined 

how the properties of intracellular GRNs influence the properties of organisms at a 

multicellular level, using RBNs as GRNs [13, 20, 45, 64]. Moreover, research on the 

relationship between the criticality of GRNs and properties of multicellular systems 

under genetic perturbations (e.g., mutations) has not been conducted yet, even though 

mutations do occur in cells of living organisms by stochasticity or environmental factors 

[4, 7, 8, 9, 11, 54, 59]. 

 To investigate the potential roles of criticality of GRNs at a multicellular and 

hierarchical level, here we conduct three studies. Firstly, we propose a GRN-based 

morphogenetic model and reveal the role of criticality of GRNs in morphogenesis. 

Secondly, we include an evolutionary process in our morphogenetic model by introducing 

genetic perturbations to GRNs, and examine whether the role of the criticality of GRNs 

can be maintained even in the presence of the evolutionary perturbations. Also, we look 

into what the resulting morphologies are like and what kind of biological implications 

they have from the epigenetic viewpoint in morphology. Lastly, we present multilayer 

GRNs consisting of an intercellular layer and an intracellular layer, and delve into how 

the criticality of GRNs influences on the robustness and evolvability of the multilayer 

GRNs depending on cellular topologies and the number of links of an intercellular 

network. 

 The rest of the dissertation is structured as follows. In Chapter 2, we provide a 

brief literature review concerning the relationship between criticality of GRNs and 
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system properties. In Chapter 3, we mention the objective of our research. In Chapter 4, 5, 

and 6, we design the GRN-based morphogenetic model, the GRN-based morphogenetic 

model with genetic perturbations, and the multilayer GRNs, respectively. We, in each 

chapter, show experiments and results corresponding to the respective models mentioned 

above. In Chapter 7, we summarize and conclude our studies. 
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Chapter 2 Related Work 

 In this chapter, we provide two brief literature reviews. One is about the 

relationship between criticality of GRNs and dynamics of GRNs at a single cell level, and 

the other is about the relationship between properties of intracellular GRNs and 

properties of organisms at a multicellular level. 

 

2.1 The Relationship Between Criticality of GRNs and Dynamics of GRNs at a 

Single Cell Level 

 Since the notion of criticality of GRNs based on RBNs was established by 

Kauffman [32, 33], many studies have been conducted on whether GRNs of living 

organisms are dynamically critical or not. The studies introduced in this section compare 

dynamic behaviors of RBNs in the critical regime with gene expression dynamics or 

dynamics of Boolean models of genetic networks, both of which are based on gene 

expression data of real living organisms [6, 48, 52, 57, 58, 61]. They demonstrate that the 

dynamics of the living organisms are consistent with those of critical RBNs, and thus 

conclude that the dynamics of living organisms are critical. Details are reviewed below. 

 Serra et al. [57] showed that the gene expression dynamics of Saccharomyces 

cerevisiae (commonly known as baker's yeast) were critical through the comparison of 

their gene expression data and critical RBNs in the perturbation avalanche analysis which 

measured the size of an avalanche, i.e., the number of genes that are affected by the 

knockout of a single gene. They found that the distribution of avalanche sizes of critical 
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RBNs approximated the distribution obtained experimentally on Saccharomyces 

cerevisiae. Also, Serra et al. [58] consolidated the result by deriving analytical 

approximations for the distribution of avalanches in RBNs. Similarly, Rämö et al. [52] 

showed that the gene expression dynamics of Saccharomyces cerevisiae were critical, 

using approximate formulas for the distributions of avalanche sizes. They demonstrated 

that the distributions of avalanche sizes of both critical RBNs and Saccharomyces 

cerevisiae followed power-law distributions with the same exponent value. 

 Shmulevich et al. [61] and Nykter et al. [48] showed that the gene expression 

dynamics of biological systems exhibited criticality, by applying quantitative measures 

used in data compression to the gene expression data of living organisms. Specifically, 

Shmulevich et al. [61] measured Lempel-Ziv (LZ) complexity of both the binarized gene 

expression data during HeLa cell cycle progression and RBNs in ordered, critical, and 

chaotic regimes. They found that the LZ value obtained from the gene expression 

dynamics of HeLa Cells was consistent with that of either ordered or critical dynamic 

behavior. Nykter et al. [48] calculated normalized compression distance (NCD) from the 

gene expression data of macrophage. They compared the measured values with the NCD 

values of ordered, critical, and chaotic RBNs. They found that the trajectory of NCD of 

macrophage corresponded with that of critical RBNs. 

 Balleza et al. [6] indicated that the dynamics of living organisms in four 

kingdoms operated close to criticality by examining the dynamics of Boolean models of 

examples belonging to four kingdoms in biology. Inferring interactions among genes 

from the gene expression data of Saccharomyces cerevisiae (yeast in kingdom fungi), 

Escherichia coli (bacteria in kingdom protista), Bacillus subtilis (bacteria in kingdom 
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protista), Drosophila melanogaster (insect in kingdom animalia), and Arabidopsis 

thaliana (plant in kingdom plantae), they implemented five Boolean networks. They 

displayed that the slopes of Derrida curves (see Appendix A) of the five Boolean 

networks were similar to that of a critical RBN, where a Derrida plot visualizes the 

dynamic behaviors of Boolean networks. 

 

 

2.2 The Relationship Between Properties of Intracellular GRNs and Properties of 

Multicellular Organisms 

 In this section, we introduce studies which have explored the relationship 

between properties of intracellular GRNs and properties of organisms at a multicellular 

level [13, 20, 45, 64]. They all use theoretical mutilcellular models where all the cells 

have the same RBNs as GRNs in a discrete space like cellular automata. Details are 

reviewed below. 

 Flann et al. [20] and Mohamadlou et al. [45] studied the relationship between 

properties of GRNs and multicellular pattern complexity. Specifically, Flann et al. [20] 

examined how dynamics of GRNs influenced multicellular pattern complexity. They 

assumed epithelial cells as       square cell arrangement. They showed that the 

epithelium models with ordered and critical GRNs tended to generate the most 

information-rich patterns. Mohamadlou et al. [45] investigated how modularity of critical 

and chaotic GRNs affected multicellular pattern complexity. Using a lattice of       

as an epithelial model, they found that modular connectivity of GRNs, especially 

feedback loops, increased the complexity of multicellular patterns. 
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 Villani et al. [64] examined how a coupling strength (fraction of genes that are 

affected by neighboring cells) between cells influenced dynamics of GRNs. They used 

      square cell arrangement as an artificial tissue. Increasing the coupling strength, 

they measured the following three outcome variables in 1,000 simulation runs: the 

fraction of simulation runs where all the cells of the systems converge to the same 

attractor ( ), the fraction of simulation runs where all the cells in the systems converge to 

some attractor ( ), and the fraction of simulation runs where none of the cells converge to 

any attractor ( ). The higher the coupling strength was, the larger   and   were, while 

the lower   was. They also found that increasing the coupling strength amplified the 

properties of GRNs, i.e., ordered GRNs became more ordered and disordered GRNs 

became more disordered. 

  Similarly, Damiani et al. [13] also studied how the strength of interaction 

affected attractors of multiple RBNs. They proposed multiple RBNs in     cellular 

automata, using RBNs in a critical regime. Based on the frequencies of different 

attractors of multiple RBNs, they calculated entropy and considered it as a measure to 

quantify diversity of cell behaviors. They showed that the diversity of cell behaviors was 

varied by the strength of interaction. Moreover, they found the value of interaction 

strength to maximize the cell behavior diversity, which corresponded to the percentage of 

genes related to cell signaling in an actual human cellular signaling network. 

 Because the existing models reviewed above all used a fixed set of neighbors in a 

discrete space like cellular automata, they are not realistic as a morphogenetic model to 

represent the developmental process from a single cell to a multicellular embryo. 

Moreover, none of them considered genetic perturbations which do occur in cells of 
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living organisms. In our studies, we reveal the potential roles of criticality of GRNs in the 

context of multicellular settings by developing a morphogenetic model which grows from 

a single cell in a continuous space and a multilayer GRN model with dynamic cellular 

topologies, and adding genetic perturbations to GRNs. 
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Chapter 3 Objective 

 We aim at revealing the potential roles of criticality of GRNs at a multicellular 

and hierarchical level. Specifically, using a GRN-based morphogenetic model, we 

elucidate the role of criticality of GRNs in morphogenesis at a multicellular level. 

Furthermore, adding genetic perturbations (e.g., mutations) to GRNs, we examine 

whether the role of the criticality of GRNs can be maintained even in the presence of the 

evolutionary perturbations. Also, we look into what the resulting morphologies are like 

and what kind of biological implications they have from the epigenetic viewpoint in 

morphology. Lastly, we delve into how the criticality of GRNs affects the robustness and 

evolvability of multilayer GRNs at a hierarchical level. 
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Chapter 4 The Role of Criticality of Gene Regulatory Networks  

in Morphogenesis 

 In this chapter, we propose a GRN-based morphogenetic model using a RBN as a 

GRN and Spring-Mass-Damper kinetics for cellular movements, and reveal the role of 

criticality of GRNs in morphogenesis. 

 

4.1 Model: GRN-Based Morphogenetic Systems 

 We developed a computational model of morphogenetic processes of cell 

aggregation, in which all the cells have an identical intracellular GRN. Figure 1 shows 

the simulation algorithm for our model. The simulation starts with one seed cell. It 

imitates the process in which a single zygote divides and grows into multicellular form 

during embryonic development. Cells are equipped with a RBN as an intracellular GRN. 

Neighboring cells are detected within a fixed neighborhood radius. Through the 

interaction with neighbors, cells' fates are determined by the GRN. We assume that there 

are four fundamental cell fates in our model: proliferation, differentiation, apoptosis, and 

quiescence. Cells expressing proliferation, differentiation, or quiescence can switch their 

fates through cell-cell interactions. The cells are positioned in a two-dimensional 

continuous space by spring-mass-damper (SMD) kinetics. Until the termination condition 

of the simulation is satisfied, the initial seed cell grows into an aggregation, iterating the 

processes of finding neighboring cells and re-positioning cells in the space in each time 

step. The simulator of our model was implemented in Java. 
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Figure 1. Simulation algorithm for our GRN-based morphogenetic model 

 

 

4.1.1 Gene Regulatory Network (GRN) 

 A RBN (a.k.a.,    Boolean network) was suggested as a GRN model by 

Kauffman [31, 32, 33]. Here   is the number of nodes and   is the number of input 

links per node. A node represents a gene. The state of a node can be either ON (1, 

activated) or OFF (0, inhibited). The node state is determined by the states of input nodes 

and a Boolean function assigned to each node. A state space which is constructed from 

the topology of a RBN and assigned Boolean functions refers to the set of all the possible 

configurations and all the transitions among them. Figure 2 shows schematic diagrams 

for an example RBN and its state space. In the state space, stationary or cyclical  



 

12 

 

(a) 

 
 
 

(b) 
 

 
 

Figure 2. Schematic diagrams for an example GRN and its state space. (a) A RBN 

with   = 4,   = 2, and Boolean functions randomly assigned to each node. (b) 

State space of the RBN. The state space consists of     16 configurations and 

transitions among them. The configurations with bold lines are attractors. Dashed 

lines draw boundaries for each basin of attraction. 
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configurations are defined as attractors, and the others are called basins of attraction of 

the attractors. The dynamics of RBNs are divided into three regimes depending on the 

structure of their state space: ordered, critical, and chaotic. Using node in-degree ( ), 

internal homogeneity ( ), or canalizing functions, the dynamics of RBNs can be 

systematically varied. The dynamics of a RBN are known to be determined by node in-

degree ( ), i.e.,   = 1 is ordered,   = 2 is critical, and   > 2 is chaotic, on average [32, 

33]. For our morphogenetic model, we use a RBN that consists of 16 nodes (  = 16) as 

an intracellular GRN. Adjusting node in-degree     from 1 to 4, we vary the dynamics 

of RBNs: ordered (  = 1), critical (  = 2), and chaotic (  = 3, 4). 

In view of in vitro experimental data showing that attractors of GRNs represent 

cell types or cell fates, Huang et al. suggested a conceptual framework to explain 

stochastic and reversible transitions between cell fates using    Boolean networks [10, 

27, 28, 29]. Our morphogenetic systems are based on their framework. We randomly 

assign four cell fates to attractors of GRNs. Specifically, if there is only one attractor, 

proliferation is assigned to the attractor. If there are two attractors, proliferation and 

differentiation are randomly assigned to the two attractors. Likewise, if there are three 

attractors, proliferation, differentiation, and apoptosis are randomly assigned to those 

attractors. If there are four or more attractors, proliferation, differentiation, and apoptosis 

are randomly assigned to three attractors and quiescence is assigned to the rest of the 

attractors (Figure 3). 

 With regard to cellular behaviors, cells in proliferation are divided into two, and 

the daughter cells are placed within a fixed neighborhood radius ( ) centering on the 

mother cells. Cells in differentiation are labeled as differentiated. Cells in apoptosis die 
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Figure 3. An example state space of a GRN where four cell fates are randomly 

assigned. (In actual simulations, 16 nodes were used. Thus,      65,536 

configurations exist in the state space.) 

 

 

and disappear from the space. Cell in quiescence do not show any behaviors. 

 

4.1.2 Cell-Cell Interactions 

 Switching between cell fates occurs by perturbations of internal gene expression 

values of an intracellular GRN through cell-cell interactions. Our mechanism for cell-cell 

interactions is based on cell signaling of Damiani et al's multiple random Boolean 

networks on 2D cellular automata [12, 13]. In our model, an intracellular GRN has   

genes, which consist of normal genes ( ) and special genes ( ) as shown in Figure 4 (a). 

The special genes ( ) exist in pairs where genes producing signaling molecules      and 

receptors      are matched one to one. This one-to-one correspondence indicates signal 

transduction specificity by which certain signaling molecules respond to particular 

receptors. The special genes    synthesize signaling molecules and release them. Then, 

those molecules bind to the corresponding receptors    on cells within the neighborhood 

radius ( ). 
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(a) 

 
 
 

(b) 

 
 

Figure 4. Cell signaling for cell-cell interactions. Schematic diagrams are 

examples illustrating the concept of cell signaling. (a) Assignment of genes in a 

GRN for cell signaling. (b) Two signal transduction mechanisms: autocrine (left) 

and paracrine (right). 
 

 

 The signal transduction has two mechanisms: autocrine and paracrine. Autocrine 

means that a cell produces signaling molecules that bind to receptors on the same cell. 

Paracrine means a cell produces signaling molecules that bind to receptors on its 
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neighboring cells. Figure 4 (b) illustrates the two mechanisms. In our model, when there 

are no neighboring cells, autocrine is used. When there are neighbors, paracrine is used. 

 The gene expression values of an intracellular GRN are updated as follows: 

 Normal genes  : the states of the normal genes   are updated by the states of 

input nodes and randomly assigned Boolean functions. 

 Genes producing signaling molecules   : like the normal genes  , the states of 

the genes producing signaling molecules    are updated by the states of input 

nodes and randomly assigned Boolean functions. If the states of    are 1, the 

genes produce signaling molecules. If the states are 0, the genes do not 

synthesize signaling molecules. 

 Receptors   : the states of the receptors    are determined by the average 

concentration of the signaling molecules within the neighborhood radius  . 

Figure 5 shows an example of calculating the average concentration of the 

signaling molecules from the neighboring cells and determining the state of 

receptor gene 2 of cell  . Based on a certain threshold (   ), the state of receptor 

gene 2 is updated. If the average concentration value is bigger than    , the state 

becomes 1. Otherwise, it becomes 0. 

 

 The following steps are taken to update the gene expression values and to 

determine a cell fate from the change of the gene values: 

(1) Look into whether there are neighboring cells within the neighborhood radius  . 

If there are neighbors, paracrine signaling is used. Otherwise, autocrine signaling 

is used. 
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Figure 5. An example showing how to calculate the average concentration of the 

signaling molecules neighboring cells produce and determine the state of receptor 

gene2 of cell i. 

 

(2) Determine the states of the receptors    through comparisons of the average 

concentrations of signaling molecules within the neighborhood radius   and the 

threshold value    . 

(3) Activate or inhibit genes that have the receptors as input nodes in an intracellular 

GRN based on the states of the receptors   . If the states of the receptors are 1, 

the states of genes become ON (1, activated). Otherwise, the states become OFF 

(0, inhibited). 

(4) Check the attractor that the updated gene states finally converge to. 

(5) Express the cell fate that is assigned to the attractor for cellular behaviors. 
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(6) Assign the states of the attractor as gene expression values for the next time step. 

In the case of cyclical attractors, the states of the attractor that the updated gene 

states in (4) first reach become gene expression values for the next time step. 

 

4.1.3 Cellular Movements 

 Our mechanism for cellular movements is based on Doursat's approach [18]. We 

determine cells' positions in each time step through Spring-Mass-Damper (SMD) kinetics. 

Specifically, we assume that cells within the neighborhood radius   are connected by a 

spring with spring constant   and equilibrium length  , and a damper with damping 

coefficient   between each other. When cell A's position is            and cell B's 

position is           , the equation for cellular movements is as follows: 

           
 

     
           

where 

                         

                 
     

     
   

                                 

Because we neglect the effect of inertia, we replace       with zero. Then, we finally 

obtain the following position update equation at each time step     : 

         
    

 
 

  

  
   

 

     
     

 We can obtain different shapes of spatial patterns by the above position updating 

rule, allowing physical interactions such as pushing or adhesion. 
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 To acquire much more diverse spatial patterns, we introduce the dependence of 

parameters  ,  , and   on cell fates and perturbations to the cell position ( ,  ). In the 

case of  ,  , and  , we determine the values depending on six possible types of cell fate 

combinations between two cells: [proli-proli], [proli-diff], [proli-qui], [diff-qui], [diff-diff], 

and [qui-qui], where proli is proliferation, diff is differentiation, and qui is quiescence 

(Figure 6). Here apoptosis is excluded because cells due to apoptosis disappear from the 

space. In each simulation run, the parameter values of  ,  , and   are randomly chosen 

in certain ranges given in Table1. For the perturbations, small perturbation values are 

added to the updated cell positions. 

 When the dependence of  ,  , and   on cell fates and perturbations to the cell 

positions are introduced, the final position of cell A whose neighbor is cell B is as follows: 

                                

where   is cell A's cell fate,   is cell B's cell fate, and   is the perturbation to the 

updated coordinate of cell A. This positional updating is performed for all the 

neighboring cells of cell A. 

 

 
 

Figure 6. Six possible types of cell fate combinations between two cells. 
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4.2 Experiments 

 We performed 10,000 independent simulation runs for each value of K, i.e.,  = 

1, 2, 3, and 4. Specifications of parameters for the simulations were the following: 

 Space: the cells were positioned in a 2D continuous 700   700 (in arbitrary unit) 

square area. 

 Limitation of cell population: the population growth was limited up to 200 cells 

to keep computational loads reasonable in each run. 

 Simulation termination condition: the simulations were terminated when the time 

step   reached 1,000 or there was no cell remaining in the space due to 

apoptosis. 

 Parameter values: the values of parameters concerning GRNs, cell-cell 

interactions, and cellular motions are given in Table 1. The number of special 

genes ( ) was determined according to Damiani et al.'s model [13] and biological 

evidence [49]. Damiani et al. showed that the diversity of cellular behaviors was 

maximized when the coupling strength (fraction of genes that are affected by 

neighboring cells) was around 0.1 [13]. This value is also similar to the ratio of 

the number of genes related to cell signaling to the number of human genes [49]. 

In our model, the coupling strength is set to 0.125, because the number of special 

genes ( ) is 2 and the number of nodes of a GRN ( ) is 16. 

 

4.2.1 Measures for Morphogenetic Pattern Analysis 

 To compare how morphogenetic patterns are different between groups  = 1, 2, 3, 

and 4, we used the 12 measures (i - xii) described below [55, 56]. Among those measures,  
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Table 1. Parameters of the morphogenetic model and their values 

Model Parameter Value 

GRN Number of nodes ( ) 

Number of in-degree per node ( ) 

16 

1, 2, 3, 4 

Cell-Cell  

Interactions 

Neighborhood radius ( ) 

Number of special genes ( ) 

Threshold of signaling molecules (   ) 

30 

2 

0.5 

Cellular  

Movements 

Spring constant ( ) 

Spring equilibrium length ( ) 

Damper coefficient ( ) 

    unif (0, 1)   ℝ 

    unif (0, 100)   ℝ 

    unif (0, 200)   ℝ 

 

 

vi - xii are measures regarding network topology. To apply them to our morphologies, we 

constructed a network from each morphogenetic pattern by connecting each cell to other 

cells within the neighborhood radius  . Figure 7 shows an example morphology and a 

network constructed from it using our network construction method. Such network 

construction allowed for detection of topological differences more effectively. All the 

morphogenetic measures were obtained from the final configuration of each simulation. 

 

i. Number of cells (numOfCells) 

This is the total number of cells in a morphogenetic pattern. 

 

ii. Average distance of cells from center of mass (massDistance) 

This is the mean of Euclidean distances between each cell position and the center 
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(a) (b) 

 
 

 

Figure 7. Network construction for the analysis of morphologies. (a) Snapshot of a 

morphogenetic pattern. (b) Network constructed using our network construction 

method from (a). 

 

 

of mass (  ,   ), that is, the point with the average coordinates of all the cells. 

 

iii. Average pairwise distance (pairDistance) 

This is the mean of Euclidean distances between two randomly sampled cells' 

positions. The mean was calculated based on 10,000 pairs, which were sampled 

with replacement. 

 

iv. Kullback-Leibler divergence between pairwise particle distance 

distributions of a morphogenetic pattern and a random pattern (kld) 

This quantifies how nontrivial morphogenetic patterns are, compared to 

randomly distributed patterns. It was calculated as the Kullback-Leibler (KL) 

divergence between pairwise particle distance distributions of a morphogenetic 

pattern (Figure 8 (a)) and a randomly distributed pattern (Figure 8 (b)) made of 

the same number of cells within the same spatial dimensions. Each pairwise 
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(a) (b) 

  
 

 

(c) 

 
 

Figure 8. Nontrivial morphology detection using KL divergence. (a) A 

morphogenetic pattern acquired from a simulation. (b) A random pattern obtained 

from a uniform distribution. (c) Pairwise particle distance distributions of a 

simulated pattern and a random pattern. The curves are estimated by Gaussian 

kernel density estimation. 

 

 

particle distance distribution was obtained through 10,000 random sampling with 

replacement of a pair of coordinates of cells (Figure 8 (c)). Thus, the larger kld is, 

the more structured (nonrandom) the morphogenetic pattern is. 

 Both pairDistance and kld used pairwise particle distances. pairDistance 

measures a rough size of a morphogenetic pattern, while kld quantifies 

nontriviality of its morphology. Two morphogenetic patterns may have similar 

pairDistance values but very different kld values at the same time. 

 



 

24 

 

v. Mutual information of cell fates between neighboring cells (MI) 

This examines nonlinear correlation of cell fates between neighboring cells in a 

morphogenetic pattern. It was calculated using the frequencies of three 

neighboring cell fates (except for apoptosis, because cells expressing apoptosis 

die and disappear from the space). Figure 9 shows an example calculating MI in 

a morphogenetic pattern. Counting the frequencies of combinations of fates of 

neighboring cells, MI captures how much informational correlation would exist 

between the fate of a cell and that of its neighbors. If there was only one cell 

remaining, the value of MI was set to 0. 

 

vi. Average clustering coefficient (avgCluster) 

This explains how densely connected the nodes (cells) are to each other in a 

network. The clustering coefficient      of node    in a network is defined as 

follows: 

     
                      

          
 

Here,     is a link that connects node    and node    within the set of 

neighboring cells    around a node   ,   is a set of links in the network, and 

   is the degree of    (i.e., the size of   ). The denominator is the total number 

of possible node pairs within node   's neighborhood. The numerator is the 

number of actually connected node pairs among them. The average clustering 

coefficient is given by 

   
      

 
, 
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where n is the total number of nodes. 

  

vii. Link density (linkDensity) 

This describes the density of connections in a network. For a network   

composed of nodes   and   links, the link density      is given by 

     
 

      

 

 
  

      
 

 for an undirected network, where m is the number of links. 

 

 

 
 

Figure 9. An example showing how to calculate mutual information between cell 

fates of cells and their neighboring cells. The value of computed mutual information 

was divided by log L for the purpose of normalization 
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viii. Number of connected components (numConnComp) 

This is the number of connected components in a network. A connected 

component is a subgraph in which there is a path between every pair of nodes. A 

single isolated cell was also considered one connected component by itself. 

 

ix. Average size of connected components (meanSizeConnComp) 

This is the mean of the numbers of nodes in each connected component in a 

network. When there was no connected component, the value was set to 0. 

 

x. Homogeneity of sizes of connected components (homoSizeConnComp) 

This quantifies how similar the sizes of connected components are in a network. 

This measure was calculated as one minus the normalized entropy in the 

distribution of sizes of connected components. Figure 10 shows an example 

calculating homoSizeConnComp in a morphogenetic pattern. When there was 

only one connected component, the value was set to 1. 

 

xi. Size of the largest connected components (sizeLarConnComp) 

This is the maximum size of the connected components in a network. 

 

xii. Average size of connected components smaller than the largest one 

(meanSizeSmaller) 

This is the mean of the sizes of connected components except for the largest 

connected component in a network. If there was only one connected component 



 

27 

 

 
 

Figure 10. An example showing how to calculate homogeneity of sizes of connected 

components (homoSizeConnComp). The value of computed entropy H(X) was 

divided by log L for the purpose of normalization. 

 

 

in the network, the value was set to 0. 

 

 For all of the above measures, if there were no cells remaining in the space, their 

values were set to 0. 

 

 

4.3 Results 

 Figure 11 shows distributions of the morphogenetic patterns based on the number 

of cells at the end of each simulation: larger than one cell, single cell, and no cell. We 

found that the larger   is, the more frequent the cases of no cell and single cell are. That 

is, the number of morphogenetic patterns which consist of more than one cell decreases 
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as   increases. These distributions of morphogenetic patterns are due to the fact that 

greater values of   make it more likely for GRNs to have more than two attractors so 

apoptosis can occur more frequently. Figure 12 shows different spatial patterns of each 

group acquired from randomly sampled 20 simulations. The trend of the distributions in 

Figure 11 is visually confirmed in Figure 12. Figure 13 summarizes the 12 measures of 

spatial pattern characteristics, where Kruskal-Wallis and Nemenyi (as post-hoc analysis) 

tests were conducted to detect statistically significant differences among the four groups 

(  = 1, 2, 3, 4). For the measures except for MI and kld, the average values decreased as 

  increased. Based on the statistical tests, we found that the values of kld and MI were 

highest at   = 2 (Figure 13 (c) and (l)). To investigate correlations between the 12 

measures, we obtained a correlation matrix (Figure 14). Seeing the row of numOfCells, 

we found that most of the measures were highly correlated to numOfCells. 

 

 

Figure 11. Distributions of morphogenetic patterns according to the number of 

cells for   = 1, 2, 3, 4. 
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(a) 

 

 

(b) 

 

 

(c) 

 

 

(d) 

 

Figure 12. Different morphogenetic patterns represented with networks for   = 

1, 2, 3, 4. The patterns are acquired from randomly sampled 20 simulations. (a) 

  = 1. (b)   = 2. (c)   = 3. (d)   = 4. 
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 (a)     avgCluster (b)  homoSizeConnComp (c)         kld 

   
(d)     linkDensity (e)    massDistance (f)  meanSizeConnComp 

   
(g)   meanSizeSmaller (h)   numConnComp (i)     numOfCells 

   
(j)     pairDistance (k)  sizeLarConnComp (l)         MI 

   
Figure 13. Comparison of means between groups (K = 1, 2, 3, 4) for 12 

morphological measures (Kruskal-Wallis test: p < 2.2e-16, Nemenyi test (post-hoc): 

‘ ’: p < 1.0, ‘.’: p < 0.1, ‘*’: p < 0.05, ‘**’: p < 0.01, ‘***’: p < 0.001). In the case that 

there is no difference between two groups, a bold line without an asterisk is 

presented in the plot. (a) Average clustering coefficient (avgCluster). (b) 

Homogeneity of sizes of connected components (homoSizeConnComp). (c) KL 

divergence between pairwise particle distance distributions of morphogenetic 

pattern and a random pattern (kld). (d) Link density (linkDensity). (e) Average 

distance of cells from center of mass (massDistance). (f) Average size of connected 

components (meanSizeConnComp). (g) Average size of connected components 

smaller than the largest one (meanSizeSmaller). (h) Number of connected 

components (numConnComp). (i) Number of cells (numOfCells). (j) Average pairwise 

distance (pairDistance). (k) Size of the largest connected component 

(sizeLarConnComp). (l) Mutual information between cell fates of cells and their 

neighboring cells (MI). 
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Figure 14. Colored correlation matrix for 12 morphological measures. 

 

 Here, the most notable measure is kld. We used KL divergence as a measure for 

detecting nontrivial spatial patterns. In Figure 13 (c), kld was largest at   = 2 unlike the 

intuition that the more patterns of larger than one are, the more nontrivial patterns are 

produced, which means that nontrivial morphogenetic patterns can be generated most 

frequently when the properties of GRNs are critical. It can arise from that the group of   

= 1 gets to have many homogeneous and circular patterns by the influence of one cell fate. 

In MI of Figure 13 (l), the value was lowest at   = 1 despite the most number of cells, 

which implies there were many patterns where cell states had one cell fate, especially 

proliferation. In this case, because one kind of parameters of SMD kinetics ( ,  ,   of 
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[proli - proli]) between cells were applied, homogeneous and circular patterns were 

generated. 

 We will explain the creation of the nontrivial morphogenetic patterns at the 

criticality in more detail in the next chapter, using morphogenetic systems where 

evolutionary perturbations are added. 
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Chapter 5 How the Criticality of Gene Regulatory Networks Affects the  

Resulting Morphogenesis under Genetic Perturbations 

 In Chapter 4, we presented a GRN-based morphogenetic model and revealed the 

role of the criticality of GRNs in morphogenesis [34, 35]. The results in Chapter 4 

include all kinds of randomly generated systems. However, real biological systems are 

products of evolution and therefore the results in Chapter 4 may have been affected by 

the inclusion of lots of biologically irrelevant data. Thus, in this chapter, we assume that 

biologically relevant GRNs are robust and evolvable [14, 38, 47, 51, 62, 65], and filter 

biologically irrelevant GRNs based on the criterion. We continue to use the same model 

as the one used in Chapter 4. Using the morphogenetic systems with robust and evolvable 

GRNs against genetic perturbations (e.g., mutations), we examine whether the role of the 

criticality of GRNs can be maintained even in the presence of the evolutionary 

perturbations. In addition, we investigate what the resulting morphologies are like and 

what kind of biological implications they have from the epigenetic viewpoint in 

morphology.  

 

5.1 Experiments 

 We performed 10,000 independent simulation runs for   = 1, 2, 3, 4. 

Specifications of parameters for the simulations were the same as those in Chapter 4. In 

this section, we just describe updated parts (perturbations to GRNs and basin & cell fate 

entropy). The 12 measures in 4.2.1. of Chapter 4 are identically applied here. 
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5.1.1 Perturbations to GRNs and Robust & Evolvable GRNs 

  In this chapter, we introduced genetic perturbations changing the topology of 

GRNs in our morphogenetic model. Specifically, we assumed that the genetic 

perturbation was due to a germinal mutation occurring in a pre-zygotic cell, which is a 

small scale mutation at a genetic level. The germinal mutation is passed on to offspring, 

and it is present in all resulting cells during embryo development [21, 25]. We perturbed 

the intracellular GRN of a seed cell at the initial time step by adding, deleting, or 

switching one regulatory link between a pair of genes [17, 26, 42]. Because cells were 

duplicated through the process of cell division from the perturbed GRN in the seed cell, 

all the cells composing a morphogenetic pattern had the same perturbed GRNs. 

 Such a small regulatory link perturbation did not significantly change the average 

number of input links per node ( ). For example, if   = 2, the total number of links of a 

GRN is 32, because the node size is 16. If one regulatory link is deleted as a genetic 

perturbation, the GRN consists of 31 links, making the value of   = 1.94. 

 

 
 

Figure 15. Schematic diagrams illustrating the concept of a robust and evolvable 

GRN. 
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 To obtain morphogenetic systems that have only biologically relevant GRNs, we 

focused on robust and evolvable GRNs among the perturbed GRNs. In our model, if the 

GRN conserved its existing attractors and created new attractors simultaneously after the 

perturbation, we considered the GRN as a robust and evolvable GRN (Figure 15) [2]. 

This is because it means that existing cellular functions such as proliferation and 

differentiation were maintained and at the same time new cellular functions emerged. 

 

5.1.2 Measures to Investigate the Relationship Between GRNs and Expressed Cell 

Fates 

 To investigate the relationship between intracellular GRNs and expressed cell 

fates, we calculated the basin entropy and cell fate entropy from the sizes of basins of 

attractions and cell fates distributed in a morphogenetic pattern. We thought that the 

numbers of actually expressed cell fates in a morphology might be proportional to the 

basin sizes of attractors where each cell fate was assigned. We calculated basin and cell 

fate entropies to look into whether or not our expectation would be correct. As in the 

computation of MI, only three cell fates (proliferation, differentiation, and quiescence) 

were considered (i.e., apoptosis was ignored). 

 

i. Basin entropy 

                  
 

 

where    is the size of the basin of the attractor   (to which proliferation, 

differentiation, or quiescence was assigned) divided by the sum of sizes of all the 

basins except for the basin size of the attractor for apoptosis. Thus, 
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      . 

Originally, basin entropy was suggested by Krawitz as a measure of the 

complexity of information that a system can store in    Boolean networks [39]. 

We used it as a measure to examine the versatility of the three cell fates 

(proliferation, differentiation, quiescence). 

 

ii. Cell fate entropy 

                      

 

 

where    is the number of cells expressing a cell fate   (proliferation, 

differentiation, quiescence), divided by the numbers of cells (except for those in 

apoptosis) in a morphogenetic pattern at the final time step. Hence, 

      . 

In the case that there were no cells expressing a fate (proliferation, differentiation, 

quiescence), its log value was set to 0. Also, when there was no cell in the space, 

the value was set to 0. 

 

 

5.2 Results 

 Figure 16 (a) shows probabilities of producing robust and evolvable GRNs 

against perturbations for   = 1, 2, 3, and 4 in 10,000 simulation runs. We found that 

robust and evolvable GRNs were generated with the highest probability at   = 2. Figure 

16 (b) shows samples of visualized morphogenetic patterns produced by robust and 
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(a) 

 
 

(b) 

 
 

Figure 16. Frequencies of robust & evolvable GRNs per group (K = 1, 2, 3, 4) and 

visualized spatial patterns. (a) Probabilities of generating robust and evolvable 

GRNs for K = 1, 2, 3, 4 in 10,000 simulation runs. (b) Different morphogenetic 

patterns obtained from robust and evolvable GRNs for K = 1, 2, 3, 4. The numbers 

of the patterns were counted from robust and evolvable GRNs produced in 500 

simulation runs. 
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(a)      avgCluster (b)  homoSizeConnComp (c)         kld 

   
(d)     linkDensity (e)    massDistance (f)  meanSizeConnComp 

   
(g)   meanSizeSmaller (h)   numConnComp (i)     numOfCells 

   
(j)     pairDistance (k)  sizeLarConnComp (l)         MI 

   
Figure 17. Comparison of means between groups (   = 1, 2, 3, 4) for 12 

morphological measures (Kruskal-Wallis test: p < 2.2e-16, Nemenyi test (post-hoc): 

‘ ’: p < 1.0, ‘.’: p < 0.1, ‘***’: p < 0.001). In the case that there is no difference 

between two groups, a bold line without an asterisk is presented in the plot. (a) 

Average clustering coefficient (avgCluster). (b) Homogeneity of sizes of connected 

components (homoSizeConnComp). (c) KL divergence between pairwise particle 

distance distributions of morphogenetic pattern and a random pattern (kld). (d) 

Link density (linkDensity). (e) Average distance of cells from center of mass 

(massDistance). (f) Average size of connected components (meanSizeConnComp). (g) 

Average size of connected components smaller than the largest one 

(meanSizeSmaller). (h) Number of connected components (numConnComp). (i) 

Number of cells (numOfCells). (j) Average pairwise distance (pairDistance). (k) Size 

of the largest connected component (sizeLarConnComp). (l) Mutual information 

between cell fates of cells and their neighboring cells (MI). 
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evolvable GRNs for each  . 

 We calculated the 12 morphological measures of morphogenetic patterns 

generated by robust and evolvable GRNs. Because the robust and evolvable GRNs were 

generated with different probabilities for different values of  , we applied bootstrap 

sampling 1,000 times to the values of the 12 measures for comparison between groups 

(  = 1 - 4) with unequal sample sizes. Figure 17 indicates the comparison of means 

between groups for the measures, where Kruskal-Wallis and Nemenyi (as post-hoc 

analysis) tests were performed to show statistically significant differences among the 

groups. 

 Furthermore, we produced a correlation matrix to investigate correlations 

between the 12 measures (Figure 18). We found that the following six measures were 

highly correlated with numOfCells: avgCluster, massDistance, meanSizeConnComp, 

meanSizeSmaller, pairDistance, and sizeLarConnComp. These correlations were found in  

 
 

Figure 18. Correlation matrix for 12 morphological measures. 
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Figure 17 as well. The values of numOfCells at   = 1, 2, 3 were similar but fell sharply 

at   = 4. This trend was also shown in the six measures highly correlated with 

numOfCells. Meanwhile, kld, MI, homoSizeConnComp, linkDensity, and numConnComp 

showed different trends. In Figure 17 (c), kld was highest at   = 2, which means that 

nontrivial morphogenetic patterns were generated most frequently when the GRNs were 

critical under the genetic perturbations. This result demonstrates that the role of criticality 

of GRNs is maintained even in the presence of evolutionary perturbations. 

In addition, from MI, homoSizeConnComp, linkDensity, and numConnComp, we 

found two interesting properties of the nontrivial morphologies at the criticality. Firstly, 

certain combinations of cell fates between neighboring cells occurred most frequently. In 

Figure 17 (l), MI was highest at   = 2. It indicates that the fate of a cell is strongly 

correlated with the fate of its neighboring cells in a morphogenetic pattern generated at 

the criticality. To examine the relationship between intracellular GRNs and expressed cell 

fates, we measured basin entropy and cell fate entropy (Figure 19). Our original 

expectation was that if the basins of attraction for the three cell fates were most evenly  

(a) (b) 

  
 

Figure 19. Comparison of means between groups for basin and cell fate entropy 

computed from three cell fates (proliferation, differentiation, quiescence). (a) 

Average basin entropy for   = 1, 2, 3, 4. (b) Average state entropy of cell fates 

performed in a simulation at the final time step for   = 1, 2, 3, 4. 
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distributed at   = 2, the expressions of different cell fates would be maximally balanced 

in a morphogenetic pattern. However, the cell fate entropy was highest at   = 1 

although the basin entropy was highest at   = 2. This means that the distribution of cell 

fates in a morphology was not a simple reflection of the basin sizes of a GRN at a single 

cell level, but more like an emergent property at a multicellular level obtained through the 

developmental process involving cell-cell interactions. 

 Secondly, the nontrivial morphologies emerged typically in topologically 

homogeneous cell clusters. In Figure 17 (b), (d), (h),   = 1 showed relatively high 

homoSizeConnComp, low linkDensity, and low numConnComp values, on average, 

compared to the corresponding measures at   = 2, 3, and 4. Here we simply express the 

observations qualitatively as (high, low, low). Similarly, in the same order,   = 2 showed 

(high, high, high),   = 3 showed (low, high, high), and   = 4 showed (low, low, low). 

These can be interpreted as follows: The morphologies at   = 1 consisted of 

homogeneous large-size connected components which had a shape like a long chain. The 

morphologies at   = 2 were composed of homogeneous-size connected components 

where cells were interconnected. The morphologies at   = 3 were composed of 

heterogeneous-size connected components where cells were interconnected. The 

morphologies at   = 4 were composed of heterogeneous-size small connected 

components that had a shape like a short chain. Figure 20 summarizes the typical 

topological properties for   = 1 - 4 schematically. 

 In our morphogenetic model, there is a feedback relationship (Figure 21). 

Interactions with neighboring cells determine a cell fate. Depending on the cell fates, the 

parameters of SMD kinetics are applied. The cells are positioned by SMD kinetics. The 
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Figure 20. Topological properties of morphogenetic patterns for K = 1, 2, 3, 4. “low” 

and “high” mean the relative values against K in the order of (b) 

homoSizeConnComp, (d) linkDensity, (h) numConnComp in Figure 17. 

 

 

 

 
 

Figure 21. Feedback relationship in our morphogenetic process. 
 

  

positions of cells influence the number of neighboring cells. In the feedback relationship, 

we found that the nontrivial morphologies were produced most frequently when the 

GRNs were critical under the genetic perturbations. Besides, the nontrivial morphologies 
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at criticality had the most frequent occurrence of certain combinations of cell fates 

between neighbors, and were composed of topologically homogeneous cell clusters. 

Because the parameter values of SMD kinetics determining cells' positions depended on 

the cell fates, the more frequent those combinations of cell fates between neighbors were, 

the more likely to be applied the same SMD parameter values were among the cells. Thus, 

the most frequent combinations of cell fates between neighbors would naturally produce 

more homogeneous-size connected components where cells were interconnected. Such 

spatial arrangements of multicellular patterns due to the criticality of GRNs are not easily 

predictable from a single cell level. 
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Chapter 6 Robustness and Evolvability of Multilayer Gene Regulatory  

Networks 

 In Chapter 4 and 5, because we used particle-based morphogenetic models with 

SMD kinetics, it was difficult to assess the robustness and evolvability of the whole 

system. Thus, we present a more formal hierarchical network model and investigate how 

criticality of GRNs affects the robustness and evolvability of the whole system, the 

hierarchical network depending on cellular topologies and the number of links of an 

intercellular network in this chapter. 

 

6.1 Model: Multilayer GRNs 

 We present multilayer GRNs consisting of an intercellular layer and an 

intracellular layer. A network in an intercellular layer represents interactions between 

cells, and a network in an intracellular layer indicates interactions between genes (Figure 

22). All the nodes of an intercellular network have identical RBNs as intracellular 

networks. Our multilayer GRNs are divided into two types depending on cellular 

topologies. One is the multilayer GRNs having fixed cellular topologies, and the other is 

the multilayer GRNs having cellular topologies that are randomly changed in each 

simulation run. The multilayer GRNs with static cellular topologies are assumed as 

epithelial cells based on the existing models representing epithelium as the square 

arrangement of cells having a fixed set of neighbors (the adjacent neighboring cells: north,  

south, east, west) [20, 45] (Figure 23. (a)). The multilayer GRNs with dynamic cellular 
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Figure 22. A schematic diagram for example multilayer GRNs with        = 4, 

       = 5,        = 1. (In actual simulations,        = 9,        = 6 nodes were 

used.) 
 

 

topologies are assumed as a developing embryo (Figure 23. (b)). This assumption is 

based on biological evidence showing that the topology of the intercellular network keep 

changing because of cellular movements and cell growth during embryonic development 

[30]. For the two types of multilayer GRNs, we generate multilayer GRNs taking 

ordered , critical, and chaotic intracellular GRNs by adjusting node in-degree ( ). 

 The dynamics of multilayer GRNs as the whole system at a hierarchical level are 

determined by the dynamics of intracellular GRNs (the input nodes of each gene and the 

assigned Boolean functions to the genes) and the topology of the intercellular network 

(the neighboring cells for the interactions between cells). In our multilayer GRNs, we 

implement cell signaling for the interactions between cells, following Villani et al.'s 

coupled RBN model [64]. In an intracellular GRN, a certain gene is assigned to 

communicate with neighboring cells. This gene is called communicating gene. The 

communicating gene is activated if any of the communicating genes of neighboring cells  
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 (a) 

 

(b) 

 

Figure 23. Biological systems and intercellular networks. (a) Epithelial cells having 

static cellular topologies. (b) Embryo having dynamic cellular topologies. 

 



 

47 

 

are activated. The states of the other genes except for the communicating gene are 

updated by the input nodes of each gene and randomly assigned Boolean functions to the 

genes in the intracellular GRN. 

 Figure 24. (a) shows an example GRN. In the GRN, gene2 is a communicating 

gene. The assigned Boolean functions to gene 1 and gene 2 are shown in Figure 24. (b). 

Figure 25. (a) illustrates example multilayer GRNs where each cell has the network of 

Figure 24. (a) as its intracellular GRN. cell A and cell B are a neighbor to each other. 

 

(a) (b) 

 

 

(c) (d) 

 

 

Figure 24. Schematic diagrams for explaining the dynamics of an intracellular 

GRN. (a) An intracellular GRN with        = 2,        = 1. (b) Boolean 

functions randomly assigned to each node. (c) State transition table of the 

intracellular GRN. (d) State space of the intracellular GRN. The state space 

consists of     4 configurations and transitions among them. The 

configurations with bold lines are attractors. Dashed lines draw boundaries for 

each basin of attraction. 
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Figure 25. (b) shows the state transition table representing the dynamics of the multilayer 

GRNs. For example, we assume that initial states of genes are 0110 at time   in the state 

transition table. For the communicating node, gene 2 of cell A becomes 0 at the next time 

step because gene 2 of cell B at   is not activated. On the contrary, gene 2 of cell B 

becomes 1 because gene 2 of cell A is activated. For the non-communicating node, gene 1 

of cell A becomes 1 at     by the state of gene2 in cell A and the assigned Boolean 

 

(a) (b) 

 

 

(c) 

 

Figure 25. Schematic diagrams for explaining the dynamics of multilayer GRNs. (a) 

An Intercellular GRN with        = 2 containing the intracellular GRNs of Figure 

24. (b) State transition table of the multilayer GRNs. (c) State space of the 

multilayer GRNs. The state space consists of                =      = 16 

configurations and transitions among them. The configurations with bold lines are 

attractors. Dashed lines draw boundaries for each basin of attraction. (Because 

       = 9,        = 6 nodes were used in actual simulations, the state space size of 

the multilayer GRNs is      =    .) 
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function to gene1. Similarly, gene 1 of cell B becomes 0 at     by the state of gene 2 

in cell B and the assigned Boolean function. As the result, the initial states 0110 finally 

become 1001 at    . In this way, all the values of the state transition table of the 

multilayer GRNs can be filled in. 

 

 

6.2 Experiments 

 We conducted the following two computational experiments: 

(1) Robustness and evolvability of multilayer GRNs and intracellular GRNs 

depending on cellular topologies: 

In multilayer GRNs with static cellular topologies, cells always had the fixed four 

neighboring cells in each simulation. Meanwhile, in multilayer GRNs with 

dynamic cellular topologies, cells had different neighboring cells in each 

simulation because the topology of an intercellular network was randomly 

determined based on the number of links randomly chosen between 1 and 81. 

When intracellular GRNs were ordered (  = 1), critical (  = 2) and chaotic (  

= 3), we assessed the robustness and evolvability of multilayer GRNs and 

intracellular GRNs for static and dynamic cellular topologies. Here we omitted   

= 4 to simplify the experimental process. 

(2) Robustness and evolvability of multilayer GRNs depending on the number of 

links of an intercellular network: 

For multilayer GRNs taking ordered (  = 1), critical (  = 2) and chaotic (  = 3) 

intracellular GRNs, increasing the number of links of an intercellular network 
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from 10 to 80 by 10, we assessed the robustness and evolvability of multilayer 

GRNs with dynamic cellular topologies. 

 

We performed 1,000 independent simulation runs for each group (  = 1, 2, 3) of 

multilayer GRNs. The parameter values for the simulations are given in Table 2. 

 

Table 2. Parameters of the multilayer GRNs and their values 

Model Parameter Value 

Intracellular 

Layer 

Number of nodes (       ) 

Number of in-degree per node (      ) 

Internal homogeneity ( ) 

Number of communicating nodes (  ) 

6 

1, 2, 3 

0.5 

1 

Intercellular 

Layer 

Number of nodes (      ) 

Number of links (      ) 

9 

(1) static:        = 36 

   dynamic:           

   unif (1, 81)   ℤ 

(2)          {10, 20, 30,  

    40, 50, 60, 70, 80}  

      ℤ 

 

 

6.2.1. Robustness and Evolvability Against Genetic Perturbations 

 In Chapter 5, we added a germinal mutation occurring in a pre-zygotic cell to our 

GRN-based morphogenetic model. In this chapter, adding another kind of mutation, we 
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investigated the role of the criticality of GRNs under the different form of mutation. Here 

we introduced somatic mosaic mutations occurring in post-zygotic cells to our multilayer 

GRNs. Somatic mutations, which are known to be present in actual embryo development, 

are not inherited genetic alterations in the course of cell division [19, 22, 44]. A mosaic 

means that two or more populations of cells with different genotypes exist in one 

individual developed from a single zygotic cell [63]. In our multilayer GRNs consisting 

of nine cells, we perturbed an intracellular GRN in one cell. We added, deleted, or 

switched one regulatory link between a pair of genes [17, 26, 42]. As a result, different 

intracellular GRNs came to exist within one system consisting of nine cells. 

 We measured the robustness and evolvability of multilayer GRNs at a 

hierarchical level and intracellular GRNs at a single cell level against the genetic 

perturbations. Figure 26. (a) shows four categories depending on the properties. The 

categories are as follows: 

                            : If existing attractors were conserved and new 

attractors were created simultaneously against the genetic perturbation, the GRN 

was considered as a robust & evolvable GRN [2].  

                            : If only existing attractors were conserved 

without new attractors being created, the GRN was regarded as a robust GRN.  

                            : If new attractors were created without existing 

attractors being conserved, the GRN was regarded as an evolvable GRN. 

                                : The GRN which did not belong to any 

categories above was included into this category. 
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(a) 

 

(b) 

  

Figure 26. Four categories of the robustness and evolvability, and the relationship 

between the properties of multilayer GRNs and intracellular GRNs. (a) A Venn 

diagram representing different sets depending on the changes of attractors. (b) An 

example 3D histogram illustrating the degree of correlation between properties of 

multilayer GRNs and intracellular GRNs. 
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 To investigate linear dependence between the properties of multilayer GRNs and 

intracellular GRNs, we assigned integer values to the four categories in order of 4, 3, 2, 

and 1. Using the integers representing the properties of intracellular GRNs and multilayer  

GRNs as coordinates (X, Y), we made a 3D histogram (Figure 26. (b)). We thought that 

the properties of multilayer GRNs at a hierarchical level might be the same as the 

properties of intracellular GRNs at a single cell level (Y = X). For example, if a perturbed 

intracellular GRN is robust against the genetic perturbation, the multilayer GRNs 

containing the perturbed GRN would be also robust. We calculated correlation 

coefficients between the properties of multilayer GRNs and intracellular GRNs to look 

into whether or not our expectation would be correct. 

 When finding the attractors of multilayer GRNs at a hierarchical level, we 

focused on the attractors with the largest basins of attraction, which is for keeping 

computational loads reasonable. Because the state space size of the multilayer GRNs is 

   , it is not feasible to explore all the state space. Thus, we used 10,000 randomly 

chosen initial states to find the attractors with the largest basins of attraction. The number 

of the initial states was determined based on studies identifying the attractors of large-

scale Boolean networks [2, 37]. 

 

 

6.3 Results 

 Figure 27 shows probabilities of generating robust & evolvable GRNs, robust 

GRNs, and evolvable GRNs depending on cellular topologies. We focused on multilayer 

GRNs and intracellular GRNs which had robustness and evolvability simultaneously  
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(a)  robust & evolvable   

GRNs 

robust GRNs evolvable GRNs 

   

   

(b)   robust & evolvable  

GRNs 

robust GRNs evolvable GRNs 

   

   

Figure 27. Probabilities of generating robust & evolvable GRNs, robust GRNs, and 

evolvable GRNs depending on cellular topologies. The blue graphs represent the 

robustness and evolvability of perturbed intracellular GRNs at a single cell level, 

and the red ones represent the robustness and evolvability of multilayer GRNs 

containing the perturbed intracellular GRNs at a hierarchical level. (a) Robustness 

and evolvability of multilayer GRNs with static cellular topologies. (b) Robustness 

and evolvability of multilayer GRNs with dynamic cellular topologies. 
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against the genetic perturbations based on the studies showing that living organisms 

exhibit robustness and evolvability [14, 38, 47, 51, 62, 65]. We found that the robust & 

evolvable multilayer GRNs and intracellular GRNs were generated with the highest 

probabilities at   = 2. In addition, the multilayer GRNs with both static and dynamic 

cellular topologies had this trend in common. It means that the criticality of GRNs 

promotes not only the generation of robust & evolvable intracellular GRNs at a single 

cell level but also the production of robust & evolvable multilayer GRNs at a hierarchical 

level. Furthermore, the role of the criticality of GRNs maintains in both epithelial cells 

with static cellular topologies and a developing embryo with dynamic cellular topologies. 

 To investigate correlation between the robustness and evolvability of multilayer 

GRNs and intracellular GRNs, we computed correlation coefficients in Table 3. All the 

values were smaller than 0.17, which indicates that there are almost no correlation or a 

very weak correlation between the properties of multilayer GRNs and intracellular GRNs. 

That is, although an intracellular GRN is robust against the genetic perturbation, 

multilayer GRNs can be not robust. The properties of multilayer GRNs are not simply 

determined by the properties of intracellular GRNs at a single cell level. Thus, the 

properties of multilayer GRNs obtained at a hierarchical level must be understood as 

emergent properties. 

Table 3. Correlation coefficients between the properties of  

multilayer GRNs and intracellular GRNs 

 

   = 1   = 2   = 3 

Static cellular topologies 0.059 0.168 0.041 

Dynamic cellular topologies 0.141 0.134 0.102 
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Figure 28. Probabilities of generating robust & evolvable multilayer GRNs 

depending on the number of links of an intercellular network. 

 

 

 Figure 28 shows probabilities of generating robust & evolvable multilayer GRNs 

depending on the number of links of an intercellular network. Increasing the number of 

links of an intercellular network from 10 to 80 by 10, we observed how the probabilities 

were varied. As the number of links of an intercellular network grew, the probabilities did 

not monotonically increase or decrease but fluctuated. In addition, when compared to the 

probabilities at   = 1 and   = 3, robust & evolvable multilayer GRNs were produced 

with the higher probability at   = 2. Especially, the probability of generating robust & 

evolvable multilayer GRNs reached the maximum when the number of links of an 

intercellular network was around 40 (link density   0.5). It means that the degree of 

interactions between cells can maximize the generation of robust & evolvable multilayer 

GRNs by amplifying the effect of the criticality of GRNs. 
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Chapter 7 Conclusions 

 In this dissertation, we explored the roles of the criticality of GRNs at a 

multicellular and hierarchical level, using our GRN-based morphogenetic model and 

multilayer GRNs. 

 In Chapter 4, we proposed GRN-based morphogenetic systems using Kauffman's 

RBNs as intracellular GRNs and SMD kinetics for cellular movements to show self-

organized spatial patterns during the developmental process. Varying the properties of 

GRNs from ordered (  = 1), through critical (  = 2), to chaotic (  = 3, 4) regimes, we 

simulated our morphogenetic model. As a result, the simulations demonstrated that 

nontrivial morphogenetic patterns were produced most frequently in the morphogenetic 

systems with critical GRNs. Our finding indicates that the criticality of GRNs plays an 

important role in facilitating the formation of nontrivial morphogenetic patterns in the 

GRN-based morphogenetic systems. 

 In Chapter 5, we introduced genetic perturbations that change the interactions 

between genes (e.g., mutations) to our morphogenetic model. We looked into whether the 

role of the criticality of GRNs reported in Chapter 4 could be maintained even in the 

presence of evolutionary perturbations. Also, we investigated what the resulting 

morphologies were like and what kind of biological implications they had from the 

epigenetic viewpoint in morphology. We found that nontrivial morphologies were 

generated most frequently when the GRNs were critical under the genetic perturbations, 

which was consistent with the previous result obtained from morphogenetic systems 



 

58 

 

without evolutionary perturbations. Moreover, we found that the nontrivial morphologies 

at the criticality tended to be made of topologically homogeneous cell clusters due to the 

spatial arrangements in which certain combinations of cell fates between neighboring 

cells occurred most frequently. Based on these findings, we conclude that the criticality of 

GRNs facilitates the formation of nontrivial morphologies by adjusting the spatial 

arrangements of cells in GRN-based morphogenetic systems, even under the genetic 

perturbations. 

 Our findings in Chapter 4 and Chapter 5 have implications from an epigenetic 

viewpoint. Researchers in epigenesis have suggested that heterogeneous and complex 

features emerge from homogeneous and less complex components through the 

interactions among them [46, 53]. In our model, we showed that the nontrivial 

morphologies were produced most frequently at criticality, typically with topologically 

homogeneous cell clusters. Thus, the result not only supports the theory of epigenesis in 

developmental biology, but also implies that highly structured tissues or organs in 

morphogenesis of multicellular organisms might stem from cell aggregation with critical 

GRNs. 

 In Chapter 6, we presented multilayer GRNs consisting of an intercellular layer 

and an intracellular layer. We obtained probabilities of generating robust & evolvable 

multilayer GRNs and intracellular GRNs against genetic perturbations, varying the 

properties of intracellular GRNs with   = 0.5 from ordered (  = 1), through critical (  

= 2), to chaotic (  = 3) regimes. We found that the robust & evolvable multilayer GRNs 

and intracellular GRNs were generated with the highest probabilities at   = 2 for both 

static and dynamic cellular topologies. Especially, the probability of generating robust & 
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evolvable multilayer GRNs reached the maximum when the link density of an 

intercellular network was around 0.5. Our finding means that the criticality of GRNs at a 

single cell level promotes the production of robust & evolvable multilayer GRNs at a 

hierarchical level. In addition, the effect of the criticality of GRNs can be amplified by 

the degree of interactions between cells. 

 Through the three studies in Chapter 4, 5, and 6, we found that the criticality of 

GRNs facilitated the formation of nontrivial morphologies at a multicellular level, and 

generated robust and evolvable multilayer GRNs with the highest probability at a 

hierarchical level. Our findings demonstrate that the roles of the criticality of GRNs are 

hard to be discovered through the single-cell-level studies by showing that the formation 

of nontrivial morphologies and the generation of robust & evolvable multilayer GRNs 

must be understood as not predictable properties at a single cell level but emergent 

properties at a higher system level. It justifies the value of our research on the 

relationship between criticality of GRNs and properties of organisms in the context of 

multicellular settings. 

 The present studies have limitations. The properties of morphogenetic patterns 

and the robustness & evolvability of multilayer GRNs were explored only using our 

artificial model based on RBNs as GRNs. To make our findings more relevant to real 

biological systems, we need to develop more biologically plausible models, using 

empirically obtained biological Boolean networks. 

 For future work, we plan to look into the spatial and temporal distribution of 

cells during the growing processes from the seed cell to the cell aggregation to fully 

account for why the nontrivial morphologies were produced most frequently in 
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morphogenetic systems with critical GRNs. Also, we will examine how not only the 

attractors of multilayer GRNs but also the basins of the attraction are changed by the 

genetic perturbations to thoroughly explain why the robust & evolvable multilayer GRNs 

were generated with the highest probability when intracellular GRNs were critical. 
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Appendix A 

 

 The dynamics of RBNs are divided into three regimes depending on the structure 

of state space: ordered, critical, and chaotic. One can know which dynamics RBNs have 

by drawing a Derrida plot [15, 16]. Steps to draw a Derrida plot are as follows: 

(1) Randomly choose two initial states       and       that are close to each other 

in the state space of a RBN. 

(2) Obtain         and        .  

(3) Calculate Hamming distances                      and   

                        .  

(4) Plot coordinate ( ,  ). 

(5) Iterate the above steps several times. 

 

  

 Figure 29. Derrida plot representing dynamics of GRNs. 
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 In a Derrida plot, the Derrida coefficient (  ) is defined as log  , where   is the 

slope of the Derrida curve at the origin.    < 0 means that the dynamics of GRNs are 

ordered.    = 0 indicates critical dynamics, and    > 0 represents chaotic dynamics 

(Figure 29). 
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Notes 

The materials presented in the dissertation are based on the published work [34, 35, 36]. 
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