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Introduction

1.1. Introductory Remarks.

This thesis deals primarily with decomposition spaces and the
question of inheritance by a decomposition space of certain topological
properties. Some new topological concepts which are introduced are of
independent interest but they are explored here principally for their
implications in decomposition spaces.

In Chapter II we compare McAuley's definition of an upper semi-
continuous decomposition with other separation properties of the
decomposition space and relations of these properties to the projection
map. In contrast to Whyburn's (originally, Moore's) definition of
upper semicontinuity, which is equivalent to requiring the projection
map to be closed, these are purely topological properties, but some
nevertheless impose conditions on quotient maps onto spaces satisfying
them. Also, they are investigated in conjunction with various basis
restrictions on the decomposition space (such as first countability,
etc.) or conditions on the nature of the individual elements of the
decomposition.

Chapter III is more narrow in scope, dealing specifically with
certain shrinkability theorems of McAuley, originally asserted for
decompositions which are upper semicontinuous in the sense he defined.
The observation that this definition of upper semicontinuity did not

yield the desired properties as supposed led to the investigations of




Chapter II. Proofs of the theorems with the amended hypotheses are

supplied.

1.2. RNotation and terminology

Unless the contrary is stated, the terms employed are as defined
in [10]. Where concepts have had a variety of names, some effort has
been made to list these and to use one of those names already appearing
in the literature. Exception has been made in the form of adopting
letters in place of werbal descriptions of properties for the sake of
_ brevity.

Throughout this thesis, where X denotes a topological space,
G a collection of mutually disjoint subsets covering X, the decom-
position (quotient, factor) space X/G¢ will be denoted by _1_ and the

canonical projection (quotient, factor) map by p:X + I, where

x € p-lpx. Also, we may write x € p(x), using the same name for an

element of the decomposition space whether regarding it as a subset of
X (an element of G) or as a point of I. The collection of non-
degenerate elements of G is denoted BG s or simply H.

If A 1is a collection of subsets-o-f a space, _A:_ means the
wiion of the members of A. Where AC I, A* willbe p A, fol-
lowing the couvention noted above. So the topology of I can be
described by: A is open in I if and only if A* is open in X.
Also, A(B), where B is a set not necessarily belonging to A,
the subcollection of A consisting of those members of A which
intersect B. (A(B))* 1is written A*(B).

The singleton {x} 1is frequently abbreviated as x, where we

hope no confusion will result. For instance, A({x}) 1s contracted




to A(x).
xXApA means "x is a limit point of the set A" and x¥pA

is used for the negation.

=> is used for the logital "only if" or "implies" and e= or
1ff for "if and only if."

While we are concerned only with decompositions into closed sub-
sets, vhere I is T , no such standing assumption is made, and all of
the theorems are intended to stand only on the hypotheses specifically

stated in them.




CHAPTER II

Upper Semicontinuity and Separation Properties

2.1. Mc, H'. and M
Definition. A space X is m iff x#y, x2fpA and

y2pA == there exists a subset B of A such that x% B and

y¥pB.

Definition. X is Mc iff X is Tl and lc, i.e.,
x¥y, {x,y)C A =» there exists a subset B of A such that x e B

and y ¢ B.

A decomposition G of a space X 1is upper semicontinuous in

the sense of McAuley [11] iff I is Mc.

Proposition 1. 1.'2 => Mc

Proof. '1'2 -v'l‘l and if x and y are different limit points
of aset A, let U and V be disjoint open sets containing x and y,

respectively. Then B= AN U gives the desired subset for Mc.

The converse of Proposition 1 is not true in general. In fact,
we can state a condition which is stronger than Mc and yet fails to

yield 'l.'z without some restriction like first countability on the

space.

Definition. X is m' 1ff xfpA = there is a subset B of A

such that B~B = {x}.




Definition. X is M' 1ff X 1s T, and u', i.e., X €A =0

there is a subset B of A such that B=Bv x.

Proposition 2. M' == Mc

Proof. If x ¥y and both are limit points of a set A, we
can assume neither belongs to A by '1‘1. Then there is a subset

B of A such that x2pB and Bwux 1is closed, so y®mB.

We will show that T, M' and Mc are all equivalent in a first
countable space; but the latter two are equivalent in the presence of a
weaker base condition and in that case equivalent to another property

wvhich we call M, as it was named by McDougle [13].

Definition. X is M iff sequential limits are unique, i.e.,

a sequence, xn +x and xn-»y - x=y,
Definition. X is RKC 41iff each compact subset of X 1is closed.

The abbreviation KC was used by Wilansky [23].

Clearly, 'rz- KC = M == 'rl.

Proposition 3. Mc => M

- Proof. Suppose x +x and x +y with x¥#y. By rl we
can assume the sequence x is not frequently constant. So x%p an
and yLp vz . By Mc there is a set B C ux, for which x2%pB

and y®»pB. Since xpB, we must have B = uxn for some subse-
1
quence x , againby T,. And since x +y also, ytp Ux_ .,
n, 1 LA n,
which is a contradiction.




We have so far:

Each of these properties is topological and each is inherited by
subspaces. Eventually, we will give examples to show the converses of

these implications do not hold, but it will be more illuminating if we

first examine additional conditions in which they do. That the first

column of implications has no converse is well-known. See, for
example, [23].

M' has two very useful properties. One is that it is preserved
by closed maps. Another is that even considerable weakening of

M' on I guarantees that the projection map is pseudo-open.

Proposition 4. M' is preserved by closed maps.

Proof. Let X be M' and f£:X+ Y a closed map of X omto Y.
Suppose ytpA in Y. We can assume y ¢ A. Since £ is closed,
there is a point x € f'ly with xgp £1A and since X 18 M', there
. is a subset BCf-lA satisfying B=BUx and xtp B. Then by
continuity of £, we have y2p £(B), while £(B) = £(B) since f is
closed. But £(B) = f(BUX) = £(B) Uy. And since £(B)C A, this

completes the proof.




Corollary 4.1. If X is M' and G is Whyburn- usc, then
1 1s ¥'.

Corollary 4.2. If X is M', then any Whyburn- usc decomposi-

tion of X 1s McAuley - usc.

Henceforth, when we use the term upper semicontinuous (usc) with-
out qualification, it will be understood in Whyburn's sense, i.e.,

p 1is closed. For McAuley's we use the term Mc.

2.2. Pseudo-open maps
Definition. If f£(X) =Y 1s a continuous map of X omto Y,

f 1is pseudo-open (Arhangel'skii [1]), pre-closed (T'ong [17]), a

P, - mapping (McDougle [13]), 1ff y € ¥, £ly C U open = y € 1nt £(U).

Amp f of X onto Y is quasi-compact (quotient) iff the image
of an open inverse set is open. An inverse set is a subset A of X
such that f-lfA = A, Since the complement of an inverse set is an
inverse set, under a quasi-compact map the image of a closed inverse
set is closed.

The properties of pseudo-open maps listed here seem to have been

discovered independently by a number of people.

Proposition 6. pseudo-open == quasi-compact

1

Proof. Suppose O = f £0 is an open inverse set. If y € £O

then z"lyco open. So y € int £0. Thus £0 is open.

Proposition 7. p 1is pseudo-open o=+ (g € G, g CU open in X ==
there is a set V open in X such that gCVCU and pV is open).




Proof. Assume p is pseudo-open. Let U be open in X con-
taining g. Then pU is a neighborhood of g in I. So pU comn-
tains an open set O in I containing g. p 10 1s open by
continuity. Let V=p 0NU. g€V open CU and

pVe= p(p-lor\ﬂ) =0 since 0CpU.

Conversely, if U is open in X containing g, by hypothesis
there 1s an open set V with gCVCU and pV open. Since

pV CpU this makes pU a neighborhood of g in I.

Proposition 8. p is pseudo-open <= (g tpA in T o=o there is
apoint x€ g such that x%A* in X).

Proof. Assume p 1is pseudo-open. If no point of g is a
limit point of A*, there is an open set UD g such that U misses
A*. But pU is a neighborhood of g and misses A, contradicting

gipA. The converse of the implication just shown holds for continu-

ous maps.

Conversely, suppose U is open in X containing g but

g¢int pU. Then g€pU but gtp (INpU). So there is a point
x € g such that xlpp-l(l N\p U) by hypothesis. In particular, U

contains x so U meets p-l(l\pl]), which is impossible.

Proposition 9. p 1is pseudo-open o= (A 1is closed in
B CI o= A" is closed in B* C X).

Proof. Assume p 1is pseudo-open. If A 1is closed in B,
then A" is closed in B* by continuity. Suppose A* 1is closed in
B®. If A is not closed in B there is an element g € B\A with




gpA. Now g misses A* in X while there is a point x € g such

that xfpA*. But x € g CB*\A* vhich contradicts the hypothesis.

Conversely, if p 1is not pseudo-open, then for some g and A,
g2 A with no point of g a limit point of A*. Ve can assume
g€A. Then A* is closed in A*U g. Hence, A 1is closed in
p(A* U g) by hypothesis. But p(A* Ug) = A Ug which contradicts

g € ANA.

Corollary 9.1. p is pseudo-open <=o (A is open in Bomo A* is

open in B*).

Proof. This follows from the proposition, since C 1is open in

D iff XNC 1is closed in X\D, and if C 1is an inverse set then

XN\C 1is an inverse set.

Definition. (Whyburn) A map f 1s hereditarily quasi-compact

1ff £|Y 1s quasi-compact for each inverse set Y.

" Proposition 10. p is pseudo-open <= p 1is hereditarily quasi-

compact.

Proof. p 1is hereditarily quasi-compact iff whenever 0 and Y
are inverse sets with O open in Y, then pO 1is open in pY. Let-
ting A= p0 and B=pY, this condition becomes: A* 1is open in
B* =» A is open in B. The converse of this implication is continu-
ity so we have the characterization of a pseudo-open map in Corollary

9.1.

In particular, we have from these propositions that if p 1is

pseudo-open then pl!er p 1is a homeomorphism. (Rer p =



{x:f ltx = x) = X\n;} ¥

Another way of describing hereditarily quasi-compact (hereditar-
1ly quotient, pseudo-open) maps is that they preserve the subspace
topology on inverse sets. That is, if G 1is a decomposition of X
and Y is an inverse set in X, then Y =G'* for some G'C G. Y
has the subspace topology from X and there is an induced quotient
space Y/g'. As a set this is precisely the subset of X/c whose
elements lie in Y, but as a subspace of X/c this set may have a
different topology, i.e., strictly weaker. These two topologies are

the same (for all inverse sets Y) if and only if p 1is pseudo-open.

1

Definition. A map £:X >Y 4is monotone iff f 'y 1s connected

for each y € Y.

Proposition 11. p is pseudo-open, monotone, C connected in

T =»Cc* is connected.

Proof. Suppose C 1is connected but c*=aAu B, a separation
"4in X. Then A and B are non—e@ty and A 1s both open and closed
in C*®. Since p 1is monotone, A and B are inverse sets. Because
P 1s pseudo-open, pA 1is open and closed in pc* = C, while

PA and pB are also non-empty. This gives a separation of

C=pAUDPB.
Clearly, open == pseudo-open and closed ==o pseudo-open.
Proposition 12. I is M' =» p is pseudo-open

Proof. Suppose gfpA in I but gn-A-;- ¢. By M' there

1s a subset A, CA such that 8pA; and A\ Ug is closed in 1T,



So A; Ug 1is closed in X by continuity of p. Hence A; is
closed in X because g contains no limit points of AI C A*. Then
‘l is closed in I as p 1is quasi-compact. This contradicts

g€ Al\Al.

It is evident that it was not necessary in this proof to have
AIU g closed but only that gip Al and g¥p (-A-I\Al). This sug-
gests the following definitionm.

Definition. X is weak M' iff x2pA == there is a subset

B of A such that x 1is an isolated point of B~B.

Clearly M' == weak M' and Proposition 12 is immediately

eclipsed by:
Proposition 13. I is weak M' == p is pseudo-open.

Proof. Suppose gipA in I and gr\A_"-, ¢. Let AIC A
such that gp Al but gh.xl\ Al. Then g contains no limit points

E Y
of Al 1) .
Hence g contains no limit points of (II\AI)*UAI = (Kl)* . But

and none of (KI\A by assumption and continuity of p.

this is a closed inverse set and since p 1is quasi-compact, g!p.-A.l.

In recent articles ([20] and [21]), Whyburn has introduced the
notions of M' and weak M', calling spaces with these properties
"accessibility spaces."” He has proven a stronger statement than
Proposition 13, showing that we cannot improve on weak M' as a
topological condition on I to guarantee that p is pseudo-open, as
a '!llpm which is not weak M' can be expressed as a quotient whose

corresponding projection fails to be pseudo-open. The author's work
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with these concepts was done independently and prior to the appearance
of Whyburn's publications.

Weak M' does not yield M' or the other separation properties
mentioned here even with first countability which we will show makes

those properties equivalent.

Example A. Let X be the subspace of the plane consisting of
- 5
(0,0) v (0,1) v nl_.ll g,» vhere g = {(%, ¥y):0<y<1}. Let
By = {gn}. Then I 4is first countable T, and weak M. pis
open. But I is not T,, mot M', not Mc, not M .

That I need not be weak M' in order for p to be pseudo-open
even if X 1is metric can be seen by modifying Example A to include the

other limit points of the lines, i.e., let

X={ON:0<y<BUU g
n=1

vith H, - {gn}. Then p 1is still open but weak M' fails.

2.3. Some partial converses

Proposition 14. M, first countable == 1_'2

Proof. Suppose x#y and x and y do not have disjoint
neighborhoods. Let (Ui} and {Vi} be countable neighborhood bases
at x and y, respectively. Then Uiﬁ \A ¥ ¢ foreach i. Let

:1cuinv1. Then z, + x and z; +y, contrary to M.

Definition. A space is E 1iff limit points are sequential

limits, f.e., x2 A == there is a sequence x, € ANx such that

ﬁ"!.




This is called a Frechet space by some. McDougle dubbed it E
[14].

Clearly, '1'1.! —b(ylpan ==> gome subsequence ';n +y)
1
M,E -'>(x'l + x, yl.pan =-> x = y)

i.e., M;E =o (a:ll > x ->an VU x 1is closed)

Proposition 15. M,E == KC

Prcof. Suppose K 1is compact and x € K~K. By E, there is
a sequence xut K~x with x *x. Since x-o'rl, an is

infinite. So there is a point k € K with klpan since K 1is

compact. But k ¥ x.

Proposition 16. M,E == M'

Proof. Suppose x2%p A. Then x +x for some sequence
x-( A~x. And xl.pan. Let B-an. Then x2pB but BUX
is closed by M,E.

So in an E space, M', Mc, M and KC are all equivalent and
in a first countable space they are equivalent to ‘1'2. But we do not

st ‘lz from these if only E 1is assumed.
Proposition 17. E is preserved by pseudo-open maps.

Proof. If gtpA in I then there is a point x € g such that
xl’l.. Hence a sequence x in A* converges to x. Then pxngl

aad PX *px=§g by continuity.

Example B. A space which is M',E but not T,
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This example is a well-known one in which a closed map (with non-
compact point-inverses) does not preserve Tz . Let X be the subset
of the plane consisting of {(x,y):y > 0}, with the topology in which

neighborhoods of a point off the x- axis are the ordinary 32 neigh-

borhoods and those of a point x on the ails consist of the point x

plus an open disk tangent to the axis at x. Let Hc = {Q,-J}, where
Q= {(x,0):x 1is rational} and J = {(x,0):x is irrationall. Then
P is closed, so I is M' and E, as X 1is. Hence I 1is also Mc,
M and KC. But I 1is not 'rz as Q and J do not have disjoint

neighborhoods.

Definition. f:X > Y 1s compact iff f.l(x) is compact for
each compact subset K of Y. f is point-compact iff f-l(y) is

compact for each point y € Y.

It is well-known that X is normal and p 1is closed == I is

T

1‘2.
the equivalence of 'l'z with the separation properties being considered

and that X is T, and p is closed and point-compact = I is

(Also, closed and point-compact ==> compact.) But we can obtain

under the weaker condition of pseudo-open and point-compact if the

underlying space X is first countable.

Proposition 18. X is first countable, p is pseudo-open and

point-compact =o Ty M, Mc and M' are equivalent on I .

Proof. Note that such a decomposition must be an E space,
although it need not be first countable, and since M, Mc and M' are
equivalent in an E space, it suffices to show that one of them

implies T,. So we suppose I is M.
2
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let g¥h in I. Let x€g, yeh with comtable neighbor-
hood bases (U‘_} and {Vil, respectively. For each i, consider
pﬂi and pvi. Suppose these intersect for each i. Then there is an

element 8 € G meeting both U:l. and vi « Let x € Uif\ g and
’1"1"‘1‘ Then x +x and 7 £ So g *8 and gi-»h
by continuity. But this contradicts M. Thus there is an integer {1

such that ptlif\ A

Since x and y were arbitrary points of g and h, respective-
ly, for each x € g, for each y € h there are neighborhoods
9, (x) of x and V(y) of y such that pCU @INp(VE)) = ¢ .
Covering h with a finite number of the sets V(y), let v = Uv(yi)
so that V_ 1is open in X containing h. Let U(x) = N\ U_  (x).

x i=1 Y3

Then U(x) 1is open containing x and p(vx)f'\p(U(x)) = ¢ . Now,

"{U(x):x € g} covers g. So there is a finite subcover. Let

4
-Uu(xj) with U' open in X containing g. Let V's= f\v %
=1 ° =175
Then V is open and contains h, while pU'()pV' = ¢. Now, since

p 1s pseudo-open, the sets pU' and pV' have interiors containing

g and h, respectively. So we have 1‘2 .

Corollary 18.1. If X is first countable and p is point-

compact, then - I is M' == [ is I,.

The results so far suggest that T, is somehow "stronger" than
M'. This is far from the case. The following example provides a
space which is T, and not M' and also illustrates that the assump-
tion of a pseudo-open map was crucial in the preceding propositiom.

Example C. Let X-!z\((o.y)=y>0}. Let G be the




decomposition of X such that H_ = {g,} _, where
G n=1

g, {@.y):0<y<1l. Ten T 1s T, and hence Mc amd M, bu
not M'. I is not first countable. (I is first comtable at every
point except g = {(0,0)}.) p 1is not pseudo-open (at g). But X is
metric and p is point-compact and monotone.

We have cbserwved that a monotone pseudo-open map assures that
inverses of connected sets are connected. To see how it fails here
without the pseudo-open condition but in the presence of other nice
properties, let A be the projection of {(x,y):y > 1}. Then gtpA
and A U {g} 1s comnected in I while A*U g 1is not comnected in X.
P 1is not pseudo-open at g since no point of g 1is a limit point of
A*. Any subset of A having g as a limit point must also have g,
as a limit point for infinitely many n., In this way, weak M'
fails.

The fact that the space I in this example is not first counta-
ble 1s disconcerting in itself, as this is a point-compact decomposi-
tion of a (complete) metric space which is McAuley- usc (and monotone).
This illustrates a difference between McAuley's definition of upper
semi-continuity and that of Whyburn, as the latter would have to yield
a metrizable decomposition space. As we will see, this cannot occur if
X 1s locally compact, as it fails to be in this example at the point
g. In fact, if X is a locally compact E space and p 1is monotone
and point-compact, then I is Mc ==> p 1is closed.

Another example of a T, space vhich is not M' is the follow-
Ving. wvhich corrects an assertion in [20] that locally compact ‘l.'2

yields M' .

Example D. A compact T, space which is not M.
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Let X be the space of ordinals < Q, where 2 is the first
uncountable ordinal. X 1is compact, 'l'z. Let E be the set of limit
ordinals in X, i.e., elements which have no (immediate) predecessors.
Let A=XNE. Then Q2 €E and Q2pA. But for any subset BC A
such that Q2 2pB and any neighborhood U of Q, there is a point
e & UNEN{Q)} such that e ¢pB. Hence, X 1s not weak M' and so,
in mdcd&, X 1is not M'.

Weak M' must fail in a space which is compact '1'2 and not M'

because of the next proposition.

Proposition 19. Regular '!1, weak M' == M'

Proof. Let x& A~A. For some A CA, x is an isolated
point of Kl\ Al. So there is an open set U containing x such
that U contains no other points of Il\ Al. By regularity, there is
an open set V satisfying x€ VCVcCU. Let B-Vf\Al. Then
x2pB and B ux 1is closed, since if ytpB and y ¢ B, ylpAl and

ytv so y‘Al. Hence yeK1~A1. But VcCU. So y= x.

Corollary 19.1. Compact (locally compact, locally peripherally

compact) 'l'z, weak M' == M',

2.4. Other conditions weaker than first countability.

Definition. (Christoph [2]). X is semi-first countable (semi-

18t) iff whenever A, 1is a sequence of closed disjoint sets such that

p §
UA; 1s not closed then there exists a te€ UAi \UAi and a sub-

sequence A and x, ¢ A such that x, -+ t.
L

Y 5

If we require such a sequence for each limit point of \/A1

wvhich is not in \_UA,, we get a strméer notion.




Definition. X is strongly semi-18%t iff whenever A 1sa

sequence of closed disjoint sets and x € (_}Ai\UA1 then there is a

subsequence A, and x, € A such that x, -+ x.
L W L

We can state something like this for arbitrary rather than count-

able collections.

Definition. X has Property P iff whenever {A)} 1s a collec-
tion of closed disjoint sets and x € UAv \UA" , then there is a set
P CUAv such that no Av contains more than one point of P and

xLpP.

In Property P limit points are required to be accessible not
necessarily by sequences but by "selections” from the A,. We do not
necessarily get convergent subsequences, however, even in case P is

countable.

Definition. X is countably E (c -E) 1iff A 1is countable,
x2pA == there is a sequence x € A~x such that x, > x. (E

applied to countable sets.)

Proposition 20. E ==> Prop P.

Proof. Suppose x & UA"\ UA“ , where Av are closed and

mutually disjoint. By E, there is a sequence X € UAv such that

x +x No A contains infinitely many x , since xé¢ UA . So

there is a subsequence xnie A Vi)’ with Av ) distinct. Let

P-ani.

Proposition 21. Property P and c~E == strongly semi-18t




Proof. If xe& UA, \UA,, property P gives x ¢ A
—— 1 i o, n

i
that xlpan and by c-E a subsequence x + x.
i

My

Franklin [6] and Richel [15] have given the following definition.

Definition. X is a c-space iff the closure of each set is the

union of the closures of its countable subsets.

Clearly, c -space is equivalent to: x2pA ==> there is a counta-

ble subset B of A such that x2%p B. Of course, any countable space

is a c -space.

Proposition 22. c -space, c-E=o E

Proof. If xfpA then x%pB for some countable subset

B of A and c-E gives a sequence xnf.n such that x *x.

Example E. (Kelley [10; p. 77] originally Arens). Let
X=NxN+x, where X is discrete at each point of N x N wvhile an
(open) neighborhood of x is a set containing x and all but finitely
many points of all but finitely many "colums"” (i.e., sets having fixed
first coordinates) of N x N. This space is countable, normal 'rl,
with closed sets Gg. The only compact sets are finite. No sequence
from X~x converges to x. So it is not sequential, not c-E, not
Property P and not even semi-18%t, though it is trivially a c - space.

To see that it is not semi-18%, consider A = {1} x N, the
1th colum. The sets A

i
while if we select only one point from each ‘1 , the complement of the

are closed, disjoint and UAi . UAi =-x,

resulting set is a neighborhood of x.




Definition. (Arhangel'skii [1]) X is weak-first countable

(weak 18t) iff for each x € X there is a countable collection Tx of
sets containing x such that T,T' € T_=o TAT' € T_ and a set A
is open iff for each x€ A there isa T eTx satisfying T CA.

(0r, equivalently, A is closed iff for each x¢ A there is a TﬁTx

such that TMNA = §).

In a weak 18t space, x € ANA =o for each TeT,

TNA@~x) ¥ . Note that the family .- {tn(x)} - can be
n=1

assumed nested, i.e., tnﬂ(x) Ctn(x), since ti =M\ t, 1s zlso
i<3
in. T. -

The definition of weak 1% gives easily: If T_= {t“}n-l is a
nested weak base at x, then Y, € tn-b yn-vx.

Also, it is easy to verify:

In a weak 15t space, (1) ANA ¥ ¢ == there is an x € A~A
and a sequence Yo € A such that b A (2) xe¢ ANA == there
is a sequence y ¢ A~x such that ¥, * % ad (3) A~A = {x} =
there is a sequence Y, € A such that : +>XxX.

Note that (1) == (2) and (2) o= (3). These conditions hold
in any E space, as well. Condition (1) has been studied by Franklin

who calls spaces satisfying this sequential.

Definition. (Franklin [4]) A set is sequentially open if no

sequence outside the set converges to a point inside. A sequential

space is one in which every sequentially open set is open.

Clearly, (1) above is a characterization of a sequential space,

80 weak 18t =» gequential and E == sequential.
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Proposition 23. sequential, weak M' == E

Proof. If x € ASA then for some subset BCA, x%B and
x®%B~B. By (2) above, a sequence y in Bax converges to x. This

sequence must ultimately be in B.

Example F. A space in which (2), and hence (3), holds, but not
. '

Let X=D+ N, where D is an uncountable discrete set and
for each n € N, a neighborhood of n is n + all but countably many
points of D + all but finitely many points of n. The sequence
x =n € N converges to each of its points. This space is not sequen-
tial, since no sequence in D comverges to any of the limit points of
D. However, (2) is satisfied, since if x€ ANA, then x€ N and

N C:. So the sequence x =x + n 1is a sequence lying in A~x and

converging to x.

Proposition 24. sequential == gemi-15t

Proof. Let A:l. be closed, disjoint such that UAi is not

closed. There is an x €& UA:I. ‘UAi and a sequence Yo € UAi con-

verging to x. No ‘1 can contain infinitely many % since each

‘1 is closed and x ¢ UA!.' So there are subsequences Y and Ai

- b | 3
with y €A, .

p §
i
In [1], Arhangel’skii introduces the notion of weak 15t and

asserts that weak 15t and E <=o first comntable. In that section
he assumes all spaces completely regular. We can give a proof assum-

ing M.

Proposition 25. Weak 18%t, weak M' == first countable




Proof. Let {tn(x)) be a nested weak base at x. If
X € int t for infinitely many n, then we have a base. So we may
assume for each n, x ¢ int t. So xtpX“Ut. Bywesk M' there

1s a set BC X Ut = X\t; such that xe B B and x®pB~B.

1
Then there is an open set U containing x such that U (B~B)= {x}.
But (X“B)N U 1is open in the weak base topology, for if

26 (XNB)A\U and z¥x then z¢B. So (X B)N\ U is an open
set containing z and lying in (XNB)N U. And as for x, X\ B
contains all of the weak neighborhoods of x while U contains them
ultimately. So (X~B)N\ U contains a weak basic neighborhood of x.
Then (XNB)N U is an open set containing x and missing B, which

contradicts x2pB.

It is interesting to observe that not only does weak M' guaran-
tee that weak 18t == first countable but that the interiors of an

arbitrary weak base must give a base.

Corollary 25.1. (Arhangel'skii) Weak 18t, E and M =

first countable.

Proof. This follows from Proposition 25 since M,E == M' =

weak M' .

Also, note that in the corollary we get 'rz as well, since in a

first commtable space, M and T, are equivalent.

2

From the results so far, a ‘1'2 sequential space is E 1iff it is
M anda 1‘2 weak 18t gpace is first countable iff it is M' (also,
1ff it is weak M').

While first countable and E are hereditary properties, weak 18t




is not. In fact,
Proposition 26. hereditarily weak 1St == E

Proof. Suppose x e ANA. Consider the subspace B = A U x.
Then since B is weak 15t and in B, ANA = {x}, there is a sequence

Yo € A such that Yo * X

In Proposition 26, we have used only the sequential property of
weak 15t g0 we actually have no more than Franklin's result that

hereditarily sequential == E .
Corollary 26.1. hereditarily weak 1St, M ==o first countable

Example G. A space which is weak 1St, E and T, but not

1
first countable. (not hereditarily weak 1St)

L] -
Let x-x+{wk}k-1 +§.len, vhere each y_  1is a sequence

+ x and for each n, 7.-{23'}*x and vy > w

{x;} » such that w

for each k > n. To achieve this convergence, let the topology be
defined as follows. X is discrete at each x;. For each k, a

neighborhood of w, 1is Ve + the union of tails of each Yo for

k
B <k. Aneighborhood of x is x+ a tail of {w )} + the union of
tails of each Yo* (A tail of a sequence ('1} is {a ,:1 >k} for
some k.)

X 1is first countable at each point except x. This is trivi-
ally so at each x: . For w,, each J let Wi(w) =w + nL<Jk
(Ih-tail of y_ ), where the Jth-tail of v, is {x;:j ¥ a}«
This is a base at Ve since if U is open containing e then U

contains some ji-uil of Yi for each 1 <k. Let




J--x{jl.“‘.jk}. Then U contains VJ(vk).

X is E, since if x2pA then A has to contain some subse-
quence of {x';} for some n or of {wk}. Either way this gives a
sequence in A converging to x.

X 1s not first countable at x, for if we suppose that {vn}

is a countable local base at x, then each vn is open and must con-

-
tain a tail of each Yo Let x € Vnr‘\yn. Then x\{xn} still
n=]1

contains a tail of each y and contains all {vk}, hence is an open
set containing x and not containing any Vn .

X 1is weak 18t, since we have a countable open base at each point
other than x and we may let tn(x) = x + the nth-tail of {vk}.
Suppoce A contains x and contains a weak basic neighborhood of each
of its points. Then for each n, A contains some i with k >n
and hence must contain a tail of Yo* So A contains a tail of each
Ya and a tail of Voo i.e., a neighborhood of x. So A is open.

We can modify the space of Example G to be compact without alter-
ing the other properties by adding to the space a point z whose

neighborhoods are of the form z + |\ Yy -
n2N

So a compact, weak 18t, E, 'rl space need not be first countable.
However, this space would not be LW 1locally compact (see §2.6 for the

definition of LW 1locally compact).

Question 1. LW 1locally compact, weak 18t, E, T, = first

countable?

Also the space of Example G is not hereditarily weak 18t. (The

subspace x*{wk} is not weak 18t, as it is discrete at all except the
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point x, where it is not first countable.) So another question can

be raised:
Question 2. hereditarily weak 15t =o first countable?

If the answer to Question 2 is affirmative, the proof will not be
trivial since the hypothesis does not force an arbitrary weak base to

provide a base (as in the case of M or weak M'), as illustrated next.

Example H. A space which is first countable, T, but a weak

base may not be a base.

Let X=x + {'n}

1 + {xj}j-l such that v, *x and x:l > x

and x S for each n. 1i.e., X is discrete at each xj. A

3

neighborhood of v, 1is v, + a tail of '{xj}; a neighborhood of x

is x+.unof'{xj) + .uuof'{wn}.

X 4is first countable, since a base at va is given by
'k('n) - + the kt® tail of {xj}, and a base at x by
v (x) = x + the kth tail of {x;} + the kth tail of {w }. However,
if we take the same base at each Vo but at x take only x + the
tails of ", we get a weak base which is not a base, i.e., x 1is not

interior to its weak basic neighborhoods.

Definition. If G 1is a collection of subsets of X, X is
first comntable with respect to G (18t countable wrt G) iff for each
8 € G there is a sequence '{Un} of open sets containing g such that

SCR open == there is an n such that UnCR.

Proposition 27. X is 15t countable with respect to G == T is

weak l.to
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Proof. Let {Un(g)} be a sequence of open sets containing g
as in the definition of 18t countable with respect to G. Then
{p(ﬂn(g))} is a weak base for T at g, i.e., R is open in I {1iff
for each g € R there is an integer n such that pUn(g) CR, or,
equivalently, R* is open in X 1iff for each g & G such that
g CR* there is an integer n such that p-lp Un(g) cR*. To see
this, note that if R* 1is open containing g then for some =n,
Iln(g) cr*. so pun(g) € R. And conversely, if for each g € G
such that gck’ there exists n such that p-lpun(g)c.k* , then,

as each point x €& R* belongs to some such g, we have for each

x€R®, for some n, x € Un(p(x))c p-lp('un(p(x))) CrR*. But

Un(p(x)) is open so x € int R*. Hence R* is open.

Corollary 27.1. A point-compact decomposition of a developable

space is weak 1St,
Proof. The corollary is immediate from the lemma below.

The following lemma is surely known, but as we have not encoun-
tered its proof anywhere else, we include it here. For a discussion of

developable spaces, see [24].

Lemma 27.2. X is developable == X is 18t countable with

respect to compact sets.

Proof. Let {G} be a monotone development for X, i.e.,
cnﬂ. c_cn for each n. (It is easy to show that for any developable
space there exists such a development.) Let K be a compact subset of
X. Let 01 be a finite collection of elements of Gl covering K.

Let 02 be a finite collection of elements of Gz covering K and




such that each element uvof Uz

that u 1is contained in each element of Ul containing L i.e.,

contains a point xnt- UNK such

uc nul(xu). And in general, given U for 1<n, let U, bea

finite collection of elements of Gn+1 covering K and such that for
each element uGUn_u there is a point x e uNK such that u 1is
contained in every element of 1L:J1 II1 which contains X, (To obtain
this, note that for each x € K the collection of all elements of

é:)l Il1 which contain x 1is finite and its intersection V 1is an open
set containing x. For some N > n+l, GN*(x) is contained in this
open set V, s0 some u(x) € GN contains x and lies in V. By
monotonicity, u(x) 1is also in Cot1® So we select this u(x) for
each x € K, producing a cover of K by elements of cu+1' We take
a finite subcover, Un+1 = {“(‘1)"“'“(:!.)}' Then if u e Un+1’

u=u(x,) for some i and x_ in the notation above is x_,.)
b § : . Tu 6 §

=
Now, . {Un'} 1 is a countable collection of open subsets of X
n=

containing K, and if R 1is open containing K then for some n,

Un'C R. Otherwise, there is an open set R DK such that for each
n, tln'\l 4¢ so u SR 4 ¢ for some wel. Consider xune K.
Since K 1is compact there is a point x € K and a subsequence

+ x. For some integer N, Gu*(x) € R. Now, some element
u & U, contains x and for some I >N, u contains *u, for

 §
1>I (since +x) and u C€R. In particular, € u. But
*vhi *%I . t
since € u € and >2I>N, u < u by the construction o
.\I uﬂ by 4 » ny

U . Hence u € R and we have a contradiction.
4

BI

The notion here called 18t countable with respect to G was sug-

gested by P. B. Jones. It was hoped that a semimetric space having




this property with respect to compact sets would be developable. How-
ever, Heath gave an example of a semimetric nondevelopable space which
i1s 18t countable with respect to compact sets [9]. Of course, any

point-compact decomposition of Heath's space would also be weak 18t,

Corollary 27.3. X is 18t countable with respect to G,

P pseudo-open == 1 is first countable.

Proof. This is corollary to the proof of Proposition 26, as the

weak base for 1 at g, {p(Un(g))}, must provide a base if p 1is

pseudo-open, i.e., g € int p (Un(s)).

Corollary 27.4. A pseudo—open point-compact decomposition of a
developable space is first-countable.

In Corollary 27.4 the condition that X be developable cannot be

weakened to semimetric even if p 1s closed. (see Example R.)

To return to the consideration of the properties introduced in

this section, we have for arbitrary spaces:

Prop. P
>/_)n“‘817 semi 15t —) gemi 18t
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Remark. A number of these properties can be associated in pairs
in a natural way. Some are of the type (a): If A 1is not closed,
then there exists a point x € ANA such that P(x,A), where P(x,A)
is some property of x and A, e.g., some sequence in A converges to
X, or x 1is a limit point of a countable subset of A, etc. For '
each definition of this type there is a potentially stronger form

requiring the property hold for A and for each x € A~ A, 1i.e.,

type (B): if x € A~A then P(x,A). For instance, Franklin's

"sequential" is the (a) form whose corresponding (8) form is the
Prechet condition, E.

Whenever type (a) holds hereditarily and P(x,A) 1is passed
from subspaces to the whole space, th'en (8) holds. In most cases
here considered, hereditarily (a) == (8). And whenever the (B8)
form is hereditary, we would also have hereditarily (a) e=> (B). For
example, hereditarily sequential <= E and hereditarily semi-15t
o=> gtrangly semi-18t. We can also state the definitions of quotient
and pseudo-open maps in such a way that a quotient map is of type (a)
and a pseudo-open (hereditarily quotient) map is of type (8).

The (a) and (B) forms for the definition of c -space are
equivalent. So sequential == c-space, though in general (a) forms
sre weaker than (8) forms.

This suggests a way of generalizing properties which have been
introduced by a definition of type (B). The weaker form of M' 1is:
A 1s not closed == there exists x€ A~A and B CA such that
x2pB and BV x 1is closed. (This is not equivalent to what we have

called weak M'.) This, however, is an instance in which the property
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P(x,A) does not extend from the subspace back to the space, as a set
may be closed in the subspace without being closed in the space. For
instance, the space X = {ordinals < Q} does satisfy this (a) form
of M' hereditarily but it is not M'.

However, M' can provide a link between these pairs, the essen-
tial difference between the (a) and (B). types being that the (a)
form asserts a condition for some element of A~A and the (8) form
for each element of A~A. If ANA is a single point the two are
equivalent. For an arbitrary element x of ANA, M' provides a
subset BC A such that B~B is precisely the single point x. The
(a) form yields P(x,B) and for the properties considered here, this
implies P(x,A). As we have already noted, sequential M' => E and,

in a less straightforward manner, semi-15t M' =o strongly semi-18t,

Example I. A space which is weak 15t (hence semi-18t) but

not c-E (hence not strongly semi-1St),

As in Example C, let X = EZ~{(0,y):y > 0}, B, = {8,,} ,
vhere g = {(n”) 0<y<1}, g=p(0,0). Then I is apoint-
compact decomposition of a metric space, hence weak 18t (see
Corollary 27.1).

-
n 1 1 n
Por each i,n let x = (=, 1+5). Then A= x} is
. 1 @ 1+3) {= 1,n=1
comntable and gfpA but no sequence in A converges to g, so c-E

fails.

Example J. A space which has Property P and c-E (hence
strongly semi-15t) but not sequential (hence not E and not

weak 18%),
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Let X be as in Example D, X = {ordinals < Q}. X is c-E
since the space is first countable at every point but Q while Q 1is
not a limit point of any countable set. Also, X has Property P: if
gep UA, with A closed, disjoint and @ ¢ UA,, then {A)} is
uncountable (otherwise vy = suwp Ai has sup < 2) 8o we can choose
any »p, € A“ and P = {pv} is uncountable, whence Q2pP (otherwise
sup P < Q@ with P uncountable). X is not sequential since no

sequence converges to 2 at all from X“{Q}.

Semi-18t 1s preserved by all quotient maps, while Example I

illustrates that strongly semi-18t is not (even if X is metric).
Proposition 28. (Christoph) X is semi-15t =» T 1s semi-ISt,

Proof. Suppose ‘{Ai} is a countable collection of closed dis-
joint sets in I while tJA1 is not closed. Then UA’_* is not
closed in X, while '{Ai*} are closed, disjoint. So there exists

t+UA1‘ amd x, € Aij. such that ’:lj + t. Then p(xij) € Aij

and v(x,_j) * p(t).

Similarly, sequential and c- space are each preserved by quotient

maps.
Proposition 29. Property P is preserved by pseudo-open maps.

Proof. Suppose gé& U_Av\ UA\’, with Av closed,  disjoint.
Then there is a point x ¢ g such that x2p UAV* and hence a subset
PC UN’ such that x2pP and no Av" contains more than one point
of P. Then gtpp(P) C UAv and no A, contains more than one

point of p(P).
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Similarly, strongly semi-18t is preserved by pseudo-open maps.
The proof of this proceeds exactly like that of Proposition 29. Pursu-
ing remarks made earlier on these definitions, a general principle
operates in the case of propositions such as 27 above. When hereditar-
ily type (a) o= type (B) and (a) is preserved by quotients,
then (B) is preserved by pseudo-open maps.

Weak 15t may not be preserved by closed maps (see Example B).

Many statements about decompositions can be culled from combina-
tions of the results above, which we will not explicitly state here.
Por example, if X is a semi-15t c-space then I is M' == I is E.

We might ask how these conditions further affect implications

M', etc. We have found that weak 18t, M' =o T, but

2.
this is only an apparent improvement since it gives first countability

anyway. BEach of the Examples I and J is Tz while neither is weak M'

80 it seems nothing in the list less than E will give T, = M.

Proposition 30. M, sequential = (xn +x = UX VX is
closed).

Proof. . Suppose x +x but anu x 1is not closed. Then
there is a point y ¢ Ux Ux and y € Ux ux vith y +7.
Since the space is 'l‘l we may assume {’1} is a subsequence of '(xn} .
So Yy * X, which contradicts M, since y ¥ x.

Proposition 31. M, sequential ==> EKC

Proof. Suppose K 1is compact and not closed. Then there is a
point x ¢ K and a sequence X € K such that x +x. By T,

an is infinite and since K 1is compact some point k€ K is a
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limit point of vz . We can assume k ¢ vx,. But Ux v x is

closed by Proposition 30, which gives a contradiction.

We have seen that compact ‘1‘2 does not yield M'. Similarly,
compactness does not make M' stronger than 1'2. The following

example also appears in [5].

Example K. A space which is compact M' (in fact, M, E) but
not 'rz.

Let X=x+w + Ulvn, where each is a sequence {x;}
n=
-«
such that each y_+ x and {y} +w. X is discrete at each xn;
n D' ne] 3
a neighborhood of x is x + the union of tails of each Y5 @ neigh-
borhood of w is w + the union of all L for n>N. X {is first
coumtable at every point except x since vk(") =g+ U Y, g&ives a
n2k
base at w. X is E since if xfpA then A must contain a subse-
quence of some Yp* X is M: if a sequence z +x then

{2)3C \U v., for some N, so it can't converge to w. Otherwise,
' S,y D

1

L]
that {:‘} meets each 7n1. Let z; € {:n}nyni. Then
!\{:i }\' is an open set containing x and missing the sequence

— =
there is a subsequence Yo of the sequence of sets {yn} such
4 n=

‘[li }. This contradicts z, +x X 1is compact since a neighborhood
of w covers all but a finite number of the sets p A while a neigh-
borhood of x covers all but a finite number of points of these. X is
not !2 since every neighborhood of x must contain a tail of each

Ya and hence meets every neighborhood of w.

Since the space of Example K is M,E it is also KC. We have

not exhibited a space which is M' and not KC so we pose the




following question.

Question 3. Does M' == KC?

So far we have only the following partial answers to this ques-

tion.

Proposition 32. If points are 66 , M' =s KC.

e
Proof. Suppose K 1is compact and x € K K. Then x=/M\ Gn,

o=1

where for each n, Gn is open and ancn-fl' By M' there is a
subset IICGIAK such that x%pK, and K, +x is closed. And in
general, given K C Gnnxn-l with x2pK and K + x closed there

is a subset x“_uccnﬂﬁxtl such that xfpK ., and K, +x 1s

-«
closed. Now, {_x \(lt“l + x)} is an open cover of K, as it covers
n=1

N
X~x. So by the compactness of K, for some N, chle\(Kn'l-x).
o=

But this set is x\('ltlI + x), which gives a contradiction since

Ky €K and x.#o.

The hypothesis of Proposition 32 is a relatively mild restriction
(the space of Example E has points G; but it is not even semi-18%),

but we believe an unnecessary ome.
Coro 32.1. X is countable, M' == X is KC.
Proof. Any countable rl space has points Gs .

Corollary 32.2. M', c-space == KC

Proof. Suppose K 1is compact and not closed. Then there is a

point x € K~K and a countable subset B of K such that xtpB.




By M', for some subset B'C B, x2¢pB' and B' + x is closed.

Bence B' 1is closed in K and thus B' is compact. So we have B'
compact, B' + x is countable and, since M' 1is hereditary, B' + x
has M'. So by Corollary 32.1, B' 1s closed in B' + x which con-

tradicts x2pB'.

The following example shows that the weaker Mc does not imply

Example L. A space which is compact Mc but not KC.

Let X=1I+ x; where I = [0,1] with its usual topology and an
open neighborhood of x consists of x plus the complement of a
countable closed subset of I. So x 1is a limit point of any uncount-
able subset of I, making I a compact non-closed subset of X. The
subspace I 1is 1'2 8o Mc holds for pairs of points in I. Now
suppose x,y2pA and x¥ y. Since X is first countable at y € I,
some sequence in A converges to y and the complement of this con-
wvergent sequence is a neighborhood of x. Also A is uncountable, so
for some n, x\li»@) is wcowmtable and x 1is a limit point of this
set while clearly y 18 not. Hence x%pB, where B = A\l&(y), a
subset of A, and y¥aB.

S0 Mc and KC are independent (the interval with the topology
in which open sets are complements of countable sets is KC and not
Mc).

Christoph [2] introduced the following notion related to

Hausdorff-like properties of a decomposition space.

Definition. (Christoph) G 1is semi-Hausdorff (semi-H) 1iff



whenever x

1*: and PX, >y then y = px.

I 1s M=> G is semi -H, but the converse does not hold, as
seen from Example M below. G is semi-H == T is '1'1. N

Definition. (McDougle) A map f:X > Y is semi-closed iff f£f(K)
is closed for each compact subset K of X.

p 1is semi—closed == I is T,

Proposition 33. p is semi-closed ==> G is semi-H.

i i
PxX, > px and we can assume yé{pxi} since I is 1'1. So

Proof. Suppose x, - x and px, - y. By continuity,

ylppri.' Since Uxiux is compact, priupx is closed.

Hence y = px.

The converse of Proposition 33 is easily seen to be false by
taking X to be any space which is M but not KC, I = X and
p-i.dx « Of course, I is KC == p 1is semi-closed. So if X is

sequential and 7 is M then p is semi-closed.
Proposition 34. X is semi-18t, G is semi-H == [ ig M.

Proof. Llet g + g and g, 8" wvith g#g' in T,
We can assume the elements g, are all different and none is g or g'.

So glpU.n and g'lpvgn. Then Ugﬂ‘ is not closed in X. So

there exists x and a subsequence x egn‘ such that x -+ x.
By 1 oy
Then PX, +px. But px =g . Soby sem-H, px=g=g',
1 - By 1

Corollary 34.1. X is semi-18t, p is semi-closed == I is M,
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Example M. p is semi-closed (hence G is semi-H), but I is

not M.

Let S be the space of Example E, S =N x N + x,

A ()} xNCS. Let x=s'45? vhere s!=s?as. Let

- 1 2 1 2
nc-{gn]n-l, vhere g =A " +A°. Then g *x and g +x

so T 4is not M. P 1s semi-closed since compact subsets of X are
the only limit points of any set A in I and these are always limit

. containing xl is

points of A®* in X. X is M' (any set in S
closed, while xl is not a limit point of subsets of Sz), though 1

is not.

2.5. k -spaces

In [8], Halfar gives the following definition.

Definition. X is a K space iff x2pA == there is a com-

pact set KCA + x such that x2pK.

K 1is hereditary and in a KC space, K== M'. Also, compact
M' => K,
The (a) form (see §2.4) of Property K may be stated:

Definition. X is weak-K 1iff A 1is not closed == there
exists x€& A~A and a subset KCA such that x2K and K+ x 1is
compact.

Clearly, hereditarily weak -K <=0 K, and M', weak -K == K.
This notion of Halfar's is related to that of a k -space. The defini-
tion of k - space commonly appears as one of a variety of conditions

which are equivalent in a 'rz space, as a k -space is frequently
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assumed to be. As we do not wish to impose this restriction, we state

these conditions separately.

Definition. X is a k]- space 1iff

A 1s closed 1ff (1) for each closed compact set C,

ANC 1is closed.

X is a Ez-apaoe iff

A 1is closed iff (2) for each compact set C,

ANC 1s closed in C.

It is clear that (2) =+ (1), so kl = kz. Of course, in a

KC space kl and kz are equivalent, and in that case we refer to the

space as a k- space.
Whyburn defines a k -space as k,, attributing it to Hurewicz.

Kelley's definition of k -space corresponds to kl.

Any compact space is trivially a ki-space for 1i=1,2, 1Itis

known that first countable '1'2

While we are not assuming a ki-space to be ‘l'z we can make stronger

statements than these. Commonly used definitions of locally compact

or locally compact 1'2 ==> k - space.

spaces are equivalent in the presence of ‘1'2 .« The definition of
locally compact we use in section 2.6 will yield our ki - space,

1=1,2, without assuming 1'2 .

Proposition 35. weak -K = kz

Proof. Suppose A 1is not closed but A/N\C 1is closed in C
for each compact set C. There exists x€ A~A and a subset KC A

such that x%pK and K+ x is compact. Let C= K+ x. Then




ANC =K 1is not closed in C.

Corollary 35.1. sequential == kz

Proof. sequential == weak -K trivially
Note that by Proposition 31, sequential M == kl -
Corollary 35.2. K == hereditarily kz

Proposition 36. hereditarily kz =» K

Proof. Suppose x € ANA. Then A 1is not closed in A+x,
so there is a compact subset K of A+ x such that KMA is not
closed in K, i.e., there exists k € K with kfp (KMA) but

k¢KNA. So k$¢A andhence k=x and x2pK.

We now have the equivalence of K and hereditarily kz-space

asserted in [21].

i
Proposition 37. M ,kz - kl

Proof. Suppose A is not closed. Then there is a compact set
C such that AN C is not closed in C. Let x € C~A such that
x2pANC. By M' there exists BC ANC such that x2pB and
B+ x 1is closed. Then B + x 1is a closed subset of C, hence com-
Pact. So we have B + x a closed compact set while AN(B + x) = B

is not closed.

Proposition 38. NM' ’kl = K.

Proof. Suppose x€ ANA. By M' there exists BCA such

that B B = x. Now B 1is not closed so there is a closed compact



set C such that BMNC 1s not closed. But if y¢pBANC and
y¢BNC then ye C~B. But y&€ B, hence y=x. So x€C and
(BNC) + x 1is closed. Furthermore, since it is a subset of C,

(BAC) + x 1is compact. As B/N\C CA, this completes the proof.
Corollary 38.1. H',kz == hereditarily kl-

Proof. By Proposition 37, M',k, = M' ’kl and by the above
proposition this gives M',K which in turn, by Corollary 35.2, gives

M', hereditarily kz. Since M' 1is also hereditary, applying

Proposition 37 to an arbitrary subspace, we have kl.

So M' makes each of kl and k2 hereditary as well as render-
ing them equivalent. It should be noted that hereditarily kz ® by
itself does not yield kl. In fact there exist E spaces, and hence

K, which are not k Such a space must be not M. See, for

1°
instance, Example N of section 2.6.

Since E == K and K,KC == M', it appears that we have found
something weaker than E which makes 'rz = M'.  However, a ‘r2
K- space is necessarily an E space. This has been proved independ-
ently by Arhangel'skii and M. E. Rudin, as noted in [21].

This author has recently seen the unpublished manuscript of
E. D. Shirley, titled "Pseudo-open maps,” in which the notion of
accessibility by closed sets, which is equivalent to M' in '1'1 spaces,
is discussed. His results overlap or extend some of those included
here, though these are obtained independently and by different argu-
ments. A question Shirley raises at the conclusion of his paper may be
related to that of whether an M' space must be KC. He asks whether

there is a k -space (meaning our kz) which is M' but not E. If




there is an M' space which is not KC, then there is an M',
kl-opnce which is not a c -space. (Recall that M', c- space

For if K 1s a compact non-closed subset of an M' space then
subspace consisting of K+ x, where x€ KN K, is a compact M',
hence hereditarily kl, space which is not KC.

EBach of the properties kl and kz has been defined here by a
definition of type (a). There are (B8) forms of these, which have
‘been given separate attention by other authors. However, any compact
space also satisfies each of the (8) forms and so these are not
hereditary, though they are implied whenever their (a) forms hold
hereditarily. The (B) form of k,, namely: x2p A =o there exists

a compact set K such that x2p (AMNK), was discussed, along with

kz and K, by R. V. Fuller in [7]. Whyburn denoted this property k'

in [21]. Fuller mentioned that these two concepts, kz and k' here
(he calls them k3 and kz, respectively), may not be equivalent. We
can point out that the decomposition space in Example I (also C) is a
kz space but it fails to have the stronger k' property at the
element g. (g is not a limit point of the intersection of A with
any compact set).

kz is preserved by all quotient maps. Example N of section 2.6

shows that kl is not preserved by open maps.

Proposition 39. xhkz-Dlhkz.

Proof. Suppose A 1is not closed in I. Then A* is not
closed so there exists a compact set KC X such that A*N K is not
closed in K. Then there exists k€ K ~A* such that kip (A*NK),

Then p(k) € pKNA and p(k) 2pp(A*/NK). Since
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PA*NK) Cp(A*)N\ pK = ANPK, AN pK 1s not closed in the compact

set pK.
Corollary 39.1. K 1is preserved by pseudo-open maps.

An argument analogous to that of Proposition 39 will establish

that kl is preserved by any closed or semi-closed quotient map.

2.6. Local compactness

Definition. We call a space locally compact iff each point has

a neighborhood whose closure is compact.

We call a space weak locally compact iff each point has a compact

neighborhood.
These are equivalent in any space in which compact sets have com-
pact closure (e.g., '1'2 or M,E) and they both hold in any compact space,

but the second condition is strictly weaker, in general.

Example N. Let X be the subspace of !2 consisting of

£

+U1 o vhere Iy = {(0,):0 <y <1} and T = {(%-Y)’oiyil}'
n=)

B

Let

- {I } « Then I is not locally compact at any point of
u=]1

Io. The sequence IIl converges to each point of Io. Each neigh-

borhood of a point g €I, contains In n - ultimately, hence its

0
closure contains all of Io and is not compact. But I is weak
locally compact. For g € Io. choose [a,b] such that

g € int [a,b] € [a,b] C Io. Then Uln v [a,b] is a compact neigh-

borhood of g. I is E but not M. I is not KC.

In the above example, X 1is locally compact while I 1is not.

In Stone's Theorem that X 1is locally compact, I is T, first
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countable and 3g is o -compact for each g € G => I is locally

compact, we have violated Tz .

Definition. (Arhangel'skii) A map £:X > Y is almost open 1iff

for each y €Y there exists x € £ 1¢y) such that 1f U is open
containing x’, then y € int fU.

Clearly, open == almost open == pseudo-open

Proposition 40. Almost open maps preserve weak locally compact

spaces.

Proof. Por g€ I choose xze g at which p is almost open.
Since X 1is weak locally compact there exist an open set O and a
compact set K such that x € 0 CK. Then pO 1is a neighborhood of
g while pK 1is compact containing pO.

Proposition 41. Pseudo-open point-compact maps preserve weak
locally compact épaces.

Proof. For ge I and each x € g there exist an open set 0x
containing x and a compact set KxD Ox. g is covered by a finite
n
number 0‘1.---.0x . So p(ik-.}l Oxi) is a neighborhood of g in I.
And (no)cn(\nj ) U fini ion of
- te t
’H’& ’1-1“1 1Py @ PRI B ES——
sets, hence compact.

Corollary 41.1. X is weak locally coipact, p 1is pseudo-open
and point-compact, I has the property that K compact =» K compact,
=0 ] is locally compact.

Proposition 42. Pseudo-open, point-compact, semi-closed maps
preserve locally compact spaces.



Proof. For g8 €1 and each x € g there exists 0_ open

containing x such that -6: is compact. So

n n _ n
gcUo cCcy 0, , for some finite subset {xi} of g. Then
i=1 1 i=1

n n _ -
g€r=1ntp() 0 )cp(U 0 ) =UUp0, which is closed since p
1=1 %5 1=1 X4 1

1= X

is semi-closed and compact as it is a finite union of compact sets.

Bence R lies in a compact subset of I and so is compact.

Proposition 43. Closed point-compact maps preserve locally

compact spaces.

Proof. The proof of this proposition proceeds exactly like that
of Proposition 42 since a closed map is pseudo-open and the semi-closed

property was invoked to apply to closed compact subsets of X .

(Note: Proposition 43 is corollary to the proof of Proposition
42 but not directly of the proposition. A closed map may fail to be
semi-closed if the domain is not KC. The property K compact ==o
3 compact is preserved by closed compact maps so on domains having this

property, Proposition 43 is corollary to Proposition 41.)

Definition. X 1is locally peripherally compact iff each neigh-
borhood of a point x € X contains an open neighborhood of x whose

boundary is compact.

The semi-closed condition gives the following result on monotone

decompositions.

Proposition 44. If p 1is monotone, point-compact and X is

locally peripherally compact, then p 1is semi-closed === p is closed
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Proof. Let gCU open in X. For each x € g there exists
an open set 0x containing x such that OxCU aﬁd aox i-.s compact.
A finite number of these covers g, say, g< V= 1\:{ 0‘1CU. Now,
v cuao:i which is compact and hence 3V 1is compact. Since p is
semi-closed, p(3V) 1is closed in I and hence p(3V)* is closed in
X. Let Q=V~p(3V)*. Then Q is open in X containing g. Q
is an inverse set, since if h € G meets V and h does not meet 3V
then, since h 1s comnected, hCV. So hCVNp(W*. So gcQ,

an open inverse set contained in U.

Corollary 45.1. If X is locally peripherally compact, p is
monotone and point-compact, then p 1is closed under any of the condi-
tions:

(@ I is T,
®) _I is KC
(c) X 1is sequential, I is )k‘ or M

@ T is M,E

Proof. Each of the conditions guarantees p 1is semi-closed.

Since we may be as interested to know that a decomposition is
upper semicontinuous as that it preserve local compactness, these last
results are especially useful. ®

That the local compactness condition on X cannot be eliminated
in the case of (a), (b) or (c) is seen from Example C. All of the

conditions except local compactness of X hold in the following:

Example O. Let X = !z\A, where A 1is the relative comple-

ment of a point g in the boundary of a circular disk D.
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(A =30 {g}). Let H, be the collection of concentric circles fill-
ing up D. Then X is E, p 1is monotone, point-compact, pseudo-open,
(in fact open), semi-closed, but not closed. I is '1‘2,8 and hence

M', Mc, M. (1 1is separable metric). We can retain all these prop-
erties without an open map by replacing g by an arc on the boundary
of D and including g in !lc. The decomposition space is the same,
but p 1is neither open nor closed.

That monotone is needed is illustrated by an example of Arhangel'

skii:

1 - © 1
Example P. X=E', H; {sn}n_z- where g = {I,n}.
X is E, locally compact. I is 'rz and hence Mc and M. »p is
point-compact, semi-closed but not closed (not pse\;do-open). 1 is not

first comtable. I is weak 1St but not E.

To summarize conditions under which a decomposition into compact

elements preserves local compactness:

If X is locally compact and p 1is point-compact, then I is

locally compact if:

1. I 1s T first countable. (Stone)

22
2. p 1is pseudo—open, I has K compact == K compact.
3. is E and M (or M', Mc, Tz)-
is pseudo-open and semi-closed.
X 1s sequential, I is M and p is pseudo-open.
is closed.
is monotone and semi-closed.

is monotone and 1 u'rz. (Whyburn)




or X 1is sequential, I is M.

In [23], Wilansky deals with a "local compactness" which may fail

to hold in a compact space.

Definition. We call a space locally weak locally compact ( LW

locally compact) iff p € U open == there exists a compact set
VC U such that p € int V. (Each neighborhood of a point contains a

compact neighborhood of that point.)

Clearly, LW locally compact == weak locally compact, so if

compact sets have compact closure, then LW locally compact == locally

compact.

Proposition 45. KC, LW locally compact == Regular ‘1‘2 (and
locally compact).

Proof. If p& U open, there exists V such that p €int V
and V 1is compact, VCU. Since V 1is closed, int V CV CU,

hence the space is regular.

Corollary 45.1. (Wilansky) LW locally compact ==o
[RC = '1'2 = regular '1'2].

Proposition 46. Regular, locally compact == LW locally com-

pact.

Proof. Suppose p € U open. Then there exists V open such
that pevcCVCU. By locally compact, p € W open such that W is
compact. So p€ VAW open and VAAWCW so V/\W is compact and

VAWCY Ccu.
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Coroihg 46.1. locally compact '1‘2 == LW 1locally compact

So in any 'rz

cussed here are equivalent.

space, the three sorts of local compactness dis-

Just as for weak local compactness, almost open maps and pseudo-
open point-compact maps preserve LW locally compact spaces.
In [23], Wilansky asked whether a LW locally compact M space

must be ‘l'z. Many negative answers have been given.

Example Q. A space which is compact, LW locally compact and M

but not Mc.

Let X = {ordinals < Q} + @', where neighborhoods of Q' are
precisely those of Q, with Q replaced by Q', (or take two copies
of the ordinal set and identify in pairs the corresponding points

except at Q's).
We revise Wilansky's question:
Question 4. Does LW locally compact, Mc or M' =o 1'2 ?
(An answer to Question 3 may resolve this.)

We now have a corollary to Proposition 32:

Corollary 45.2. If points are Gy, LW locally compact M' ==o
Regular 'l'z. :

2.7. Bases

Proposition 47. If p is pseudo-open and point-compact and B
is a base for X, then B' = {int pU:U is a finite union of elements




of B} is a base for 1I.

Proof. Let g€R openin I. Then g CR* open in X.
For each x € g there exists B‘ € B such that x € B‘C R*. Since
8 1is compact, a finite number of these Bx covers g, say

- Then int pU € B' and contains g since p is
p &
pseudo-open. pUCR so int pUCR.

n
g<cu = UB
i=1

Corollary 47.1. X is second countable, p is pseudo-open and

point-compact == T is second countable.

Proposition 48. p is pseudo-open and point-compact, for each
X € X, Ax is a neighborhood base for X at x, for g €G@G,
A= \_/A_ =c A' = {int pU:U is a finite union of elements of
x€eg X g
A.} is a neighborhood base for I at g.
Proof. The proof for this is exactly like that of Proposition

47 with Bx € Ax.

Corollary 48.1. p is pseudo-open, each element of G 1is a com
pact, countable set, X is first countable ==> ] is first countable.

e
Proof. For g €G, 8.{x’-}11° For each x € g, let

L ]
{A } be a comntable neighborhood base for X at x,. Then
13401 o 1

A' @ {‘“}1,3- 5 is comtable. . Hence A& is countable and gives a
neighborhood base for I at g by Proposition 48.

This corollary is false without requiring p to be pseudo-open
even if X 1is metric and the elements of g are finite. (see
Example P.)

The corollary is false for arbitrary compact elements even if p




is closed, as the following example illustrates.

Example R. X is semimetric, p 1is closed and point-compact but

I 1is not first countable.

Let X be the space, first described by McAuley, consisting of
the points of the plane, where neighborhoods of points off the x - axis
are the ordinary 82 neighborhoods and those of points on the x- axis
are "bow-tie" regions. To describe these regions explicitly, for
neither of p and q on the x-axis, define the semimetric
d(p,q) = [p-q|, the !z distance. If either of p or q is on the
x-axis, then d(p,q) = |[p-q| + a(p,q), where a is the radian
measure of the least non-negative angle between the segment E and
du-x-m. X 1is a regular paracompact semimetric, nondevelopable,
space. m interval g = {(x,0):x € [0,1]} 1is compact. (The subspace
topology on the x -axis is the usual real topology.)

Let H, = {g}. Then p is closed and point-compact. I is T,
and M' but not first countable. Any countable collection (Vn} of
open sets containing g would have to intersect some single vertical
line in a sequence x €V , but such a sequence {xn} is closed.

An open map preserves both first and second countability, but not
developability even with compact elements as does a closed map [24].
Indeed, an open point-compact image of a devglopable space may fail to
be semimetric [22].

Definition. If C 1is a family of subsets of X, call a devel-

opment {G } for X wmiform with respect to G 1ff for each g €G,

if gC U open, then there exists an integer n such that Gn*(g)CU.
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Any self-refining development is uniform with respect to finite
sets and any metric space has a development uniform with respect to
compact sets. In fact a '1‘1 space has a development uniform with

respect to compact sets iff it is metrizable.

Proposition 49. X has a development uniform with respect to G,

p 1is almost open == I is developable.

Proof. Let A{Gn} be a development for X uniform with respect
to G. Since p 1is almost open, for each g € G there exists
x‘c g such that g € int pU for each open set U containing xs.
Por each g€ G and each n, choose gn(g) such that
x € g,(8) € G,- Then {Hn} = {int p(g (8)):g € G} is a development
for I: Each H 1is an open cover of I by the choice of xg - Now
suppose g €R openin I. Then gCR* open in X. There exists
N such that cn*(g)cn* by the wiformity of {G }. If
g§€h, € H, b.“ = int p(gn(g')) for some g'€ G. But gu(s') € Gy
and g meets g.(g'). Hence sn(s')c R*. So Pey(g') CR and

hence h.cn.

Corollary 49.1. X 1is developable, p 1is almost open, each
element of G is finite == I is developable.

Corollary 49.2. X 1is metric, p 1is almost-open and point-
compact = ] 1is developable.

Proposition 50. X is semimetric 'rl, p 1is pseudo-open, each
element of G is finite == I is semimetric.

Proof. Using Heath's characterization of rl semimetric spaces




91, let {gn(x)}x‘ x be such that 84+1< &, and for each x,

{gﬂ(x)}‘I en 1% % Sota1 base at x, and yeg(x) = x >y. For

each g€ G and each n, let G (g) = int p( U/ gn(x)). This is
n XEQ
open and contains g since p 1s pseudo-open. Then for each g,
'{Gn(s)) is a base for 1 at g, with G, CG : if g€R open
i.: 1, g= {x)5°°*»x}, there exists Bni(xi) such that
S @
i\.-Jl gni(xi) CR". Let N= r;xkni . Then for each 1,g.(x;) CR*.
So Gn(g) CR. If ge€ Gn(hn) then g2p {hn}’ for suppose
8€G (M) = int p[&)hn gn(x)). Then g meets xkejhn g, (@) for
each n. Some point x of g 1lies in O/ gn(x) for infinitely
X € hn
many n, since g 1is finite. So there exists x € hn such that
i i

x € (x )Cg(x ). Hence x -+ x, which gives h. -+ g and

!ni LA 8 L L o,
thus gtp (hn}. This suffices to give Heath's characterizationm,

making I a semimetric space.

Proposition 51. X 1is metric, p 1is pseudo-open and point-

compact == ] is semimetric.

Proof. Let {G} be a monotone development for X wniform
with respect to G. For each g€ G and each n, let
B (g =1intp Gu*(g) " {nn(s)}ne §y 1isabase for T at g, since
S8E€R open in I =o for some N, Gu*(g)CR*. Furthermore,
gelu(hn)—o h +g: If g&R open in 1, there exists N such
that Gn"(g) CR* for n>N. But g meets Gu*(hn) for n >N so

S *
haecn (g). Hence anR and hnéll for n > N.

2.8. Duda's reflexive-compact mappings

Definition. (Duda [3]) £:X -+ Y is reflexive compact 1iff
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£ fK 1s compact for each compact KC X.

Trivially, compact ==> reflexive compact == point-compact.

If p 1s reflexive compact, then p 1is compact iff each compact
set K in I has compact section, i.e., a compact A C X such that
pPA= K. If X is KC, then p 1is reflexive compact == p is semi-
closed.

For any spaces, closed and point-compact === compact. Duda has
proven a sort of converse for the weaker reflexive compact, namely, if
X is a k-space, then p 1is reflexive compact == p u’closed,
(hence, compact). Duda deals only with '1'2 spaces. It is not neces-
sary to assume I is T, but something like it is needed for X. For

2

if X 1is a compact T, space which is not KC, say X=B + x with

1
B compact and x2pB (for instance, X may be a sequence converging
to two distinct limit points), let H, = {B}). Then I consists of
two points, one of which is a limit point of the other. I 1is not 1‘1
80 p 1is not closed. p 1is compact, however, and X 1is a ki—space.

To prove Duda's Theorem, it suffices to assume X is KC.

Proposition 52. (Duda) X is k-space, KC, p is reﬂeiive
compact ==> p 1is closed.

Proof. Let F be closed in X. If p-lpr is not closed,
then there exists a compact closed set C such that p-lplff\c is not
closed. Now, p'lp!n C = p-lp(p-lpcnl') NC. Since p 1is
reflexive compact, p-lpc is compact. In any space, 1f H 1is closed
and K compact then HNK 1is closed in K and hence compact. So
p.lpc NF? 1is compact. Hence p-IP(P-lpcnr) is also compact by the

reflexive compactness of p. And p.lp(p'lpcf\ F)NC 1is compact,



a8 C 1is closed. So if X is KC this set is closed and we have a

contradiction.
¢

Corollary 52.1. X 1is sequential M, p 1is reflexive compact
=5 p 1is closed.

Proof. sequential M == both k-space and KC

These theorems give full compactness of the map as a dividend by
way of closedness of the map. They also suggest that reflexive compact
is not very much weaker than compact and of course these properties may
be equivalent under conditions which do not force the map to be closed.

We call p countably compact iff K countably compact == p-]I

is countably compact.

Proposition 53. X 1s strongly semi-18t, T is '1'1, p is

pseudo-open and reflexive countably compact == p 1is countably com-

pact.

Proof. Let K be countably compact in I and suppose there

exists a infinite set {x } .lc p X with no limit point in p k.
ns=

Each g € G 1is countably compact so we may assume (pxn} are all
different. Each PX € K so there exists g & K such that gip {pxn}
and n'-y assume g ¢ {pxn}. Since p 1s pseudo-open there exists
x€g such that xgp p-l({pxn}). Since X is strongly semi-15t and
1 is T, there exists a subsequence y 16 p-lpx g with y -+ x.
Now, {y, }u x 1s compact, hence p P({y }ux) = {p px }"u g
is a comubly compact subset of p 1! As :l.t contains {x }. this
means {x }, and hence {x }, has a limit point in pk vhich

contradicts our assumption.
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Corollary 53.1. Proposition 53 with countably compact replaced

by sequentially compact.

Proof. sequentially compact ==> cowuntably compact and counta-

bly compact, c¢c - E == gequentially compact

Corollary 53.2. X 1is developable or strongly semi-18t,

Lindelof, I is 1'1, P pseudo-open and reflexive compact == p 1is

compact.




CHAPTER III

Shrinkable Decompositions

Definition. (McAuley) A subset K of a metric space M 1is

locally shrinkable iff for each open U DK and each € > 0 there

exists a homeomorphism h:M ®* M such that h = id off U and

diam hK < €.
A compact locally shrinkable subset is connected.

As originally stated in [12], the theorem: If G is a McAuley-
usc decomposition of a complete metric space M such that HG is
comtable and G& » each element g €H 1is a locally shrinkable con-
tinuum and lies in an open set with compact closure, then I = M, is
false, as illustrated by Example C of section 2.3, where I is not
first countable. The theorem fails when there exists a point which is
a dog_enerate limit of elements having diameters bounded away from zero.
This cannot happen if p 1is closed, but, as the example shows, it is
not a violation of Mc. The hypotheses of the theorem and the condi-
tion that there be no such "bad" points guarantee the map p 1is closed.
The theorem is true if McAuley - usc is replaced by Whyburn- usc
(p closed) and we will obtain this from a more general proposition
which restates another of McAuley's theorems.

If G 1is a decomposition of X, we call a subset of X p.-open

if it 1s an open inverse set (for p).
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Definition. If G 1s a decomposition of a metric space M,

H 1is tightly shrinkable in M (tsh) 1ff given any p- open cover

U of B*, €¢>0, and h:M* M, there exists a p - open (refinement
of U) V covering H* and a homeomorphism f£:M * M such that

1) f=h off V*, 2) for each g € H, diam f(g) < € and 3) for each

v eV there exists u & U such that h(v) YV £(v) C h(u).

H 1is weakly tsh if the above holds for the special case of
hs= “1( .
We will make use of the following theorem of McAuley, slightly

revised.

Convergence Theorem. (McAuley) If M is a metric space,
Z € < -,(t:ll > 0) for each n, fn:M M, fo

V, 18 a collection of open sets with compact closure and vn* Dvm_l*,

= 1d, for each n > 1,

#*
for each n > 0, fn+1-fn off vnﬂ, Devn+1—° dinfnn<en

and x (V“I* => there exists D € V o+1 Such that
£0D £xv £ 41%> then (fn} are uniformly Cauchy and if
-«
{£ ()} converges for x€ 4 =/\V* then f -+ £ [wnif],
n a=1 , n n
f:M > M 1is continuous and onto, and f is 1-1 off A. Furthermore,

if M 1is locally compact on ?, then f 1is closed.

Proof. First, we show that {fn} are wniformly Cauchy. Let
«
¢>0. For some N, nznc'l(e . Let x€M. For each n, 1if
® - ®
x¢ V‘_n then !n‘ux fnx. If x €V .3 then there exists
D evuﬂ such that an po | .‘.nx v fn+1x, but diam an < €a* So, in

either case, d(fnx, !“12) < €. So for m > N,

d(!-x, f-x) < 12“ € < 12" €, <c.



'(fnx} converges for x¢ A = nvn*, for 1f x¢§ VJ+1* then
f£x=fx for n>J, fi.e., '(fnx} is ultimately constant. So if
"{fnx} converges for x € A then we have pointwise convergence every-
where. And since '{fn} are wiformly Cauchy, f + f = lim f [wif],
and f 1is continuous.

To show f 1is onto, let p€ M. Let z_ = f 'p. It suffices
to show {:n} has a convergent subsequence, since if :ni + x then
continuity gives fzlli + fx while d(fnj,zn:l’ f:nj,) < e for large i
by wmiform convergence. So fzni +p qnd hence p = fx. Now, if
PEV,* then foreach n, fp=p. Thuw Uf p=(p}. If
péV'. penevl with D compact. Choose 6 > 0 such that
'6("): D. By the uniform convergence there exists N such that

n>N =o £'z € chnz for all ze€eM. So fuzn € chnzn = Rs(p) CD.

Hence {f'zn}‘:lc D and {zn}n:lc iu-lb. Since fl is a homeomor-

phism, t."ID is compact and so {zn} has a convergent subsequence.

Now we suppose that M is locally compact at each point of vl' o

To show f 1s closed, let D be a closed subset of M and L A
with yuefn. We must show y € fD. There exists xnel) with
y = fxn. If {xn} has a convergent subsequence, we are done, since
if x + x then X€D and fx =y -+ fx by continuity. Hence

oy b ]
fx = y. Furthermore, if M is locally compact at y, we can choose
e >0 so that lgy is compact. By uniform convergence there exists I
so that for every x € M, flx € Ns_fx. In particular, for each n

2

flxn € li_fxn. But for n > N fxn € N.y. So flxne 'i.fxn CNey .
which has compact closure. So {flxn} has a convergent subsequence
and thus '{xn} does also, as f, 1s a homeomorphism.

We may suppose then that y¢? Now fj(vl*) - Vl' for each
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§ since fj is a homeomorphism which is the identity off vl*. For
some ¢ >0, Ny misses Vl‘ and for large n, y & Ny. For

* *
large 1, f;x € li_ynCley 80 f1’n¢v1 and thus xn¢v1 . So

fxﬂ-xn and since fxn-by, we have x *y.

Theorem T. If M is a metric space, G a decomposition of M
such that p 1is closed and point-compact, H is tightly shrinkable

in M, and M is locally compact at H*, then I = M.

Proof. For each g € H, let vl(g) be a p -open set contain-
ing g such that vng) is compact C l!%(g). Let
'1 = {vl(g):g € H}. Let Ul be a star refinement of Vl by p- open
sets. (I is metrizable, hence paracompact, by Stone's Theorem [16].)
By tsh, there exists flzl! * M and v1 a p- open refinement of 01
covering H* such that:

= *
fl 1d off v

1
g8 €N -bd:l-f13<i-
vtVl—v there exists uCUl such that vuflv Cu.

Por each g € H, choose v, € V) containing g and let w,(g) be
P ~open containing g so that vag) compact C

N @En vl(g)o fl'l(l;% flg). Let W, = {v,(g):g € H}. Let U, be
a star refinement of "2 by p-open sets. By tsh there exists

£,2M * M ad V, ap-open refinement of U, covering B*, satis-
fying

®
£, = fyoff v,

1
S€l = dmifyg <l

v €V => there exists ue¢ U, such that f;v v fyvc fju.




Inductively, given fn—lm =M, vn-l p- open refinement of

U covering H* with

e-1

®
off V.

1
2n—l

!n-l o !n-z

SEH= damf .g<

ve vV

-1 = there exists u € Un-l with fn_zv v fn-lv c fn—Z“’

for each g € H, choose vn_l(g) € vn-l containing g and let wn(g)
be p- open containing g so that vn(g) is compact C
-1

N, (;)nvn_l(g)n fn-—l (N_lﬁfn—lg)‘ Let Vn = {vn(g):g € H} and
II. star-refinement of anby P- open sets. By tsh there exists
f-:!l *M and Vn a p- open refinement of Un covering H*, satisfy-
ing:
*

£, = £, off V.

EGE€EH =o du-fng <%
v&V = there exists u €U  such that £ vvfvcf _u.
a n n-1 n n-1

It is clear that this construction gives for each n,

ge€C= £ VULV @ ct U cf v (s'), some

g8'€ENR Cfn_lvn_l(;')r\ .'}‘; fn-l(")' this last set having diameter

< ;FI .

Also, we have for each g€ G, for each k> 1 and n >k,
!k('n.(')) v fn(vn.(x)) c Ek(vk.('))' To see this, let k > 1 and
induct on n: For n = k the statement is trivial. Suppose it holds
for some n>k. Now, £.(V . *GHUE, (V.  *G)C L @, ")

by construction and this is a subset of fu('n+1("))' for some
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8' € H, which in tnrn les in £ (v,(g")). Ve assume ge p(vV "
since otherwise the statement is trivial-.A So g cvﬂ_‘_l*(s) CVn(g').
Hence v (g') € vn(35 and v (g") CV_*(g). 30’

£,(v (8") € £ (v *(8)) € £ (V,*(8)) by the inductive hypothesis.
Also, stnce V_, *(s) €V *(8), £ (V_, *(8)) C £, (%, *(g)) also by the
inductive hypothesis and this establishes the corresponding statement
for the case of n+.1. :

We may restate the last result: for each g € G, for each

k>1 and n >k, S-Jk fn(vn*(s)) c fk(vk*(g)). In particular, for

each ge ﬂp(vn‘) (where g cvn*(g) for each n),
\J .®c \J £5.% cfy*®.

The tefmlt is a sequence fn:l( * M and '{Un} such that each v,
is a collection of p- open sets with compact closure, fn+1 = fn off
“1' (actually off V&I*CU”I*). Furthermore, x €U “1* =2
there exists u eun;l vith fudfxuf x, sinceif x¢V  *,
fuﬂx = fnx. which is in the image under fn of whichever element of

U, contains x. And if xevﬁ*, xesome veV  but

f‘vufn_uv Cfnu for some u GUM_I.

X ' 1 1
Yor each u €U, dinfnu<;;_—1. And since Z--z-ﬁ<-,

we have verified all of the conditions we need of the Convergence
Theorem except convergence itself at points of nun*. But suppose

x€ nU" = f\vn*. p(x) = gcﬂvn' so g cvn‘(g) for each n,




-

while U £ (v *(g)) C £, *(g)) C U,*(g), which has compact closure.

o=l n'a 1 1
So {fﬂx}n-l lies in a compact set. Thus it has a convergent subse-
quence. But the sequence {fnx} is Cauchy and hence converges.

So by the Convergence Theorem, fn +> f:M+M [umif], £ is con-
tinuwous, cuto and f is 1-1 off A=y *.

We now establish that for each g€ H, f(g) is a point. For
each k and n >k, f(8)C£(V"®). So for each k,

-
£(g) C zk(vk‘(g)). Thus £(g)C /) fk(vk’(g)) , while the sets in
k=1
this intersection have diameters tending to zero as k increases. So
-

£(g) =1 ckvk (g) a point.

We claim also: g#g'€ G == for some N, V*@NV *@) = 4.
To prove this, note that since g and g' are compact, there exists
€, >0 such that N, (g)\N,_ (g8') = ¢. Let U and V be p- open

1 2:1 2e1
with gCUCN_ g and g'CVCN_g'. So N UCN, g and
el el 51 2e1
ltlvc -chg' and nelu ”"el" =¢. Choose € >0 so that € <¢,
and lchU, ucg'cv. Choose N so %< €. Then
2

—— A—¥
H. () nﬂ. (8') = ¢. Forif w eﬂn(g), gCws= vu(go), some

goex,Cll (go)C Ne(go). So g, meets Neg and thus gocu.

2N a
So wCN g CNUC ntlu. Thus W, "(g)C nelu. Similarly, if

v eW(s), v cnclv. ~ So wu*(s')cntlv. so t'v;*-(g) and
V:‘(g') are disjoint and as Vy refines L*n ;;7(8) N ;‘NT(S') =¢.
We can now show that fx = fy iff px=py. If px=py=g
then since f(g) 1is a single point, fx = fy. Now suppose fx = fy
and px=g¢§ py=g'. Since f is 1-1 off r\vn' ve may assume at

least one of g and g' 1is in npvn'. In case both g and g'

are in npv.", choose N so that VN*(g) nvu*(z') = ¢. Then




t. ?(;)f\ £. ?(g') = ¢, while the first of these sets contains

£f(g) and the second contains f£(g'), contradicting £(g) = £(g').
Now assume that g ¢ npv; vhile g'e flpvn*. For some M,
g &V, and £(2) = £,(8) = £,(8) for k>M. There exists N>M
such that g€ V.¥(g") so f.(0) £ £ V(") bur £.(a) = £(a)
vhile f£(g') € £y V. *(z").

So fp-l is a homeomorphism of I onto M iff f is quasi-
compact.

We will show f is closed but first we will prove: if y ¢ ot
(s0 fy=fy=y foreach j) and if fz >y witheach z € nv *
then z +y. Let p(z)) =g. So f£(z) = f(g). Since each
g€ Mw*, fs) = O} £,G7(8)). So for each ki
£s) € £V Bur £(g) +y. So yep\J £ VF(g) ame
since f_ 1s a homeomorphism, £~ y!.pnl:{ v (g). 1.e., for each
k, yzp‘\:.ll ?(gn). Now, ytpug . For suppose not. Then there
‘exists € > 0 such that ley misses Ugn. There exists € > 0
such that 1f g ¢ G meets 'cl’ then g CN.y. Choose K so that
z—;- ?1- . Since ylpU Vg (g,) there is a point
z€ &;{?(gn)nue y, say x €V *(ss) ¥ y. But by construc-
ticn, Vg (l')c l;(gl) some ‘l'l‘ chel(gﬁ). So there exists
s € ‘i such that 2:(3,;) < -‘21. while d(x,y) < :z-l— so d(x,z) < €1

Thus gi meets !l;ly and gicli_y. Meanwhile
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& C N s;]) [ % Ngl(s;‘) C Ng_ (st") CN_y, vhich contradicts the choice

of N ‘y

So {y} 2p {g,} 1n T by continuity of p. Hence z +y
since p 1s closed and g " p(zn) and the argument applies as well
to any subsequence zni .

To show f 1s closed, let D be closed C M and suppose
S with ynefl). Let xnen such that yn-f(xn). As in
the proof of the last part of the convergence theorem, it suffices to
have M locally compact at y or that {xn} has a convergent subse-
quence. So we may assume y ¢ 01* since Ul is a collection of open
sets which have compact closure. Then for each j, ij =y=fy. If
for some J, '{xn} is frequently not in U *. then for a subsequence
'(xni}Cl(\U *, f(xni) = fani for each 1. So fJ(xni) +y hence
x‘i > fj-ly = y. So we may suppose {xn} is ultimately in each UJ*.
There is a subsequence {xni} with xn1 € Ui*. Since it is only sub-

sequences we are interested in, let us assume x € Un+1*' Now, since

Uﬂl refines W a1

X €V ,(8)CN, (g)Nv, (g). So g €8, d(x .8 ) < -2;1*1

md x € vn*(gn)? Thus for each J, f£,x, € £,V *g,)-

Let ¢ > 0. Choose N so that n > N =» fxnel!u, since
0

there exists gne H such that

txn + y. By uniform convergence there exists J such that

J>J = !jxﬁ s_fx for x€ M. So n> N, J > J =eo tjxn‘ui."

But for each g€ H and each k, d:l.-ka (g) < 12. So there
2

exists K such that k > K =» dinfv’(g)<— and since




V,*(8) CV,*(g) for £ >k, foreach %>k, diam £,0,%(s) < §.

Choose I > J,K then for n > I,N, flxne Ney and
2

* € *
diam flvn g£<y for g€ H. But EIan flvn (gn). So

fIvn*(gn)c u{gy, and since I > J,
f(g) € f(vn*(gn))c N fIVn*(gn) CN_y. Ve have shown: given € >0
®

there exists M such that n > M =o f(gn)é Rcy. So f(gn) +y.

1

2n-'l>1

Now f(zn) +y and z € B*. So z, *y, aswve have already proved

But d(xn,gn) < -2Tl+—f . Choose z €8 such that d(xn,zn) <

But d(xn"n) +0 so x>y also. This completes the proof of

Theorem T.

We will use Theorem T to establish McAuley's Theorem in case p
is closed. Some further observations will be useful.

First, if G is a decomposition of a metric space M, then Bc
is tsh iff for each homeomorphism h:M = M, Eh(c) is weakly tsh.
This is an immediate consequence of the definitions and the fact that
under a homeomorphism h:M * M, h(@) = B0 and 1f p':M + M/h(c)
is the quotient map and u a p-open set then h(u) is p'- open.
This enables us to carry maps and coverings back and forth via the
given homeomorphism. The details are straightforward and omitted here.

Consequently, if we find a set of purely topological conditions
on a decomposition G (preserved under homeomorphisms on M) which

yield l!c is weakly tsh, then H_, 1is tsh also.

G
" We also note that local shrinkability of continua is topological,

i.e., if M and M' are metric, h a homeomorphism of M onto M'



and C a locally shrinkable continuum in M, then h(C) 1s a locally

shrinkable continuum in M'.

Proof. Trivially, hC is a continuum. Since C 1is locally
shrinkable in M, for each positive integer k there exists Ek:!l M
such that f, = 14 off u%c and dlam £,C<3. € = £CCN,C.
Each open set containing C contains ck ultimately as C 1is compact.
There exists x € C such that each neighborhood of x meets (:k for
infinitely many k, again by compactness of C. Since M is metric
a subsequence cki + x, 1i.e., each neighborhood of x meets cki
ultimately. And since dlnck + 0 each neighborhood of x contains
Cl ultimately. How, since h is a homeomorphism m:k + hx € hC.
alse d:l.nhck +0 since if V is myneiﬂxbotlwodof h(x), b ly
is a ngid:borhood of x and contains cki ultimately. Then V ulti-
mately contains In(:k -« Since we may choose neighborhoods V of h(x)
with arbitrarily 3-11 diameter, diam hct must tend to zero. Now

let U open D hC, € > 0. Then hlﬂ :lnopn > C. Choose I

%o that dlembC, < and IICChl‘U Thea

£ MTN, f =if off hlUIkac-ckI Let h'-hfkblz

M' M 80 h'=1id off U and h'(hC)-hkac hckl has diameter

< €, which means bhC 1is locally shrinkable.
We need the following theorem of McAuley:

Theorem H. (McAuley) If M 1is a metric space, {fi}:u *M,
{U;} a sequence of open subsets of M such that v, T, 1+1° nU

£, =f, , off U, £ =1d, and for each peu,u f-lp has com-

0
pact closure then {fil-* £:M = M,




Remark. Excluding the last hypothesis of Theorem H yields
f= 1lim fi continuous, 1-1 and open. This last condition provides

that £ 1is onto.
Theorem H'. (McAuley, revised) If G is a decomposition of a

metric space M satisfying

1) p is closed and point-compact,

2) each element of H 1is locally shrinkable,

3) H 1is comtable and G& o

4) M is locally compact at H*,
then H is weakly tsh in M.

Proof. In this proof the notation <£0,D) 1is used to replace

the sequence of symbols: Op -open <o C Dp - open cd compact. By

hypothesis, H = {cj}j_l, H’-Ql G» G open DG . Let A

be a p-open cover of H*, € > 0. For each j, choose Ajtk with

C,CA,. Let h, = id.

33 ]
Let Il- {Cc€H: diamC > €}. By usc, Bl* is closed. If
B) ¥4, let k; be least such that Ce, € H). So cj¢u1 for
i<k, afcul open such that W, misses Cy for j <k
M -
B'CU; open such that T) €W, NG). Let ¢ C <o,.0) C uNA,
and let hi:M * M such that h, = id off 0, and diamh, ck1<e.
Let H, = {C€ H: dlamhC >c). ' is closed C U,. If
Hy ¥4, let k, be least such that ckzenz. Then k, > k.
lz'Cliz open such that W, wmisses c.1 for J <k,. H;CUZ open
such that T, C U,N\¥,N G,. Let G, C <°z'”z) C uznAkz and
such that 1if ckznil = ¢, we select D, so that D, /N0, = ¢,




while if Csz\alfo, then choose D, so that Ezcvl. Let
hzzl‘!! such that "2"‘1 off 02 and h2 shrinks Ckz to

diameter < ¢, (hence C, for jikz).

3
Inductively, given h,:M * M for 0 < ¢ <1 such that for

l<t<i h’_-hz off 0,» W, 1s open missing C, for j<kl,

-1 L i)
Gy, € <002 < UM C U open C T, CU,_,NG,NV, and
inBj-o or Blcnj (and BLnEj ¥ ¢) forall j <2, and,
h, shrinks C, for j <k,

3
= e ®
44y = {C€H:diam h,C > €}. Then H, " is closed C LA

1+1 141 be least such that ck e ni. Then

>k, and cj¢n1 for J <k, .. 1+1C 141 OPen such that

Let H

1f t X l.etk

ki

141 misses C

®
y for 3 <kyy. HyCQUyy open C

4TV N6y et G € <0guDy) C UGN
and such that for each £, 1<% 51, if ck1+1n 0l # ¢, choose

i“'_]'Cl) and 1if ck1+1n 0, = ¢, choose D ., so that
.5“_1“ 0, = ¢ also. (so we have Bj n 6'_ =¢ or E.‘l C D, and
ojﬂO‘#Q foreach j <i+1 and £ < j.) Let hﬂ_l:ll‘l( such

that h:l = h, off O and h shrinks (2k to diameter < ¢

+1 i i+1 i+l
(hence (:j for jJ 5_k1+1).

I!l!‘.-o for some 1, let h=nh This gives a homeo-

i-1°
morphism h:M M, without appeal to Theorem H, which shrinks each
element of G to diameter < €. And we can comnstruct a p- open
refinement V of A as required for weakly tsh in the same way as
for the case that {I!i) is infinite, which follows.

It L ¥ ¢ for each i, then we have a sequence of homeomor-
phisms hiot M onto M and open sets U:l. such that
U, DT, b =h,_, off U (actually off 0,), Nu, = ¢ (since




nuic f\ci =g = (JC,, but each 7, le+1 misses cj, so
n*n(nui) = ¢). So we have verified conditions of Theorem H which
give hi + h:M+>M, with h 1-1, continuous and open.

We must show h 1is onto. Prior to this, we list some proper-

ties of the construction:

A for any set A containing

Lemma 1. For each i, hA = b, 4

01. In particular, hioi = h1-1°1 Chi-lni = “1”1 .
Lemma 2.1. For each 1 < j 1if xéol for 1 <2 <j then
hjx- h:l"

Lemma 2. For each i there exists L(i) <i such that

1
'% by (D) CDpeqy-

Proof. The statement holds for 1 = 1 since "1”1 = hol)l = Dl'
Let L(1) = 1. Assume for each j < i that there exists L(j) < j
3 -
such that % htnj CDLU). If Di misses Oj for each j < i
then h,D, =D, for 2 <i by Lemma 2.1. But h:ln:l. = h1-1°1 by

{ b § i
i
Lemma 1 so h,D, =D, also. And Uhlni'ni’ Let L(1) =1i. If
=0

i1 i

Di meets some Ej for j <1, let J be the largest such j. Then

by comstruction "1C DJ and by our inductive assumption, there exists

J J J
L(J) < J such that H b, D; €D ;) But };{) h,p, C ’% h,D, and

since D ﬁlm 0, for J<j<1i, hlni-h N pointwise for

i
J<t<i-l by u-: 2.1. So we also have }:40 hyD, €Dy 5. And
by Lemma 1, h, D, =h,D . Hence L\_.é hyD, €Dy gy So we let
L(1) = L(J) < J < 1.

Now it is easy to show h 1is onto. Let p be any point of M.
If pé UO’. then bip =p for each 1 and hp = p. So suppose
PE Uoi and let I be least such that p € O . We vill show that

-1 I
{h:l ’}1 >1 (- H D, . Otherwise, there exists a least J such




-1 I -1
that h; p¢iL_Jlni. Let z=h p. If 24 0; then
p= hJ: - hJ—l’ 80 z = I:J__l.lp contrary to the choice of J. So

£ €0,. But :VP-hzuh:cn for some L(J) by Lemma 2.

J 0 L@J)
So DL(J’) meets 0 in p. If L) > I then by construction
DL(J)CD If I.(J)<I,vest111have ze}JD which is a con-
tradiction. So f{h,~ p]1>I H D,, which is a finite union of
sets having compact closures. So we have confirmed the last hypothesis

of Theorem H and we have hi-bh:l!' M.

ol

Lemma 3.1. Foreach i and j with 1 < j 1if aiand are

disjoint then no O, can meet them both for £ > j.

L

Broof. If O, meets both O andﬁj with £ > 3 >4 then

0, CD, 1s chosen so that D,CD,MD,. Bur D, was chosen to
miss 31.

Lemma 3.2. If A is any set which contains each 31 for

I<1<J which A intersects, then h.IA-hJA.

Proof. Suppose not. Let L be least such that hLAlhIA
with I<L<J. Mhl;—l.h]l" But 1if hLAfhb_lA then A

meets O, so KLCA. Hence hA=h A by Lemma 1.

i

3. Foreach I and J>1I, hJBIChInI

Proof. PFor J =1 the statement is trivial. Given J>1I,
lat Q={0,:T<1<J}. Let A= {0€Q: there exists a (finite)
sequence of elements of Q, consecutively intersecting and of increas-

ing index from O,

p t© O}. Clearly, Eleg. and A'CDI, for




otherwise if there exists an element O, € A with '61¢ D, then
D£¢DI‘ Let K be least such that O € A and DK¢ D;. There is
a sequence from 31 to O,, as described above. An element 51 of
this sequence meets El with jJ < K. So ch 1)I but also by con-
struction D‘an. Hence Dy CD, . Furthermore, A* contains each
element of Q which A* intersects. For if 31 €Q and 31 meets
A*. let J be least such that BJ €A and 31 meets BJ. Now if
J <1, augmenting the sequence from 31 to EJ by 31 gives a

sequence from 31 to O, s placing 51 €A. So suppose J>1i. Let

.O-k be the element of the sequence from EI to EJ which meets EJ.

Then k <J. So 31 does not meet Bk‘ But EJ cannot meet both
of the disjoint sets 31 and Ek by Lemma 3.1. Now by Lemma 3.2
b (%) = b (A%). And since O; CA*, 1;(0)) Ch M =n (AHChpD,
and Lemma 3 is proved.

Now, (T, } is a locally finite collection since U DU and
Mu, = ¢. (0} is locally finite, as O, CU,. Since each oj 1s
compact, it meets at most a finite number of elements of {oi}. So
for each j there exists N(j) > j such that EJC M 1\){0) 51 5
Then hO, 'hnu)° ChyD, by Lemma 3, while D,\Uh,D, CDy , for
some L(j) <j by Lemma 2. Thus OJU ho:| C DL(j)C AL(j) . For each
Ce€HSNUJp0,, hC=C and diamC < €. Again by the local finite-
ness of '{01} some neighborhood of the compact C misses Uoi and
hence there exists a p- open set N(C) containing C and missing
Uoi and such that if C=C,, l(cj)C Aj. hN(C) = N(C).

let V= {0 } U{N(C):C‘E‘Upoi}. Then V 1is a
p - open refinement of A, h=1d off V*,6 h shrinks each element

of H to diameter <c¢, and V&€V =o there exists A€ A with




ADvouhv., Thus, H 1is weakly tsh.

Since the hypotheses of Theorem H' are topological, we have

immediately that H is tsh. Hence, by Theorem T,

Corollary H'. (McAuley) Under the hypotheses of Theorem H'
1=mu.




1.

2.

3.

4.

s.

7.

’.
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