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CHAPTER I

Introduction

1.1. Introductgz Remrks. A

flxis thesis deals priaarily with decomposition spaces and the

question of inheritance by a deconposition space of certain topological

properties. some new topological concepts which are introduced are of

independent interest but they are explored here principally for their

imlications in decomposition spaces.

In Gnapter II we cospare HcAuley's definition of an upper seni-
eontinuons decoqosition with other separation properties of the

deoowoeition space andrelations of these properties to the projection

up. In contrast to Whybm-n's (originally, Moore's) definition of
upper senicontinuity, which is equivalent to requiring the projection

up to he closed, these are purely topological properties, but sane

- nevertheless iqsose conditions on quotient laps onto spaces satisfying

then. Also, they are investigated in conjunction with various basis

restrictions on the decomposition space (such as first comtability,

etc.) or conditions on the nature of the individual elenenta of the
- deeoqositim.

Chapter III is nore narrow in scope, dealing specifically with
certain shrinkability theorem of KcAuley, originally asserted for

decoqoeitions which are upper senicontinuous in the sense he defined.

The observation that this definition of upper senicontinuity did not

» yield the desired properties as supposed led to the investigations of
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Chapter II. Proofs of the theorens with the amended hypotheses are
supplied.

l.2. Rotation and terninologz .

lhleas the cuatrary is stated, the terms employed are as defined

in [10]. Where concepts have had a variety of names, some effort has
been Isde to list these and to use one of those names already appearing

in the literature. kneption has been made in the form of adopting

letters in place of verbal descriptions of properties for the sake of

_ brevity.
Throughout this thesis, where X denotes a topological space,

6 a collection of mutually disjoint subsets covering X , the decon-

positicn (quotient, factor) space X/G will be denoted. by‘ L and the
canonical projection (quotient, factor) nap by p_:X -> I , where
x C p—1px. Also, we may write xe p(x), using the sane name for an

eleztt of the decoqaosition space whether regarding it as a subset of

X (I: eleunt of G) or as a point of I . ‘me collection of non-

degsnerate eleents of G is denoted HG , or simly _E_.

If A is a collection of subsets-o-f a space, 5: cans the

union of the nedaers of A. there AC 1, A’ will be p-IA, fol-
lowing the conventitn noted above. So the topology of I can be
described by: A 1. open in I 1: andonly 1: A‘ 1. open in 1:.
Also, A0) . Where B is a set not necessarily belonging to A, is
the stiacollectian of A consisting of those nedaers of A which

intersect 3. am)‘ 1. written fig.
Ihe singleton ‘{3} is frequently abbreviated as x, where we

hope no caafmion will result. !or instance, A({x}) is contracted
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to M2).
:52; man: ‘'2 is a limit point of the set A" and x‘ggA

10 med for the negstion. .
=_ in used for the logical "only if" or "implies" and 3: or

;f_f for ‘if and truly if.” .
ilhile we are concerned cnly with decompositions into closed sub-

lets, when I is ‘I1, no such standing assumption is made, and all of
the theorem are intended to stand cnly on the hypotheses specifically

stated in then. ‘



CEAPER II

Upper Senicontinuity and Separation Properties

2.1. E, H’, and

Definition. A space X is 1:‘: iff x 1‘ y, x2.pA and
y!.pA -9 there exists a subset B of A such that zip]! and

y!~p.3 .

Definition. X is g iff X is 1'1 and Dc, i.e.,

x 9‘ y," {x,y} C I -9. there exists a subset B of A such that x s -I7
and y f ‘B-.

L decoqnoeition G of a space x is upper senicontinuous in

the sense of lk:Au1ey [11] iff I is He .

jinn 1. 1'2 -vflc

Proof. 1'2 -911 and if x and y are different linit points
of s set A, let 0 and V be disjoint open sets containing x and y, ’
respectively. Then B - An 0 gives the desired subset for He .

he eaaverse of Proposition 1 is not true in general. In fact,

we can state a condition which is stronger than Mo and yet fails to

yield '1': without sons restriction like first countability on the

space.

Definition. X is _1_s_'_ if! x!.pA -Others is a subset B of A
such that ;~B -' {x}.
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Definition. 1: is _r_t_'_ 1:: x 1: r1 and n' , i.e., x :1’ --:>
there is a subset B of A such that 3- Bvx.

P_1_’_¢_>position 2. H’ -0 Kc

Proof. If x If y and both are linit points of a set A , we
can assume neither belongs to A by T1 . Then there is a subset

I of A such that x!.pB and Bu: is closed, so ylgli.

We will show that 1'2 , H’ and He are all equivalent in a first
countable space; but the latter two are equivalent in the presence of a

weaker base condition and in that case equivalent to another property

which we call )1 , as it was named by Hcbougle [13].

Definition. X is 5 iff sequential limits are unique, i.e.,

lfxn} a seqmnce, an ->2 and an-py -0 x- y.

Definition. X is _l§C_ iff each compact subset of X is closed.

The abbreviation KC was used by Vilansky [23].
Clearly, 1'2-D KC-O 11-9 1'1.

Eosition 3. Hc -0 H ‘

'_Pr£§_. Suppose an»: and xn-by with xiy. By 1'1 we

can assuls the sequence xn is not frequently constant. So xip Urn

and yipuxn. By Hc there is a set BC uxn for which ups I

and ybph. Since xlpn, we nust have 3 - us“ for some subse-
1

qusncs ant, again by T1. And since an + y also, ylp Uxn ..
i 1

which is a contradiction. '
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We have so far: .

K» I/K.
Kc‘/no

H .

. 1'1

Each of these properties is topological and each is inherited by

subspaces. Eventually, we will give examples to show the converses of

these iqlications do not bold, but it will be more illuminating if we

first examine additional conditions in which they do. That the first

column of imlications has no converse is well-known. See, for .

example, [23].

11' has two very useful properties. One is that it is preserved

by closed laps. Another is that even considerable weakening of
11' on I guarantees that the projection up is pseudo-open.

nosition 6. 14' is preserved by closed naps.

Proof. Let I be 24' and f:x-9! a closed nap of X onto 1.

Suppose y1.pA in Y. He can assune y¢ A. Since 1 is closed,
there is a point x 6 fly with zip £41 and since X is N’, there

_ is a subset B C f-IA satisfying 3- BU x and SL113. Then by
continuity of 2, we have ylp rm, while :'('Sn‘- :6) since 1 1.
closed. nu: rm - an Ux) - rm u y. And since to): A, can
coqrlstes the proof.
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corollsgz 4.1. If X is H’ and G is Vhybum-usc, then
I is 11'.

corollgiz 4.2. If X is H‘ , then any Uhyburn-usc decommi-

tion of X is HcAu.1ey-nsc.

. lenceforth, when we use the tern upper senicontinuous (use) with-

out quslificstion, it will be understood in Whyburn's sense, i.e.,

p is closed. For HcAu1ey's we use the term Me.

2.2. Psendig ups

Definition. If £(x) - Y is a continuous esp of X onto Y,

I is2 (Arhsnge1'skii [1]). pre-closed ('1"ong [17]). s

P1--ppins CH-tnousle [13]). iff y e I, fly cu open -o y c int £(n).

A up I of X onto Y is gussi-cogact (quotient) iff the imge
of en open inverse set is open. An inverse set is s subset A of X

such thst I-1fA - A. Since the coqalenent of en inverse set is an

inverse set, under s quasi-coqasct up the image of e closed inverse

& set is closed.

the properties of pseudo-open naps listed here seen to have been

discovered independently by s nuizer of people. .

P_r_o&ition 6. pseudo-open -9 qussi-comsct

Proof. Suppose 0 I 1410 is en open inverse set. If y£ £0
then flyco open. so y ( int £0. Thus to 1: open.

jinn 7. p is pseudo-open<-D (:56, 36!! open in X-9

there issset V openin I such that seven end pv is open).

\ 7



. 8

Proof. Assune p is pseudo-open. Let U be open in X con-

taining g. Then pt! is aneighborhood of g in I. So pl! con-

tainsanopenset 0 in I containing g. p.10 isopenby
ccntinuity. Let v - p‘1o nu. g c v open cu and

-1pV- p(p ONO) - 0 since 0CpU.

Conversely, if U is open in X containing g, by hypothesis

there is an open set V with gcVCU and pV open. since

pVCpU this sakes pl! aneighborhood of g in I.

Eosition 8. p is pseudo-open <->(glpA in I «-9 there is

apoint :¢ g such that x1.pA* in X).

Proof. Assune p is pseudo-open. If no point of g is s

limit point of A*, there is an open set 03 3 such that U nisses

A‘. But pt! is a neighborhood of g and nisses A, contradicting

glpA. The converse of the iqalication just shown holds for continu-

ous ups.

_ conversely, suppose U is open in x containing g but

3; int pu. Then g cpu but g!.p(I\pU). So there is a point
I C 3 such that tip p-1(I \p U) by hypothesis. In particular, U

contains 2 so I! nests p-1(1\pU), which is inpossible.

Pggition 9. p is pseudo-open 0-9 (A is closed in

act.-A‘ isclosedin n*cx). .

Proof. Assus p is pseudo-open. If A is closed in B.

then A‘ 1- closed in 3‘ by continuity. Suppose M is closed in
I‘. It A is not closed in B there is an elenent gt n\A with
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3!.pA. Row 3 nisses A‘ in I while there is s point x c 3 such

the: upA*. But x e 3 cn*\A* which contradicts the hypothesis.

Cuwersely, if p is not pseudo-open, then for some 3 end A,

3!.pA with no point of 3 e limit point of A*. He can assume

g¢A. -Then A‘ 1: closed in A"’ug. Hence, A 1; closed in
p(A* U 3) by hypothesis. But p(A* U 3) - A U 3 which contradicts
3 G IXA .

corollsgz 9.1. p is pseudo-open <-9 (A is open in B®>A* is
open in 3*). s

Proof. This follows from the proposition, since C is open in

D iff X\C is closed in X\D, and if C is an inverse set then

A ~ X\(: is an inverse set.

Definition. (llhyburn) A nsp f is hereditsrilz gussi-cgact
iff IIY is qussi-coqrsct for each inverse set Y.

' _Pr_o£. ition 10. p is pseudo-open 4-9 p is hereditsrily quasi-
coupect.

Proof. p is hereditsrily quasi-coqzsct iff whenever 0 end Y

ere inverse sets with 0 open in Y, then p0 is open in pY. Let-

ting A 0 p0 and B - pf, this condition becomes: A’ is open in

I‘ -O A is open in B. The converse of this implication is continu-

ity so we hsve the chsrscterisstion of s pseudo-open lap in corollary

9.1. '

In perticulsr, we hsve from these propositions that if p is

pseudo-open then pller p is s honeonorphisn. (Ker p -
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Iraqi: - x} - X\HE} .

Another tray of describing hereditarily quasi-compact (hereditar-
ily quotient, pseudo-open) naps is that they preserve the subspace

topolog an inverse sets. That is, if G is a decomposition of X _

and Y is an inverse set in X, then 2- G" for son G'C G. Y
has the subspace topology frus X. and there is an induced quotient

space ‘"6’ . As a set this is precisely the subset of V6 whose
elemnts lie in Y, but as a subspace of X/G this set my have a

different topology, i.e., strictly vesker. 'l1:ese two topologies are

the sea (for all inverse sets Y) if and only if p is pseudo-open.

Definition. A f_:X -> Y is nonotone iff f-1y is connected
foreach yél‘. i A

Pggition 11. p is pseudo-open, nonotone, C connected in

I -06‘ is connected.

Proof. Suppose C is connected but C‘ - A U B, s separation

‘ in X. Then A and B are non-eqaty and A is both open and closed

in G‘. Since p is nonotone, A and B are inverse sets. Because

p is pseudo-open, pA is open and closed in pC* - C, while

QA and pi are also non-empty. This gives a separation of
C - pA U pl .

Clearly, open -9 pseudo-open and closed -0 pseudo-open.

P_rgosition 12. I is H‘ -9 p is pseudo—open

1. Suppose g!.pA in I but gnX7- 9. By 11' there
is a sdaset AICA such that g!.pA1 and AIL); is closed in I .
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So A;Ug is closed in X by continuity of p. Hence A: is 1

closed in I because 3 contains no linit points of AEC A*. Then
A1 is closed in I as p is quasi-conpact. ‘unis contradicts

3 C ‘A-1\A1 .

It is evident that it was not necessary in this proof to have

A10 3 closed but only that glp A1 and 31.9. (A_1\A1). This sug-

gests the following definition.

Definition. X is weak §_!_'_ iff xlpA -0 there is a subset
I of A such that x is an isolated point of i\B.

. Clearly it‘ -9 weak H’ and Proposition 12 is iidiately
eclipsed by:

Eosition 13. I is weak I!‘ -6 p is pseudo-open.

Proof. Suppose g!.pA in I and gn;-3-,9. Let AIC A

such that g!.pA1 but 31p.X1\ A1. Then 3 contains no linit points
of A: and none of (X1\A1)' by assumption and continuity of p .
Hence 3 contains no linit points of (I1\a1)‘UAi - (X1)*. But
this is a closed inverse set and since p is quasi-coqact, 31931.

In recent articles ([20] and R11), Hhyburn has introduced the
notitns of 1!’ and weak H‘ . calling spaces with these properties
‘accessibility spaces." He has proven a stronger statenent than
Proposition 13, showing that we cannot iqarove on weak H‘ as a
topological condition on I to guarantee that p is pseudo-open, as

a Tlspacs which is not weak I!’ can be expressed as a quotient whose

corresponding projection fails to be pseudo-open. The author's work
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with these concepts was done independently and prior to the appearance

of lI|ybnrn's publications.
Feat 14' does not yield II‘ or the other separation properties

mntioned here even with first countability which we will show sakes

fltose properties equivalent. --

ile__A_. Let X be the subspace of the plane consisting of. .
1(0.00 (0.1) U “K-J1 an. where 3“ - {(3-,y):0 1y :1} . Let

lc-jfgn}. then I is first countable T1 and weak H‘. p is
open. Int 1 is not 1'2 , not )1‘, not He, not H .

that I need not be weak 2!‘ in order for p to be pseudo-open

even if X is ntric can be seen by nodifying Enmle A to include the

other linit points of the lines, i.e., let

_ C

2- {(0.y)=0 gr 3 1} U U an
n-lo

with ac -‘{5}. ‘then 1) 1; still open but weak 11' fails.

2.3. sone partial converses '

r_:__om1c1au 11.. :1, first countable —> 1-2 '

Proof. Suppose x 1‘ y and x and y do not have disjoint _
nsifllborhoods. Let {U1} and {V1} be countable neighborhood bases
at x and y, respectively. Then Uifivi 1‘ o for each i. Let
ritlliflvi. Then 21+: and :1-vy, contrary to H.

Definition. A space is 5 iff linit points are sequential

linits, i.e., xl.pA -v there is a sequence the A\x such that
1‘ -9 3 .
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this is called 1 Prechet space by none. Hcbougle ddxbed it I
[14]. ' A

clearly, T1,! -6 (ylpuxn -9 some euhsequence in 9 y)
i

3.! -°(Xn -> 8, y1.pUxn -9 x I y)

1-O-. 3.3 -9 (In -> x ->Uxn U x is closed)

P_!_upgition 15. 3,3 -9 KC

Proof. Suppose I is compact and x£E\K. By B; there is
eeeqnnce xne xxx with xn + x. since H -11, U2‘ is
infinite. So there is a point k e 1: with k£pUxn since 1 is
eqect. But k 9‘ x.

P_rg&ition 16. 3,! -9 )1‘

Proof. Suppose x!.pA. Then xn -> x fbr con sequence

8.! Axx. And xlpuxn. Let I - Urn. Then xlpl but But
is closed by 3,! .

8013:: 3 space, 11', He, H and KC areallequivelentnd
in a first countable space they are equivalent to 1'2 . But we do not
pt 11 free dxeee if only I is assumed.

Egition 17. B is preserved by pseudo-open ape.

Proof. If 3q:A in I then there is npoint xe 3 end: that
8IpL.. Hence a eeqmnce xn in A‘ converges to x. ‘then pr‘: A

ad px. -hp: - 3 by continuity. .

£3.33. A space which is )!',B but not 1'2 .
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This example is s well-known one in which a closed nap (with non-
coqsct point-inverses) does not preserve 1'2 . Let X be the subset
of the plane consisting of {(x,y):y 10}, with the topology in which
neighborhoods of a point off the x-axis are the ordinary E2 neigh-

borhoods and those of s point x on the axis consist of the point
plus an open disk tangent to the axis at x. net HG - {Q,>J}, where
Q -' {(x,0):x is rational} and J -1 {(x,0):x is irrational}. Then
p isc1osed,so I is M'snd B, as X is. Hence I isalso Kc,
I and Kc. But I is not 1'2 as Q snd J do not have disjoint
neighborhoods. ‘

Definition. f:X + Y is cgact iff f.1(X) is coqaact for

each cupact subset K of Y. f is pg_i;t_-cggsct iff f-1(y) is ‘
coqzsctforeschpoint y€Y. '

It is well-known that X is nornsl and p is closed -9 I is
1'2 and that X is 1'2 and p is closed and point-compact -9 I is
1'2. (Also, closed and point-coqaact -9 coupact.) But we can obtain
the equivalence of 1'2 with the separation properties being considered

- under the weaker condition of pseudo-open and point-coqact if the
underlying space X is first countable.

Eosition 18. X is first countable, p is pseudo-open and

point-coqsct -0 1'2. 1!. ac and H‘ are equivalent on I .

113;. late that such s deconposition must be an 3 space,
although it need not be first countable, and since 1!, Kc end H’ are

equivalent in en 3 space, it snffices to show that one of then

iqliss 1'2. Sowssuppose I is H.
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Let 3'! h in I. Let x E 3, yeh with countable neighbor-
‘ hood bases {U1} and {V1}, respectively. For each 1, consider

put and pV1. Suppose these intersect for each i . Then there is an

elemnt 316 G ueting both 01 and V1. Let :1: Uifi 31 and

y1eV1f\g1. Then xi-vx and yi->y. So 31-93 and 31-vh

by ccntinuity. But this contradicts )1. ‘mos there is an integer i

such that pflifi pvt - ¢ .

Since 2 and y were arbitrary points of g and h, respective-

ly, for each x e 3, for each y 6 h there are neighborhoods

lI’(x) of x and V(y) of y such that pCU’(X))np(V(y)) - ¢ .k
covering h with a finite nuuber of the sets V(y), let V:- 1%-)1V(y1)
so that V: is open in 2 containing h. Let 0(2) - §:\1Uy1(x).

‘then 0(3) is open containing 3 and p(Vx)f\p(U(x)) - ¢ . Row,
‘{U(x):x e 3} covers g. So there is a finite stbcover. Let '
U’ I cjtflxj) with 11' open in X cmtaining 3. Let V‘-AV: .

1'1 1'1 1
‘then V is’open and contains 11, while pU'f'\ pV' - ¢. Now, since
15 is pseudo-open, the sets p0’ and pV' have interiors containing
3 and h, respectively. So we have 1'2 .

corogagz 18.1. If X is first countable and p is point-

coqact, then~I is H‘ -9 I is T2.

The results so far suggest that 1'2 is souhov "stronger" than

)1’ . This is far fro: the case. he following exsnple providesa
space which is 1'2 and not H’ and also illustrates that the assua-
tion of a pseudo-open nap was crucial in the preceding proposition.

£353. Let 2- !2\{(O,y):y > 0}. Let G be the
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aeconpoutian of x such that as - {gala-1, where
to‘ {(%,y):0;ygl}. Then I is 1'2 and hence Kc and H, but
not H‘ . I is not first countable. (I is first countable at every
point except 3 -'{(0,0)}.) p is not pseudo-open (at 3). But X is
mtric and p is point—coq:act and monotone.

We have observed that a nonotone pseudo-open nap assures that

inversss of connected sets are connected. 1'0 see how it fails here
without the peendo—open condition but in the presence of other nice

properties, let A be the projection of {(x.y):y > 1}. Then gl.pA
and A u‘ {3} 1: connected in I while A*u g is not connected in x.
p is not psendo-open at 3 since no point of 3 is a linit point of

A’. by subset of A having 3 as a linit point amt also have 3“

u a limit point for infinitely any n. In this way, weak 1!‘

fails.
The fact that the space I in this exenple is not first comta-

hle is disconcerting in itself, as this is a point-coqact decommi-
tin of a (coqlete) netric space which is HcAuley- use (and nonotone).

this illustrates a difference between !lcAul.ey's definition of upper

out-cant1nn1ty and that of uhybutn, as the latter would have to yield
a mtrisahle decmosition space. As we will see, this cannot occur if
X is locally cqact, as it fails to be in this easqle at the point I

3. In fact, if X is a locally coqnact 3 space and p is monotone

and point-coqact, then I is He -9 p is closed.
bother ejale of a 1'2 space which is not H‘ is the follow-

ing. which corrects an assertion in [201 that locally cc-pact -:2
yields ll’ .

133. Acoqact 1'2 space which is not H‘ .
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Let X be the space of ordinals 1 9, where I? is the first
uncountable ordinal. X is coqact, '12. Let E be the set of limit
ordinals in X, i.e., elemnts which have no (ialnediate) predecessors.
last A - X\E. Then 0 6 B and 9!.pA. But for any subset BCA
such that 0 !.pB and any neighborhood U of 9, there is a point
st Ul'\3\{n} such that elpb. Hence, I is not weak H‘ and so,
inparticular, X isnot 1!‘.

Weak it’ must fail in a space which is coqaact 1'2 and not H’
became of the next proposition. '

goiition 19. Regular T1, weak H‘ -9 11'

Proof. Let at z‘A. Porsane AICA, x is anisolated
point of :1‘ A1. So there is an open set U containing x such A
that U contains no other points of 11* A1. By regularity, there is
an open set V satisfying xe V CVCU. Let B - VFIAI. Then
zip) and I ux is closed, since if ylpn and y¢ B, ylpA1 and
ye? so y¢A1. Hence ye:1~A1. But VCU. so y- x.

Corollag 19.1. Compact (locally coqact, locally peripherally
coqaact) 1'2, weak )1‘ -9 H‘ . '

2.6. Other conditions weaker than first comtabilig.

Definition. (Christoph [2]). X is seni-first countable (seni-
I") iff whenever A1 is a sequence of closed disjoint sets such that
UA1 is not closed then there exists a t e UA1 ‘UAi and a sub-
ssqusncs A,‘ and :11; A11 such that xii -> t.

If we require such a sequence for each limit point of \/A1
which is not in LJA1, we get a stronger notion.
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Definition. X is strongly seni-1" iff whenever A1 is a
sequence of closed disjoint sets and x e UA1\UA1 then there is a
sdasequence A11 and rite Aik such that 311-» x.

Va can state something like this for arbitrary rather than count-

dale collections. _

Definition. 1 has grggtz P iff whenever {Av} is a caller
tin of closed disjoint sets and x E UAv ‘UAV , then there is a set
P CUAV such that no Av contains more than one point of P and

x £pP . . A

In Property P linit points are required to be accessible not

necessarily by sequences but by "selections" from the A“ . lie do not
necessarily get convergent sdusequences, however, even in case P is

countable. A -

Definition. X is comtablz-‘E (c -2) iff A is countable,
xl.pA -0 there is a sequence xne A‘: such that 2“ -> x. (3

applied to countable sets.)

P_l;_o£ition 20. B -9 Prop P.

Proof. Suppose xe UAv\ UA‘, , where Av are closed and
latnally disjoint. By B , dxere is a sequence 3'‘: UAV such that

3‘ -> 2. so A“ contains infinitely ssny 2“, since :4 Us“. So
there is a subsequence ante. Av“), with A‘, (1) distinct. Let

P ' U .=.1 >
Eosition 21. Property P and c-! -9 strongly seni-1"
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Proof. If re UA \UA , property P gives x Q A such—-— i i n1 n1
that xipuxn and by c-B a subsequence xn -> x.1 1.

trsnklin [6] and Richel [151 have given the following definition.

Definition. X is a 2- space iff the closure of each set is the

union of the closures of its countable subsets.

clearly, c-space is equivalent to: xtph —> there is a counta-

ble subset B of A such that xip B. Of course, any countable space

is s c-space. ‘

P_r3&ition 22. c-space, c-E -0 R

troof. If xipa then zip! for some countable subset

I of A and e-I gives a sequence sue! such that an->1.

sill. (Kelley (10; p. 77] originally Arena). Let
I-Ix!-l~x, where X is discrete ateachpoint of I XII while an

(open) neighborhood of x is s set containing 3 and all but finitely

nay points of all but finitely nany "columns" (i.e., sets having fined

first coordinates) of N X N. This space is countable, norsal T1,

with closed sets G; . The only conpact sets are finite. no sequence

fron X~x converges to x. So it is not sequential, not c-B , not

Property P and not even seni-1"‘. though it is trivially a c- space.
is see that it is not seni-1", consider A1 I {i} 8 II, the

1"’ 0.0111. ‘the sets A1 are closed, disjoint and UA1 \ UA¥ - x ,
while if we select only one point from each A1, the coqalenent of the

resulting set is a neighborhood of x .
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Definition. (Arhsngel'skii [1]) x 1. 1e_a_k_—ggm~._ countable
(weak 1") iff for each x G I there is a countable collection T‘ of
sets containing 2 such that 1.1" 6 Tx—° 'l.'f'\1" 6 T‘ and s set A
is open iff for each x€.A there is s 1! £7’: satisfying ‘ICA.
(Or, equivalently, A is closed iff for each x¢ A there is a 'reT:
such that 1'f'\A - O ) .

In aureak 1" space, xe'A'\A -9 for each I eTx,
‘I AG‘ 8) i O . late that the family 1': - {tn(x) }n:1 can be

.

usumd nested, i.e., tn+1(x) Ctn(x), since ti - pi ti is also
'4 in» T . "

‘flue definition of weak 1'? gives easily: If T - {c } . 1; ax n n_]_
nestedveakbase at x, then yue tn-D yn->1.

Also, it is easy to verify: V

In steak 1" space, (1) A\Af ¢ -9 there is an xe'A-\A
and a sequence yne A such that ya -> x, (2) X6 I\A -9 there

is a sequence yne A‘: such that yn + x, and (3) A-‘A - {x} -9
dusts is a sequence yne A such that yn -> 3.

lots that (l) -0 (2) and (2) <7-9 (3). ‘lhese conditions hold
in any 3 space, as well. Condition (1) has been studied by Franklin

who calls spaces satisfying this sequential.

Definition. (Franklin [5]) A set is seguentiallz Re; if no

sequence outside the set ctnverges to a point inside. A seguential

gga_c_s_ is me in which every sequentially open set is open.

Clearly, (1) above is a characterization of a sequential space,
so weak 1" -9 sequential and I -9 sequential.
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Prgosition 23. sequential, weak 11' -¢ 3

Proof. If xeA‘A then for some subset BCA, xzpl md
zip-5‘). By (2) above, a sequence ynin BK: converges to x. This
sequence nust nltimtely be in B .

iii A space in which (2), and hence (3), holds. but not
(1). . ’

Let X - D + R, where D is. an uncountable discrete set and

for each n C R, a neighborhood of n is n + all but countably may

points of D -4- all but finitely many points of :1. ‘me sequence

8‘ - n C I converges to each of its points. This space is not sequen-

tial, since no sequence in D converges to any of the limit points of

D. Iosevsr. (2) is satisfied, since if :6 X\A, then x e N and
ICA. So the sequence xn - x + n is a sequence lying in X‘: and

oonvarging to x.

311nm 24. sequential -9 semi-1"‘

Proof. Let A1 be closed, disjoint such that UA1 is not

closed. ‘there is an xe UA1 ‘UA1 and a sequence yn e UA1 con-

verging to x. lo A1 can contain infinitely nany yn since each

A1 is closed and 8* LJA1. So there are subsequences ya ad A1
. 1 1

with y C At ."1 1
In [1], Arhsnge1'skii introduces the notion of weak 1'‘ and ‘

asserts that weak 1" and B «-9 first countable. In that section
he assunas all spaces coqaletely regular. He can give a proof assum-
ing 1!.

rgggozuon 2:. Weak 1"; weak u’ -o first countable
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Piosi. Let .{tn(x)} be a nested veal: base at x. If
' 2 e int tn for infinitely any n , then ‘we have a base. So we say

assum for each n, 2 ¢ int tn. so x!.px\Utn. By weak H‘ there
is a set nC.x\utn - xscl such that :6 in and xapixn.
‘men there is an open set U containing x such that Uh G!-\ B)- {x}.
Int (X\ B) (1 U is open in the weak base topology, for if

s 6 (x~s)nu and a If x then sfii. So (X\i)f"\ U is an open
' set containing a and lying in (x~n)n 11. And as for x, xx 3

emtains all of the weak neighborhoods of x while 0 contains then

nltintely. So (X *B)r\ II contains a weak basic neighborhood of x.

‘then (X\B)f'\ U is an open set containing x and missing 3 , which

contradicts ups.

It is interesting to observe that not only does weak H‘ guaran-

tee that weak 1'‘ -9 first countable but that the interiors of an
arbitrary weak base must give a base.

corollgz 25.1. (Arhange1'ski:I.) Weak 13t, B and H -9

first countable. '
Pr_os£. This follows from Proposition 25 since 11,3 -6 H‘ -9

weak I!‘ .

Also, note that in the corollary we get 1'2 as well, since in a

first countable space, H and 1'2 are equivalent.
km the results so far, a 1'2 sequential space is B if! it is

U‘ lid a T2 weak 1" space is first countable iff it is 14' (also,
if! it is weak H’).

Itile first countable and E are hereditary properties, weak l“



23

is not. In fact,

Eosition 26. hereditarily weak 13¢ -0 I

Proof. Suppose x e Z\A. consider the subspace B - A u x.
the: since I is weak 1“ and in B, :\A -A {X}. there is a sequence
yue A such that yn -> x.

In Propositian 26, we have used only the seqtnntial property of
weak 1" so we actually have no more than Franklin's result that
hereditarily sequential -9 B . A

corollagz 26.1. hereditarily weak 13‘, ll -9 first countable

 . A space which is weak 13‘, I and 1'1 but not
first countable. (not hereditarily weak 13¢) ’

Q 3last 2- xi» {wk}k_1 + “L21 yn, whereeach 1‘ is asequence
{:3}, such that wk-> x and for each n, 1.- {x;} -0 x and ya ->wk
for each h 3 In. To achieve this convergence, let the topology be
defined as follows. X is discrete at each :3. !'or each h, a
neighborhood of wk is wk + the mic: of tails of each 1“ for
n_<_k. Aneighborhood of x is 2+ a tailof {wk}-+ the union of
tails of each ya. (A tail of a seqmnce {at} is fai: i 11:} for
sons k.)

X is first countable at each point except 2. this is trivi-

ally so at each x';. For wk, each J let IJ(wk) - wk +n\<jk
n j(Jth-an of 1‘), where the Jth-can of y_ 1. {xj: 5 1.1}.

Ihisissbsssat wk, sincsif U isopaacnntaining wk then 0

contains sons 11-tail of 11 for each i_<_k. ht
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J I Q: {j1."'.jk}. Then 0 contains WJ(wk).

X is 3, since if x!.pA then A has to contain sou subse-

qunnce of {:3} for some n or of {wk}. Either way this gives a

sequence in A converging to x .

X is not first countable at x, for if we suppose that {Vn}

is a countable local base at x, then each Va is open and Inst con-

eun a an of each 1“. Let xne Vnfivn. Then X\{xn}n:1 still
contains a tail of each ya and contains all {wk}, hence is an open
set containing x and not containing any Vn .

X is weak 1“, since we have a countable open base at each point

otherthan x and we may let tn(x) - x + the nth-tail of {wk}.
Suppose A contains 3 and contains a weak basic neighborhood of each

- of its points. Then for each n , A contains some wk with k > n

and hence aunt contain a tail of ya. so A contains a tail of each
1‘ Iuda tail of wn, i.e., aneighborhood of 2. So A open.

We can aodify the space of Ennple G to be coapact without alter-

ing the other properties by adding to the space a point 3 whose

neifluborhooda are of the for: a + :5‘ 1" .

So a oowact, weak 1", 3, 1'1 space need not be first countable.
lurever, this space would not be 1.1! locally compact (see 52.6 for the
definition of LH locally compact).

Etna 1. Lil locally compact, weak 193, 8, 1'1 -9 first
countable?

Also the space of Example G is not hereditarily weak 1". (The
subspace X*{wk} is not weak 1", as it is discrete at all except the
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point x, where it is not first countable.) So another question can

be raised:

Eden 2. hereditarily weak 13‘ -9 first countable‘!

A I! die answer to Question 2 is affirmative, the proof will not be
trivial since the hypothesis does not force an arbitrary weak base to ~_
provide a base (as in the case of H or weak 11'), as illustrated next.

egg. A space which is first countable, 1'1 but a weak
base my not be a base. i

C Clat!-x-I-{w} «I-{3} suchthatw-vx andx-bxI n-1 .1 1-1 II .‘|
and xi-Iv. for each n. i.e., X is discrete at each :1. A
neidlhorhood of wn is wn + a tail of "{xj}; a neighborhood of x

. 1. x+stai1of‘{xj}+atailof'{wn}.
X is first countable, since a base at wn is given by

- Vk(w‘) -w‘ + the kth tail of {:1}, and a base at x by
Vk(x) - 3 4- the kth tail of {xi} + the kth tail of {wn}. However,

.ifwet&ethesasebaseateach wn, butat x takeonly x + the

tails of I‘, we get a weak base which is not a base, i.e., x is not

interior to its weak basic neighborhoods.

hfisiticn. If G is a collection of subsets of X, I is

first countable with respect t_o _G_ (Ft countable wrt 6) iff for each
3 6 G there is a sequence ' {tin} of open sets containing 3 such that

[Cl opss -0 there is an n such that Unfik.

which 27. X is 1'3 countable with respect to G -D I is
set 1'‘.
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‘Flt Let {Un(g)} be a sequence of open sets containing 3

as in the definition of 1“ countable with respect to G . Then
{p(lJn(g))} is a weak base for I at 3, i.e., R is open in I iff

for each 3 e I there is an integer n such that pUn(g) CR, or,

equivalently, R‘ is open in X iff for each 3 6 G such that

3 CI. there is an integer n such that p.1p Un»(g) C.R*. To see

this, note that if R‘ is open containing 3 then for some n,
Un(g) C 2*. So pUn(g) C 3. And conversely, if for each 3 e G

such that 3 cl’ there exists n such that p'1pUn(g) CR* , then,
as each point x e 3* belongs to some such 3 , we have for each

3 ¢ 1‘, for sane n, x e Un(p(x)) C p-1p(Un(p(x))) C 11* . But

Un(p(x)) is open so x eint R’. Hence I‘ is open.

Corollag 27.1. A point-compact decomposition of a developable

space is weal: 19¢.

_Pr_oo£_. The corollary is inediate fro: the lease below.

‘Ills following lei is surely known, but as we have not encoun-

tered its proof anywhere else, we include it here. For a discussion of

developable spaces, see [26]. .

Lei 27.2. X is developable -0 X is 1" countable with

respect to compact sets.

_P_r_o_o_f_. lat {Ga} be a nonotone development for X, i.e.,
can CG‘ for each n. (It is easy to show that for any developable

' specs there exists such a developnent.) Let K be e coqasct subset of

I. [st 01 be a finite collection of elenents of G1 covering 1.

Let U: be a finite collection of elenente of G2 covering K and
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' such that each element u_of 02 contains a point xué an I such
that n is contained in each elemnt of 01 containing an, i.e.,
n C mU1(xu). And in general, given U1 for i _<_n , let Urn be a
finite collection of elemnts of Gn+1 covering K and such that for
each elenent u¢lJn+1 there is a point xue uf\K such that n is

A contained in every elenent of 1%. U1 which contains 2“. (To obtain

this, note that for each x 6 K the collection of all elements of
‘Q1 01 which x is finite and its intersection V is an open

set containing x. For sane N ;n+l, GN*(x) is contained in this

open set V, so some n(x) 6 an contains 2 and lies in V. By
lnotonicity, u(x) is also in‘ G“+1. So we select this n(x) for

each x 6!, producing a cover of_ K by elemnts of Gun. Ve take

a finite sdacover, Urn - {n(x1),--°,n(x’.)}. Then if u 6 Um”,
I: I n(x1) for some and. x“ in the notation above is xi.)

loI,. {lIn.}n:1 is a countable collection of open subsets of X
' ccntaining K, and if R is open containing 1 then for son n ,

V Un.Cl.. Otherwise, there is an open set RD! such that for each

n. Un'\l# 0 so nu‘! )5 e for some un e U“. Consider xuné I.
Since I is coqact there is a point x e K and a subsequence

xx‘. -D 3. !'or sun integer N, (:;(x) C 8. Now, some element

null. cutains : and for sale I > N, u contains xx‘. for

i :1 (since xuni -v x) and n CR. In particular, xunre u. nut
, since 8,51: n gt!‘ and n1 _>_I > H, uutc u by the construction of

U . lence n C R andve have a contradiction.‘I “I _
The notion here called 1" countable with respect to G vaa sug--.

gested by I. I. Jones. It was hoped that a seninetric space having
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- this property with respect to compact sets would be developable. How- V

aver, Heath gave an exanple of a seninetric nondevelopable space which

is 1" countable with respect to coqact sets [9]. Of course, any

point-conpact decoqaosition of Heath‘: space would also be weak 1".

Corollag 27.3. X is 1"‘ countable with respect to G,
p pseudo-open -9 I is first countable.

Proof. This is corollary to the proof of Proposition 26; as the

weak base for I at 3, {p(Un(g))}, nust provide abase if p is
pseudo-open, i.e., 3 6 int p (Un(g)).

Corollary 27.6. A pseudo-open point-ooqaact decoqosition of a

developable space is first-countable.

In corollary 27.4 the condition that X be developable cannot be

weakened to seniutric even if p is closed. (see Exaqzle R.)

b To return to the cmsideration of the properties introduced in

this section, we have for arbitrary spaces:

Prqs P
>:§&rcng1y xi 1“ —-)eeni 133

c-I <2

Z c-qaoa
bud. sq. /

/ aaquntial

mad. wed 1" / ’

\weak 1*
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‘;_Isn_a_rk_. A nulber of these properties can be associated in pairs
is a natural way. some are of the type (a): If A is not closed,
that there exists a point x e In such that P(x,A), where P(x,A)
is sa property of x and A, e.g., sane sequence in A converges to
8. or x is a Iilit point of a countable sdaset of A, etc. For h
each definition of this type there is a potentially stronger form
requiring the property hold for A and for egg}; 2 e ‘A-‘A, i.e.,

I type (B): if x c K\A then P(x,A). For instance, Franklin's
"seqmntial" is the (o) for: whose corresponding (B) for: is the .
lrechet condition, E .

Iuenever type (:2) holds hereditarily and P(:,A) is passed
fra subspaces to the whole space, then (8) holds. In Inst cases
here casidered, hereditarily (a) -> (B). And whenever the (B)
for: is hereditary, we would also have hereditarily (a) 4-D (B). For
exsals, hereditarily sequential 4-0 E and hereditarily semi-19‘
4-9 stragly seni-1”. We can also state the definitions of quotient
ad pseudo-open naps in such a way that a quotient nap is of type (c)

at! a pseudo-open (hereditarily quotient) map is of type (8).
fie (a) and (B) fora for the definition of c-space are

equiulsnt. So sequential -9 c-space, though in general (a) form
areseaker than (8) fans. '

fiis suggests a way of generalizing properties which have been
introduced by a definition of type (B). The weaker for: of H’ is:
A is not closed -9 there exists xe'A-‘A and BCA such that
tip) ad 3 U 2 is closed. (This is not" equivalent to what we have

alled weak I!'.). This, however, is an instance in which the property
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P(:,A) does not extend from the subspace back to the space, as a set
say he closed in the subspace without being closed in the space. For
instance, the space X - {ordinals 1 0} does satisfy this (a) form
of H’ hereditarily but it is not H‘ .

However, 3' can provide a link between these pairs, the essen-
tial difference between the (c) and (3). types being that the (a) _
torn uaerts a condition for some element of AKA and the (8) fans
for each element of ‘A-‘A. If A—\A is a single point the two are
equivalent. ?or an arbitrary element x of X\A, H’ provides a
subset 3 C A such that §‘B is precisely the single point x. The
(a) for: yields P(x,B) and for the properties considered here, this
iqalies P(x,A). As we have already noted, sequential H’ -D E and,
in a less straightforward manner, seni-19‘ H‘ -9 strongly‘ seni-19‘.

 . A space which is weak 133 (hence seni-lfit) but
not c-B (hence not strongly seni-13¢).

As in Eagle 0, let X - E2‘{(0,y):y > 0}, EC - {gn}n:1,
where go I {[54, y]:0 §_y :1}, g - p(0,0). Then I is a point-_
eoqact decoqaosit-ion of a metric space, hence weak 13‘ (see
corollary 27.1). .o

» to: each i,n 1:: £1‘ - (-:-, 1+-1-). Then A - {x:}1,n-1 1:
' countable and glpA but no sequence in A converges to g, so c-B

‘ fails. . ,

Lei. A space which has Property P and c-E (hence
atraagly seni-133) but not sequential (hence not B and not
weak 1"). e .
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not x beas innxsupis n, x-"(oi-dinsis in}. x is c-B
since the space is first countable at every point but 9 while 9 is

not a limit point of any countable set. Also, X has Property P: if _

cup us“ with Av closed, disjoint and :2 4 UAv, then {Av} is
( uncountable (otherwise yi - sup A1 has sup < 9) so we can choose

my pve A“ and P I {pv} is uncountable, whence supp (otherwise
sup P < 9 with P uncountable). X is not sequential since no

sequence converges to 9 at all from X\{Q} .

Sail.-1"‘ is preserved by all quotient naps, while Example I s

illustrates that strongly seni-1°‘ is not (even if X is metric). ‘

rrgmsician 28. (Christoph). x is ssni-18t - I is se-i-1st.
Proof. Suppose .{A1} is a countable collection of closed dis-

joint sets in I while UA1 is not closed. Then LJA1* is not
closed in X, while '{A1*} are closed, disjoint. So there exists
t+\-JA1. and xi 5 A1 * such that xi -vt. Then p(x1) EA1

J 1 J J J
and N21 ) + pm.

1
Similarly, sequential and c- space are each preserved by quotient

naps.

Eosition 29. Property P is‘ preserved by pseudo-open naps.

Proof. Suppose gt UAv ‘L/Av, with Av c1osed,- disjoint.

‘nun there is a point xi 3 such that x!.pUAv‘ and hence a subset
P C U5‘ such that xlpP and no Av‘ contains sore than one point
of P. Then 31-PPCUC. UAv and no Av contains more than one
point of pa’).



Sinilarly, strongly seni-1°‘ is preserved by pseudo-open naps.
The proof of this proceeds exactly like that of Proposition 29. Pursu-

ing remrks nsde earlier on these definitions, a general principle
operates in the case of propositions such as 27 above. When hereditar-

ily type (a) 0-9 type (B) and (n) is preserved by quotients,
then (B) is preserved by pseudo-open naps. '

Ilesk 1" nay not be preserved by closed naps (see Example 3).
&y statements about deconpositiaxs can be culled from coIi>ina-

tims of the results above, which we will not explicitly state here.

For sxamle, if X is a seni-1“ c-space then I is H‘ —> I is E.
is nidnt ask ha! these conditions further affect implications

between 22, 21', etc. We have found that weak 1”‘, H‘ -9 1'2 but
this is cnly an apparent ilprovenent since it gives first comtahility

myway. Each of the I and J is 1'2 while neither is weak H’
soitseeunothinginthelistless than B willgive 1'2-I> M‘.

Titian 3). H, sequential -6 (xn -v x -Ouxnu x is

closed). H .

if; Suppose an -5 x but Uxnu x is not closed. Then

there is apoint yt uxnux and yie. Uxnu x with yi -by.

Sines the space is 1'1 we lay asstm ‘ fyi} is s subsequence of ' {an} .
so yi-bx, which contradicts H, since y 15 x.

igition 31. H, sequential -> RC

1;. Suppose I is coqaact and not closed. Then there is a

point 3*! sndssequencs sue I such that an->x. By 1'1,
U!‘ is infinite ad since I is coqaact some point k 6 K is a



lilit point of Va‘. He can sssnne he uxn. But Uxnu x is
closed by Propositim 2!), which gives s contradiction. .

is have seen thst coqsct ‘[2 does not yield 11' . Sinilerly,

cnnpactness does not take ll’ stronger than T2. The following
exaqle also sppeers in [5].

 . A space which is coqsct H‘ (in fact, 11, E) but
not '12. '

o
last I0 x+w + 811“, where each 1“ is a sequence {:31}

such that esch 1‘ -9 x and {yn}n:1 + w. I is discrete at each :3;
ansighhorhood of x is x + the union of tails of each ya; a neigh-

horhoodof w is w+ themionofall ya for n>l. X isfirst

countable at every point except x since Vk(w) - w + nyk 7“ gives a
hassat w. I is I sinceif x!.pA then A nustcontsinssd>se-

qnencsofsom 1‘. X is 1!: ifasequence 21,-»: then
inn} Cn\<J. 1‘, for sea I, so it can't ccnverge to w. . Otherwise,
there is a sdaseqmnoe 1‘: of the sequence of sets {yn}n_1 such

that inn} sects each yni. Let 2; e {:n}r\yn£. nun
X‘{si }~w is :3 open set containing 3 and Iissing the sequence

[xi }. fltis cmtrsdicts 8‘ -V x. X is exact since a neighborhood

of I covers all hnt a finite nude: of the sets 1“, while a neigh-
borhood of 8 covers all but a finite nufier of points of these. X is
not 1'2 since every neighborhood of x nust contain a tail of each

1. ad hence nets every neighborhood of w .

Sinesthsspsnsoflxaqslelis 11,! itis also xc. Wshsvs

not exhibited a space which is ll‘ and not KC so we pose the
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follwing question.

Eden 3. Does !!'-->KC? ‘

So far we have mly the following partial ansvers to this ques-

tion.

P_:o_£ition 32. If points are G6 , H‘ -9 KC.
1 3

Proof. Suppose X is compact and :6 K\K. men x- (W cu,
n-1

Ihereforeach n, Gn isopenend GnDGn+1. by H‘ thereisa
sdaset IIC GIN! such that xlpxl and K1 +2 is closed. And in
general, given KnCGnflKn_1 with xlpxn and Kn+x closed there
1: a subset xfilccfilflxn. such that x1.pKn+1 and xn+1+ x is
closed. low, {_x\(xn + x)} is an open cover of K, as it covers

n-1 '
X\x. So by the conpactness of K, for some N, [C LJ1 X\(‘Kn+x).n-
lnt this set is X\('Kl + x), which gives a contradiction since

l'C K and I. i ¢ . ,

he hypothesis of Proposition 32 is a relatively nild restriction

(the space of Example 3 has points G6 but it is not even semi-1"),
but we believe an unnecessary one.

conga 32.1. X is countable, H‘ -9 X is In.

Proof. Any countable 1'1 space has points 6‘ .

Corolg 32.2. H’, c-space I-0 In

Proof. Suppose I is coqact and not closed. ‘then there is a

point :63‘! and a countable subset I of X such that" 211)).
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By 11' , for sue subset B‘ C 3, zip)’ and B‘ + x is closed.

Hence 3' is closed in K and thus 3' is coqsct. So we have 3'
ooqect, B‘ 4- x is countable and, since )1‘ is hereditary, B‘ + x
has I!’ . So by Corollary 32.1, B‘ is closed in B’ + x which con-
trsdicts zip!‘ . -

the following example shows that the weaker He does not iqly

E .

in 1.. A space which is connect No but not Kc.

Int X - I + 3; where I - [0,1] with its usual topology and an
open neighborhood of x consists of 3 plus the cowlenent of a

eountsble closed subset of I . So 2 is a linit point of any uncount-

shle subset of I , mking I a coupsct non-closed subset of X . The

subspace I is ‘I2 so He holds for pairs of points in I . Now

suppose :,y lpA and x i y. Since X is first countable at y G I,
or sequence in A converges to y and the comlenent of this con-

vergent sequence is a neighborhood of x . Also ‘A. is uncountable, so

for sons 11, -A'\l&6) is uncounteble and x is s linit point of this
set while clearly y is not. Hence xlpl, where B - A\l&(,), s
subset of A, and yhp.B .

80 H: and re are independent (the intervsl with the topology

in which open sets are conplensnts of countable sets is It: and not

11:). '
Qristoph [2] introduced the following notion related to

leundorff-like properties of s decoqwsition space. '

Definition. (Christoph) 6 is ;e3i_-fisusdorf! (semi-I!) if!
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whenever xi-bx snd psi->y then y-px.

I is K-6 G is seni -B, but the converse does not hold, as
seenfroulxsqaleflbelov. Gis seni-H-9 I is 1'1. .

Definition. (llcnougle) A nap £:x->7 is seni-closed iff fat)

is closed for each conpsct subset K of X .

p is seni-closed -9 I is 1'1

P_r_o&ition 33. p is seni—c1osed -9 G is sell.-H.

_P1;os_;£_. Suppose :1 + x and pr‘ -> y. By continuity,

pxi-ops aadvecanassune yéfpxil since I is.'i'1. So
y!.pUpx1.' Since Uxiux is compact, Upxiupx is closed.

Benoe y - px. '

fits euwarse of Proposition 33 is easily seen to be false by

taking 1 tobesnyspscevhichis H butnot Kc, I-X and
p-idx . ofcourse, I is Kc —=>p issesi—c1osed. Soif x is
sequential and I is it then 1) is seni-closed.

rggium 34. x 1; sen:-1-t, c 1; seI1-E - I is u.

troof. Let gn->3 and gn+g' with 3943' in I.
Us can asslm the elenents 30 are all different snd none is 3 or 3'.

So glpugn and g'!.pUgn. Then Ugh’ isnot closedin X. so
thsresxists x andssubsequence x e 3n’ such that x +3."1 1 ‘'1
then psi -9132. But pxn -gn . Soby seni-H, px-3-3'.

1 ' 1 1
than 34.1. X is seni-19¢, p is seni-closed -9 I is H.



37

Bile H. p is seni-closed (hence G is seni-H), but I is
not ii.

Let S be theapaceofnxanplex, S-NxN+x,
an-'{n} an Cs. Let x-s1+s2, where s1- sz - s. Let
I-{ }. where -A14-A2 Then +21 and ~>x26 so 3.1 ’ 3n n n ' so . an

-so I is not H. p is seni-closed since coqaact subsets of X are
the only linit points of any set A in I and these are always linit
points of A‘ in x. x is 11' (any set in s1 containing :1 is
closed, while :1 is not a linit point of subsets of 82), though I
is not.

2.5. _k_-spaces

In [8], lalfar gives the following definition.

Definition. 2 is a _K_ space iff x1.pA -9 there is a con-
pact aet RCA + x such that xlpx.

A K is hereditary and in a KC space, R ¢ H‘ . Also, coqact

‘me (o) form (see 52.4) of Property K nay be stated:

Definition. X is weak-_K_ iff A is not closed -9 there
exists xe-A-‘A and a sdaset RCA such that zip! and 1+ 2 is
cqact. »

clearly. hereditarily weak-x 4-» K, and H’, weak -K -0 K. A
‘lhia notion of Ea1far's is related to that of a 1: -space. The defini-
tial of h - space co-aonly appears as one of a variety of conditions
which are equivalent in a 1'2 space, as a I:-space is frequently
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sssnmd to be. As we do not wish to iqaose this restriction, we state b
these conditions separately.

Definition. X is a k]- space iff

.- A is closed iff (l) for each closed compact set C,
AH C is closed.

2 is a 5-space iff

A is closed iff (2) for each compact set C ,
’ LAC isclosedin C.

It is clear that (2) -9 (1), so kl -9 kz. of course, in a
ll: space kl and k2 are equivalent, and in that case we refer to the
space as a k-space.

fiyburn defines a k-space as k2 , attributing it to Hurewics.
Kelley‘: definition of k-space corresponds to kl .

Any coqxoact space is trivially a k1-space for i - 1,2. It is '
knosn that first countable 1'2 or locally compact 1'2 -0 k-space.
Elle we are not assuming a k1-space to be 1'2 we can make stronger
stateuznts than these. Cononly used definitions of locally compact
spaces are equivalent in the presence of 1'2 . The definition of
locally coqaact we use in section 2.6 will yield our k1 -space,
1 I 1,2 , without assuning 1'2 .

Lrggition 35. weak -K -9 kz .

froof. Suppose A is not closed but Anc is closed in C
fa each compact set C. There exists xe ERA and a stiuset RCA
such that zip! and [+3 is coqaact. Let C- K4-x. ‘men
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Ant! I K 13 not closed in C. »

corolla}: 35.1. aquential -9 kz

Proof. sequential -9 weak-K trivially

late that by Proposition 31, sequential H -9 kl .

corollag 35.2. K -9 hereditarily k2

Lrggoaition 36. hereditarily K2 -6 K

Proof. Suppose x€ :\A. Then A is not closed in A + x,
ao there is a compact subset K of A+ x anch that KHA is not
closed in K, 1.e., there exists hex with k!.p(Rf\A) but
kflfia. So k¢A andhence k- x and xlpx.

_ We now have the equivalence of K and hereditarily kz-space
aaaerted in [21].

P_1:_o&1t:lon 37. l!',k2 -9 kl

Proof. Suppose A is not closed. Then there is a coqact set
6 Inch that Afic 13 not closed in C. Let xe C\A such that
xl.pAf\C. by H’ there exiata BC Afic such that zip! and T
3+: in cloaed. ‘then 3+: 1: a closed adaaet of C, hence cm-
pact. Sovehave 3+: a cloned coqact aet while Af\(B-I43) - 3
1a not closed.

r_r3g21:1on 38. 3' .111 --> K. '

Proof. Suppose xe In. By 3' there exiata 3 CA such
that 3"! - 3. Nov 3 in not closed so there 1a a closed coqact
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set C such that 300 is not closed. But if ylpnfic and
y¢Bnc then ye C‘B. But yef, hence y-x. So :66 and
(B/\c) + x is closed. Furthermore, since it is a subset of C,
(Sh C) + x is coupact. As 300 CA, this coqletes the proof.

cm.-o11ag 38.1. 14' ,k2 -o hereditarily k1~

golf. by Proposition 37, H',k2 -9 1!‘ ,k1 and by the above
proposition this gives )(',K which in turn, by Corollary 35.2, gives
3' , hereditarily k2. Since H’ is also hereditary, applying
Proposition 37 to an arbitrary subspace, we have kl.

So 11' ukes each of k1 and k2 hereditary as well as render-
ing then equivalent. It should be noted that hereditarily k2 do by

itself does not yield kl. In fact there exist 2 spaces, and hence

I , which are not kl. Such a space lust be not ‘H. See, for
instance, Exaqle ll of section 2.6.

Since 8 -9 K and K,KC -9 14', it appears that ve have found

something weaker than B which sakes 1'2 -9 H’. - However, a 1'2
I-space is necessarily an 3 space. This has been proved independ-

ently by Arhangel'skii and H. B. Rudin, as noted in [21].

his author has recently seen the unpublished ssnuscript of
I. D. Shirley, titled "Pseudo-open naps," in which the notion of
accessibility by closed sets, which is equivalent to H‘ in 1'1 spaces,

is discussed. His results overlap or extend some of those included
here, though these are obtained independently and by different argu- '
ants. A question Shirley raises at the conclusion of his paper say be

related to that of whether an M‘ space must be KC. lle asks whether
there is a k -space (meaning our luz) which is H‘ but not B . If
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kl-space which is not a c-space. (Recall that H‘, c- space -9 KC).
For if K is a compact non-closed subset of an )1‘ space then the
subspace consisting of K + x, where x 6 ‘K-\ K, is a compact H’ ,
hence hereditarily kl, space which is not KC.

Each of the properties kl and k2 has been defined here by a
definition of type (a). There are (3) form of these, which have
been given separate attention by other authors. However, any compact
space also satisfies each of the (8) form and so these are not
hereditary, though they are implied whenever their (a) foriss hold .
hsreditsrily. The (B) fora of k2, naaely: xlp A -6 there exists

A a ooqact set I such that xlp (APIK), wa discussed, along with
k2 and K, by R. V. Fuller in [7]. Whyhurn denoted this property §_'_ .

_ in [21]. Puller nntioued that these two concepts, k2 and k' here
(he calls thea k3 and k2, respectively), say not be equivalent. We
can point out that the decoqosition space in Exaqale I (also 6) is a
kz space but it fails to have the stronger k' property at the
slsunt 3 . (3 is not a liait point of the intersection of A with
any coqasct set).

k2 is preserved by all quotient naps. Enqle N of section 2.6
shows that k1 is not preserved by open aaps. .

Eosition 39. X is kz -0 I is kz.

_P_r_os_g_. suppose A is not closed in I . Then A‘ is not
closed so there exists a cospact set I C X such that A*f1 K is not
closed in r. ‘then there exists k€ r\A* such that up (Mn x).
than 120:) s pK\A and 90:) 9.pp(A*r\ r). Since .
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p(A*f\ K) Cp(A*)f‘\ pl - Af\pK, An pK is not closed in the coqact
set pt.

corollsg 39.1. K is preserved by pseudo-open naps.

h erg:-ent analogous to that of Proposition 39 will establish
that k1 is preserved by any closed or seni-closed quotient nap.

2.6. Local cggpsctness .

Definition. We call a space locally cggact iff each point has
a neighborhood whose closure is compact. . , _ '

We call a space weak locally cgact iff each point has a coqact
neighborhood. '

flneae are equivalent in any space in which coqzact sets have car -
pact closure (e.g., 1'2 or 14,!) and they both hold in any coqsct space,
but the second condition is strictly weaker, in general.

%_;e__l_. Let X be the subspace of 32 consisting of '
Cto + nL_J1 In, where to - {(0,y):0 _<__y < 1} and In - K;-|]*,y):0§y;1}.

C
Let HG - {In} . ‘then I is not locally colpact at any point of3'1
I0. ‘nae sequence In converges to each point of Io. Bach neigh-
borhood of a point g eta contains In n-ultimately, hence its
closure contains all of I0 and is not compact. But I is weak
locally coqzact. For g e In, choose [a,b] such that
3 6 int [a,b] C [s,b] C 10. Then U!“ u [a,b] is a coupact neigh-
borhood of g. I is 3 but not H. I is not Inc.

In the above angle, 1 is locally comact while I is not.
In Stone's Ihsoren that X is locally coqact, I is 1'2, first
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countable and 33 is 0-coqaact for each g 66-9 I is locally
efiact, we have violated 1'2 .

Definition. (Arhangel'skii) A nap £:x -> Y is almost E iff
for each y e I there exists ix’ 6 f-1(y) such that if U is open
Qtaining 2’, then yd int fU.

clearly, open -9 alnost open -9 pseudo—open

P_rgEsition 40. Almost open naps preserve weak locally coqact .

spaces. '

Proof. For 36 I choose x‘e 3 atvhich p isalnostopen.
Since I is weak locally compact there exist an open set 0 and a
ooqact set I such that x GOCK. Then p0 is aneighborhood of
3 while pl is coqzact containing p0 .

Eogition 41. Pseudo-open point-coqact ups preserve weak
locally coqact spaces. '

M Proof. For 3&1 andesch xeg thereexistanopenset 0‘
containing 2 and a coqaact set X83 0:. 3 is covered by a finite
nder OH,---,0‘ . So pfikni 0:1] is aneighborhood of g in I . '

3 te thd ('o)cn(\uJ ) Ln) mu 1 rec-papik-{*1 '1-1K‘1 1-1p'*1" "'°°° °
sets, hence conpact.

' Coroll_a_11 51.1. X is weak locally compact, p is psendo—open
and point-coqaact, I has the property that K coqaact -bi cnqact,
-9 I is locally cowact.

' Prggition £2. Pseudo-open, point-cospact, seni-closed naps
preserve locally coqaact spaces.
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Proof. !'or g 6 I and each x e g there exists 0: open

containing 3 such that 3: is compact. so
u 3 _ . D

g C \J 0 C L] 0: , for some finite subset {:1} of g . Then1-1 *1 1-1 1 n 1-1
n 1 jge 1- int pfu 0‘ ]cp(u 0‘) -UpO: which is closed since p1-1 i i-l i i p

is seni-closed and conpact as it is a finite union of coqact sets.

Hence 3 lies in a compact subset of I and so is coqaact.

Prgosition 53. Closed point-compact naps preserve locally

coqact spaces.

Proof. The proof of this proposition proceeds exactly like that
of Proposition 62 since a closed up is pseudo-open and the seni-closed
property was invoked to apply to closed comact subsets of X .

Goes: Proposition 43 is corollary to the proof of Proposition
42 but not directly of the proposition. A closed up my fail to be
seni-closed if the donain is not KC. The property I coqact -9
i coqact is preserved by closed conpact ups so on donnins having this
property, Proposition 43 is corollary to Proposition 61.)

Dsfinitim. X is locally peripherally cgact iff each neigh- _
borhood of a point x 6 1 contains an open neighborhood of 2 whose
boundary is coqnct.

‘lbs ssni-closed condition gives the following result on nonotone

dscoqositions.

Lrggition 44. If p is nonotons, point-coqzact and X is
locally peripherally coqaact, then p is seni-closed -6 p is closed.
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;_;rs_gf_. Let 3C1! openin X. Poreach ac; there exists

an open set 0: containing 2 such that 0:C U and 30‘ is coqasct.

A finite nuéer of these covers 3, say, gCV - 1\:_{ O‘1CU. Now,

3V CU30:1 which is cataract and hence 8V is conpact. Since p is

seni-closed, p(3V) is closed in 1 sad hence p(8V)* is closed in

1. Let Q-v~p(av)*. Then Q is open in x containing 3. Q
isaninverseset, since if h¢G neets V and h doesnotneet av

then, since In 1: connected, 1. cv. so 1: cv\p(av)*. So gCQ,
an open inverse set contained in U.

V Corogag “.1; If X is locally peripherally coqaact, p is

mnotone and point-coqract, then p is closed under any of the candi-

tions:

(a) I is 1'2 A '
(In) _I is re -

V (c) X is sequential, I is He’ or H
' (J) 1 is 11,!

P_r_sof;_. Each of the conditions guarantees p is seni-closed.

Since I: my be as interested to know that a decoqnosition is

upper senicontinnous as that it preserve local coqactness, these last

results are especially useful. '
‘llnst the local conpactness condition on X cannot be elininated

in the case of (a), (b) or (c) is seen from Bugle C. All of the A
conditions except local coqsactness of 8 hold in the following:

 . not x- zz~a, where A is due relative nonpu-
mnt of a point 3 in the boundary of a circular disk D.
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’ (A I 3D*{g}). Let He he the collection of concentric circles fill-
in; up D. Then X is E, p is monotone, point-cospsct, pseudo-open.
(in fact open), sell-closed, but not closed. I is T2,! and hence
H’, Kc, H. (I is separable setric). We can retain all these prop-
srties without an open up by replacing g by an are on the boundary
of D and including 3 in He. The decomposition space is the sen,

but p is neither open not closed.

that mnotone is needed is illustrated by an ennple of Arhange1'
skii: e

.  . X-B1, HG - {gn}- , where gn - {-3'-,n}.
B-2

2 is B, locally cospsct. I is 1'2 and hence He end 14. p is
point-coqact, seni-closed but not closed (not pseuldo-open). I is not

first cotnteble. I is vefi 1" but not 8 .

‘Io snxsrize conditions under which a decomposition into caspact
slssents preserves local coqscmess:

If X is locally coqact and p is point-coupect, then I is
locally conpsct if:

l. I is 1'2, first countable. (Stone)
2. p is pseudo-open, I has I conpsct -9 ‘K’ ccupact.
3. Its I ad I! (or H‘, Me, 1'2).
4. p is psendo—open and sesi-closed.
5. X is ssquntisl, I is it and p is pseudo-open.
6. p to closed. '
7. p is Iunotone snd sesi-closed.
8. pissonotonssnd I is 1'2. (flhyburn)

or I is In.
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or I is sequential, I is H.

In [23], Wilansky deals with a "local compactness" which may fail
to hold in a coqaact space. ’

Definition. We call a space locally weak locally cgact (Lil
locally colpact) iff p ¢ 0 open -9 there eusts a compact set
V C U such that p ¢ int V. (Each neighborhood of a point contains a
coupact neighborhood of that point.)

clearly, IN locally compact -9 weak locally compact, so if
coupact sets have colpact closure, then LU locally compact -9 locally
coqaact. ' .

. P_r£Esition 45. KC, LI! locally coqzact -0 Regular 1'2 (and
locally cupact).

Proof. If 1360 open, there exists V such that p eintv
lad V is coqact, VCU. Since V is closed, intV CV CU,

hence the space is regular. _

Corollsg $5.1. (Hilansky) LII locally coqaact -9 .
[Kc - ‘£2 - regular 1'2].

‘ ogition 46. Regular, locally enact -0 LW locally con-
pact. *

Proof. Suppose p 6 I! ‘open. Then there exists V open such
that p (V0:-V'CU. By locally compact, pe U open such that W 1;
coqnct. So pt VI‘\H open and vfiwcfi so VF“! is comact and
v_n'w c‘v' cu.



Corollag 16.1. locally compact 1'2 -9 LR locally coqaact

So in any 1'2 space, the three sorts of local compactness dis-
cussed here are equivalent. -

Jut as for weak local cqactness, almost open maps and pseudo-
open point-coqact naps preserve LR locally compact spaces-

In [23], Uilansky asked whether a LU locally coupact 1! space
nut he 1'2. Many negative answers have been given.

 . A space which is compact, LU locally compact and H
but not He .

Let X I {ordinals 1 Q} + 9' , where neighborhoods of 9' are
precisely those of Q , with (2 replaced by 9' , (or take two copies
of the ordinal set and identify in pairs the corresponding points

except at 9's). '

lie revise Hilansky's question:

prior: 5. Does 1.9 locally coqact, Kc or H‘ -9 1'2‘!

(h answer to Question 3 my resolve this.)

We now have a corollary to Proposition 32:

Corollgy 45.2. It points are 66 , Lil locally coupact H’ ->
Regular 1'2 . l

2. 7. lanes

prion 47. If p is pseudo-open and point-colpact and I

u a haeelfor x, then 3' -' {int pU:lJ 1. a finite union of elements
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of I}issbsssfor I. 4

Proof. Let 3:! open in I. Then gcR* open in X.
Por ssch x e 3 there exists 3: e n such that x e 3:: 11*. Since
3 is coqsct, s finite nuiaer of these 3: covers 3, ssy

; n[CU-LJB . ‘then intpU€B' sndcontsins 3 since p is' 1-1 ‘1
pseudo-open. pl) (2 so int pt! CR .

Corol1s_x_.-Z 57.1. X is second countable, p is pseudo-open and

point-coqsct —> I is second comtable.

;_Pr_og2ition 48. p is pseudo-open and point-compact, for each

xg X, A: is s neighborhood base for X at x, for 3 6 G,

A I UL -9 A’ - {int pU:U is a finite union of elements of
‘ ‘Q : ‘ 3

A‘} is s neighborhood base for I at 3.

Proof. The proof for this is exactly like that of Proposition

47 rid: 3 GA .x x

corolg 48.1. p is pseudo-open, each element of G is s con-

psct, oomtsble set, X is first countable -9 I is first countable.
- Q

Proof. Pot sec, 3-{:1} . Poresch 8163, let. ' 1-1
{A } be s countable neighborhood base for x at x . Thenij 1.1 _ i
A I {A } is countable. _Hence A’ is countable and gives aI 11 1.1- 1 8 '
neighborhood base for 1 st 3 by Propositian 48.

this corollary is fslse without requiring p to be pseudo-open
«In if X is attic and the elements of 3 are finite. (see ‘
Ixslpls P.)

the oorollsry is false for arbitrary coqasct elements even if p



1 50

is closed, ss the following eagle illustrates.

£53. I is sesiutric, p is closed and point-compact but
% I is not first comtsble.

net I be the space, first described by McAn1ey, consisting of

the points of due plane, where neighborhoods of points off the x-axis

are the ordinsry B2 neighborhoods and those of points on the x- axis

are "how-tie" regions. To dueribe these regions explicitly, for
neither of p and :1 an the x-axis, define the senilnetric

d(p,q) - Ip-q[, the 32 distance. If either of p or q is on the
x-axis, then d(p,q) - Ip-q| 4!» o(p,q), where o is the radian
assure of the least non-negative angle between the segment 3; and
the”:-sxis. X is a regular psracowsct seniuntric, nondevelopable,

space. interval 3 - {(x.0):x 6 [0,1]} is compact. (‘me subspace
topology on the x-axis is the usual real topology.)

last I‘ I {g}. ‘Illa: p is closed and point-compact. I is ‘[2
and H’ but not first countable. Any countable collection {Va} of
open sets containing g would have to intersect some single vertical

line in a sequence xn e 7‘, but such a sequence {xn} is closed.
V An open sap preserves both first and second countsbility, but not

dsvslopdaility even with cmpsct elements as does a closed sap [26].
Indeed, an open point-eogsct inge of s developsble space nsy fail to

be ssnintric [22].

Definition. If G is s falily of subsets of X , call s devel-

opunt I {On} for X miforILi_t£ resact _t£ Q iff for each g 66.
1: gen open, then daere exists an integer n such that cn"(;)cu.
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Any self-refining developnent is uniform uvith respect to finite

sets and any netric space has a development uniforl with respect to

coqact sets. In fact a T1 space has a developnent uniform with

respect to compact sets iff it is netrisable. L

P_Logosition 49. X has a developunt uniform with respect to G,

‘ p is almost open -6 I is developahle.

Proof. Let _{Gn} be a developmnt for X uniform with respect
to G. Since p is alnost open, for each gt 0 there exists

2‘: 3 such that g 5 int pl) for each open set 0 containing :8.

For each 36 G and each :1, choose gn(g) such that

z‘ ¢ 5(3) e G“. ‘then {En} - {int p(gn(g)):g E G} is a development '
for 1: Each En isan open cover of I by the choice of x‘. Now
suppose gen openin I. Then gcl’ openin X. 'l‘hereexis'ts

I such that Gu*(g) cm’ by the uniformity of {ca}. 1:
3 Ch. 6 EN, bx I int p(gN(g')) for son 3' 6 G. But gN(g') 6 G“
and 3 neets gu(g'). Hence ga(g')C- 11*. so pgl(g') CR and
hence hick.

Corollag 49.1. X is developable, p is almost open, each

aleunt of G is finite -0 I is developahle.

Corolla}: 49.2. X is netric, p is slnost-open and point- i
coqact -0 I is developable. .

Prgosition 50. ‘ X is seniutric 1'1, p is pseudo-open, each

elsnnt of G is finite -9 I is seninetric.

Proof. Using Heath's characterization of 1'1 seninetric spaces
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[9]. 1st {3n(x)}‘ ‘ x be such that 3n+1¢'_3n and for esch x,
n 6 R{3n(x)}n ‘ N is a local base at x, and y e 3n(xn) -9 xn -v y. For

each 3e 6 snd each :1, let G (3) - int p[LJ 3n(x)). This is*1 xeg
open and contains 3 since p is pseudo—open. Then for each 3 ,

4{Gn(3)} is shsse for 1 st 3, with Gn+1CGn: if 361 open
in I , 3 -' {x1.°°'.xk}, there exists 3“ (xi) such that

x . - . en or ea x .kt) ()Ca"' Lees Isaxn mi: chi ()cn*1.1 ‘hi i 1<k i "I 1
So Gn(3) C R. If 3 5 Gn('hn) then 32p {ha}, for stppose
3 5 Gang‘) - int p[x%)hn 3n(x)). Then 3 meets 3n(x) for

each n. Sane point x of 3 lies in KJ 3n(x) for infinitely- xe 11“
may 11, since 3 is finite. So there exists xn 5 ho such that

' 1 1
x 5, 3n1(xn1) C 31(xn1). Hence xni -> x, which gives hni + 3 snd

thus 31p {hn}. This suffices to give Heath's characterization,
mkin3 I_ s senisntric space.

Prgposition 51. X is utric, p is pseudo-open and point-

cqsct -6 I is seninetric.

Proof. Let {Ga} he s nonotone development. for X uniform
with respect to G. For each 38 G and each n, let

ln(3) - int p Gn*(3) . {Hn(3)}n‘n is s base for I at 3, since
36.! open in I -9 for son 11, Gu*(3)CR*. Purthernore,
3eln(hn) -9 hn->3: If 3:}! open in I, there exists I such
that Gn*(3) CR‘ for n > R. but 3 meets Gn‘(hn) for n > I so

a shues“ (3). Hence hack and hue}! for n > N.

2.8. Duds's reflexive-cgsct napping

Definition. (Duds [3]) 1:! + Y is  ‘_¢g1§ iff
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1.1!! is canpsct for each compact KC X.

‘trivially, compact -9 reflexive compact -9 point-compact.
If p is reflexive comact, then p is compact if! each cowact

set X in I has compact section, i.e., a compact ACX such that
pA- X. If X is KC, then p is reflexive compact é p is semi-

closed.
. For any spaces, closed and point-compact -0 compact. Duds has

proves a sort of converse for the weaker reflexive compact, namely, if

X is a k-space, then p is reflexive compact -0 p isiclosed,

(hence, eoqact). Duds deals only with 1'2 spaces. It is not neces-
sary to assume I is 1'2 but something like it is needed for X. For
if X isacompact 1'1 spacewhichisnot Kc, say X-3+: with

I cqact and zip! (for instance, X my be a sequence converging

to no distinct limit points), let HG -7 {B}. Then I consists of
tin points, one of which is a limit point of the other. I is not 1'1
so 19 is not closed. p is coqzact, however, and X is a K1-space.

‘Is prove Duda's Theorem, it suffices to assume X is KC.

Pggitim 52. (Duds) X is k-space, KC, 1: is reflexive
cqsct -9 p is closed.

;r_ss;_f_. Let F be closed in X. If 13.11:!’ is not closed,
than there exists a compact closed set c such that p-1pPf\C is not
closed. low, p-1p!fi C - p-1P(P-1pC/1l')f\C . Since p is I
reflexive coqact, p-lpc is coquct. In any space, if H is closed
and ‘I coqact then nfil is closed in X and hence coqaact. So
p.1pc fl !' is coqaact. Hence p'1p(p.1pCfiP) is also coqaact by the
reflexive conactnsss of p . And p.1p(p-1pc/\ I’) f\ C is compact,
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as C is closed. So if X is KC this set is closed and we have a
contradiction. 9

Coroll_.3g 52.1. X is sequential H, p is reflexive comact
-9 p is closed. '

25$. sequential H -0 both k-space and KC

these theorem give full comactness of the map as a dividend by
way of closethess of the up. They also suggest that reflexive compact
is not very much weaker than compact and of course these properties may
be equivalent under conditions which do not force the map to be closed.

We call 1: cotntably cggact iff X comtably compact -9 12-1!
is cotntably cowact.

 . X is strongly semi-133, I is 1'1, p is
pseudo-open and refledme countably compact -9 p is countably com-
pact. _

52;. let X be countably coqact in I and suppose there
exists :1 infinite set {an}n:1C p-1K with no limit point in 11-11.
Each 3 6 G is comtably compact so we fly assume X {pan} are all
different. Bach pane I so there exists 3 (X such that glp {pan}
and waxy ssstm 3* {pan}. Since p is pseudo-open there exists
a6 3 such that a1.pp'1({pan}). Since X is strongly seni-1" and
I is ‘[1 there exists a subsequencs ynie p-lpxni with ya‘ -> 8-
nav. ‘{yn1}v x 1- co-pact. hence P'1p({yn1} u x) - {p"px,11*u s
is s cotntably coquct sweet of p-1!. As it contains . {ant}. this
mans {ant}. and hence {an}, has a limit point in p-IX, which
contradicts our sssnqtion.
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Corollng 53.1. Proposition 53 with comtably compact replaced

by sequentially coqact.

Proof. sequentially coupact -0 comtably compact and counta-

bly coqnct, c - B -9 sequentially compact

Corollag 53.2. X is developable or strongly semi-13*,
Lindelof, I is 1'1, 1) pseudo-open and reflexive compact -9 p is

coqact.



CHAPTER III

Shrinkable Decgositions .

Definition. (htfiuley) A subset K of a metric space H is
locally shrinkable iff for each open UDK and each s > 0 there
exists hoiseonorphisls h:H O H such that h - id off 0 and
dian h! < e.

A eowact locally shrinkable subset is connected.

As originally stated in [12], the theorem: If G is a !!cAuley-
Inc deeoqosition of a complete metric space H such that EC is
countable and G6 , each eleent 3 6.11 is a locally shrinkable con-A

4 tinmn and lies in an open set with compact closure, then I - H, is
false, as illustrated by Example C of section 2.3, where I is not
first countable. The theoren fails when there exists a point which is
a degenerate linit of elenents having diameters bounded away from zero.
This cannot happen if p is closed, but, as the example shows, it is
not a violation of He. The hypotheses of the theorem and the condi-
tial that there be no such "bad" points guarantee the nap p is closed.
The theorem is trm if llcauley-usc is replaced by flhybnrn- use
(p closed) and we will obtain this from a note general proposition
which restates another of HcAu1ey's theorems.

If G is a decmosition of X, we call a subset of X 23%
if it is an open inverse set (for p).
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Definition. If G is e decoqaosition of a metric space H,
I is tightly shrinkable E _)_I (tsh) iff given any p- open cover

I U of I‘, t > 0, and h:H ' H, there exists a p-open (refinement
of II) V covering 11* and e homeomorphism f:H ‘ H such that
1) I I h off V‘. 2) for each gefl, diam f(g) < e and 3) for each
V e V there exists u e U such that h(v) U f(v) Ch(u).

I is weakly tsh if the above holds for the special case of
h - id“ . 7

We will make use of the following theorem of Hchuley, slightly
revised.

Cmverggce Theorem. (Hckuley) If M is a metric space,‘
{an < -,(en > o) for each :1, ram - :4, £0 - 1:1, for each n 3 1,
V‘ is a collection of open sets with connect closure and Vn* DVn+1*,
foreech ago. £n+1- in off vn+1*, nevnfl-> diamfnD< an
and x ¢Vn+1‘ -9 there exists D 6 Vn+1 such that
run 3 fax U ffilx, then {fa} are uniformly Cauchy and if

O{f (x)} converges for :6. A - f\V * then f -> f [mif],
£3}!-D H is continuous and onto, and E is 1-1 off A. Furthermore,
it ll is locally compact on V1* , then f is closed.

Proof. First, we show that ' {fa} are mifornly Cauchy. IA!
C¢>0. Iorsome I. nzNen<g . Let sell. Poresch n, if

e8‘ V”! than £n+1x- tax. If x€Vn+1" th there exists
D ¢Vn+1 such that fun 3 fax ufn+1x, but diam fun < en. So, in
either case, d(fnx, Imus) < en. So for m > II,

Cd[£.x. t.x}<12ue1<1z“c1<e. »
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Tins} converges for 3 ¢ A - fivn‘, for if x¢ V31‘ then
fax 0 ff for n > J, 1.1:... '{fnx} is ultimtely constant. So if

A{£nx} ccnverges for x c A then we have pointvise convergence every-
there. And since '{rn} are uniformly Cauchy, fn + £ - 11- fn [mif],
and f is continuous.

To show f is onto, let pe H. Let an - fn‘1p. It suffices

to show {an} has a convergent sdaseqnence, since if an -> x then
icontinuity gives fa ->fx while a(£n zn , is )< e for large 1“.1 1 1 "1

by uniform convergence. So fan + p and hence p - fx. low, if1 .
p ‘V1’ then for each n, fnp - 1:. Thus Ufa 1:! ' {P}. If

peV1., pe Devi with 5 coqact. Choose 6 > 0 such that

l6(p)C D. By the uniform convergence there exists I such that
n > I -9 f‘: 6 Néfnz for all 2 en. so fix“ 6 Nafnzn - R6(p) CD.

-8 C _
Hence {into} C D and {in} C fl 10. Since E‘ is ahoIaeonor-n-1 n-1
phiss, fl‘!!! is compact and so {Zn} has a convergent sdaseqnence.

lot: we suppose that H is locally coupact at each point of V1. .
to shot f is closed, let I) be a closed subset of H and ya -> y
with ya efn. We must show y 6 fl). ‘rhere efl.sts X“: D aid:
yn - fan. If {xn} has a convergent sxbsequence, we are done, since
if x -9: then :61) and f: -y -bf: by continuity. Henceni n1 n1 _
fx - y. Inrthersore, if H is locally coqact at y, we can choose
t > 0 so that lty is colpact. By tniforn convergence there exists I
so that for ovary x E M, £1: E l%fx. In particular. for each n
{Inn 5 lffxn. But for n > I fr‘ 6 Ni-y. So flan £ llgfxn C Hey ,
which has cospact closure. So {flxn} has a convergent snbsequence
and thus '{xn} does also, as It is a houonorphisn.

is my suppose man that y¢V1*. Nov fj(V1*) - V1‘ for each



59

5 since :5 1: a honeonorphisl which 1. the identity off V1‘. For
none I: > 0, Icy nisses V1‘ and for large n, yne Ngy. For

2hr‘. 1 , fixne 11%,“ c Hey so f1xn¢ V10 3nd thus xn¢ v1*. so
fx.-xn and since fxn-ry. vehave an->y.

Theoren I. If H is a metric space, G a decomposition of H ‘
such that p is closed and point-coqzact, H is tightly shrinkable
in II, and H is locally coupact at 11*, then I = H.

Proof. For each 3 e 3, let 111(3) be a p—open set contain-
in3 3 such that u1(3) is coqact C. 81(3). Let

"2"Ill -' {v1(3):3 e 1!}. Let 111 be a star refinement of $11 by p-open
sets. (I is letrisable, hence paracoqact, by Stone's Theorem [16].)
Dy tsh, there exists flat ' H and V1 a 13- open refint of 01

~ co-nrin3 I!’ such that:

_ :1 - 14 off 111*
3 e I -9 din f13 < -:3

v¢V1-ethersexists seal suchthat vvflvcn. -

For each 3 e 1!, choose v1(3) 6 V1 containing 3 and let 112(3) be
p-open containing 3 so that v2(3) cqact C

-1I5; (;)n v1(3)fh £1 (32% :13). Let V2 - {vz(8):g c a}. Let 02 he
a star refinement of U2 by p-open sets. By tsh there exists

- fzzll 3 It and V2 a p- opus refinement of U2 coverin3 8* , satis-
fy:l.n3 , .

9f2 I fl off V2

I3;! -0 din fz3 < :1

v ‘V; -9 there exists 11¢ 02 such that fly ufzvc flu.



Inductively, given fn_1:ll = ll, Vn_1. 19- open refinement of
1:UPI covering 3 with

s
tn-1 . In-2 off vn-1 .

1gel-0 disn frig <33

v 6 Vn_1 -vthere exists a 6 Un_1 vith fn_2v u fn_1v c fn_2u,

for each g G ll, choose vn_1(g) 6 Vn_1 containing g and let wn(g)
be p-open containing g so that vn(g) is compact C.

II (g)nvn_1(g)n fn_1 (11% fn_1g). Let Vin - {vn(g):g 6 H} and
II. zistar-refinenent of ilnzhy 13- open sets. By tsh there exists
fnzll ' l and V‘ a 13- open refinenent of Du covering 11*, satisfy-
ing:‘

sn In - £n_1 off V“

g c I -0 dian Eng <%

-V G V‘ -0 there exists In 6 On such that £n_1v I-I fnv cfn_1u .

It is clear that this construction gives for each n,
g C G -5 fn_1Vu*(g) U fnVn*(g) C fn__1Un*(g) c£n_1vn(g'), sane

3' E I Cfn_1vn_1(g')r1 ll fn_1(g'), this last set having diameter
1 2"

< ‘E’ .2 » _
itlsmushaveforeach gcc, foreach k3_1 and nik,

lk(V."(s)) u tn(vn*(;)) c zk(vk*(;)). To see this, 1.: k _>_ 1 and
induct on n: For n - k the statenent is trivial. Suppose it holds

s e sfor -0- n ;k- lav. f‘(Vn_,,1 (a))u £fi_1(Vn+1 (s))c fn(Un_,,1 (3))
by construction and this is s sdaset of fn(vn+1(g')), for sons
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3' e II. which in turn lies in fn(vn(g')). we asst-2 g e p(Vn+1*)
since othervise the statement is trivial... So 3 cVn+1*(s) Cvn(g').

Hence vn(g') 6 Vn(g) and vn(g') CVn*(g). so

fn(vn(s')) C £n(Vn*(s)) C £k(Vk*(s)) by the inductive hypothesis-
Also, since vn+1*(s) CVn‘(s). £k(Vn.,,1*(s)) C fk(Vk*(s)) also by the
inductive hypothesis and this establishes the corresponding statement

forthecaseof n+1.._ . _ .

We nay restate the last result: for each 3 e G, for each
h > 1 and n > k, 0 f (V *(8)) Cf (V *(g)). In particular, for- - 3.3 n n k k
each 3 e fWp(vn*) (where g CVn*(g) for each n),
" "’ e eH rnmc }_.{ rnvn (3) crkvk (3). .

the result is a sequence fn:H ' H and ‘{Un} such that each 0“

_ is a collection of 19- open sets with coqzsct closure, fn+1 - fn off
9 I e e0&1 (actually off V“+1 CUn+1). Furthermore, x 6 0&1 -9

there exists u sun“ with faunas“: ufn+1x, since 1: :4: Vn+1*,
2&1: I fur, which is in the inage under fa of whichever element of -

elIn+1ca:tains x. Andif x£Vn+1,xesou veVn+1 but I

ffivuffilv (fun for some u eon”.

roreach nevi d1anfu<--1- Andsince Z--1—<-n+1’ n zn-1 ' Zn-1 ’
we have verified all of the conditions we need of the Convergence

‘theorem except convergence itself at points of Non‘. But suppose

:6 non‘ I Ava‘. p(x) - gcf\Vn* so 3 cVn*(g) for each n,



61
Cwhile LJ 2 (V *(g)) C £1(V1*(g)) c u *(g), which has oo-poo: closure.‘.1. II II 1

So {fnx}n.1 lies in a compact set. Thus it has a convergent subse-
qmnce. But the sequence {fax} is Cauchy and hence converges.

So by the Convergence Iheoren, En -> £:H -> H [mif], f is ca-
tinmns, onto and f is 1-1 off A - nun’.

lie nos establish that for each 3 ¢ H, Hg) is a point. For
each h and n :2, fn(g) c fk(Vk*(g)). so for each 1: ,

3run: £k(vk‘(3)). Thus £(g)c KW £k(v ‘(g)) , while the sea inbi it
this intersection have diamters tending to zero as It increases. So

. r"\ 1-— .V {(3) b1 tkvk (3) a point.

we claim also: 3 :4 3' e c -o for some n, Vn*(g)nVn*(g') - o.
to prove this, note that since g and 3' are conpact, mere ed.sts
c >0 such thst ll (3)/\N (3')-¢. Let U and V be p-open1 2:1 2:1
With 3 C U Ciel; and 3' C V CNe1g' . So NEIUC 32:13 and
l‘1VC lzelf and ll£1U nN£1V - ¢. Choose 2 > 0 so that e < :1
and leg CU, ll€g'CV. Choose B! so -Ii-< c. ‘then

2 ,-1—- -IIn (3) nil. (g')_- e . For if 11 € Wn(g), 3 an - vN(go), son
30¢ l,C ll (3o)C Ne(g°). So go meets Reg and thus gacll.

I17so vC l‘goC!l‘lJClle1U. Thu wN*(g)c.n£1u. Similarly, 1:
w' eu‘.(;'). w' cnclv. _ so WN*(g')CN€1V. so Hn*(g) and
?(g') are disjoint and as V“ refines Wu, VN*(g) H vx*(z') ' O.

Wecannovshov that fxn fy iff px-py. If px-py-3
then since {(3) is a single point, fx - fy. Now suppose fx - fy
and p: - 1 I py - 3'. Since I is 1-1 off nv; we ssy assume st
leuttne of 5 and 3' is in (‘pVn". _In case both 3 and 3'
are in npVn', choose 8 so that Vx*(8)/\VuI(g') - 9. Then
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g. ?;'‘(,)n 2. 7"*'(g') - o, ohiie the first of these sets eoeteios
Hg) and the second contains f(s'). contradicting f(s) - f(g').

_ Ion essue that g¢ nova‘ shiie g'e fipvnf. For some n,
3 ¢ 1:7!‘ and 5(3) - £u(g) - 51(3) for It 33. There exists It > n

such an: s? V;‘<s') so s,<s> ¢ 5,, v,,*<e'> but sum - f(s) '
-I-in f(s‘)6 r, v,*<s'>.

so tp'1 is s honeo-orphisn of I onto u if: f is quasi-
eoqnct.

we -in‘ show i is ciosea but first we will prove: if y ¢ 111*
(so fy - fjy - y for each 5) and if fan +y with each sue nv;
then s_ -s y. net p(zn) - 3“. so f(:n) - f(gn). since each
3. e; flpvn’, f(gn) - Q £k(-V:‘(au)). so for each k,n
2(5) 6 253(5). not at“) +y. So yzpg fkfign) and
since 2.‘ is s honeonorphiss, fk-1y!.pnl:{ Vk*(gn). i.e., for each
h, y:.pSJ1 V-7:‘(gn). lav, yip Ugh. For suppose not. Then there
'sd.su t > 0 such that l‘y luau Ugh. There exists :1 > 0

such :lInt if 3 ac nests ‘:1’ then gCN%y. choose x so that
i e -2; . Since y!.pnL_.{ ;‘_‘(;n) there is a point

3 1 ‘L3 7;"(sn)nn:Ly, esy x £7‘-:(s,) filtely. But by construc-
tion. V-"(;.)¢ u__,_2(;l'l) sons 5?‘; a cne1(g:)—. so there existsor - . T r,, s c 4 such thet d(x,z) < -21, ohm d(x,y) < 7 so d(x,z) < :1.
nos 3; nuts 3,1, and g; cn§_y. ussnohiie
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3' cl! 1 (gé) C, Re1(g§) CR5 (gt'{) Cliey , which contradicts the choice
— 1'K

of N3.

so ’{y} r.p'{gn} in I by continuity of 1). Hence zn-vy
since p is closed and 3“ - p(zn) and the argument applies as well

to any suiasequence an . _
1

‘to show f is closed, let D be closed C M and suppose

yn-by with yn€fD. Let xnel) such that yn- f(xn). As in

the proof of the last part of the convergence theoren, it suffices to

have 3 locally compact at y or that ' {xn} has a convergent subse-

qunnce. So we may assume y ¢ U1’ since 01 is a collection of open
sets which have compact closure. Then for each j , fjy - y - fy. If

for some J. .{xn} is frequently not in UJ*, then for a subsequence
. * _{xn1}C ll\UJ , f(xn1) fJxn1 for each i. So fJ(xn1) + y hence
an‘ -> fJ.1y I y. So we my suppose ' {xn} is ultimately in each UJ’.
‘there is s subsequence ffxn } with an e 01*. Since it is only sub-

1 1
sequences we are interested in, let us assume xn 6 Dan‘. Now, since
0&1 refines Iin+1 , there exists gne H" such that A

=. e '..+1<¢..>c ‘LE: (8.9 "'..<s,.>- 8° 8.. 6 3» id<=..~8.> < 33::
9 2 anand xngvn (gn). Thus for each 1, fix“ e fjvn (gn). .

Let s> 0. Choose 1! so the: n >1!-6 fxnelig, since
5

£2. + y . Dy uniforn convergence there exists J such that

j>J-O fxell f: for zen. so n>N,j>J-O fr 6N€y..1 5; 1 3 :-
su: for ssch gen and each 1:, dis: 2 v *(g) < -1-. So therek k zk-2
Oflltl X such that k > I no (113; fkVk*(g) < % gnd since
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v‘*(;) C Vk'(g) for 2. 11:, for each 2 1 1;, disn fkU’_‘(g) <
Choose I > J,K then for n > 1,11, ftxne N§_y and

2
dian fIVn'g < % for 3 6 8. But flan 6 fIVn*(gn). So

fIVn.(gn)C njfy, and since I > J,
fun) 5 £(vn*(gn))c 3% fIVn*(gn) Cley. we have shown: given a > 0
there exists 1! such that n > H-9 f(gn)€ Hey. So f(gn) ->y.

l 1But d(xn,gn) < 2&1 . Choose an 5 gh such that d(xn,zn) < ;n—+]-. .

lav f(sn) -> y and ans 8*. So an -> y, as we have already proved.

But d(xn,sn) + 0 so an -> y also. lhis colpletes the proof of

‘rheoren '1'.

We will use Theorem 1' to establish HcAuley's Theorem in case p
I is closed. some further observations will be useful. I

First, if G is a decomposition of a netric space K, then He
is tsh iff for each houeonorphisn h:H ‘ 1!, Hum) is weakly tsh.
‘unis is an ilsediate consequence of the definitions and the fact that

e U 3 '0under ahonconorphisn h.H H, haic) Hus) and if p J!->3/h(G)
is due quotient nap and u a p-open set then h(u) is p'-open.
this enables us to carry naps and coverings back and forth via the
given homonorphisn. The details are straightforward and omitted here. I

Caaaequently, if we find a set of purely topological conditions
on a dscoqaositian G (preserved under honeonorphisns on H) which
yield 36 is weakly tsh, then HG is tsh also.

" Ha also note that local shrinkability of continua is topological.
i.a., if H and 11' are nctric, h a honconorphisn of )1 onto 1!‘
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and C a locally shrinkable continuum in H, than MO) is a locally
shrinkable nnnunnu in n‘ . ‘

P_rosf_;. trivially, hc is a continmn. Since C is locally
shrinkable in H, for each positive integer k there exists that = H
such that £k- id off ale and dian fkc <%. Ck- £kCCN&c.
Bach open set containing E contains ck ultimately as C is coqact.
‘mere exists x e C such that each neighborhood of x meets Oh for
infinitely any h, again by colpactness of G. Since H is metric
a sdaseqzace at‘ + :, i.e., each neighborhood of : meets (‘I1

ultimtely. And since dial chi -> 0 each neighborhood of x A contains

Ct‘ sldntely. Iw,since h is a homomrphisn hcki + bx ehc.
Also dianhcti + 0 since 1: v 1; any neighborhood of h(x), n"1v ‘
is a neifinborhood of x and contains Chi nltimnely. lhen V ulti-
mtelycmtaina hcti. Since we lay choose neiflnborhoods V of h(x)
with arhi trarily sull diameter, dian hcki amt tend to zero. now
let 11 open anc, e>0. -n-en flu isopen Dc. Choose I
come eunuch‘ <e and :1 ccn'1u. 'rhen_
f ans, -1: off n“uFi£ c-c . Let h‘-hf If’:*1 ‘kn ' *1 *1 1:1
ll’ ‘ I!’ so h' - id off I! and h'(hc) -hfktc-hckt has diaaeter
< e. dnichuans III: is locally shrinkable.

fi need the following theoren of H:-Auley:

‘lhsoranll. (llcauley) If H is a metric specs. {f1}:!! ' 1!,
{U1} a aeqmnce, of open subsets of it such that 0‘ Dim, /‘U1 - ¢,
:1 - r1_1 off oi, to - 1a. and for each 1) e 11,191 f1'1p has enn-
pact closure then {£1}-9 f:!! ' H.
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V 53.3. Rncluding the last hypothesis of_ Theorem 8 yields
I - lin £1 continuous, 1- l and open. This last condition provides
that I is onto.

‘rheoren H‘. 0(cAnley, revised) If G is a decoqosition of a
utric space H satisfying

1) p is closed and point-ooqsct,

2) each eleent of H is locally shrinkable,

' 3) n u countable and as,
6) II is locally ooqpact at 11*,

then I isveskly tsh in 1!.

Proof. In this proof the notation (0,1)) is used to replace
the sequence of sydaols: Op -open C3cDp-open C3 coqact. By

C Chypothesis, H - {Cj}j.1, ll‘ - Q1 G1, (:1 open I) G1+1. Let A
heap-opencoverof 3*, e>0. Poresch 1, choose AJSA with
Cjfihj. Let ho-id. v

Let I1 ‘T {C Q I: dianc 1:}. By use, 31* is closed. If
H11 9. 1.: k1 be least such um ckle 31. So cj¢n1 for
j <k1. 31*: ill opensuch that ill misses C: for j <k1.
sf: 01 open such that iilcwlncl. us cklc. <o1,n1) c uln At!
and let 111:}! ‘ I! such that hi I id off 01 and dis: hl 031 < e.

no: 32 -‘(cc n: dianhlcic}. 32* 1. closed c ul. If
lzfo. lst I2 heleastsuch that ckzcllz. Then i.2>k1.
l2*C 112 open such that V2 nisses C: for _1 < R2 . B2'C 02 open
such that uzculnwzn G2. Let ckz C (02,132) C u2f\Ak2 and
such that if ckzflai - e. vs select D2 so that 52/W51 - O.
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while if Ckzfl 31 1‘ O , then choose D2 so that -52 (D1. Let
h2:l! ' H such that h: - hl off 02 and hz shrinks Okz to
diamter < e, (hence (21 for j gkz).

Inductively, given hlzll " M for 0 _<_ 1. :1 such that for '
111.31 h‘ -h,___1 off 01, If‘ is open missing C: for j < k‘,
cktc <o,_,np C u,_f'\Ak£C on open C 'fi,.cu£_1nc'_r\w,_ and
infij - o or B',_cnj (ad Eznfij 9‘ H for all 3 < 9., and,
h‘ shrinks C’ for jgk‘. ‘

Let and -' {c c a: dis: hic _>_ e}. men u1+1* is closed c 01.
If at“ :4 9 let 1:1“ be least such that ckfll e 31. Then
had > k1 and C1 ¢ 31 for j < k1+1. E1+1*Cil1+1 open such that
Dru lisses C: for j < k1+1. B1+1*CU1+1 open C

iii-1 C "1 n "1+1n °1+1' ‘ft °k1+1 C <°1+1'”1+17 C "1+1n ‘k1.,.1 —
and such that for each 1. , 1 g I. 3 1, if Ck1+1n 3‘ 5‘ O , choose
31+1CD'_ and if ck1+1f\ 3" - ¢ , choose D144 so that
31+!“ 6‘ - O also. (so we have Bin 3,’ - ¢ or 31 CD‘ and
70-jfi.5‘f¢ foreach j§_i+1 and !.< j.) Let h1+1:H'H such

that h1+1 I hi off 01+]. and h1+1 shrinks Ck“-1 to diameter < 5
(hence 01 for 3 gkru).

If It - Q for some i, let h - h1_1. This gives a hoseo-

mrphisn hm ‘~' I, without appeal to Theorem H, which shrinks each

alamnt of G to diameter < e. And we can construct a p-open

rafinsnent V of A as required for weakly tsh in the sam way as
for the case that {H1} is infinite, which follows.

I! I1 I e for each 1, then we have a sequence of honour-

phisu hiof ll onto 1! andopenaets U1 suchthat

uiafiifl. 1:1 - h1_1 off 01 (actually off oi), flu‘ - ¢ (since
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‘ /‘ll£C (‘G1 - 8* - Ucj, but each 1, U-‘+1 nisses C’, so

l‘f‘(('NI1) - ¢). So we have verified conditions of Theorem I! which
give ht -0 11:1! -> H, with h 1- 1, continuous and open.

t We nut show h is onto. Prior to this, we list sone proper-
ties of the construction: I

Ii 1. For each 1, 111A - h1_1A for any set A containing
01. In particular, 1:101 - h1_101 Ch1_1D1 - hibi . V

I.ena2.1. Poresch i<j if x¢O" for l<!.£j then
his - his.

131 2. For each i there exists L(i) ii such that

C;H, "r.(”1) C ”L(1)'
Proof. The statement holds for i - 1 since h1D1 - honl - D1.

Lat I.(1) - 1. Assume for each 1 < i that there exists I.(j) :1
such that Q h’.DjCDL(j). If D1 nisses E, for each 1 < 1
than h._D1 - D1 for 1. < i by 1:11 2.1. But 111131 - h1_1D1 by
131 1 so hini - D1 also. And hjlo htni - D1. Let I.(i) - i. If
D1 nets sons 3:] for j < i, let J be the largest such 1. Then
by caistruction D1C DJ and by our inductive assumption, there eusts

J J JLu) 3: such that }__é h’_DJCDL(J). But kg) h,.D1C 1% h£DJ and
since D1 Iisses 01 for J < j < i, h‘D1 -‘hint pointvise for
J < 1. 31-1 by less 2.1. So we ah: have hjo h'_D1CDL(J). And
by Luna 1. u1_1n1 - hint. Hence bi htnicnmn. So we let
!.(i) - I.(J) _§_J < 1.

low it is easy to show h is onto. Let p be any point of H.
I! pf U01 then hip - p for esch i and hp - p. So suppose
pi U01 and let I he lesst such that p e OI. We will show that

-1 1{hi p},_ :1 C H D‘. Otherwise, there exists a least J such
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-1 I -1thst h: p¢jL;J1Di. Let s-hJ 1:. If s¢0J then
p-hJs-hJ_1s so s-hJ_1.1p contrsrytodlechoice of J. _So

s¢0J. But svp-h°8uhJscDL(J) for some 1.0) by Lexus 2.

So Du” neets 01 in 1). If I.(J) >I thenllay construction

0 I ’DL(J)CDI If 1.01:: , wegtillhave :6 H1 D1 which is econ
ttsdiction. So {h1- p}1lIC1L_{n1, whichissfinite union of
sets having eoipsct closures. So we have cazfirned the last hypothesis

of ‘rheorenflsndwehsve hi-011:1!‘ ll.

I4ens3.1. Poresch isndj with i<j if 51 ends: are

disjoint then no 31 csnneet then both for 1.3;].

Proof. If 5‘ metsboth 61 anafij with 2.;3>1 then
5,_cn,_ ischosensothat nlcninnj. no: 1)) was chosen to
niss 51. T '

Ias—s 3.2. If A issny set which contains each 31 for
I_<_i;J which A intersects,d:en II.IA'hJL.

Proof. Squpose not. Let I. helesst such that hLA9‘hrA
_ with I<l.;J. ‘fl)ah.L_1A-IIIA. BntiflILAfhL_1A thenA

nests BL so 5LCA. Renee hLA-hL_1A byleil. _

no-.3. Ioresch I and J_>_I, hJ3IChIDI.

Proof. tot J-I theststenentistrivisl. Given J>I,

1st Q- {5‘:I;i;J}. Let A- (06 Q: there exists a (finite)
sequence of elecnts of Q, caasecutively intersecting and of increas-

ingindsx era. 61 mo}. Clearly, b'IeA, and A"cnI, for
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otherwise 1: there exists an e1enent 61 e A with 81¢ n1 then
’D1¢DI. Let K be least such that 5‘€A and DK¢DI. There is

_‘ s sequence from O1 to 0‘, ss described above. An elt 01 of

this seqtnnce neets ER with j < K. So Djc DI but also by con-

. sttuction 0‘ CD1. Hence DKCDI. Purthetsore, A* contains each
sleunt of Q which A* intersects. For if 31 6Q and '51 neets
A’. let J be least such that E, 6; and 61 neets EJ. Now 1:
J < i, snganting the sequence from 31 to 5:1 by 31 gives a
seqmnce from 31 to 31, placing 31 GA. so suppose J > i. Let

3.‘ be the element of the sequence from 3]: to EJ which neets EJ.

‘men k < J. So 31 does not neet 3.‘. But 5J cannot meet both
of the disjoint sets 31 end 3.‘ by Leann 3.1. low by Luna 3.2 V

h.I(A’) - hJ(A*). And since 31 C A‘, 1561) c hJ(A*) -hI(A*)c nlnl,
and can 3 is proved.

low, T31} is s locally finite collection since U1Z>fi1+1 and
fin: - 0 . {-51} is locally finite, es 51C 01. Since each 51 is
coqect, it leets at lost a finite ntéet of elements of {01}. So

for esch j there exists 18(1) _>_j such that 5-JC H‘ go) -51 .

um 1:61 - hum?’ chin: by Lena 3, while njuhjnj gnu” to:
son LG) 1;] by Bells 2. Thu 3jU hfij C DLCDC AL“) . For each

. c t l‘LJp01, hc - c and «name < t. Again by the local finite-
ness of T0‘) some neighborhood of the coqsct C nisses U01 end
hence there exists e p- open set u(c) contsining C and hissing
U01 and such that 1: c - cj , u(cj) C A: . hu(c) - me).

Let v- {oJ}1:1LJ{u(c): c an LJp oi}. Then v 1. s
p-open refinement of A, h - id off V‘, h shrinks esch eleaent
of I to disaster <t, end VGV -0 there exists AGA with
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Aavuhv. Thus, 8 is weakly tsh.

Sines the hypotheses of Theorem 3' are topological, we have

iidistely that B is tsh. Hence, by Theorem '1‘,

' coro11_e_g H‘. (HcAu1ey) Under the hypotheses of Theorem E‘ ,
I ‘ ll. '

' ‘x _
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