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INTRODUCTION

There seems to be. general agreement that in this
stage of the development of the theory of Banach spaces a
greater wealth of examples would be useful in pointing the
way for future research. There.has not been a great var-
iety of procedures for the construction of Banach spaces,
but one was inﬁroduced in [3] by Bretagnolle, Dacunha-
Castelle and Krivine. 1In [4] their procedure was presen-
ted more systematically, the space constructed was termed
the ultraproduct, and various applications were made.
There is also a brief discussion of'ultraproducté in 17}

To our knowiedge'the'process has not been subjected
to a detailed and systematic study, and that is the pur-
pose of this dissertation. While the definition does not
require an order structure, in the applications which have
been made the spaces involved have been Banach lattices
and the lattice structure extends to the ultréproduét in
a natural way. Hence the present study has included these
order properties.

The ultraproduct procedure has an apparent defeét
in that it requires free ultrafilters which cannot be

explicitly constructed, but this is not as serious as

P



might be supposed. Many properties of the ultraproduct
may be obtained with merely the knoWledge that the ultra- .
filter used contains a given filter, and the utility of"
the construction is well established by the applications
in [3] and [4]. The property (which has been called cdupt—,
able intersection property) of a free ultrafilter of poss-
essing a countable sequence of elements of the filter whose
intersection is empty has shown itself to be useful. We

do not know whether every free ultrafilter has this prop-
erty.

In the references on ultraproducts cited above the
statement of the definition of an ultraproduct of Banach
spaces differs slightly from the one we have given in’
requiring a completion of the space as we have defined it.
Since we show that the space we have defined is alreadf
complete, our definition is not in fact different from

t

that already given.



1. PRELIMINARIES

In the rest of this paper we will let A denote an index
set which will be of arbitrary cardinality (although assumed
infinite) unless otherwise stated.

Definition 1.1 A filter on a set A is a collection

A of subsets of A having the properties:
(i) @£ A
(ii) EN F € A whenever E, F € A
(iii) If F e A and FC E, then E ¢ A

An ultrafilter is a filter which is properly contained in

no other filter.
Using Zorn's lemma it is easy to see that ultrafilters

exist and moreover, that any filter is contained in an

ultrafilter (although not unique unless the filter is it-

self an ultrafilter).

Example 1.2 Let a_eA. Define @ = {X S;Alaoex}

Then © is a filter on A which is in fact an ultrafilter.
This ultrafilter is said to be fixed at the point aoQ
Notice that {aO}EQ and furthermore, if A is a filter such
that{ao}eA, then A = Q.

Definition 1.3 A filter A such that N\{X|XeA}# @ is

a fixed filter.' Otherwise it is said to be free. A fixed

ultrafilter is of the type given in example 1.2.

- P




Example 1.4 Let w denote the positive integers and

let A = {Xcw|X® is finite}. Then A is a filter on w called

the Fréchet filter. If we let Q be any ultrafilter contain-

ing A, then since the sets [n,») all belong tao A, A must

be free and hence  will be free also.

Definition 1.5 A collection Y of subsets of A satis-
fying the conditions '
(i) @g¢gvY
(ii) If E, F € ¥, then there is a G € ¥ such that
GCENF
can be extended to a filter on A by adding all supersets.
Such a collection Y is called a base for a filter.

Example 1.6 Let B be a Banach space, let A be the

collection of finite dimensional subspaces of B. For each
F € A let |

X(F) = {GeA|FcG}.
Then {X(F)|FeA} is a base for a free filter on A.

The following proposition giving some well—kﬁown and

useful results on ultrafilters is included here for complete-

ness.

Proposition 1.7 Let @ be an ultrafilteér on a set A.

(i) For every XEA; either XeQ or X°eQ (where X©
denotes thé complement of X relative to A).
(ii) If the disjoint union AUBeQ, then either Aef or
Bén'(clearly not both).
(iii) If the disjoint finite union XfJXZG...OXneQ

then X;ef for precisely one i.




Proof: We will indicate a proof for statement (i). The
remaining statements follow from (i) in a straightforward
manner.

If there were én EeQ such that EcX, then XeQ. If
there were no such E then for every Ee, ENXC 7 ¥ so the
collection QUX® is a base for a filter containing {2, con-

tradicting the maximality of Q unless X%eQ. Q.E.D.

Definition 1.8 An ultrafilter Q is said to have the

countable intersection property if there is a sequence

2]

of elements of Q with (\ X, = 7.

109 Py i=1 %4

Since every intersection of elements of a fixed ultra-
filter is non-empty the only ultrafilters which may have
the countable intersection property are the free ultrafilters.

Proposition 1.9 Given an ultrafilter Q2 on a set A

the following are equivalent.

1° @ has the countable intersection property.
oo

2° There is a sequence {Xi}1

=1 of elements of Q such
that each aeA belongs to at most a finite number

of the Xi'

3° There is a sequence {Xi}:=l of elements of Q such

)
that [\ x, ¢0.
4° There is a sequence{xi}z=1 , with Xi¢Q for any i,

[o0]

such that %3

1 Xisﬂ.

Proof: 1° =>2°

Since  has the countable intersection property choose

00

(oo} . m i .
a sequence{Yi}i=l of ilements of @ with i Yi g. For

i = [
each new define Xn {21 Yi. Then XneQ for all new and
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n=1 n=1 i=1 i=1
Furthermore, +lCX for all new. Let ac€A. Then a bélongs
to at most a flnlte number of the X , for sincg the {Xn}
are nested, if ac /N\X for some subsequence (n ) of w

j=1 "3
then ae /ﬁ\ X whlch is impossible.

20 => 3°

Let {Xi]i=l be a sequence such that each aeA belongs to

at most a finite number of the {Xi}. Then [:\ X, = ges.

30 <=> 40

. . . c = . .
Since Xieﬂ implies Xi £9 and {i} Xi¢Q implies

( /ﬂ\ Xi)c = \Vj Xgen, 4° is just a restatement of 3° in
i=1 i=1

terms of complements.

30 => 1°

0 o0
) ; £ -
If b1 Xitﬂ then since X,eQ we haye X, xi\\(:\ XieQ
(o]
) X =
and i=1 Xi g. Q.E.D. '
A natural question to ask is, whether ultrafilters with
the countable intersection property exist..

Proposition 1.10 Every free ultrafilter on a set of

cardinality h% has the countable intersection property.
Proof: We may consider § to be an ultrafilter on the
set w of positive integers.
If M is a finite set, say M = {al, boioie an}, and if MeQ,
then M can be written as the disjoint finite union of ité

points so for some i, {ai}en. But then Q would be fixed at a .



Thus, since Q is free, © can contain no finite sets and
hence must contain the Frechet filter. Then the sets

Xi = [i,») have the desired properties. Q.E.D.

Proposition 1.11 Every free ultrafilter on a set of
cardinality c has the cbuntable'intersection property.

| Proof: We may consider 2 to be an ultrafilter on the

set [0,1). Consider the sets [0,1/2) and [1/2,1). One of

these sets belongs to @, call it Xq- Take Xy and split it

up into two equal parts in the same way. One of these
belongs to @, call it Xz. Continuing this a countable num-

ber of times we get a sequence {Xi}:=1 with the property

Al e A
thati=l X is either @ or a single point p. If =1 % = ")

then @ has the countable intersection property. If

/A} X, = {p} then {pl#N since Q is free so the sets

i=
Xi = Xi\\{p}eQ and {:& xi = § so Q has the countable inter-

section property. Q.E.D.

Example 1.12 An ultrafilter on a set of cardinality

greater than c which has the countable intersection‘property.
Let B = Ll(F) where the cardinality of I' is 2°.
Then B is a Banach space with a Hamel basis'of cardinaliﬁy
at least as large as 2€ so there are at least 2€ finite
dimensional subspaces of B. Construct the filter and ultra-
filter of example 1.6. Let {bi}:=l be a basic_seqﬁenée in
B and for each i define X; = {FeA|b;eF}. Since each finite
dimensional subspace F contains only finitely many_bi, F be-

longs to at most finitély many Xi.‘-Thus 2 has the countable



intersection property by proposition 1.9 (2°).

Let us recall now from Bourbaki [2] (Ch. 1), that if
Q is an ultrafilter on a set A and f is a mapping of A into
a set A' then f() is a base for an ultrafilter on A'.
Also, a filter base B on a topological space X converges
to a point xeX if every set of a fundamental system Of
neighborhoods of x contains a set of B. Now if A is an
index set and © is an ultrafilter on A let (X ) _. be a
collection of real numbers. This defines a function
T:A — R by T(a) = 'xa. Then T(R) is a base for an ultra-
filter on R. If this filterbase donverges to a number L
we write L = limQxa. Notice that L = 1im9xa means that
for every e€>o, {oeA]| | x,~L| <eleq.

Now 1f {x 3

oY sk is a bounded collect;on then the fllter—

base T(Q) lies in a compact set and hence coﬁverges which
means that limgxa exists. Fufthermore, since the fiiter G
induced on a set XeQ by the ultrafilter Q is itself an
ultrafilter, T(Q') will be a base for an ultrafilter on R
so limgxa existé provided only that the collection (xa)

XeQl is bounded. The converse of this statement is clearly

r

aeX

true, namely, if 11m9xa exists then for some Xef (xa)Olex

is bounded.

Since limgxa is defined in terms of the direct image

of an ultrafilter, all the usual theorems about convergence
of filters on R hold. 1In particular

(1) 11m9xa is unique

(ii) k = lika , k a constant

e



(iii) 1im5xa + y&\= limgx  + limgy
(iv) limd$ay&)= (limgxa)(limgya)
(v) limdx Vyu) = (limgx ) v(limgy )
Since the following result will be used many times, we will
sketch a proof of it.

Proposition 1.13 Let XeQ and suppose 0P for all

¥ aeX. If L = limyx, and L, = limgy  then L <L,.
L,-L

Proof: Suppose Ll>L2. Let €< 12 & .

Then

X, = {oea| [xa—Ll[<e}eQ and

X, = {aeA| |ya-L2|<e}sQ.
Let anr\Xlﬂ X,. Then x <y but
ya<L2 + s<Ll—e<xa which implies that
Xf\le]Xz = @ which is not possible since

<L,. Q.E.D.

X[\xlf\xzeﬂ. Thus L;<L,.
The following corollary foliows immediately from this

proposition together with the preceeding remarks. -

Corollary 1.14 Let Xe! and suppose |xa|§M'for ali

acX. Then lim X exists and

Y]
\llmQxJiM. »
For the sake of completeness we include some basic
definitions and theorems on vector lattices. For a more

complete treatment see M. M. Day [5].

Definition 1.15 Let V be a real vector space with

order relation >. V is a vector lattice if

(i) > is reflexive and transitive.
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(ii) translation and multiplication by positive
numbers preserve order; multiplication by
negative numbers reverses order.

(iii) x > y and y > x implies x =y and -.each pair of
elements x and y of V has a 1eastﬂupper_bound,
denoted xvy.

In the preceeding definition we assume that the con-

cepts of upper bound and least upper bound are defined in
a manner analogous to their definitions on the real line.

Definition 1.16 If V is a vector lattice than we may

define the greatest lower bound of two elements x and y by

XAy = -((=x)v(-y))

Definition 1.17 Let V and V' be vector lattices. A

function f:V » V' is a lattice homomorphism if

f(xvy) = £(x)vE(y) for all x, yeV.

Definition 1.18 A vector lattice V is boundedly

[o-] complete if each [countable] set A in V which has an

upper bound has a least upper bound. V is conditionally

oc-complete if each increasing sequence of non-negative

elements of V which has an upper bound has a least upper
bound.

Let us remark that conditionally 0-compléte is clearly
equivalent to the condition that every decreasing sequence
of non-negative elements of V has a greatest lower bound.

For a proof of the following proposition refer to

Jameson [g].
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Proposition 1.19 If V is a conditionally o-complete

vector lattice, then V is o-complete.

Definition 1.20 A vector lattice V is Archimedean if

x<o whenever for some y, nx<y for all neuw.

We remark that to show V is Archimedeaniit suffices to.
show that x=o whenever x,y>o and nx<y for all new.v

The following proposition is immediate.

Proposition 1.21 Every o-complete vector lattice is

Archimedean-.

Definition 1.22 A normed [Banach] lattice is a normed

linear [Banach] space which is also a lattice in which A and
Vv are continuous functions of both their variables.

Definition 1.23 An (AB)-lattice is a normed linear

space and vector lattice in which order and norm are related
by

@ 1 Il 1= 1=l

() 1f osxsy, then og||x||<|lyll

Proposition 1.24 An (AB)-lattice is a normed lattice.

Definition 1.25 A vector lattice Vv has semicontinuous

norm if for any decreasing sequence of non-negative elements

{x_} with greatest lower bound x we have
[Ixl| = inf | [x,||

Definition 1.26 An element s of a vector lattice

V is said to be positive complete if s>o and if sA|x| = 0

with xeV implies x = o.
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Definition 1.27 A Banach lattice is an (AM)—sEace

if norm and order are related by (A) and

(M) if x,y>o, then |[xvy|| = [[x]|v]]|y]l

A Banach lattice is an (AL)-space if norm and order
are related by (A) and

(L) if x,y>o, then ||x+y|| = [|x||+|]y]]
Notice that since (M) or (L) clearly implies (B) an

(AM) -space or (AL)-space is an (AB)-lattice.




2. TOPOLOGICAL PROPERTIES

Definition 2.1 Let A be an index set and Q@ an ultra-

filter on A. Associate with each aeA a normed linear space
La' Form the product Space aEALa and denote by Lo the
linear subspace
L, = {{xd}e GEA Lul there is a real number N>o such that
||xa||§N for all aeA}
Define a semi-norm on L, by putting
|| Gx | = dimg | x|
Letting N be the subspace of L, consisting of the elements
of semi-norm zero, form the associated normed space
L = LO/N.

We will call a normed space L constructed in this manner

an ultraproduct space.

Let us remark that this definition does in fact make
sense. LO is clearly a linear space and the properties of
limits imply that | is in fact a semi-norm. Notice

L
o

also that since every element of N has semi-norm zero, -
||{xa}+N||L = [|{xa}|lLo where {x } is an arpitrary
representative of {xa}+N.
Recall that if E and F are normed spaces then the

distance from E to F is

-13~-
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d(E,F) = inf ||T|]-]|T71]]

where the infimum is taken over all isomorphisms T and E
onto F.

Proposition 2.2 Suppose L and L' are ultraproduct

spaces indexed by the same set A and using the same ultra-
filter Q. Let Kew. If'd(La,L&)EK for all oeA then
d(L,L') <K.

Proof: Choose €>0. Since d(La'L&)§K we can find an

isomorphism T :L -L' with ||T | [T—l[I<K+e, for each
o o o o o ,
oaeA. Furthermore we may assume that llTa!| = IIT;1||<¢K+E.

Define a mapping T:L -+ L' by
- v
T({xa}+N) = {Ta(xa)}+N A

T is clearly linear and onto since each Ta is. Furthermore,

the inverse of T is the mapping T—lzL' + L given by T—l({x&}+N')=
-1, ,y

{Ta (xa)}+N.

To show T is an isomorphism we observe that

Hrgxd 11 < LTIl + Hixgll < /&% [ ]x,]]
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so again by proposition 1.13
[1em, (xg) M < /T ||} |
which shows T is continuous and ||T||</K+e. The continuity
of T"1 follows from the continuity of each T;l in the same
way. Thus T is an isomorphism and furthermore the ?roof

shows that d(L,L') < ||T]|] - IIT-lII

< K+e. Since this
holds for every e>o,

diL,L') £ K. Q.B.D.

Theorem 2.3 If each La is .a Banach space so is the
ultraproduct space L.
Proof: Let <{x2}+N>n be a Cauchy sequence in L, where

the representatives {XZ}ELO are chosen arbitrarily. Since

n m = n m ;
||{xu} + N-{x HN || = [[{x } - {x }|
the sequence <{x2}>n is Cauchy in LO.‘ We will show that
n .
<{x_ }> converges in L,
For every pew, the positive integers, there is an

integer Np such that for n,m>N

pl
™) - (™)) < &
o cl 2p ¥

Without loss of generality we may assume the integers Np
are chosen strictly increasing. Furthermore, if n,m>Np

a1
and e<;§ - ||{x2}-{x§}|| then X = {aea| | IIXE—XEII

& '|{x2} - {xz}|| | <e} e implies | xz—x2|| . iﬁ_for all

aeX which means the set
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n,m n__m 3
A’ = {oeA X =X < = €N
: NIEEA IR
Np'Np+l 3
Let Ap = Ap for every pew and let Bp,= i=18y-

Since each ApeQ and Bp.is a finite intersection, BpeQ also.

Furthermore, by construction, Bp C B for all p>1.

p-1
Define an element {Za} of the product space as follows:

2 =o0 for aeBc
o 1
o P
Za X, for aeBp_i\Bp
N, [“1
Z = lim x for ae | I B
o oo o ; p= P

Let us first remark that this definition does in fact

make sense since in the first place Bp CB foriall'p>l

p-1

implies the second condition is meaningful and also that

the three given conditions exhaust all choices for a. In

the second place, for any,ae£:} B_ we have aeAp_for all

B

Np+1 ki, P
ap RS 5 for all pew. This implies

N
‘pew so that Hxap - x

the sequence <xap>p is Cauchy in La since for any €>o we

may choose p so that 2 l? <g. Then for u, v>p, and
t=p 2

without loss of generality with u>v, we have



I 2 V1] < ]I,

Now by hypothesis each Lu is complete so the Cauchy sequence

< xap>p converges to a limit which we will denote by Zd'
Having shown that the definition of {Za} makes goad

sense we will next show that{Za}e L,- To do this we myst

show that there is a number M such that

|[Za|] < M for all oeA.

N :
Since {xal}eLo we know there exists a number M; such that

N
||xal||5M1 for all oeA. Choose any M>M;+l. For aeBi,

z,=o0so ||z || = oM. Suppose 0eB__\B for some p.
1 1
then 2 = =P so |[z|| = ||x.P]|<||xPx* [[+]]x}]].

But aeBp_l implies aeBg for all s<p-1 so we have

N N N N N N
1 -1 -1 -2
[ P-x L[| 1% P-x P~2] | 4] [x P 1ox P72

p-1.
L} lE <1
t=1 2

N
and thus ||za||51+||xal][§1+Ml<M. Finally, suppose




= N
(«\ B . Then z .=-1im x p. Choose‘e<M— M +1 d
ae p:l P (o] p_mo o ( ) bt

choose p so that ||z -x pll<€. Since oe r\\ B 1mp11es
p=1 P :
that aeBp_l we can use. the same constructlon as in the

N :
preceeding case to get_||xap||§Ml+l so we have.
. Np Np
Nz, | 15112 =% P +] %P |
S e+ (M+1) < M.

Thus ||z _||<M for all oeA so {z }eL .
o} o o
We claim now, of course, that <{x2}>n converges to
{za} in Lo. Since L is a semi-normed space it suffices
to show that some subsequence converges to {z }. We shall
show that the subsequence <{x p}> converges to {za} in L,

This means we must show that for every e>o there is a PEW

such that for szp, l|{xzs}—{za}]|<e. By corollary 1.14

it suffices to show that for every e>0 there is a pew such
that for each s>p there is a set C_eQ such that I[xzs—zallke
for all aeCg .

Let e>o0 and choose p so that | EE <% . Let s>p and

let C, =B Let aeC_. Then either uqu_i\Bq for some

g>s or oe
NP
x 4. Now aqu_l implies aeB for s<r<g-l so we have

o S ose oeB B_ for some g>s. Then
Bp+ Suppose aeB, By b

s’
)

(1
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0
!

< |lx
N N
s+1
+ ...+ ||xa -xasll
gq-1 e
1 1 £
<1 ;g €1 EE < e
t=s t=p

N
On the other hand, if ae{ﬂ\ Bp, then z, = lim xap

p=1 : pre
so for some integer g2s
N
B | L
1z -x 3l < S .

By the same construction as in the precedihg case we have
q s € Ng s
| 1x,7-%,||< 5 so we get ||z -x | | <e. Thus, ||za-xa | | <e
Ng
for all aeCg so ||{z }-{x, }||<e for all s>p and hence
N
{z_} = lim {x P}.
o a
p-}OD
To complete the proof we need only notice that

n n,, .
|1 {xy} —{za}llLo = Il{xa}+N—{za}+N||L

so <{x2}+N>n converges to {z }+N in L. This L is complete
and therefore a Banach space. Q.E.D.

Things would be particularly nice if there were some

relationship between convergence of a sequence in an ultra-

product semi-normed space L, and coordinatewise convergence,
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that is, convergence in each coordinate. However, as the
next three examples show there is no relationship between
them even in the simplest of cases.

Let Q be a free ultrafilter on the set w of positive
integers and let L be the ultraprodudt space formed by
taking a countable number of copies of the reél numbérs ;2

Example 2.4 A sequence which converges coordinatewise

but does not converge in Ly -
let {xi}eLo be the element with xi=l for all

iew. Define a sequence <{y2}>n‘in L, by

y; = 1 for izn
n :
y; =n for i>n

Then for each iew, n2i implies y?=l so the sequence <'{y2}>n
converges coordinatewise to {xi}. But for any‘pair of
integers m,n, since Il{y?} - {y?}ll = |n-m| the sequence

<{y?}>n is not even Cauchy in L, and hence does not converge. -

Example 2.5 A sequence which converges in L, but

does not converge coordinatewise.

Let {xi} be X =0 for all iew.

Define <{y2}>n by

y? = 1+(—1)n for ign
n 1 .
I _for i>n.
If e>o choose n so that %<e. Since {iew|i>n}eQ we have the
set
{iew| |y5y-x.| = L ceren
i7i n
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n . _
s . "

so <{yi}>n converges to {xl} in L Oon the other hand,

for any iew and n>i y? alternates between 0 and 2 so

does not converge.

Example 2.6 A sequence which converges both coordin-

atewise and in LO but to different limits.
Let {xi} be xi=l for all iew and {zi} be

z,=0 for all iew. Define
n n_ ;
<{yi}>n by yi—l o 1en

y.=% for i>n

As the preceding two examples show, <{y2}>n converges
coordinatewise to {xi} and in L, to {zi}. But clearly

{xi}#{zi}, even modulo N.

Let A be an arbitrary index set, Q an ultrafilter on
A, XeQ and L the ultraproduct space formed by taking for
‘all L, the same normed linear space for all aeX and arbi-
trary L, for aeA\X. Consider the collection Do of elements
of L, of the form {xa} where X,=Xg for all a,BeX and X =0
for all aeA\X. DO is a linear subspace of Lo Further-
more, since ||{x }|| = limy |[x || = ||x || where aex we
see the semi-norm on Lo is a norm when restricted to Do'
This means the quotient map of LO+LO/N is a one-to-one

linear isometry of DO into L. Let D be the image of Do

in L. Then D is isometrically isomorphic to Dy

Definition 2.7 We call the subspace D of L constructed

above the subspace of diagonal elements.

Aoy
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Proposition 2.8 The subspace D of diagonal elemgnts

is isometrically isomorphic to L&.

Proof: Since we have already observed that D is
isometrically isomorphic to D, we need only show D, is
isometrically isomorphic to Lo- Let T: La—>LO be defined by
T(x) = {Xa} where x =x for all aeX and x =o for all aeA\X.
Then T is clearly linear and . £

e[| = |1 {x ] = timg [Ix [ = [Ix |1 = [lx]|
so T is an isometry. Q.E.D. '

Notice that although D is defined relatiVe‘to a set
Xef) proposition 2.8 shows that different choices of X with
the same La give isometrically isomorphic spaces D.

Example 2.9 Let A be an index set, § an ultrafilter

on A and La a real inner product space for each aeA. The

ultraproduct space L is aiso a real innér product space.
Denote the inner product in L, by XY W

shall assume that in each L, the inner product is positive

and non-degenerate, that is, it satisfies

< + 2 > = <& Z > 4+ < z >

XK ¥yr2g Xar?q Yyr2g

< +z > = < > 4+ < >

Xa'Yo % xa’yu Xa’za

<AX > = A<x > A a realn er
'Y t¥s” al numb

<X Ay > = A<x >
3 7 Ty a' Yo

<x > < X >
o' Yo ya’ o
<X ,x > > o0 for all x eL

o’ "o o o

<x ,x > = o implies x = o.
o' "o P o
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This inner product defines a norm in L, by

2
||

1|xa = <Xar¥Xy®

and in addition, the Cauchy-Schwartz inequality
lex_ v | <llxgll -+ 1yl
is consequently satisfied.
Define an inner product in Ly by
<{Xd}'{ya}> = limg <x .,y >-
We shall show that this is in fact a positive inner product
and the semi-norm it generates is the same as the usual
semi-norm of LO. We will then use thisvinner product to
define a positive, non-degenerate inner product in L in a
natural way. '
To begin with we notice that since{xu},{ya}eLo there
exist constants M,M' such that ||xa||§M and ||ya||sM‘ for
all aeA. By the Cauchy-Schwartz inequality in L,
lexgy | < Hlxgll + Hlygll < memr
so the numbers {<Xa’ya>}aeA lie in the compact set
[-MM',MM'] which means the limit limg<x;,ya> exists.
Next notice that from the properties of limits we immed-
iately get the bilinearity and homogeneity since, for example,
<{xa}+{ya}'{za}> = limg <X Y 124>

= 1 < >+< z >
lim, ( X, 12y Yqr 0‘)

i < >+ lim. <y -,z >
1lmQ XarZa 0 Yar?o _

<{xa},{za}>+<{ya},{za}>

and also
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<A{xa},{ya}> = liinQ AX rY,>
= limQ A<xa,ya>
= A limQ RIS P
= A<{xa},{ya}>
Since <Xu'ya> = <ya,xa> for all oeA we have
<{xa},{ya}> = <{ya},{xa}>. Furthermore, since each
<X X > 2 o we have <{xa},{xa}> = limQ <X X > 2 0 also

by proposition 1.13. Thus we have indeed defined a posi-
tive inner product on Lo' Since

<{xa},{xa}> = lim X,

2

<
Q Xa

Limg | |||

(Limg ||x | ])?
(1 tx 3 2

we see that the semi-norm defined by the_inner’product is
the same as the usual norm in.Lo. . .
Since N consists precisely of those elements {xa}
with (Il{xa}||)2 = <{x ), {x,}> =io’we may define an inner
product in L by.
<{x HN,{y HN> = <{x }, 1y }>.
"Provided this inner product is well-defined it will be

positive and non-degenerate making L a real inner product

space. To show this operation is well-defined in L suppose

{xa},{x&},{ya},{y&}eLo with

| [{x }-{x }|| = o and | [ {y 3={yy | = o.
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Then <{xa},{ya}> - <{x&},{y&}>

<{xa},{ya}> - <{x&},{ya}>

+ <{xld Ay > - <dxl Y.y}

e ' 1 e 1
<{xa} {xa},{ya}> + <{xa},{ya} {ya}>a
But by the Cauchy-Schwartz inequality :

i ' .
[ x 3=t | 1y

| <{x I-{x } vy }>| < =0
and |<{x\}, {y -1y 3> s [1{x ] - [y d-{ygdIl = o
so <{xa}’{ya}> = <{X&},{y&}>.

Notice that this result together with theorem 2.3 yield
the following corollary.

Corollary 2.10 An ultraproduct of Hilbert spaces

is a Hilbert space.

Example 2.11 Let A be an index set, { an ultrafilter

on A, XeQ and for each aeX let L, be R and for each
oeA\X let La be any normed linear space. The resulting
ultraproduct space L is isometrically isomorphic to R".

We shall show that every element of L belongs
to the closure of the subspace D of diagonal elements. As
D is closed and isometrically isomorphic to R® we will have
the desired result.

Define for each i=l, 2, ..., n the element of Lo

{e;} by e; = {6, sssi ) 1y Oy +es 08) 1L weX
i ' .
e = o if oaeA\X.
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Then for each i, {e;}eDO. Let {za} be an arbitrary element
of Lo and choose e>0. There 1s a constant M such thét

IlzallfM for all aeA. In particular, for oeX we can denote

z_ by z := (al, az, ..., @) which means that |a'|s<M for
a o a’ “o a o

i=l, ..., n and for all aeX. Choose a 6< £ and let p be
2 /n |

an integer such that p>—% . Foreach k =o0,1, ..., P

and each i =1, 2, ..., n define sets

- Ry _ - :
Ay = {oeX|[-M+ks < a < M+(k+1)§}.

Then for each i = 1, ..., n the collection {Ai}£=o is a

collection of disjoint subsets of X such that

P .1. p i p

n
X=UAk=UAk=...=UAk.
k=0 k=0 k=0

For each k=0, 1, ..., p and each i=1, ..., n define

elements of L_, {xz’l} by

xﬁ’i = (0, ¢.0, O) if an\Ai
2 (O saop Op L) 05 oo 0) Lf ueAi
\~"z"\~_,/ '
= o if aeA\X.
Now for each i = 1, ..., n, precisely one of the sets

ip i k,i,_ . i
{Ak}k=o belongs to Q. If AkeQ then {Xa, }—{eu} (mod N)
. 1 i Bl g
and if Ak¢Q then X\A €€ SO that {xq }={o} (mod N). For

each k = o0, 1, ..., p define a scalar by tk = -M+k§.
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Consider the element of L, given by

E Y § ek
{za} [ izl g t {x 7}
For each i =1, 2, ..., n, giveh any coordinate aeX there
is precisely one index ki such that aeAi.. We. thus have

i
for any aeX

1 n, o g 1]
(a ’ e o o g a )- 2 E t b 4 !
L5 % i=1 k=o k™

N
|
o~
~710
rr
=
»
s
=
Il

kifi

. QO

(al an)—‘ﬁ'ﬁ %
s © e o g .
o’ o i=1 k1

A ; ' n
(aa-(—M+kl<S) EERL (-M+kn<5) )

But for each i, aeA; implies osa;—(-M+kiG)<6 so we must

i
have for any oeX
n N
K1 :
lzg- € 1§ gaddg
¢ i=1 k=o Sl

|| (ak= (-1, 8), ..., al- ek 6)) ||

A

[1(8, «ovv )]

= vn § < ¢

Since this inequality holds for all aeXeQ we have

n E iy
JECREI g £ Uxg "1 <e

i=1 k=o
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But now we notice that
n ! n :
k,1i k;1
I ¥ ﬁt{x’}]+N=2(§t{x’}+N)
B jeg g
& i
= ] b, ({e }4N)
i=1l
where for each i = 1, soasy N, bi is the sum of those t,
for k such that {xﬁ’l}# o (mod N). Therefore, since:

n

izd- 3 3 g6t
k=0

2 § k,i
i i ’ .
= Il{za}+N [ _Z ) t {x }14n| |
i=1l k=0
we have shown that {za}+N lies in the closed linear span
of the <{el}+N>. . since all of the {el}4N lie in D we
o iew , o ‘
are done.

Example 2.12 Let A be an index set, Q an ultrafilter

on A and XeQ.. For each aeX let La be an n-dimensional
Banach space and for each aeA\X let L, be any normed linear
space. The resulting ultraproduct space L is isomorphic
to R'. Moreover, d(L,Rn)fnz.

We will first sketch a short proof of the known
result that if E and F are n-dimensional Banach spaces,
then d(E,F)snz. Since E and F are finite dimensional we
may choose normal bases (ei) and (fi) in E and F respectively

* %*
with coefficient functionals (ei) and (fi)° Define a

linear bijection T: E-F by



Then for each eiement E aieieE and any k, 1l<k<n, we have
i=1

* n
Iakl = llakekll B Ilek (izl aiei)ll

n

stegll 11 1 age;

n

= || I oagell
i=1

which yields

so we have ||T||sn. A similar argument shows that ||T;1J|5n
also, so we have d(E,F)snz. Now since La for oeX is an
n-dimensional Banach space this implies that d(La ,Rn)snz.

To complete our proof, denote by L' the ultraproduct
space we get by taking for each aeA\X the same Banach space
La as in L and for each oeX taking La = R". By example 2.11
L' is isometrically isomorphic to R®. Then for each aeX,
d(La' L('x)_<_n2 and for each aeA\X, d(La’ L&) = 1 so by

™

proposition 2.2, d4d(L, L')gnz. Since d(L', R = 1 we have

the desired result.




Theorem 2.13 Let A be an index set and f an ultra-

filter on A having the countable intersection‘prOperty.
For each aeA let L, be an Banach space (either finite or
infinite dimensional) . The ultraproduct space L is finite
dimensional if and only if for some integer n the set’
{aeA| dim Ly = n} belongs to . Otherwise L is non-separ-

able.

Proof: If for some n, {aeA| dim L, = nl}eQ then the

preceding example 2.12 shows that L is isomorphic to R? so
dim L = n. To show the converse, suppose that for no
integer n does the set {aeA| dim L, = n} belong to Q.

Since 2 has the countable intersection property we

[ee]

flnd a sequence {D } _, of elements of 2 such that
f\ D, = #. Furthermore, we may assume that D; 1805 for
all iew. Since Ae we can write A = AlLJAz where A, =

{aer| dim L, = =} and A, = {ceA| dim L,}< = and have either

Alsﬂ or AzeQ.

Suppose AleQ. Define for each iew the set Xi =.Diﬂ Al

Then X,eQ, X; 4 c X for all iew and f\\ X, = g. Further-
i=1

more, for each ueX'\X dim La = «, On the other hand,

i+1l’

suppose A,eQ. For each new write

B, = {aeA| dim L = n}.

By hypothe51s, no B belongs to Q. Furthermore, for each

Mew, k,) B £Q either for if \,} B e then since thlS is
i=1 i=1
a finite disjoint union we must have BleQ for some 1,
M
1 < i < M contrary to hypothesis. Then since \ B;#%
i=1
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we must have \~J BiEQ for all Mew. For each new we define
i=M
the set
[o o]

X, = pnﬂ
Then XnEQ, xn+l g,xn for all new and g:} Xn =.d. Furtheri

more, for each aeX \X dim L > n+l.

n+1'

n g i
For each aeA let <Xa>n be a normal basic sequence in

L, (we understand that if La is finite dimensional this

sequence will have only a finite number of terms). ‘Then

legll = 1 for all n and for any m,n with m#n

[l ~

m
o xull > 1.

Form in LO the set S of all elements of the form {za}

where for each oaea, zasLa is one of the xg for some n.
m
Consider two such elements {za} = {xaa} and {z&} = {xaa}.

n

g @ ol )
Then {za Zu} = {xa X, | Con81Qer the set

nd. mOt C._; .
C = {GEAlxa -x, = 0}. Either CeQ or C-eR. If CeQ then

n. m
||{za—z&}|| = o. If C%Q then llxaa-xaallzl for all aeC®

so ||{za—z&}l|31. Thus C%Q implies {z }{z)} (mod N),
Let A denote the collection of all those subsets F of S
with the property that for any pair of elements {za},
{z&}eF wé haye {za}#{z&} (mod N). Partially order A by
inclusion and let I be any chain in A. Suppose {Za}’

{Z&}EKJF. Since T' is a chain there is an Fel' such that
Fel

] 3 3 1 : v
{zu}, {za}eF. This then implies that {za} # {Zu}
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(mod N). Therefore L_J F is an upper bound for I in A
FeTl
so by Zorn's lemma A has a maximal element.

Let F be a maximal element of A and suppose F is:

countable. Enumerate the elements of F by {zi},

{zi}, ... where each {z;} = {x];(a’l) }. Construct an

element{za}eLO as follows:

(o]

(o]
For each of LJ Xn’ z, = O. If ae Ld} X then since

. n=1 : =1

C}l Xn = @4 there is an n such thatann\Xn+l. Let

2= xk where xk is chosen so that xk # xk(a’i) for an
o o o : o o Y

i<n. We may do this since dim La>n. Then for anﬂ\xn+l
i . g
we have z, # z, for any i<n. Choose any mew and consider

{za—ZS}. By construction, ' for any ae \J Xi we have
i=m

1 #_22 which as we have already noticed means that
m - " ; : ,
Ilza—zallil. But }:A X;eQ so.this implies that

m
ll{za-za}llil

and hence {za} # {22} (mod N) for any mew contradicting
the maximality of F. Therefore, F is not countable.
Since F is uncountable there are an uncountable
number of elements of the unit sphere of L which are ani-
formly far apart. This means L ‘is not separable. Q.E.D}
Having examined the structure of ultraproduct_spaces
it is natural to turn to the question of what the dual of
an ultraproduct space is. It appears to be difficul£ to

answer this question completely but some partial results



can be given.

Let L be an arbitrary ultraproduct space with index sct

A and ultrafilter Q. For each aeA let La = L; and form the

ultraproduct space L using the L,-

A

Theorem 2.14 L is a linear subspace of L*,

Proof: Denote the semi-normed space associated with

L by Lo. Define an operation on LO X Ly by
* = 1 *
<{xa}, {Xa}> limg<x ,x*>

The properties of limits immediately show that this is a

bilinear operation on L_ x L_ and hence {xa}eLo acts as

a linear functional on Lo. We need to show this functional

is continuous.

Since |<xa,x§> - lim9<xa,xa>|<e implies
| I<Xa’x3>| - Ilim9<xa,x&>l |<g we have

limQ|<xa,x§>| = Ilim9<xu,xa>|
and thus

|<{xa},{x3}>| | Limg<x  , x> |
limg|<x,, x*>|

< Timg|[xx[ ]+ I,

e anEes

which shows that the linear functional {xa} is continuous

and further, that its norm in Lg is less than or equal to
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]I{xa}lli . On the other hand, given e>o we may find in
o

each L, an element x with l]xall = 1 such that

| |]x3|l—<xa,x3 > < %. For some set B,eQ, 0eB; implies
| <xgxd>-<{x }, {x*}>]< %

and for some set BzeQ, ozeB2 implies
| IIxxl =11 {x2 | |< 5

so for ueBlr7B2
I<{xa},{xa}>—l[{x3}|l | <e

which means that since

103} Iy = sup ey}, x2D
o. LO H{xa}H:l o o
the norm of {x*} in L} is at least as large as ||{x&}||Lo.
Hence ||{x&}||L3 = ||{x3}]|£0 so L, is a subspace of Lj.

To complete the proof, define an operation on L x L by
<{% }+N,{x3}+N> = <{xa},{xa}>. To show this operation
o

is well-defined suppose
ll{xa}-{ia}l[ = o and ||{x3}—{§3}|] =V,
Then |<{x }, {x*}>-<{x_}, {x*}>|
= | <ix ), {xg1>=<(x 1}, {xx}>

+<{x, ), Ix2}>-<{x _},{x2}>|
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Il

| < (xg )=, b L by}, (xg )= (31> |

| <lx }={x b, {x2}> | +] <{x,}, {x2}-{x2}>|

A

<IHx 3=z}

| A1+ TR 3L+ | (erd= (R3] |

= 0.

The bilinearity and continuity follow immediately from that

f <o, L. x Li.a
o i on L_ "



3. LATTICE PROPERTIES

In order to define a natural lattice structure on an
ultraproduct space L we will see that not only do each of
‘the spaces L, have to be lattices but in fact they must
also satisfy property (AB). We Qill therefore assume for

the best of this chapter then each L, is an (AB) lattice.

Definition 3.1 For {Xa}' {ya}ELo define

{xa}v{yu}= {xuvya}.in L,

and

({ xa}+N)v({ya}+N) = ({xa}v{ya})+N in L.

This operation is clearly a supremum in Lb which makes
L, @ vector latﬁice since each L, is a vector lattice. 1In
order to show that 3.1 gives a well-defined operation in L
we first observe that (Luxemburg and Zaanen [8], (p. 64)),
we have I(xJ\za)-(ydAza)|+|(xavzai—(yQVZa) .

= |x -y,| |

so that |(xavza);(yavzu)Iﬁlxa—ya||. Using the (AB) properties

in Lu>yields

| (xgvz ) -y vz ) [ <] [x,-y, |

Now {x }v{z }-{y }viz } = {xavza-yavzu}

80 II{xa}v{za}-{ya}v{za}ll ||{xavza—yavza}||

| [ )=ty 3l

| A

A3 =
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Thus, if {xa} = {ya} (mod N), then for anyv{zu}eLO,
{xa}V{za} s {ya}V{zu} (mod N). Now suppose {xd} é‘{id}

(mod N) and {ya} = {§a} (mod N) then

{xa}v{ya} = {Xa}V{ya} = {xu}v{ya}'(mod ﬁ)‘so the:oper—
ation of 3.1 is well-defined and makes L a vector lattice.

Proposition 3.2 L is an AB-lattice.

Proof: To begin with notice that

I{xa}[ = {x }v{o}+ -{x }v{o}
= {x vol+{-x vo}
= {x vo+(-x ) vol
= {Ixul}
so that
1G] 11 = 1Hxg 1311 = imgl | Ix,] |1
= Limg| |, |
= ltx ]

so L_ has property (A) . Furthermore, if {xa}i{ya} then
{xavya} = {x tviy, } = 1y, }

so TV, =¥, for all oeA which implies that X <y, for.
all aeA. Thus {o}i{xa}i{ya} implies o<x <y for all oeA

and hence oi||xa||i||ya|| for all aeA so by proposition 1.13

o<| [ {x |11y 3|

P

and thus Lo has property (B) also.
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Now since I{xa}+Nl {x NN+ = ({x }+N) vN

({xa}Vo+ —{Xu}VO)+N

| {x }|+N

and LO has property (A) then so does L. Furthermore,

{xa}+Ni{ya}+N means that

{ya}+N = {Xa}+NV{ya}+N = {xa}V{ya}+N

which implies that there exists a {za}sN such that
{ya}+{za} = {xa}v{ya} or {ya+za} = {xavYa} 50 y *z, =
X VY for all aeA. This implies that

xa:xavya = yu+zu for all aeA,
which is to say we can find representatives

]

{xa}e{xa}+N and {ya}e{yd}+N ‘
such that {xa}i{y&}. Thus if Ni{xa}+Ni{ya}+N we may choose
representatives {XG}E{Xa}+N and {ya}e{ya}+N so that
{o}i{xa}i{ya}. Since L, has property (B), L will have (B)
also. Q.E.D.

By the preceding proposition 3.2 together with'propo—

sition 1.24 and theorém‘2.3 we have the following corollary

which implies that v is a continuous operation on L x L.

Corollary 3.3 L is a Banach lattice.

Proposition 3.4 L is Archimedean.

Proof: Suppose {Xa}+N3N' {Ya}+NZN and n({xa}+N)
<{y }#N for all new. Since L is (AB) we then have

[In(lx 348 || = nl [ (x 48| < ||y den]]



for all new and since R is Archimedean this implies that

|| {x }+N|| = o. since L is a normed space, {x }+N = N.

0.E.D.

Proposition 3.5 If each L, is an (AM)-space, so.,is L.

Proof: Suppose {xa}+NzN; {ya}+N3N. Choose represen-

tatives {xa}io and {yu}io. Then x >o and y >o for all oeA

‘ so since La satisfies property M we have
[xgvygll = 11 = Ivlly,l] -

Then ||{xa}+NV{yu}+Nl| ll{xavya}ll
Limg| vy, | |
= limg|[x | [v]|y,l]
= 1img| %yl v Limg] |y, ||
| x| v Ly ] |

so L satisfies property (M) also. Q.E.D.

Proposition 3.6 If each L, is an {(AL)-space, so is L.

Proof: Letting {xa}+NzN, {ya}+N2N;and choosing repre-

sentatives as in the proof of the preceding proposition 3.5

we have x >0 and y >o for all aeA. Then

[ trg bty 14| | = ||ty 3|
limQ|lxa+ya[|
- vin | x| [+] 17,11

= limg||x, | |+1img] |y, |

x| |+ | Ly J4n] |

so L has property (L). Q.E.D.
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Lemma 3.7 Given a sequenCe<{x2}+N>:=l of elements of
an ultraproduct lattice L with {yu}+N % {x2}+NI§ {x2_1}+N
for all new and for some {ya}ELo' we may choose represen-

—n — -
tatives {x }e{x"}+N so that {y_} < (%X} < & l} for -all
a o a o’ - o v
new.

Proof: We first notice that we may choose represen-

tatives {xg}e{xg}+N such that {xz}‘f_{xg—l} for all new as

follows. Since {x2}+N < {x2—1}+N for every new we have

{x2}+N

(GP3m) A (271

n n-1
({x } A {x, "H+N
which means that
n n-1 n
{xa} A Ixy T oelx N | .

o PN | i TR b | o RSy 1) 02
set {x 1} = {x_}, b b= {xa} A {xa}, {Xa} = f*a} A {x]},
etc. Continuing in this manner we get the desired repre-
sentatives. To complete the proof notice that since
-{x2}+N = {x2}+N we have {y MN < {x2}+N for every new so
that

({yu}v{gg})+N = {;2}+N
or {ya}v{QZ} € {;2}+N = {x2}+N°
Also, since {x%} < {x271} we have
y vix} < {y hvix®™h

Setting {iz} = {ya}V{xg} we have the desired representatives

since

-n, _ n n
{xa} = {ya}v{xa}s{xa}+N
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and o .
ty,} < (80 < (271

} for all new. Q.E.D.

Lemma 3.8 If Xe2 and Xafya for all oaeX, then
{xu}+N < {ya}+N.

Proof: For each oaeA\X define Ty = oY, and let
255 0 for all oaeX. Then y +z 2>X for all aeA and further-
more, ||{za}ll = o since ||Zall = o for all oeXeQ. Thus
{ya+za}e{ya}+N so we have {Xa}+N.5 {ya}+N. 0.E.D.

If each L, is o-complete it is clear that L, is
o-complete also. Moving up to the space L appears to require
more hypothesis.

Proposition 3.9 "~ If each L, is a o-complete (AL)-

space with semi-continuous norm, then L is o-complete.

Proof: Let <{x2}+N>n be a decreasing sequence of non-

negative elements of L. Denote x = {X2}+N and a =
inf |[x || = lim||x || since x <x _, implies ||xn||5I|xn_l|].
n n->oo i’

We will find an element yeL with y>o and y<x  for all new
such that ||y|]| = a.
To define y first choose rep‘resentatives.{xg}‘exn so

that oj{xg}g{xg—l} for all new by lemma 3.7. Let

v 5 ..v 1
A = tocal | [12]-]1x,11 | /< b,
-
Then A e for each new. Furthermore, letting s = ( A,
i=1

Sn€Q also. Define an element of Lo as follows.

¥y =2 if a¢51
_ .n .
b X, if aesé\sn+l
' n '
y = inf x if as(\.s
o 8 o . n
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Then y <x, for all aeS ~since either Y, = %, for some
m>n or y = ing xg. This implies by lemma 3.8 that
n
{ya}+N < % fqr all new.
Since clearly og{yu} all that remains is to show that
[ [ {y I = a.
Let e>o and choose n, so that
|| x. ||< a + = and 2igE
n 'l-= 2 n e
o o
¢ — .m Sy n
For any aesno either Y = Xy forlsome m>n, or y = 12f X,
In the first case, aeS_ so | ||y ||-1]x_|] | < I HEE
! m Yo m = m -.ng 2
and
| Hxgll-al < 550 | [ly,ll-al<e
: " iy 2 f j.n
In the second case, y = inf x  implies [|ya|| = 1nf|jxall
n ' W

since each La has semi-continuous norm and hence there is

a n;>n_ with L < £ such that
-0 n, 4
n
1
B EANE L
n
: 1 1
since ses, | |1x *|I-l1x, 11 | <& <§
il
€ :
But | [|x ||-a] < 5 so we again have
n, -

| Ilyall—al< e for all aeSnOeQ

which implies that

[y 31 = Limg| Iy || = a.
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To complete the proof, suppose {Za}+N & {x2}+N for
all new. Then {z MN Vv {y N < {22}+N'for all new so
. n '
|| {2340 v {y ]| < 12f|l{xa}+Nll = | [y || -

But by property(L)in the space L,

| [{z 4N v {ya}+N|| = ||[{z 4N v {ya}+N—{ya}+N||

NTTERTY
which implies ||{z }+N v {ya}+n - {y MN|| = o.
o o

Hence {za}+N v {ya}+N = {yu}+N
that is, {z MN < {y N
so {ya}+N = igf{xz} +N
and thus L is o-complete. Q.E.D.
It is unknown at this time whether the hypotheses
of proposition 3.9 could be weakened. It would be of ?ar—

ticular interest if the (AL) condition could be dropped.

Proposition 3.10 If eachLOl has a positive complete
element, then so does LO. '

Proof: Let S, be a positive complete element in La'
Since each s >o, {s }>o also. Suppose o = {s } A l{xa}l =
{s 1 A {|x,]}. Then {saAlxal} = o implies SaAlxa! = o for
all aeA which implies x = o for all oeA so {xa} = o.

Thus {Sa} is a positive complete element in L_. - Q.E.D.

Example 3.11 1L need not have a positive complete

element, even if each L, does.
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Let 2 be a free ultrafilter on w and for each
iew let L; = 12 with the usual order on 22. Since 22 has
a positive complete element, for example (1, %, %, o)
it remains to show that L does not have a positive complete
element. |
Given x = {s; }4+NeL with x>o we show that x is not a

positive complete element by producing a zeL such that z#o

and zAX = o. We may suppose that sizo for all iew.  Let
. i
P L B S b
Since (s;)jalzithere is an ‘index j(i) such that

i 1

Sj(i)<I' Let wieﬂz be (w%)j where

wi(i) =1 and w? =0 for J # j(i) |
Since Ilwill = 1 for all iew, {w,}eL  and [I{wi}ll =l
Letting z = {uw; 14N, llz|| = 1 so z#0. Now zAx = {wiAsi}+N.
But w;As. = {1 PRI S%(i)’ 6, «is) so since o<s§(i)<%,
||wiAsil|<% which implies that Il{QiAsi}|| = o since @

contains the Fréchet filter and each set in the Fréchet
filter contains all integers i from a given point onward.
Thus zZAX = 0 sO X is not a positive complete element in L.

Since x was arbitrary, L has no positive complete element.

Proposition 3.12 Let © be an ultrafilter with the

countable intersection property. The semi-normed lattice

Lo does not have semi-continuous norm.
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Proof: Let {Xi}oio=l be a collectionvof elements of @
such that each aeA belongs to at most a finite number of .

the X,. Define a sequence<{x2}>n of elements of L_ as

follows:

1_
Let x = o

1 1
x>0, ||x || = 1

let x2
o

2
X
o

and in general let

x o for

k 1 '
xu xa for

Let kew. Since {aeA| leill = 1} X eQ we have

||{x§}ll = 1 and hence

inf || {x53]] = 1.
k

On the other hand our construction shows that

xn-l} for all new

o<{x; )<l

and for any oeA, o belongs to at most a finite number of

the X; so there exists a kg such that xﬁ = o for all kao-

Thus inf x* = o. But if {ya}g{XZ} for all new then fixing
k
o we see that Y o< inf xi = 0 so since {o}g{xg} for all new
k
we must in fact have

{0} = iﬁf {xﬁ} .
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But then ||inf{x2}|f = ||{o}]]| = o # inf II{X2}|l
n : n

so Lo‘does not have semicontinuous norm. Q.E.D.

Proposition 3.13 If each L is o-complete and has

semicontinuous norm, then L has semicontinuous norm also.
n =
Proof: Let <{xa}+N>n be a decreasing sequence of
non-negative elements of L with

S . n
{xa}+N = 12f {xu}+N.

Denote x = {Xa}+N and X 1 {xg}+N for all new. Since

OSX<X for all new

|Ix]| < inf []x

1.

Furthermore, since xnfxn—l for all new,

||xn|| % l]xn_li| for all new.
Let a = inf ||xn|| = lim lenll. By the proof of propo-
n n+ro

sition 3.9 find a yeL with y>o, y<x for all new and

|lyl| = a. Then, since o<y<x we have ||y|| = a < ||x]]
and thus ||x|| = a = inf l[xnll so L has semicontinuous
n

norm. Q.E.D.
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CONCLUSION

The general study of ultraproduct spaces begun here can
be continued in several directions. More work can be done
on the lattice properties of ultraproduct spaces. We have
already reharked that the hypotheses of proposition 3.9
might be simplified and the same might be true of proéo—
sition 3.13. A direction which seems likely to be fruitful
is examining the dual of ultraproduct spaces. In addition
to considering the dual of specific ultraproduct spaces, the
question of when the ultraproduct of dual spaces, which ye
have called i, is identical to thé dual of the ultraproduct
space, that is, L*, appears particularly interes#ing; In
general, the detailed study of specific ultraproductfspaces

should be a useful new source of examples of Banach spaces.

—47 -
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