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~  INTRODUCTION B  y 

There seems to be general agreement that in this

.stage of the development of the theory of Banach spaces a .

" greater wealth of examples would be useful in pointing the

way for future research. There has not been a great var-

iety of procedures for the construction of Banach spaces,

but one was introduced in [3] by Bretagnolle; Dacunha— ‘

. ' ;Castelle and Krivine. In [4] their procedure was presen-
ted more systematically, the space constructed was termed
the ultraproduct, and various applications were made. 4. v ‘

‘A There is also a brief discussion of ultraproducts in [7]. ‘
To our knowledge the process has not been subjected I

to a detailed and systematic study, and that is the pur- ' '
pose of this dissertation. While the definition does not

« require an order structure, in the applications which have i
been made the spaces involved have been Banach lattices

and the lattice structure extends to the ultraproduct in
a natural way. Hence the present-study has included these
order properties. I V V

The ultraproduct procedure has an apparent defect V A '
in that it requires free ultrafilters which cannot be
explicitly constructed, but this is not as serious as i

. _1_ A _-



might be supposed. Many properties of the ultraproduct H

- may be obtained with merely the knowledge that the ultra— Q

filter used contains a given filter, and the utility of‘.
the construction is well established by the applications _

in [3] and [4]. The property (which has been called count—_

able intersection property) of a free ultrafilter of poss-

essing a countable sequence of elements of the filter whose '

I intersection is empty has shown itself to be useful. We

do not know whether every free ultrafilter has this prop:
_ erty. i -’

In the references on ultraproducts cited above the

statement of the definition of an ultraproduct of Banach - .

spaces differs slightly from the one we have given in‘ -
requiring a completion of the space as we have defined it.
Since we show that the space we have defined is already :
complete, our definition is not in fact different from.

that already given. . i ‘ I



- 1. PRELIMINARIES A I

In the rest of this paper we will let A denote an index A

set which will be of arbitrary cardinality (although assumed

_ infinite) unless otherwise stated. _ _ I

Definition 1.1 A filter on a set A is a collection

A of subsets of A having the properties: I
<1) a :2! A  ~

I (ii) E 0 F e A_whenever E, F e A

(iii) I‘fFeAandFC_Z‘._E,thenEeA . A
d An ultrafilter is a filter which is properly contained in

no other filter. ' ‘ h A

Using Zorn's lemma it is easy to see that ultrafilters

exist and moreover, that any filter is contained in an rd. ‘

ultrafilter (although not unique unless the-filter is it~

self an ultrafilter). . ‘ii A

. Example 1.2 Let aO€A. Define 9 = {X S}A|aOeX}
Then 9 is a filter on A which is in fact an ultrafilter.

This ultrafilter is said to be §i§gd.at the point aoh
Notice that {aO}€Q and furthermore;.if A is a filter such
that{aO}eA, then A = Q. - A ‘ A

Definition 1.3 A filter A such that(W{XIXeA}# H is "
a fixed filter.‘ Otherwise it is said to be free, A fixed .
ultrafilter is of the type given in example 1.2.

-3... '



Example l.4 Let w denote the positive integers and A

let A = {xgwlxc is finite}. Then A is a filter on w called g
- the Fréchet filter. If we let Q be any ultrafilter contain—g I

I ing A, then since the sets [n,w) all belong to A, A must

. be free and hence Q will be free also. _ .- I

Definition 1.5 -A collection W of subsets of A satis~
fying the conditions - A I i

<1) 9! WP    
(ii) If E, F e W, then there is a G e W such that '

Gg; E FIF
can be extended to a filter on'A by adding all supersets.

Such a collection W is called a base for a filter. ii’ .

Example 1.6 ‘Let B be a Banach space, let A be the
collection of finite dimensional subspaces of B. For each

F e A let __  A A -  '
X(F) v= {GeA|F_C_G}.. . I

Then {X(F)IF€A} is a base for a free filter.on A. I A“ '

The following proposition giving some well-known and
useful results on ultrafilters is included here for complete— I

ness. -’ A A I _ _
Proposition 1.7 Let Q be an ultrafilter on a set A.

(i) For every X§A, either Xefl or Xcefl (where Xc

denotes the complement.of X relative to A).

(ii) If the disjoint union AOBER, then either A69 or ‘
3:9 (clearly not both). A

(iii) If the disjoint finite union x1Ux2U...0xnes2
A then Xian for precisely one i. _
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Proof: We will indicate a proof for statement (i). The

remaining statements follow from (i) inia straightforward T .

manner. « H ' i .
i If there were an ESQ such that EEX, then X59. If i

there were no such E then for every E59, fink? f Q.so the
collection QUXC is a base for a filter containing 9, con-

tradicting the maximality of 9 unless XcsQ._Q.E.D.'

Definition 1.8 An ultrafilter Qiis said to have the

countable intersection property if there is a sequence
. {Xi}:=l of elements of-Q with {E3 Xi‘? W.. in n V

Since every intersection of elements of a fixed ultra— _
filter is non—empty the only ultrafilters which may have
the countable intersection property are the free ultrafilters. T

Proposition 1.9 Given an ultrafilter Q on a set A
the following are equivalent. _ ‘ '

1° 9 has the countable intersection property.
2° There is a sequence {Xi}:=1 of elements of Q such

that each aeA belongs to at most a finite number

of the Xi. 4 ~ .-
3° There is a sequence {Xi}:=l of elements of 9 such .

that §:&Xi¢9.

' 4° There is a :equence{Xi}:=1 , with Xiifl for any i, ,
such that %;£ Xiefl. I V‘ -

Proof: 1° =>2° _ i .~
~ Since 9 has the countable intersection property choose »

a sequence{Yi}:=l of elements of 9 with {:E Yi = fl. ’For
each new define X = fa‘ Y.. Then X EQ for all new and ‘ An i=1 1 n



w m n .m .n 41 so   n=l Xn n=l QEE Y1 i=1 Y1" g . _ -

Furthermore, Xn+1gxn for all new. Let aeA. Then a_be1ongs

to at most a finite number of the Xn; for since the {Xn} _
are nesteg; if as f/:\Xh_ for some subsequence (nj) of w “ w
then as /p\ Xn which is impossible. Ml

; n=l - »
‘ 2° ~> 3°  A i

Let iXi}i=1 be a sequence such that each asA belongs to

at most a finite number of the {Xi}. Then {i} Xi = fl¢Q.
3o<=>4o V

Since Xiefl implies Xicifl and {f} Xi¢Q implies ’

( [fi\ Xi)c = iv) Xian, 4° is just a restatement of 3° in T 7
term: of complements. ‘ i .~“ ‘~

3o___>lo V . ' '

' ' If {E5 Xitfl then since Xian we have ii = Xi\\£f} Xiefl " . .

and 5:} ii = Q. Q.E.D. ' ‘ i ’
A natural question to ask is, whether ultrafilters with i ‘

the countable intersection property exist.. . i .
Proposition l.l0 Every free ultrafilter on a set of

cardinality Pg has the countable intersection property..i ’

Proof: We may consider 9 to be an ultrafilter on the .

set w of positive integers. I
If M is a finite set, say M = {a1, ,,,, an}, and if Mam,

then M can be written as the disjoint finite union of its

I points so for some i, {ai}efl. But then 9 would be fixed at ai.
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Thus, since 9 is free, 9 can contain no finite sets and B . —
hence must contain the Fréchet filter. Then the sets .
"Xi = [i,w) have the desired properties. Q.E.D. ;

Proposition 1.11 Every free ultrafilter on a set of

cardinality c has the countable intersection property."

I Proof: We may consider 9 to be an ultrafilter on the
'. set [0,l). Consider the sets [O,l/2) and [1/2,1). ‘One of

these sets belongs to 9, call it X1. Take X1 and split it ‘
up into two equal parts in the same way. One of these

belongs to 9, call it X2. Continuing this a countable num— '
ber of times we get a sequence {Xi}:=l with the property
that{:& Xi is either fl or a single point p. If {E& Xi = fl
then 9 has the countable intersection property. If ‘ V
§:a Xi = {p} then {p}¢9 since 9 is free so the sets
Xi = Xi\\{p}€Q and gig Xi = V so 9 has the countable inter-
section property. Q.E.D.

4 Example 1.12 . An ultrafilter on a.set of cardinality’
greater than c which has the countable intersection property. -

‘ Let B = L1(T) where the cardinality of F is 2C. _
Then B is a Banach space with a Hamel basis of cardinality

at least as large as 2C so there are at least 2c finite

dimensional subspaces of B. Construct the filter and ultra-

filter of example 1.6. Let {bi}:=l be a basic sequence in

B and for each i define Xi = {FeA|bisF}.' Since each finite
dimensional subspace F contains only finitely many bi, F be-
longs to at most finitely many Xi. -Thus 9 has the countable '



A8

intersection property by proposition 1.9 (2°). .

Let us recall now from Bourbaki [2] (Ch. 1), that if

9 is an ultrafilter on a set A and f is a mapping of A into
a set A‘ then f(9) is a base for an ultrafilter on A‘.

Also, a filter base B on a topological space X converges

to a point x€X if every set of a fundamental system of ' 4
neighborhoods of x contains a set of B. Now if A is an

9 index set and 9 is an ultrafilter on A let (Xa)a€A be a
collection of real numbers. This defines a function ' I
T:A -9 R by T(ot) = 'xa. Then T(-9) is a base for an ultra.
filter on R. If this filterbase converges to a number L
we write L = limflxa. Notice that L = limflxa means that '
for every e>o, {aeAI Ixa-Ll<s}e9. « ‘A

Now if (xa)a€A is a bounded collection then the filter-
base T(9) lies in a compact set and hence converges_which
means that limgxa exists. Furthermore, since the filter 9' _
induced on a set X59 by the ultrafilter 9 is itself an
ultrafilter, T(9') will be a base for an ultrafilter on R i

so limgxa exists provided only that the collection (xa)a€x ,
X89 is bounded. The converse of this statement is clearly
true, namely, if limaxa exists then for some X59 (xa)a€X
is bounded. ,

Since limflxa is defined in terms of the direct image ‘
of an ultrafilter, all the usual theorems about convergence
of filters on R hold. In particular I y W“

(i) limflxa is unique A '
(ii) k = limgk , k a constant



(iii) liméxa + yé\= limgxa + limgya
g V (iv) limdkayé)= (limQxa)(limQya) T

(v) limdxa Vya')= (limflxa) v(limQya)
' Since the following result will be used many times, we will H

sketch a proof of it. ' . l k
Proposition 1.13 Let X89 and suppose xagya for all '

L? aex. If L1 = limnxa and L2 = 1imQyaLth:n Ll:L2.
Proof: Suppose L1>L2. Let e< —l§—£ . Then -

X1 = {aeA| Ixa-LlI<€}eQ and -

X2 = {aeA| [ya-L2I<e}€9. _ ‘

Let aexfl xln X2. Then xa_<_ya but . pa .

ya<L2 + e<L1-e<xa which implies that

xflxlrlxz = ¢ which is not possible since‘
 xflxlnxzesz. .Thus Ll_<_L2. Q.E.D.  L

The following corollary follows immediately from this
proposition together with the preceeding remarks}-‘ '

Corollary 1.14 Let X59 and suppose [xaI§M'for all
aeX.l Then limflxa exists and . I

\lim9xJ:M. I - , :
For the sake of completeness we include some basic"

definitions and theorems on vector lattices. For a more
complete treatment see M. M. Day [5]. .

Definition l.l5 Let V be a real vector space with
order relation 3. V is a vector lattice if i

(i) 3 is reflexive and transitive. »
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(ii) translation and multiplication by positive _

numbers preserve order; multiplication by _

’ negative numbers reverses order.

(iii) x : y and y 3 x implies X-= y and each pair of

_ elements x and y of V has a least upper bound, -

denoted xvy. .

In the preceeding definition we assume that the.con+ I . _

cepts of upper bound and least upper bound are defined in i

.a manner analogous to their definitions on the real line. _

Definition l.l6 If V is a vector lattice than we may .

define the greatest lower bound of two elements x and y by

' xAy = -((-x)'v(-y)) _ n i
. Definition 1.17 Let V and V‘ be vector lattices. A

function f:V -+ V‘ is a lattice homomorphism if -
f(xvy) = f(x)vf(y) for all X. yeV. .

Definition 1.18 A vector lattice V is boundedly
[g:] complete if each lcountable] set A in V which has an
upper bound has a least upper bound. V is conditionally '

c-complete if each increasing sequence of non-negative D
elements of V which has an upper bound has a least upper

bound. V D . . ~.

Let us remark that conditionally o—complete is clearly

equivalent to the condition that every decreasing sequence
of non-negative elements of V has a greatest lower bound.

For a proof of the following proposition refer to A
Jameson [6]. I._ ‘D
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Proposition 1.19‘ If V is a conditionally 0-complete V

vector lattice, then V is 0—complete.

’ Definition 1.20 A vector lattice V is Archimedean if

xio whenever-for some y, nxiy for all new. _ .
We remark that to show V is Archimedean it suffices to. _

show that x=o whenever x,y:o and nxjy for all new... V

The following proposition is immediate. V V b ' ‘

Proposition 1.21 Every O—complete vector_lattice is . 2

VArchimedean- 2 _

Definition 1.22 A normed [Banach] lattice is a normed .

linear [Banach] space which is also a lattice in which.A and

v are continuous functions of both their variables. ’

. Definition 1.23 An (AB)—lattice is a normed linear '

space and vector lattice in which order and norm are related .

by V
(A) l|lx|Il=||xIli  2
(B) If o:x_f_y, then o_<_lIxII_<_|IyI|  

' Proposition 1.24 An (AB)-lattice is a normed lattice.

Definition 1.25 A vector lattice V has semicontinuous
norm if for any decreasing sequence of non-negative elements V

{xn} with greatest lower bound x we have V t_

 Hxll = infnllxnll V 2
Definition 1.26 An element s of a vector lattice “

V is said to be positive complete if s>o and if_sAIx{ = 0 I
with xeV implies x = o. ' '
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Definition 1.27 (A Banach lattice is an (AM)-egace 4

if norm and order are related by (A) and V

 (M) if x,y:0: then ||xvy|| = llxllvllyll W
A Banach lattice is an (AL)—space if norm and order '

are related by (A) and ‘ H" u. -

(L) if x.y:o. then IIx+yII = IIxII+IIyII (
Notice that since (M) or (L) clearly implies (B) an . i . .

(AM)-sfiace or (AL)-space is an (AB)—lattice. A



2. TOPOLOGICAL PROPERTIES « f

‘ Definition 2.1 Let A be an index set and Q an ultra-
filter on A. Associate with each aeA a normed linear Space

La. Form the product space H La and denote by LC the '
. a€A

linear subspace . -

3 L0 = {{x¢}€ GSA Lal there is a real number N>o such that

. IIxa||gN for all aeA} ‘
Define a semi—norm on L0 by putting

|l{xa}|| = limg Ilxall  
Letting N be the subspace of L0 consisting of the elements

A of semi—norm zero, form the associated normed space

_ L = LO/N. -
We will call a normed space L constructed in this manner _NR ””
an ultraproduct space.

Let us remark that this definition does in fact make
sense. L0 is clearly a linear space and the properties of ”

limits imply that II-||L is in fact a semi-norm. Notice . H
also that since every elgment of N has semi—norm zero, ’ hi i

|I{xa}+N||L = |I{xa}||L where {xa} is an arbitrary
representative of {xa}+N. O I '

Recall that if E and F are normed spaces then the i A

distance from E to F is -

-13-
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. _ . __l -‘ _ I ‘d(E,F) ~ zmf ||Tll°|lT II
where the infimum is taken over all isomorphisms T and E 4 A -

onto F. - 4 I

- Proposition 2.2 Suppose L and L‘ are ultraproduct .

spaces indexed by the same set A and using the same ultra-

filter 9. Let Kew. If d(La,L&):K for all aeA then i,

d(L,L')_<_K. i
' Proof: Choose e>o. Since d(La,L&):x we can find an

isomorphism Ta:La+L& with IITQII-||T;lII<K+e, for each '
aeA.. Furthermore we may assume that IITGII = I|T&1I|</K+e. ‘

Define a mapping T:L + L‘ by L '

= IT({xa}+N) {Ta(xa)}+N . . b , _

T is clearly linear and onto since each Ta is. Furthermore,

the inverse of T is the mapping T_1:L' + L given by T-l({x&}+N')=

{T;1<x(;>’}+N. ‘ _    L ~ I
To show T is an isomorphism we observe that '

I|Ta<xa)l| ; ism: - llxall <F‘K+e:1xa:Imh  



 _15.
so again by proposition 1.13 '

II{Ta(xa)}I| : /K+e lI{Xa}II I, . ;
which shows T is continuous and |ITI|</K+e. The continuity
of T_l follows from the continuity of each Tgl in the same
way. Thus T is an isomorphism and furthermore the proof
shows that d(L.L') f IITII - ||T-1|] < K+e. Since this-

- holds for every e>o, . '
_ d(L,L') S K. Q.E.D. ‘ i

_ Theorem 2.3 If each La is.a Banach space so is the

' ultraproduct space L. '

Proof: Let <{x2}+N>n be a Cauchy sequence in L,_where '

the representatives {x:}€LO are chosen arbitrarily. Since . ‘

n m _ n _ m I .' if 'll{xa}+N—{x,,}+N II — Iflxa} {xalll    a  
the sequence <{x:}>n is Cauchy in L0.‘ We will show that £

<{x:}>n converges in L0. ii
V For every pew, the positive integers, there is an '

. integer Np such that for n,m3Np, -
n m 1 .H{Xa}" {Xa}H <-2-E .

without loss of generality we may assume the integers Np
are chosen strictly increasing. Furthermore; if n,m>Np .

l n m _ n m .. and e<§E ||{xa} {xa}|| then X — {aeA| I Ilxa xall

_ n _ m . . n_ m l_ _II{xa} {xa}I| I <5} 69 implies Ilxa xaI|_§ 2p for all
3 . aex which means the set ’ _ ."
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. I Ag’m = {a€AI Ilxg-XEII < $5 } 89

N ,N P _ i= P 9+1 _ FlLet Ap AP for every pew and let BpA— i=1Ai.

Since each Apefl and Bp is a finite intersection, Bpefl also. V
Furthermore, by construction, Bp §;Bp_1 for all p>1,

Define an element {Za} of the product space as follows:

Z = o for aeBCa . V l -

Np [ ' A.
Za = xa ‘ for aeBp_i\Bp .

Np (01 T  tZa = lim xa for as p=, Bp ' '
p—>-oo . _ . _ _

Let us first remark that this definition does in figct
make sense since in the first place Bp §_Bp_i for all p>1

implies the second condition is meaningful and also that .
the three given conditions exhaust all choices for a. In

the second place, for any.de£:§ BP we have aeAp for all

i l N N‘ .‘ pew so that Ilxap - xap+1II < 15 for all pew. This implies2 A

N .
the sequence <xap>p is Cauchy in La since for any e>o we

may choose p so that X if <3. Then for u, v>p, and _
t=p 2 ‘

without loss of generality with u>v, we have
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N N N N N N ' I-1 -1 -2 IHxc,“-x;’I I .<_ I Ixa“-Xa“ I I + I Ix; —xa“ ll  

I N N+ ... + IIx V+l—x VII ' ''

u-l ' ’~.‘ N
' S E —— <€ ' 3‘t=V 2t N I I I I I

Now by hypothesis each La is complete so the Cauchy sequence ipi. N I u_ _
< xap>p converges to a limit which we will denote by Zn. . I

Having shown that the definition of {Za} makes good I I
sense we will next show that{Za}€ LO. To do this we must .
show that there is a number M such that . ' I

' IIZQII 5 M for all deA. I
N1 . I _  

Since {xa }eLo we know there exists a number M1 such that»
N .

IIxalII5M1 for all aeA. Choose any M>M1+l. For aeB§, I _
Z = 0 so IIz II = o<M.- Suppose aeB _‘\B for some p.°‘ N °‘ N - PN1 I31 N1 awhen za = x; so Ilzall = llxapllsllxap-xa |l+||x,,i ||-  
But aeBp_l implies aeBS for all sgp-1 so we hare ‘

N N N N N N I 0 I~ Ilxap-xallIsllxap-xap'1ll+llxap'1-xap"2|I
N . N .

2 1 I .+ ... + IIXG -Na II A .A« A

I p-1 . I
5' X l? < 1 ?t=l 2  ' ~

 N1 I 'and thus IIzaII§l+IIxa II:1+Ml<M. Finally, suppose '
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as {E\ B . Then z = lim XNP. Thoose4e<M—(M +1) an;p=l p 0t PM 0L _ 1%  4
N »°° ,  - i

choose p so that |lza—xapi|<€. Since as (N\ Bp implies_- ._ I. p=]_ I
that aeBp_1 we can use.the same construction as in the .N y '. preceeding case to get IIxapl|§Ml+l so we have: .

. N N . .llz ||'_<l|z -X pl|+HxplI .a a a a

s e + (Ml+1) < M. p «

Thus ||zaII<M for all aeA so {za}eLo. .
We claim now, of course, that <{x:}>n converges to

_ {za} in L0. Since L0 is a semi—normed space it suffices
_to show that some subsequence converges to {za}. We shall. N c ~v oxshow that the subsequence <{xap}>p converges to {za} in L0. .

AThis means we must show that for every e>o there is a pew_

Ns" such that for szp, ||{xa }—{za}||<e. By corollary 1.14 H .
it suffices to show that for every e>o there is a pew such vN .
that for each sgp there is a set Cé€Q such that Ilxas-zallke ~
for all aecs. 0° ‘

Let e>o and choose p so that 2 if < % . Let s3p‘and
t=p 2

let CS = B3. Let a€CS. Then either ueBq_i\Bq for some
q>s or as/A\ B . Suppose aeB \\B for some q>s. Then .p=1 p q-1 qN .
za = xaq. Now aeBq_l implies aeBr for ssrsq-l so we have
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_ NS  Nq NS T gIlza-xu II = Ilxa -xa II

N N N N  i V 'q_ q-1 q-l_ q-2p sllxu xa H+||xa xa H  
N ’ N N T i+ ... + ||x S+1—x 3:1a a

q—:]_ oo . , ‘ _ mx

5 Z 21E. < Z if < -3- < 9; ‘ '
2 2t=s t=p

oo

.. - N ’ ‘
On the other hand, if de{h\ Bp, then za = lim xap H .

p=l _ p-+oo

so for some integer qzs . 1 - ‘
Nq E " -_ .

ll Za‘Xa I! < j - ‘ A .V/

By the same construction as in the preceding case we have . «

lIxNq-xNsH< 5 so we et [[2 -xNS||<§ Thus [I2 -xNs||<t ;a a 2 g a a ' ' a a "
NS ‘ u ,

for all aecs so II{za}-{xa }II<e for all 33p and hence . '
N I 7

{z }s= lim {x P}.  Na p+m a g

. To complete the proof we need only notice that -

n _ n _ ' A1|{xa} -{za}IILO — I|{xa}+N {za}+NI|L _ . I

so <{x2}+N>n converges to {za}+N in L. This L is complete
and therefore a Banach space. Q.E.D.

Things would be particularly nice if there were some :

relationship between convergence of a sequence in an ultra-

product semi-normed space LO and coordinatewise convergence, .
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that is, convergence in each coordinate. However, as the

next three examples show there is no relationship between

’_ them even in the simplest of cases. V
Let 9 be a free ultrafilter on the set w of positive

‘ integers and let L be the ultraproduct space formed by ‘

taking a countable number of copies of the real numbers R.

Example 2.4 LA sequence which converges coordinatewise V

but does not converge in L0. * ' _ :" p

_ Let {xi}eLO be the element with xi=l for all
iew. "Define a sequence <{y2}>n in L0 by I - ii

A y? = 1 for isn '.- _..‘ «
y? = n for i>n ‘ -i" n

_ Then for each iew, nzi implies y2=l so the sequence <{y2}>n
converges coordinatewise to {xi}. But for any pair of _
integers m,n, since II{y2} —.{yT}|[ 5 In—m[ the sequence
<{y?}>n is not even Cauchy in L0 and hence does not converge.-

Example 2.5 A sequence which converges in L0 but
does not converge coordinatewise. . L

_ Let {xi} be xi=o for all iew. .

Define <{y2}>n by

* y? = l+(-l)n for ign '

‘ n l .yi = H ‘for i>n. ‘ _

If e>o choose n so that %<e. Since {iew|i>n}eQ we have the i

set

I. i{iew| Iyg-xi] = % <€}eQ =r -
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so <{y2}>n converges to {xi} in L0. On the other hand, . f

for any iew and n>i y? alternates between 0 and 2 so

A‘ does not converge.
Example 2.6 A sequence which converges both coordin— H '

atewise and in L0 but to different limits. g I z, i
Let {xi} be xi=l for all ism and {zi} be .'W \

zi=o for all iew. Define - ‘.

<{y2}>n by y2=lv for ifn ~ _ . ‘

y2=% for i>n» _ g -

As the preceding two examples show, <{y2}>n converges
coordinatewise to {xi} and in L0 to {zi}. But clearly‘.

V {xi}#{zi}, even modulo N.

Let A be an arbitrary index set, 9 an ultrafilter on V ,

A, X89 and L the ultraproduct space formed by taking for '

‘all La the same normed linear space for all aex and arbi-

trary La for aeA\X. Consider the collection D0 of elements ‘

of L0 of the form {xa} where xa=xB for all a,BeX and xa=o '

for all aeA\X. D0 is a linear subspace of L0. Further— ‘

more, since II{xa}II = limn Ilxall = llxall where aex we.
see the semi—norm on L0 is a norm when restricted to Do. ‘

This means the quotient map of LO+LO/N is a one—to—one
linear isometry of Do into L. Let D be the image of DO
in L. Then D is isometrically isomorphic to DO.

Definition 2.7 We call the subspace D of L constructed
above the subspace of diagonal elements. A .
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Proposition 2.8 The subspace D of diagonal elements .

y is isometrically isomorphic to La. ’ . - V ~

Proof: Since we have already observed that D is

A isometrically isomorphic to DO we need only show DO is a
isometrically isomorphic to La. Let T: La+LO be defined by '

T(x) = {xa} where xa=x for all aex and xa=o for all aeA\X. _
» Then T is clearly linear and . A ski ‘

l|T<x>|| = Ilfxofill = limg Ilxall = Hxall = Hxtl  
so T is an isometry. Q.E.D. '

Notice that although D is defined relative to a set _ V

‘. X89 proposition 2.8 shows that different choices of X with _'
the same La give isometrically isomorphic spaces D. .

Example 2.9 Let A be an index set, 9 an ultrafilter - ' y
'2» on A and La a real inner product space for each deA. The

ultraproduct space L is also a real inner product space.

_ Denote the inner product in La by <xa;ya>. We . b

shall assume that in each La the inner product is positive V .

y and non-degenerate, that is, it satisfies -

<xa+ya,za> = <xa,za> + <ya,za> , .

<Xa'Ya+za> = <xa'ya> + <xa'za> .f ’ ' V
<Axa,ya> = X<xa,ya> , A a real number ..4

V <xa,Aya> = A{xa,ya> - y ' _

<xa,ya> = <ya,xa> . - i

V <xa,xa> 2 o for all xaeLa _

<xa,xa> = 0 implies xa = o. i . k
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This inner product defines a norm in La by i .

Ilxwz =  :  
and in addition, the Cauchy-Schwartz inequality ‘ f V

|<xa.ya>| sllxall - llyall j -  l  
is consequently satisfied. V A ' I

Define an inner product in L0 by’

Efi <{Xd},{Ya}> = limfl <xa,ya>.' i

I i We shall show that this is in fact a positive inner product I '

and the semi-norm it generates is the same as the usual -

‘ semi—norm of L0. We will then use this inner product to A

define a positive, non—degenerate inner product in L in a I

natural way. » .

To begin with we notice that since{xa},{ya}eLo there . ;

' exist constants M,M' such that Ilxallgm and ||ya||sM‘ for
all a€A. By the Cauchy—Schwartz inequality in La V .

 y I<xa.ya>| : Ilxall - llyall 2 M-M' i i i s  
so the numbers {<xa,ya>}a€A lie in the compact set

[-MM',MM'] which means the limit limQ<xg,yé> exists. w ._

Next notice that from the properties of limits we immed— '

iately get the bilinearity and homogeneity since, for example, A

<{xa}+{ya},{za}> = limn <xa+ya,za> .

’ = limn (<xa,za>+<ya,za>)

= 11mg <xa,za>+ limg <yd,za>4 .

= <{xa},{za}>+<{ya},{zu}> _ _

and also ' i t _
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» <A{xa},{ya}> = limfl <Xxa,ya> —
= limfl A<xa,ya> _ .

. = A limg <xa,ya> ‘
= A<{xa},{ya}>

Since <xa,ya> = <ya,xa> for all aeA we have b '_h

<{xa},{ya}> = <{ya},{xa}>. Furthermore, since each I _ '
<xa,xa> 2 o we have <{xa},{xa}> = limg <xa,xa> 2 o also‘

by proposition 1.13. Thus we have indeed defined a posi— -
tive inner product on L0. Since ‘ - y 4

_ <{xa},{xa}> = limg <xa,xa> ‘‘ i f

= limg l|xaI|2   p-  a . 
  = <1im9 I|xa||>2 .l

-T =(H{xa}H)2 i~ _ p " a
we see that the semi-norm defined by the_inner product is A
the same as the usual norm in L0. T ' . . i .

Since N consists precisely of those elements {Rd} ' _
with (II{xa}II)2 = <{x¢},{xa}> =.o we may define an inner .
product in L by. _

<{xa}+N,{ya}+N> = <{xa},{ya}>, '

’Provided this inner product is well-defined it will be
positive and non-degenerate making L a real inner product

space. To show this operation is well-defined in L suppose

I {xa},{x&},{ya},{y&}€Lo with
II{xa}-{x&}II = o and l|{ya}-{y&}|l = o. ‘
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Then <{xa},{ya}> — <{x&},{y&}> A V
= <{xa},{ya}> - <{x&},{ya}>

 T + <{x&},{ya}> — <{x&},{y&}> ‘  g‘g  
 ' = <{xa}—{x&},{ya}> + <{x&},{ya}—{y&}>. 4 .

But by the Cauchy—Schwartz inequality ' i ‘ '

I<{xa}-{x&},{Ya}>| 5 Il{xa}f{x&}II - I|{ya}Il = oy 
and |<{x&},{ya}?{y&}>IAs II{x&}II - |l{ya}—{y&}|I : o
so <{xu},{ya}> = <{xC'x},{y('1}>. ~ L .

Notice that this result together with theorem 2.3.yield .

the following corollary. ‘ ,

_ Corollary 2.10 An ultraproduct of Hilbert spaces h
is a Hilbert space. - L

ExamBle.2.ll Let A be an index set, 9 an ultrafilter

V on A, X69 and for each aex let La be Rn and for each -

aeA\X let La be any normed linear space. The resulting _

ultraproduct space L is isometrically isomorphic to Rn.

We shall show that every element of L belongs

to the closure of the subspace D of diagonal elements. As

D is closed and isometrically isomorphic to Rn we will have _

- the desired result. '

Define for each i=1, 2, ..., n the element of L0

{ei} by e: = (o, ..., o, l, o, ... o) if max - _ '

v i n i

e: = 0 V V if aeA\X. 4 i
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Then for each i, {e:}eDO. Let {za} be an arbitrary element
of L0 and choose e>o. There is a constant M such that
||za||§M for all deA. In particular, for dex we can denote
za by za = (ai, ai, ..., a3) which means that Ia;I$M for. 4
i=1, ..., n and for all dex. Choose a 6< 5- and let p be

. 2M ‘/5an integer such that p>—g . For each k = o, 1, ...,-p

and each i = l, 2, ..., n define sets T V ' _ I

1 i . V ' ii  TAk = {aexl-M+kcS _<_ _aa<.—M-_I-(k+l)6}. « y .

Then for each i = 1, .}., n the collection {A;}£=O is a ’
collection of disjoint subsets of X such that .

P 1’ P 2 P
= = IL." 2 nX U Ak U 415‘ U Ak .

k=o k=o k=o ,_ -

For each k=o, l, ..., p and each i=1, ..., n define I. ’

elements of L0, {x:’i} by

I xk’i = (o o) if aeX\ i Ia ' III, Ak -

V = (o, ..., 0, l, o, ... o) if aeAi , or
i

=0 if oceA\X.
" Now for each i = l, ..., n, precisely one of the sets “ .

{A;}§=o belongs to Q. If Aiefl then {x§'i}={e;} (mod N) y e
and if A;¢Q then X\A:eQ so that {x:'1}={o}.(mod N). For ‘ _

each k = o, 1, ..., p define a scalar by tk = -M+k6. ' 7

.$ '
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Consider the element of L0 given by

n - . Vk 1{Z } - I X g t {X ' }] ' ‘
a i=1 k=o k a - ‘

For each i = l, 2, ..., n, given any coordinate a¢x there

is precisely one index ki such that aeA: . We-thus have '
. i

for any aex d - A

 “ § k 1 1 n “ § rt k 1. _ I =__ _ Iza [ igl k=o tk xa ] (aa, ..., aa) izl k=otkxa

. _n x _ k. i. »
= (ai, your ag)‘ Xal"~  i=1 i

i I _ 1 i E ’ n_ - (aa ( M+kl6),...,aa ( M+kn6)) I _

But for each i, aeA; implies ogai-(-M+ki6)<6 so we must A
i A.

have for any aex _ 4.
n . . ik 1 ‘ -Ilz-IZ§tx'1|l —é a i=1 k=o k G . _ , . y

_ l_ _ n_ _ "- — I|(aa ( M+k15), ..., aa_( M+kn5))||  

< ||(5, ..., a)|| i

= /H 6 < 6
Since this inequality holds for all aexefl we have I

“ E' k i -
. !|{za}_[ iii k=o tk {Xa' }]|l:€
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But now we notice that

it  [ 121 kio tk{X§’i}]+N = i§1(kEo tk{X§'i}+N)  ’

= iii bi(fea}+N) ’ 4 r_

where for each i =‘l, ..., n, bi is the sum of those tk

for k such that {x§'i}# 0 (mod N). Therefore, since- .

n . -

 ||{z“}- 1:1 kig tk{X§'1}‘| pp p I ’i
V _ n .i "’ '- .= ||{za}+N-[ _g § tk{x}(:’l}]+N|_|' i

i=l_k=o . , .

we have'shown that {za}+N lies in the closec linear span

of the <{e:}+N>i€w. Since all of the {e:}+N lie in D we

are done. [ . ' * l V . A -‘.-
Example 2.12 Let A be an index set, 9 an ultrafilter

. on A and XeQ.. Eor each aex let La be an n—dimensional .

Banach space and for each aeA\X let La be any normed linear

space. The resulting ultraproduct space L is isomorphic

to RF. Moreover, d(L,Rn)fn2. . _

We will first sketch a short proof of the known _

result that if E and F are n—dimensional Banach spaces,

then d(E,F)sn2. Since E and F are finite dimensional we

. may choose normal bases (ei) and (fi) in E and F respectively p»

with coefficient functionals (e:) and (f:). Define a ‘

linear bijection T: E+F by ’
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n 9. nW} nl ‘ I .

T( igl aiei) = iii aifi ( iii aieieE} '

. p n _
Then for each element X aieieE and any k, lskgn, we have

i=1 . «

* n ‘
1 I°‘kl=H0‘kekH=Hek(_Z °‘j_ej_)|| .

1=l ,

nsaueglu II _; aieill  1-1
V n

=|l ,2 aieill1=1. . ” ~-

which yields ‘

' n
T a.e. = as . < Va. .uni‘ min? fr: zufui=1 1 1 1:1 1 1 i=1 1 1 i 1

$1: H? II‘: it= a. 5 n a e. . 3i=1 1 ‘i=1 1 1
so we have I|T||5n. A similar argument shows that [IT+1[|5n
also, so we have d(E,F)5n2. Now since La for aex is and

n-dimensional Banach space this implies that d(La ,R9)sn2. .

' To complete our proof, denote by L‘ the ultraproduct
space we get by taking for each a€A\X the same Banach space

y La as in L and for each aex taking La = Rn. By example 2.11

L’ is isometrically isomorphic to Rn. Then for each aex,

d(La, L&)gn2 and for each aeA\X, d(La, L&) = 1 so by ’

proposition 2.2,.d(L, L')gn2. Since d(L', Rn) = 1 we have

the desired result. - V
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Theorem 2.13 Let A be an index set and 9 an ultra-
_ filter on A having the countable intersection property. I

For each a€A let La be an Banach space (either finite or

infinite dimensional). The ultraproduct space L is finite ‘_ ‘

dimensional if and only if for some integer n the set‘

‘{ueAI dim La = n} belongs to 9. Otherwise L is non-separ— ;
able.

Proof: If for some n, {aeAI dim Lai= n}eQ then the
preceding example 2.12 shows that*L is isomorphic to RP so

‘ dim L = n. To show the converse, suppose that for no ‘

‘integer n does the set {aeAI dim La = n} belong to Q. p O

Since 9 has the countable intersection property we canm
iind a sequence {Di}i:l of elements of 9 such that ‘
£11 Di = ¢.' Furthermore, we may assume that Di+l;Di for
all iew. Since A89 we can write A = A1L}A2 where A1 = A
{aeAI dim La = w} and A2 = {aeA| dim La}< w and have either
A189 or Azefl. A A g A V

Suppose A169. Define for each iew the set Xi = Difl.Al.
Then Xian, Xi+l Egxi for all iew and {E& Xi = ¢. Further— .

more, for each aeXi\Xi+l, dim La = w. On the other hand,

suPDose A269. For each new write ’ g B.’ ‘
Bn =.{agA| dim La = n}. g V;

By hypathesis, no Bn belongs toMQ. Furthermore, for each

Mew, §_) Bi K9 either for if \_} Biefl then since this is

a finite disjoint union we mustihave Biefl for gems i,

1 3 i :'M contrary to hypothesis. Then since §:é Bi¢Q
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we must have K_} Biefl for all Mew. For each new we define .
i=M

the set -

T’ Xn ‘‘ Dnfl i=n+l Bi - oo  .
Then xnefl, Xn+1 §;Xn for all new and £:E Xn = ¢. Furthere A _
more, for each d€XA\Xn+l, dim La 3 n+1. V 9 V _

For each a€A let <x2>n be a normal basic sequence in

La (we understand that if La is finite dimensional this i
sequence will have only a finite number of terms). lThen -
Ilxgll = l for all n and for any m,n with m¢n I —

 |H§—£H:1- * y a
Form in L0 the set S of all elements of the form {za} 'i' . ‘

‘ where for each aeA, za€La is one of the X: for some n.
n m

Consider two such elements {za} = {xaa} and {z&} = {xda}. y.
nu ma I ' '

Then {za—z&} = {xa -xa }. Consider the set . .
nu ma‘ _ i C _ ‘C = {a€AIxa -xa = o}., Either C89 or C 59. If Can then »

A I I . c nu ma c :Il{z -2 }II = o. If C 89 then [Ix -x ||>l for all aeca a a a -
i so ||{za—z&}||3l. Thus CCEQ implies {za}#{z&} (mod N): T

Let A denote the collection of all those subsets F of S V '
with the property that for any pair of elements {za}, ”
{z&}eF we have {za}#{z&} (mod N). Partially order A by

inclusion and let P be any chain in A. Suppose {za},
{z&}eLJF. Since F is a chain there is an Fef such that _

Fer . '
{za}, {z&}aF. This then implies that {za} # {z&}
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(mod N). Therefore L_J F is an upper bound for F in A
FEF

so by Zorn's lemma A has a maximal element. «» '_ ' ‘

Let F be a maximal element of A and suppose F is-

countable.’ Enumerate the elements of F by {zi}; ' - '_ _ ~
{zi}, ... where each {z:} = {x§(a’l)}. Construct an '
‘element{za}€LO as follows: »

oo oo '

For each a¢ LJ Xn, za = o. If as La) Xn then since
w n=l . n=l _ .-
Kjl Xn = ¢ there is an n such thatd€Xfi\Xn+l. Let ~ .

k .
z = xk where xk is chosen so that xk # x (¢'l) for any. a a a . a a _ Y
i<n. We may do this since dim L >n. Then for d€X'\X— d n n+1 -
we have za # z: for any iin. Choose any mew and consider

m .

{za-2?}. By construction,‘for any as KW} Xi we have . ~
_ i=m . '

za #_z$ which as we have already noticed means that V

IIza—zEI|:l. But Kw} Xian so.this implies that ' I
1=m .

I |{za-z‘;‘}| 1:1
and hence {za} # {ZE} (mod N) for any mew contradicting.

the maximality of F. Therefore, F is not countable. A
Since F is uncountable there are an uncountable_

number of elements of the unit sphere of L which are uni-

formly far apart. This means Ltis not separable. Q.E.D}

Having examined the structure of ultraproduct_spaces

it is natural to turn to the question of what the dual of
an ultraproduct space is. It appears to be difficult to

answer this question completely but some partial results
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L can be given. ‘ y ' f “

Let L be an arbitrary ultraproduct space with index set

by A and ultrafilter 9. For each d€A let La = L3 and form the

ultraproduct space L using the La. _ " '

Theorem 2.14 L is a linear subspace of L*.‘ i 5 .
Proof: Denote the semi—normed space associated with . W

L by LC. Define an operation on L0 x LO by -

' <{xa}, {x;}> = limQ<xa,x&> _ i L

' The properties of limits immediately show that this is a ~

bilinear operation on L0 x LO and hence {xa}€LO acts as
a linear functional on L0. We need to show this functional L ’

, is continuous. .. ‘

Since I<xa,x;> — limQ<xa,x3>I<€ implies ' _ p I

p I 1<xa,xa>I — IlimQ<xa,x;>I [<5 we have i

- limQI<xa,x;>I = ilimQ<xa,x;>I
and thus I '

|<{xu};{x;}>| = I1imQ<xa,x3>I ' '

h: = lim9{<xa,x3>| V I _ '

. . . illmgllxall llxall  
Z, * 0H {xam I I nxan I

which shows that the linear functional {X3} is continuous ~

and further, that its norm in L3 is less than or equal to
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||{x;}]|£ . On the other hand, given e>o we may find in

o — L . A
h each La an element xa with I|xa|[ = 1 such that -

I |Ix;|I—<xa,x3 >I< %. For some set B159, aeBl.implies _ ‘ .

I<xa,x;>—<{xa},{x3}>|< % ' .

and for some set B259, aeB2 implies ‘

 I llxgll-|l{x;}|| I<-§- i  i p
_ so for aeBlr7B2 p ‘

|<{xa},{x;}>-IsI{x(§}II |<e W ’
which means that since ‘ b .

||{x*}|l = sup |<{x } {x*}>|°‘ L3 ||{Xa}||=1 “’ °‘ 1 s a
. the norm of {X3} in L5 is at least as large as II{x;}II£ .

_ A 0
Hence II{x;}|IL3 = IIix;}Il£O so L0 is a subspace of_L;.

To complete the proof, define an operation on L‘x £ by

<{x }+N,{x;}+N> = <{xa},{x;}>. To show this operation ‘a
is well—defined suppose I _V

_ II{xa}-{§a}I[ # o and II{x;}-{§a}I] = o. i - j

Then |<{xa},{x3}>—<{§a}p{§a}7| V it _.. i

= |<{xa},{x;}>—<{§a},{x;l> ’ b .

+<{§a},{x3}>—<{§a},{§3}>|_ i a J
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= |<{xa}—{§a},{x;}>+<{ia},{x;}-{§3}§| ‘ A
_<_ |<{xa}—-{ica},{x;}>|+|<{§a},{x;}—{§3}>| efi %

 _<_IHxa}-{S-<a}II°II{x;}I|+|I{§a}II'|I{xa}-{>-5;}||'  p   
V = o. . _
The bilinearity and continuity follow immediately from that '

of <-,-> on LOx]A'_.O. ‘ . W



3. LATTICE PROPERTIES p '  

‘ In order to define a natural lattice structure on an . L

ultraprodnct space L we will see that not only do each of .

~the spaces La have to be lattices but in fact they must .

also satisfy property (AB). We will therefore assume for

the best of this chapter then each La is an (AB) lattice. L

t5 Definition 3.1 For {xu}, {ya}eLO define

{xa}v{ya}= {xavya}_in L0

and . _

({ xa}+N)V({ya}+N) = ({xa}v{ya})+N in L-
This operation is clearly a supremum in Lb which makes

Lo a vector lattice since each La is a vector lattice. In

_ order to show that 3.1 gives a well—defined operation in L

we first observe that (Luxemburg and Zaanen [8], (p. 64)),

we have |(xd~za)-(yaAza)|+|(xavza)-(yavza) . p . I. pa
., l = |xa—ya' ' i.

so that |(xavza)—(yavza)Iflxa-yall. Using the (AB) properties A
in La yields . ' t

I I <xavza)-(yavzop I |_<_| Ix),-ya! I .-
Now {xa}v{za}-{yu}v{za} = {xavza-yavza} ’

so ||{xa}v{za}-{ya}v{za}|| = II{xavzq-yavza}II
5 II{xa}-{Ya}l|. I ‘ p

-35- _.
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Thus, if {xa} = {ya} (mod N) , then for any{za}eLO. _ i
{xa}V{za} = {ya}v{za} (mod N)- Now suppose {xd}'é {Ed} 1
(mod N) and {ya} = {§a} (mod N) then ' . t

{§a}v{§a} = {3a}V{§a} = {xa}V{ya}'(mofi h)'so the oper-
ation of 3.1 is well-defined and makes L a vector lattice.

Proposition 3.2 _L is an AB-lattice. - ,;’"h

Proof: To begin with notice that
I{xa}[ = {xa}v{o}+ —{xa}v{o}

. I = {xavo}+{-xavo} ' i

= {xavo+(-xa)vo} . - I

A= {lxal}
V - so that - V

II lfxall II = ililxallll = limgll lxal II o __ M
= limQ||xa|| ‘

i = ||{xa}|l  
so LO has property (A). Furthermore, if {xa}:{ya} then b t

{xavya} = {Xa}V{Ya} = {ya} . . p

so xavya = ya for all aeA which implies that xaiya fori
all aeA. Thus {o}:{xa}:{ya} implies oixaiyafor all aeA_' '
and hence o:||xa||:||ya|| for all aeA so by proposition 1.13 . A

it °:||fxa}I|:||{ya}ll
and thus Lo has property (B) also. i I -
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' Now since l{xa}+NI = {xa}+NvN+ —({xa}+N)VN 3

= ({Xa}VO+ —{xa}vo)+N -

i = I{xa}I+N '

and LO has property (A) then so does L. Furthermore,

_ {xa}+N:{ya}+N means that V '

{ya}+N = {xa}+NV{yd}+N = {xa}v{ya}+N

which implies that there exists a {za}eN such that '3- -

{ya}+{za} é {xa}v{ya} or {ya+za} = {xavya} so ya+za =
xavya for all a€A. This implies that . V 3

xajxavya = ya+za for all aeA, I ", I .

which is to say we can find representatives '- ' 3
{xa}e{xa}+N and {y&}e{ya}+N '_ _ hi

such that {xa}:{y&}. Thus if N:{xa}+N:{ya}+N we may choose ‘

representatives {xa}s{xa}+N and {ya}s{ya}+N so that , .

{o}:{xa}:{ya}. Since LO has property (B), L will haye (B)

also. Q.E.D. ' . . - '

’ By the preceding proposition 3.2 together with propo-

sition 1.24 and theorem 2.3 we have the following corollary

which implies that v is a continuous operation on L x L. -

Corollary 3.3 L is a Banach lattice.

Proposition 3.4 L is Archimedean.

Proof: Suppose {xa}+N:N, {ya}+N:N and n({xa}+N)
§{ya}+N for all new. Since L is (AB) we then have I A

||n({xa}+N>l| = nll{xa}+N|| _<_ ll{ya}+Nl|
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for all new and since R is Archimedean this implies that ' ‘

|l{Xa}+N|| = o. Since L is a normed space, {Xa}+N = N; - '

Q.E.D. M i t. ‘
Proposition 3.5 If each La is an (AM)—space, so,is L. .

V Proof: Suppose {xa}+N:N} {ya}+N:N. Choose represen+ V '

tatives {xa}:o and {ya}:o. Then xaio and yaio for all aeA A
iso since La satisfies property M we have ‘ '

Ilxavyall = II xallvllyall .  
 Then IHxa}+NV{ya}+NII = ||{xavya}|| t;;:;_,

= limgl lkavyal I
I  = limgllxallvliyall ‘  ,“

' r = limgllxallv limgliyail  V”  
 = |I{xa}+NLlvl|{ya}+Nll p

_y so L satisfies property (M) also. ‘Q.E.D. . Q.‘ ‘ ’ .

Proposition 3.6 If_each LG is an_(AL)-spaoe, so is L.

Proof: Letting {xa}+N3N, {ya}+N3N and choosing repre— . _.
sentatives as in the proof of the preceding proposition 3.5 ‘p

we have xago and yago for all aeA. Then V

II{Xa}+N+{ya}+NI| = II{xa+Ya}II i V

. = limQ|lXa+Ya|| we I , .

= 1imQ||xa||+llya|| 0
= 1imQ||xa|I+lim9||yall   t  
= Il{Xa}+N||+|I{Ya}+N[I y

‘so L has property (L). Q.E.D. -
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Lemma 3.7 Given a sequence<{x:}+N>:=l of elements of

an ultraproduct lattice L with {yu}+N 5 {x2}+N 5 {x2_1}+N

for all new and'for some {ya}eLO, we may choose represen-

tatives {§:le{x2}+N so that {ya} 5 {E2} 5 {§2—l} for all A.

new. ' A
Proof: We first notice that we may choose represen—~

3. tatives {x2}e{x2}+N such that {X2}‘§.{xE—l} for all new as
follows; Since {x:}+N 5 {x2—l}+N for every new we have

n _ n . n-1 in ~ .' {xa}+N — ({xa}+N) A ({xa }+N) _
_ n n-1 ‘— ({xa} A {Xa })+N .

which means that 5‘
' n n-1 n A <{xa} A {xa } e{xa}+N . v 5

“1 1 “2 2 “ 1 " 3 3 "*2Set {xa} = {xa}, {xa} = {Xu} A {xa}, {xa} = {nu} A {xa}, _ _
etc. Continuing in this manner we get the desired repre-

. sentatives. To complete the proof notice that since ' 5

-{x:}+N = {x2}+N we have {yd}+N 5 {x2}+N for every new so '
_that

({ya}v{x:})+N = {x§}+N ’
“n '“n _ n - ‘ior {ya}v{xa} e {xa}+N — {xa}+N. . V

_ Also, since {X2} 5 {x2—l} we have

5 {ya}v{x:} 5 {ya}v{x2_l}  -
Setting {E2} = {ya}v{;2} we have the desired representatives
since _ I

-n '_ n n ' ‘{xa} — {yu}v{xa}eLxa}+N
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. and _ _ ; '
{ya} 5 {X2} 5 {xan 1} for all new. Q.E.D.

Lemma 3.8 If Xefl and xafya for all aex, then . v '

{xa}+N 5 {ya}+N._ _ _ -’ _

- Proof: For each aeA\X define za = xa-ya and let‘ - .

za = o for all aex. Then ya+za3xa for all aeA and further— -

more, II{za}II = 0 since I|zal| = o for all aexefl. Thus _
{yu+za}e{ya}+N so we have {xa}+N.§ {ya}+N. ‘Q.E.D. -

If each LG is 0—complete it is clear that L0 is A

0-complete also. Moving up to the space L appears to require

more hypothesis.

Proposition 3.9 ' If each La is a 0-complete (AL)- '

space with semi—continuous norm, then L is o—complete. .

Proof: Let <{xE}+N>n be a decreasing sequence of non—

negative elements of L. Denote xn = {x2}+N and a = _

igf Ilxnll = ii$|[xn|l since xngxn_l implies IIxnII§lIxn_lI{.

We will find an element yeL with yzo and ygxn for all new i

such that ||y|I = a. '
To define y first choose representatives_{x2}exn so. _

.>‘ F that o§{x2}f{x2—1} for all new by lemma 3.7. Let

A = ma: I |lx“||-Ilx II I‘ < -1-}.n a n - n - _ _
. . n

Then Anefl for each new. Furthermore, letting Sn = (“\Ai,
i=1

Snefl also. Define an element of L0 as follows.

ya = o if aisl - .
_ n . _ya — xa if aeSé\Sn+l . '
_- n - . .ya — inf xa if ae(:& Sn _. .

n n-
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Then yagxg for all aesn since either ya =vxE for some »

min or ya = inf x:. This implies by lemma 3.8 that i
. n

A '{ya}+N 5 xn for all new.
Since glearly o§{ya} all that remains is to show that
||{ya}|| =a- . I

Let e>o and choose no so that

IIxnII5a+.g.anaI.1;_<§..   
o o - _ .

. _ m _ . = .- n.._ For any aesno either ya — xa for some mgno or ya igf ngp _.

In the first case, aes so I |[y1fI—||x || 1 5 £ 5 5- < %m a m . .m_.-no
and .2

I Ilxmll-al 5 3 so I |Iyal|+a|<e . I f
In the second case, ya = inf x: implies [lyall = infljxgl}

n H ‘ n . _
since each La has semi—continuous norm and hence there is

a filing Wit” éi < % Sfifih that . ' i I -
n .
lI I Ilxa ll-Ilyall I < % .  

since sss I II n1II—IIx II I < l— < 8  ; nl ' X n1 n1 I °

But I Ilxn II-al 5 % so we again have I .
1

I Ilyall-al< e for all aesnoefl

‘ which implies that

l|fya}l| = limgllyall = s.   p
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To complete the proof, suppose {za}+N 5 {x2}+N for *' '

i all new. Then {za}+N v {ya}+N 5 {k:}+N for all new so , i

||{za}+N v {ya}+Nl| : inf||{x2}+N|l = |I{ya}+NlI . 3
. n _

* But by property(L)in the space L, i »‘ '

||{za}+N v {ya}+NIl = II{Za}+N v {ya}+N-{ya}+NII

+ ||{ya}+Nl|  t T
which implies II{za}+N V {ya}+N - {ya}+NII = o. .

A Hence {za}+N v {ya}+N = {ya}+N

that is, {za}+N 5 {ya}+N . _
._ ' n _ ’

so {ya}+N — 12f{xa} +N , .

and thus L is oecomplete. Q.E.D. V "t V

' It is unknown at this time whether the hypotheses

Aof proposition 3.9 could be weakened. It would be of par- ’

ticular interest if the (AL) condition could be dropped.

Proposition 3.10 If each La has a positive complete ’

' element, then so does LO. » i I p

Proof: Let sa be a positive complete element in La. _«l

Since each sd>o, {su}>o also. Suppose o = {sa} A I{xa}I =

{sa} A {lxal}. Then {saA|xal; = o implies sdAIxa| = o for

all aeA which implies xa = o for all aeA so {xa} = o. '

Thus {sa} is a positive complete element in L0. —Q.E.D.

Example 3.11 L need not have a positive complete . .

element, even if each La does.



M - 1 '~ ...-«~.:.--: :1»: 1.. . :7-z. ».:-.- .v' z =v‘-‘C-'»'--ex «-i ;. 5. ,.~:.4.- .»;-1 ». , 3.4-,-‘?‘,‘-"‘l."9':71»t-9,€q‘F1¥T;'~;MZI;1:.?i§;§39"5'V.!-F‘:‘«"’fi" —e~;¢(.4si_<;.,.-,3»F";,hfi$a3@<;;§Zfig§§_!q»;$}¢_;§29Q_.g,§x§;I§g,;3‘g;évgr§f3*§§k€;;g.Eg.*$%;k;._.a§,..5_;¢_§,.k>!”‘;’§.§V _ ’ - ' ' ."

44 -

Let Q be'a free ultrafilter on w and for each 3

iew let Li = £2 with the usual order on £2. Since 22 has - i
. . l -a positive complete element, for example (1, E, %, ...)

. it remains to show that L does not have a positive complete

~ element. - ' __ V

Given x = {si}+N€L with X30 we show that x is not a
positive complete element by producing a zeL such that z#o

and ZAX = 0. We may suppose that sigo for all iew.‘_Let
_ i  *   . Si ' (Sj’j=1,;,...”2' a g

' Since (s;)je£2 there is an index j(i) such that .

L s;(i)<%. Let wie£2 be (w§)j where L - A .i= .

mi . = l and mi = o for‘ j # j(i) . '3 <1) :1 L _ t r
Since llwill = l for all iew, {wi}eLo and ||iwi}Il = l.
Letting z = {wi}+N, |[zJ|_= 1 so z#o; Now znx = {wiAsi}+N.. _ . . A p I .Vp . 1 I
But wiAsi = (0,..., o, s;(i), o, ...) so since o<s;(i)<I, _

— I|w£Asi|I<%-which implies that II{wiAsi}II = 0 since 9 _
contains the Fréchet filter and each set in the Fréchet

filter contains all integers i from a given point onward. .
Thus ZAX = 0 so x is not a positive complete element in L.

Since x was arbitrary, L has no positive complete element.

Proposition 3.12 Let 9 be an ultrafilter with the
countable intersection property. The semi-normed lattice
Lo does not have semi—continuous norm. . ‘ t~
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Proof: Let {Xi}:=l be a collection of elements of Q‘ _
such that each aeA belongs to at most a finite number of.

I the Xi. Define a sequence<{x3}>n of elements of L0 as

. follows: V

Let X1 = o _ for a¢ KJ X.a - ._ 11—l. -,

g xi>o, llxill = l for ae K] Xi , . ‘
1=l

I let X: = o ’ for ai KJ Xi _

L x2 = X1 ~ for ae \_) X.a a V . 1 ,132
and in general let '

' x: = o for a¢ kow Xi
1 J igk 4

X: = X: L for aet\) Xi - g . »

Let kew. Since {aeA| Ilxtll = 1} = \_J Xian we have
’ izkf '

I|{x§}II = l and hence I . ‘ A‘ L
inf II{x§}II = 1. L
k ’. b

On the other hand our construction shows that V»

o5{x:}5{x:—l} for all new - V . _
and for any aeA, a belongs to at most a finite number of - .

the Xi so there exists a ko such that X: = o for all kzko, .
Thus inf X: = o. But if {ya}5{x:} for all new then fixing I

k .

a we see that yag inf X: = 0 so since {o}g{x2} for all new
k

.we must in fact have
{0} = inf {xfi} .

. k _



p _:'46
But then Ilinf{x3}lI = II{o}II =-o ¢ inf II{x§}ll  .i 3

I1 . '. n

so La does not have semicontinuous norm. Q.E.D."4 ‘ ‘

Proposition 3.13 If each La is O—complete and has
semicontinuous norm, then L has semicontinuous norm also.

— Proof: Let <{x2}+N>n be a decreasing sequence of

non-negative elements of L with _ 3 i I I

{xa}+N = inf ix:}+N. ‘ ‘ 3
n.

Denote x = {xa}+N and xn = {x2}+N for all new. Since
ofxfxn for all new '

Ilxll 5 in: llxnll.
n .

Furthermore, since xn5xn_l for all new,

, Ilxnll j IIXn_lII for all new. p .

Let a = inf Ilxnll = lim IIxnII.' By the proof of propo-
n n+w ' ~ -3

sition 3.9 find a yeL with ygo, yjxn for all new and '

Ilyll = a. Then, since ofyfx we have Ilyll = a 5 [IX]!
” and thus IIXII = a = inf Ilxnll so L has semicontinuousn . .

‘norm. Q.E.D. ‘ _ .
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‘CONCLUSION "‘ ~

The general study of ultraproduot spaces begun here can

be continued in several directions. More work can be done

on the lattice properties of_ultraproduct spaces. We have i

already remarked that the hypotheses of proposition 3.9

might be simplified and the same might be true of propo€' I

sition 3.13. A direction which seems likely to be fruitful

is examining the dual of ultraproduot spaces;, In addition

, to considering the dual of specific ultraproduot spaces, the ‘ . A

question of when the ultraproduot of dual spaces, which we

have called £, is identical to the dual of the ultraproduot Q»

l space, that is, L*, appears particularly interesting! In V

general, the detailed study of specific ultraproductfspaces

should be a useful new source of examples of Banach spaces.

V -47- l
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