Salvage Archaeology in Paterson, NJ, 1973-75

Edward S. Rutsch
INTRODUCTION: DOUBLE PIONEERS

In the early 1970's, I telephoned anthropologist Dr. Gene Weltfish to discuss the uniqueness of the ethnic makeup of Paterson. We speculated on the smaller percentage of oldtimers in Paterson in comparison with other industrial urban centers in the Northeast. We discussed the pattern of Paterson residents moving to the nearby suburban areas of Wayne and Ridgewood, and how, if we were to appeal to people with a Paterson heritage to preserve the Historic Industrial District, we would have to contact a much wider area than the city itself.

We also noted the apparent lack of interest in the Historic Industrial District on the part of Paterson's new residents, mainly from the Caribbean and southern United States. After wondering how today's population could ever appreciate the industrial buildings that are the legacy of the European migration of an earlier time, we ended our conversation.

About two hours later, Dr. Weltfish called and explained an insight inspired by our talk. I have called this insight the double pioneer concept.

The Paterson immigrant industrial worker has been a double pioneer in that he (1) has migrated from one culture to another, and (2) most often has left a rural peasant life for an urban industrial one. The balance of Paterson's working population has always been made up of immigrants and their children. An immigrant's experiences consisted mainly in learning a new culture and spending the rest of his life as "the foreigner." Although he tried with some success to establish a social life that approximated that of his homeland, he accepted the fact that only his children would be natives in the New World. Moreover, many immigrant groups were also pioneering into the life of the urban industrial environment from rural peasant cultures. An analogy might be a 1975 Detroit autoworker emigrating to, say, Iraq, at the lowest social level, and then also being given a job as a camel driver.

Whether they were farmers or craftsmen in their homelands, the immigrants' new life in industrial Paterson was totally different in these two ways—hence, they were double pioneers.

Dr. Weltfish furthermore pointed out that a substantial part of Paterson's modern population consists in two new groups of immigrants, both mostly rural peasants: the Caribbean people, largely from Puerto Rico; and the southern American Negro. The latter group has a unique migration story, which although it occurred within our country is in most ways profoundly a double pioneering experience. In sheer numbers it may be the greatest transhumanance in man's history, and it is as yet widely unrecognized.

The recognition of Paterson's heritage for those whose ancestry is European is part of the process we celebrate in the study of industrial archeology. If our goal is the recognition and understanding of the heroic accomplishments of double pioneering in the past, why should we then not study the same process as it happens around us today?

At a recent West Paterson Kiwanis meeting where my lecture on the double pioneers had engendered a discussion among men of Irish and Italian descent concerning family traditions of discrimination because of nationality, we all agreed that one could see the counterpart of such discrimination and exploitation among Paterson's immigrant workers today. Hopefully, industrial archeologists will not, in their guise as historic preservationists, lend further weight to the exploiters in some vain attempt to rid the city of workers and create an elitist Georgetown-on-the-Passaic. Industrial archeologists must also remember that artifacts we are studying in Paterson—be they standing buildings, remnants of machinery, or archeological remains—are the products of a culture that was in the
throes of two unique and seldom seen phenomena.

The double experience in social and technological change meant a radical change for those who participated. The profound experience, the ramifications of which we have not yet adjusted to, continues today. Even those whose ancestors arrived early are still orienting themselves to the changes brought about by the Industrial Revolution.

As we report on aspects of this revolution that specifically deal with the evolution of industries, technologies, and industrial structures, let us remember that what makes these studies worth anyone's notice is that they are symbols of a revolution of the human estate. Can an understanding of the mechanics of this social process then and now help us comprehend and adjust to the realities of the future?

BACKGROUND

To handle the storm runoff from Interstate Route 80 and N.J. Route 20, the Federal and State Departments of Transportation (D.O.T.'s) designed a 66-in. storm sewer line to be placed in a straight-line open cut from these highways to the Passaic River—specifically the pool below the Passaic Falls. In the original plans, the sewer would have ripped indiscriminately through the heart of Paterson's Historic Industrial District—through both the middle and lower raceways of the three-tiered historic raceway system as well as the sites of several historic locomotive industries (see Figs. 1-1, 1-2).

In preparation for the construction, the New Jersey Department of Transportation (N.J.D.O.T.) had purchased rights-of-way and had demolished two structures within the Historic District: a one-story 20th-century warehouse adjacent to the Rogers Locomotive and Machine Company erecting shop; and the former Grant Locomotive Company 19th-century erecting shop on Market Street. Also razed were blocks of workers' housing in the "Dublin" section of Paterson, just south of and adjoining the Historic District; this account does not deal with any part of the greater historic area outside the present District boundaries (for such information, see Articles 4 and 5).

Ideally, the law provides that when a project such as this threatens a recognized historic resource, there should first be conducted a survey to determine what, indeed, is in the path of the proposed intrusion so that construction plans can be adjusted to mitigate or avoid adverse impact to the historic environment. Accordingly, we counseled the local preservation group—Great Falls Development, Inc. (G.F.D.)—to request D.O.T. support for an archeological reconnaissance survey of the threatened area. The D.O.T. refused. When this important survey phase is circumvented, as it was in Paterson, a major step of sound environmental assessment has been forfeited.

As the drain construction schedule tightened, G.F.D. requested the D.O.T. to support a salvage archeology project. Whereas a survey evaluates the historic resource so that information is available in the design and planning stages, salvage work involves rescuing historical data from the site of the coming intrusion. Salvage archeology without a preliminary survey, and in the face of inflexible construction timetables and plans, can have devastating effects on timing, design, and construction procedures, which can be read as additional costs to the taxpayers. This was true in Paterson.

During the spring and early summer of 1973, a contract for this salvage work was negotiated between the Federal and State D.O.T.'s and G.F.D., which by then had been accepted as the Salvage Authority. This recognition is important because Great Falls Development, Inc. was thereby acknowledged by State and Federal governments to be a nonprofit educational institution. Arthur Rosen, G.F.D. president, became chairman of the Archeology Committee.

A significant aspect of the contract is the fact that it provided for an archeologist-observer, who conducted salvage operations on the entire highway area, literally in front of the bulldozer. As far as we know, this position was without precedent anywhere in the United States.

FIELD WORK 1973

Salvage archeology began July 5, 1973 with the middle raceway. Our basic task was to draw a profile of the middle raceway as it exists today and then to excavate the area, seeking clues to its original construction and subsequent changes. Under the canal bern, we found the original retaining wall of the Society for Establishing Useful Manufactures (abbreviated S.U.M., this private corporation was set up by Alexander Hamilton in 1791 to establish an industrial city in America). We observed that coal ash and metal residues from the locomotive shops had been
Figure 1-1. Map of Paterson's S.U.M./Great Falls National Historic District, including the area threatened by the N.J. Route 20 Extension. [Adapted from (1) N.J. State Highway Department Route 20 Design P-3 Development Plan and Profile, Sheets 3-4, July 1965; and (2) Map of Paterson, N.J., Paterson Chamber of Commerce, n.d.]
spread continuously on the road beside the raceway to a depth of 6 ft. We also found that the bottom of the raceway was only 6 ft. above the level of Market Street. If Paterson's raceway system historically gave a "head" (fall of water in a hydropower system) of 22 ft., as reported, where were the other 16 ft. of elevation? (See Figs. 1-3, 1-12, 1-13.)

On July 16, we opened excavations in what has become known as the Grant erecting shop site (one of the historic occupants) on the north side of Market Street. Our first concern was a test excavation along the Rosen Mill annex wall (Excavation Unit II). Here we encountered coal ash, cinders, and metal fragments in abundance. (This material has been the most frequently encountered matrix in all industrial deposits excavated to date; oxidation of the iron in it has fused the whole into a mass that makes excavation difficult.) When we dug to a depth of 8 ft. in cultural material, we came upon the top of the lower raceway, which had been covered over in the 19th century in this area by a brownstone arched roof, transforming what had been an open raceway into a tunnel. We first recognized the fact that we were standing on a tunnel roof when a hole appeared beneath us and the bottom of our test excavation literally fell away. A tunnel 8 ft. high from roof to bottom was revealed; thus, the 8 ft. of tunnel height plus the 8 ft. to the surface of the ground gave us the 16 ft. of missing elevation needed to supply the 22 ft. of head between the two raceways, as sold by S.U.M.

Just at this time, extensive exploration work was being carried out by the Passaic Valley Water Co. and City of Paterson agencies to find a break in a water main at the corner of Market and Mill Streets, about 600 ft. east of the excavation. The water was known to be leaking into the lower raceway because it could be seen and smelled where the lower raceway emerged from the ground along Mill Street. Workers broke into the raceway tunnel between the Cooke Locomotive Works office building at 17 Market Street and a small silk vault building across a driveway to the east. We used this entrance to explore the entire race from the inside. Two crew members waded the length of the tunnel, finding four side tunnels running off to the north—each, we guessed, an outlet for a power flume coming from the middle raceway. We finally reached our excavation area and conversed with other crew members through the missing stone in the tunnel roof. We continued along the raceway tunnel a few feet further to a beautifully constructed turn toward the middle raceway. We surmised that it was the first flume or hydropower channel from the middle raceway, which must have run along the east side of the Rosen Mill. The flume was blocked...
ARCHEOLOGICAL EXCAVATIONS: MIDDLE RACEWAY, GRANT YARD, ROSEN MILL FLUME

Wheel/turbine access pit, area of excavation

Headrace (not excavated)

Well pit

Machinery mounts

Storm drain right-of-way

1-Story shed

Pentstock (not excavated)

S.U.M. access road

Middle raceway

0 30

0

Grant erecting shop

New Jersey Locomotive and Machine Company

Erecting shop interior column supports

Bays

Lower raceway

Sidewalk

Market St.
by a pile of brick and other building debris. Presence of styrofoam cups and other cultural material indicated that the tunnel fill had been placed there fairly recently. We had to remove this blockage in our excavation of the raceway access pit over a year later.

The tunnel was constructed during the latter half of the 19th century, starting with the more westerly sections along Market Street (Map of Paterson, N.J. 1850; Atlas of Passaic County, New Jersey 1877: 24; Atlas of the City of Paterson, N.J. 1884: Plate 8). In the western end, the tunnel is constructed of brownstone blocks and is 5 ft. 6 in. high and 8 ft. 6 in. wide. It is 12 ft. wide toward the east, where the construction material changes to brick. We hypothesize that it was covered to provide additional land to each building lot, and as one walked along Market Street in 1973 it was apparent that a series of front lot buildings and additions to buildings had been built over the raceway (subsequent fires have destroyed some of these structures).

We then proceeded to excavate along the lower raceway, moving eastward along its length; however, we soon stopped because interesting remains were turning up just under the surface. We recorded the strata as follows. When the surface rubble was cleared, elements of the floor and front sill of the building just razed by the N.J.D.O.T. were revealed. This floor is identified with the Brilliant Silk Company, which had modified the Grant Locomotive Company erecting shops to serve as a textile mill (Atlas of the City of Paterson, N.J. 1915). Below this floor we found the remains of the Grant Locomotive erecting shops, consisting in six parallel bays, 27 ft. long by 6 ft. 6 in. wide and three courses of brick deep (Fig. 1-4). A trough in the center of each bay pitched slightly southward, leading to a drain directly connected to the lower raceway, which carried off the waste. The opposite end of each bay was supplied with water. The bays were the locomotive erecting sites. They carried the rails that ran into Market Street through a series of large doors, the distinctive streetside feature of all the Paterson erecting shops still standing, such as the Rogers erecting shop (see Fig. 1-5).

Between and below these bays were soon found remnants of an earlier stratum of...
buildings—those which fronted on the open lower raceway before it was covered. As we prepared to remove the bays to excavate this third stratum, we discussed whether preservation of the locomotive bays was practical. Our employer, G.F.D., gave us the following instructions: "Dig between the upper strata but do not disturb them." We counseled that partial excavation would give us partial information and that all would be lost to construction soon anyway. But G.F.D. insisted against removing the upper strata, and salvage archeology became tempered by preservation. In the long run, luckily, the decision proved a good one.

These earlier buildings were part of a series of machine shop buildings associated with the New Jersey Locomotive and Machine Company, which was on the site ca. 1851-67 (Clayton and Nelson 1882: 436). Artifacts from these shops consisted in many fragments of metal stock and hand tools, the most common of which was the hand file. Throughout our excavations, hand files continued to be the most common tools found, and today our collection numbers in the hundreds. They were probably discarded for two reasons: they were used up and left as worthless; the employer, not the worker, supplied them. As a rule, hand tools purchased by individual artisans were better cared for.

A brass cast railroad engine identification disk found in this New Jersey machine shop stratum bore the inscription "N.J. Locomotive & Machine Co., Paterson." This type of identification plate in this period was often mounted between the drive wheels of a steam engine (see Fig. 1-6).

Under the terms of the salvage agreement, we were also responsible for record-
ing the facades of the buildings on both sides of the Grant yard, so that they could be repaired if the drain construction damaged them. This work was accomplished by our associate, architect Thomas Condit. Before his drawings were finished, one of the buildings, the Grant Locomotive Company's erecting shop, purchased by the N.J.D.O.T. for right-of-way, was completely destroyed by fire labeled "mysterious in origin." The building had been left derelict, with its water (hence sprinkler) system disconnected, and open to all who wished to enter. Quite a record: one historic building demolished under questionable authority and another lost to fire, which could occur so easily in an open building stripped of its fire protection devices. The N.J.D.O.T. owns many more unoccupied buildings in the Historic District and all are in just the same unsafe condition. A second fire has destroyed more of the Cooke Locomotive Company's buildings (see Fig. 1-7).

We did not contract to record the facade of the Rogers erecting shop building along the drain right-of-way south of Market Street, even though it would be in as much danger from construction as the Rosen Mill and the Grant building, because this work was being undertaken by the Historic American Engineering Record (H.A.E.R.), whose work is reported in Articles 7 and 8. We did, however, decide that an excavation along the 200-ft. rear wall of the Rogers erecting shop (1871) or, to be more specific, the three additions behind it (erected ca. 1877-99), would provide important information regarding the building's foundations (Atlas of Passaic County, New Jersey 1877: 24; Atlas of the City of Paterson and Haledon 1899: Plate 2; see Fig. 1-8).

The annex walls just above the ground showed bricked-up windows and doors, which proved once to have served as entrances to a lower level. The material that had
rapidly built up in the yard between this 1871 Rogers erecting shop and the ca. 1873 blacksmith shop to the east had almost completely covered this floor with as much as 6 ft. of material, rendering its doors and windows unusable.

Exploration of the interior of the erecting shop revealed that two of the four interior basements had been totally filled in with dirt and rubble. The other two basements remain open: one served as a boiler house; the second was concealed beneath a hidden trap door in the first floor (see Fig. 1-8).

A large brick drain covered with slate slabs was found just outside and parallel...
to the building. This main drain and a system of smaller drains removed water from the building's downspouts and also aided in draining the soil, which had always been wet here (Forney 1886: 2).

Some indications of the remains of the Rogers Locomotive and Machine Company's buildings located on the site before the erection of the existing shop in 1871 were also found. However, in our narrow excavation it was hard to identify walls of buildings running at right angles with any degree of certainty (Article 2 gives a detailed account of the evolution of construction within the Rogers Works).

On September 14, 1973 we made a test excavation in the Rogers yard proposed drain right-of-way. The trench was not to be considered a salvage operation but rather a test to determine whether any cultural material existed. It was dug with a backhoe and was 270 ft. long. We found 30 distinct building features, such as walls, foundations, and remains of shop tools. What was just as significant was the fact that the cultural strata ranged from 8 to 12 ft. deep, mostly compacted identifiable strata denoting a successive buildup at several periods rather than fill placed all at once. We ended our first season's excavation October 11, 1973.

WINTER 1973-74 NEGOTIATIONS

During the winter months, negotiations continued between the G.F.D. and the State and Federal Departments of Transportation. The transportation people requested that the President's Advisory Council on Historic Preservation as well as several authorities in the field of Industrial Archeology come to Paterson to view and review our research. They did so, and reported that further work was needed in the Rogers yard and that no destruction should be allowed by anyone in the Grant yard area. During the winter, we watched the exposed archeological features suffer damage from the weather while the review and decision-making dragged on.

In the spring, the D.O.T. agreed to put the sewer line in a tunnel under all cultural material from the river outlet to just south of Market Street. They also agreed that the Rogers yard test trench should be expanded to the width that would be destroyed should they decide to use open-cut construction in this section (60 feet). We also received a go-ahead on a project to record the lower raceway, so that if it were damaged by drain tunnel construction it could be repaired (provision for its preservation had been part of the original contract).

1974 EXCAVATIONS AND NEGOTIATIONS

Our first task was to recover the weathered remains of the Grant yard Excavation Unit III. We backfilled this site so that further damage could be stopped until such time as the material could be reexcavated, stabilized, and properly cared for as part of future historic interpretation.

We then proceeded to expand the Rogers yard trench, starting April 11 and finishing June 7. This work yielded the most incredible results, for as we removed the impacted ash and slag of the yard, a maze of artifacts and features of industrial buildings and their machinery came to light. Upper strata contained almost complete footings and foundations of the ca. 1873 Rogers blacksmith shop, the 253-ft. long structure running parallel to the back of the erecting shop (see Fig. 1-9). Below this, we uncovered the remains of the earlier shops, which lay in long parallels oriented toward Spruce Street (see Fig. 1-10; also Fig. 5-1). Finally, we unearthed hard-to-identify remnants of construction it could be repaired (provision for its preservation had been part of the original contract).

Figure 1-9. Schematic drawing of typical stratigraphy in the Rogers Locomotive and Machine Company's blacksmith shop excavations.
some of the first buildings in the Rogers Works. One of several features within buildings that are now being analyzed is a forge structure dating from the mid-19th century, perhaps connected to the middle raceway by remnants of a water system in a brick arched tunnel coming from Spruce Street. Also exposed were steam drop forge or hammer bases from several periods, used to fabricate metal stock into locomotive parts.

On July 29, we moved our operations back across Market Street and began a project that would allow us to record the lower raceway tunnel. Our whole experience with the lower raceway has been underlined by a growing awareness that work in such a place can be very dangerous. Potential problems include not only the tunnel’s structure and its possible failure, but also ventilation, light, communication with the surface, and standing water and mud, containing significant amounts of purple dye.

At the very least we needed an access to the raceway close to the Grant yard. Construction of a new manhole into the tunnel was suggested, but we were totally at odds with any plan that modified the historic structure. Finally, we decided to risk excavating an apparent turbine pit in the flume beside the Rosen Mill. With luck, the flume would be intact and we could enter the raceway without causing any damage to the very thing we were determined to save.

The area we cleared out was not a turbine pit at all but probably part of an old waterwheel pit that had been cut in half. The northern half, which we did not excavate, may well be the turbine house and pit. The area in which we worked was perhaps left open to give workers access to the lower raceway tunnel. Therefore, we were probably entering the historic tunnel through the historic access pit.

The pit itself measured 13 ft. by 10 ft. 6 in. and proved to be 12 ft. deep. The northern side of the tunnel had a low (3-ft.) arch of brownstone where exhaust water may have come from the turbine; the south side had a much higher arch (5 ft. 6 in.) leading to the raceway along Market Street.

Pit fill was comprised of bricks and mortar. It required the removal of nearly 2000 sq. ft. of material, for which we devised a mechanical mine car consisting in an ashcan riding a wooden trough out of the pit, powered by a rope tied to the backhoe bucket (see Fig. 1-11). The pit bottom was filled with brown- and cream-colored earthenware crocks that contained remains of dye and were probably used in the Rosen Mill to store chemicals used in dyeing and processing textiles (Figs. 1-12 and 1-13).

Our work was hampered because just next to us in the Grant yard a series of well points were being pounded into the
ground under hydraulic pressure and a literally earth-shaking three-ton hammer. This well-point system was supposed to dewater the strata through which the drain tunnel would be dug. We adjusted our schedule and worked alternate hours with the D.O.T. contractor's tunnel crew to avoid working underground in the vibrating din. After clearing the raceway tunnel and closing it off with a metal cellar door, we proceeded to record. An industrial hygienist checked air quality and other safety conditions. We made an air shaft out of two barrels and placed them over the hole we had found in the tunnel roof in our original excavation (Excavation Unit II) and began work.

The archeology crew agreed to handle logistics and record photographically; the H.A.E.R., directed by Russell I. Fries, agreed to survey the tunnel and prepare measured drawings. But when we entered the raceway tunnel, disaster struck. First, an insensitive construction foreman of the dewatering installa-
tion tried to insert a well point through the top of the raceway. Luckily we stopped him, showing him our map, but later he stupidly placed it just next to the raceway. Consequently, sections of two walls loosened. Next, water from the well points flowed into the raceway tunnel, carrying with it nearly a foot of fresh silt. Finally, we noted cracks in an important archway, and on August 16 we called off our operations as being too dangerous.

This dewatering operation and its specialist were the only insensitive construction people we met. That this expert was brought in to solve one problem only to cause another is a shame.

In late August, negotiations with the D.O.T. resumed, and, after considering the material that was unearthed, the transportation people decided to continue the drain tunnel under the historic strata all the way across the Rogers yard to what was then the edge of the Historic District. At the same time, we were ordered back into the field to excavate south of the Historic District line toward Oliver Street (see Figs. 1-1 and 1-14).

[Note: Owing in part to the immense amount of cultural material unearthed and historic data researched on this area by the G.F.D. Salvage Archeology Project, the Historic District was enlarged by 30 acres to include two areas of archeological significance: the Oliver Street area, described here, and the Stoney Road Reservoir area (see Fig. 1-1).]

Work began September 23 and ended November 1. It involved excavating the remains of the Rogers Works ca. 1874 boiler shop (200 by 125 ft.) and remnants of earlier Rogers shops. The boiler shop site proved interesting in that very distinct floors and doorways were found and a good bit of equipment had been left in place. Much of this equipment--e.g., forges--was found dismantled and stacked, as though ready to be moved. The shop had been filled in with coal ashes rather than the more common matrix of ash and rusted.

Figure 1-13. Profile of Rosen Mill flume, showing elements of a hydropower system between the middle and lower raceways. (Adapted from R.A.E.R. drawing by Bruce Cavin; redrawn by Lynda de Victoria.)
ARCHEOLOGICAL EXCAVATIONS:
ROGERS YARD, OLIVER ST. EXTENSION

B Brownstone walls from pre-1870's Rogers Works

M Machine mounts

Figure 1-14. Plan view of excavations in the Rogers locomotive boiler shop and foundry. (Drawing by Lynda de Victoria.)

iron, and we theorize that this was done when the building lot was taken over by the Public Service Gasification Plant, erected early in the 20th century.

Tools found included an anvil, bits and swages from steam hammers and forges, and two complete table forges possibly

Figure 1-15. Rogers locomotive boiler shop site, showing tools and metal stock left in situ. (Courtesy of G.F.D. Archeology Project, Lynda de Victoria.)
Small building or machinery mount (function unknown) used to heat stock being made into boiler bolts (see Fig. 1-15).

1975 EXCAVATIONS AND NEGOTIATIONS

The G.F.D. archeologists began negotiations with Federal and State D.O.T.'s in March 1975 for the final phases of the work (except for the restoration of the lower raceway). A fourth extension of the excavation phase was slated to finish the dig from the boiler shop to Oliver Street. A project end date of November 15, 1976 was agreed on, to be accompanied by the submission of a comprehensive final report. The D.O.T.'s agreed that the additional man-hours of excavation (instead of the originally planned 16 weeks of actual digging, the crew had spent 48 weeks in the field) warranted additional allotments of man-hours for historical research, artifact conservation and analysis, and report preparation—writing, editing, graphics, etc. The number of hours allowed for each contract category was arrived at mathematically, based on a formula derived from ratios established in the original contract.

The final boiler shop-to-Oliver Street excavation began April 2 and ended April 29. This area proved to be less complex. Our documentation and field work indicated only two levels of buildings on the site: on the upper level, a foundry (ca. 1874), part of the Rogers Works; on the lower level, two small stables or storage buildings (ca. 1854) of the H.V. Butler & Co., owners of the Ivanhoe Paper Mill (see Fig. 1-14).

Plans called for the drain to be placed in a 12-ft. open-cut trench; the drain tunnel was not to be continued to Oliver Street. With the D.O.T.'s assurance that no walls or other features beyond those in this 12-ft. wide area would be disturbed by the proposed construction, the G.F.D. agreed to the open-cut plan. The drain was finally completed in May 1975.

PRESENT STATUS

The saga of the D.O.T.'s intrusion into Paterson's Historic Industrial District is not over. The lower raceway and the damage that has occurred is an open question, as is the exact design for the extension of Route 20 originally planned to remove and replace most of the industrial buildings existing in the District (see Fig. 1-1). Meanwhile, properties bought by the State for the Route 20 right-of-way stand empty. Industry, unable to buy these structures in limbo, and unwilling to rent the poorly maintained structures on short-term leases, has moved away. These D.O.T.-owned buildings stand unmaintained and unprotected from fire, vandals, and vagrants. The result of this lack of attention has been the burning and destruction of several of the Grant and Cooke Locomotive Company's buildings (Fig. 1-7).

Programs such as the G.F.D. Salvage Archeology Project and the H.A.E.R. surveys of 1973-74 have materially aided in gaining public recognition of the historicity of this area. Will a fire or road still be the final victor in the fight to preserve what is a unique example of a city that changed our culture from a rural agrarian to an urban industrial society? Or will these buildings be given new uses that will see them function once again, as has happened effectively in so many other parts of the country, both fiscally and socially?

REFERENCES

Atlas of Passaic County, New Jersey

Clayton, W. Woodford, and William Nelson

Forney, M.N.

Map of Paterson, N.J.