Document Type


Publication Date



beneath; forms; Seismic anisotropy; Foliation; Taiwan orogeny


Taiwan is known as a strongly anisotropic region observed from SKS 1 - 2 s delay time and other teleseismic phases. An estimate of the crustal contribution to the total anisotropy from the foliated Central Range is essential to understanding the overall teleseismic results. We used P wave arrivals from the dense seismic arrays deployed during the TAIGER active source experiments and the permanent broadband seismic stations to determine the crustal anisotropy. From the arrival time analysis as a function of azimuth, we detected a clear cos(2 theta) pattern. The strength of the crustal anisotropy (0 - 15 km depth) reaches 8 - 10% and the fast direction azimuth is around 35 - 43 degrees for the overall mountain ranges. The anisotropic variations from the central to the north are found in detail. The results could indicate that the upper crustal delay time contribution of teleseismic shear waves reaches up to 0.45 s. The geological data at the surface and geophysical observations imply a coherent deformation from the surface to the lower crust or even down to the upper mantle.

Publisher Attribution

Kuo-Chen, H., Sroda, P., Wu, F., Wang, C. Y., & Kuo, Y. W. (2013). Seismic Anisotropy of the Upper Crust in the Mountain Ranges of Taiwan from the TAIGER Explosion Experiment. Terrestrial, Atmospheric & Oceanic Sciences, 24(6).



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.