Document Type

Conference Proceeding

Publication Date



GPGPUs (General Purpose Graphic Processing Units) provide massive computational power. However, applying GPGPU technology to real-time computing is challenging due to the non-preemptive nature of GPGPUs. Especially, a job running in a GPGPU or a data copy between a GPGPU and CPU is non-preemptive. As a result, a high priority job arriving in the middle of a low priority job execution or memory copy suffers from priority inversion. To address the problem, we present a new lightweight approach to supporting preemptive memory copies and job executions in GPGPUs. Moreover, in our approach, a GPGPU job and memory copy between a GPGPU and the hosting CPU are run concurrently to enhance the responsiveness. To show the feasibility of our approach, we have implemented a prototype system for preemptive job executions and data copies in a GPGPU. The experimental results show that our approach can bound the response times in a reliable manner. In addition, the response time of our approach is significantly shorter than those of the unmodified GPGPU runtime system that supports no preemption and an advanced GPGPU model designed to support prioritization and performance isolation via preemptive data copies.


Paper for 24th Euromicro Conference on Real-Time Systems (ECRTS),



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.