Document Type
Conference Proceeding
Publication Date
2016
Keywords
Nonlinear energy harvesting, vibration, magnets, variable double well potential function, internal resonance
Abstract
Converting ambient mechanical energy to electricity, vibration energy harvesting, enables powering of the low-power remote sensors. Nonlinear energy harvesters have the advantage of a wider frequency spectrum compared to linear resonators making them more efficient in scavenging the broadband frequency of ambient vibrations. To increase the output power of the nonlinear resonators, we propose an energy harvester composed of a cantilever piezoelectric beam carrying a movable magnet facing a fixed magnet at a distance. The movable magnet on the beam is attached to a spring at the base of the beam. The spring-magnet system on the cantilever beam creates the variable double well potential function. The spring attached to the magnet is in its compressed position when the beam is not deflected, as the beam oscillates, the spring energy gradually releases and further increases the amplitude of vibration. To describe the motion of the cantilever beam, we obtained two coupled partial differential equations by assuming the cantilever beam as EulerBernoulli beam considering the effect of the moving magnet. Method of multiple scales is used to solve the coupled equations. The cantilever beam with the two magnets is a bi-stable system. Making one magnet movable can create internal resonance that is explored as a mechanism to increase the frequency bandwidth. The effect of system parameters on the frequency bandwidth of the resonator is investigated through numerical solutions. This study benefits vibration energy harvesting to achieve a higher performance when excited by the wideband ambient vibrations.
Publisher Attribution
Active and Passive Smart Structures and Integrated Systems 2016, edited by Gyuhae Park, Proc. of SPIE, Vol. 9799, 979902 · © 2016 SPIE · CCC code: 0277-786X/16/$18 · doi: 10.1117/12.2218077
Recommended Citation
Yang, Wei and Towfighian, Shahrzad, "Nonlinear vibration energy harvesting based on variable double well potential function" (2016). Mechanical Engineering Faculty Scholarship. 14.
https://orb.binghamton.edu/mechanical_fac/14