Document Type
Article
Publication Date
8-2015
Keywords
metal-insulator-transition; vanadium dioxide; phase-transition; mott transition; tio2 001; vo2; electronics; absorption; temperature; interfaces
Abstract
Epitaxial ultra-thin oxide films can support large percent level strains well beyond their bulk counterparts, thereby enabling strain-engineering in oxides that can tailor various phenomena. At these reduced dimensions (typically < 10 nm), contributions from the substrate can dwarf the signal from the epilayer, making it difficult to distinguish the properties of the epilayer from the bulk. This is especially true for oxide on oxide systems. Here, we have employed a combination of hard X-ray photoelectron spectroscopy (HAXPES) and angular soft X-ray absorption spectroscopy (XAS) to study epitaxial VO2/TiO2 (100) films ranging from 7.5 to 1 nm. We observe a low-temperature (300 K) insulating phase with evidence of vanadium-vanadium (V-V) dimers and a high-temperature (400 K) metallic phase absent of V-V dimers irrespective of film thickness. Our results confirm that the metal insulator transition can exist at atomic dimensions and that biaxial strain can still be used to control the temperature of its transition when the interfaces are atomically sharp. More generally, our case study highlights the benefits of using non-destructive XAS and HAXPES to extract out information regarding the interfacial quality of the epilayers and spectroscopic signatures associated with exotic phenomena at these dimensions.
Publisher Attribution
Quackenbush, N. F., Paik, H., Woicik, J. C., Arena, D. A., Schlom, D. G., & Piper, L. F. (2015). X-Ray Spectroscopy of Ultra-Thin Oxide/Oxide Heteroepitaxial Films: A Case Study of Single-Nanometer VO2/TiO2.Materials, 8(8), 5452-5466.
Recommended Citation
Quackenbush, Nicholas F.; Paik, Hanjong; Woicik, Joseph C.; Arena, Dario A.; Schlom, Darrell G.; and Piper, Louis, "X-Ray Spectroscopy of Ultra-Thin Oxide/Oxide Heteroepitaxial Films: A Case Study of Single-Nanometer VO2/TiO2" (2015). Physics, Applied Physics and Astronomy Faculty Scholarship. 2.
https://orb.binghamton.edu/physics_fac/2