Document Type
Article
Publication Date
2-19-2024
Abstract
Skeletal muscle development is a highly ordered process orchestrated transcriptionally by the myogenic regulatory factors. However, the downstream molecular mechanisms of myogenic regulatory factor functions in myogenesis are not fully understood. Here, we identified the RNA-binding protein Musashi2 (Msi2) as a myogenin target gene and a post-transcriptional regulator of myoblast differentiation. Msi2 knockdown in murine myoblasts blocked differentiation without affecting the expression of MyoD or myogenin. Msi2 overexpression was also sufficient to promote myoblast differentiation and myocyte fusion. Msi2 loss attenuated autophagosome formation via down-regulation of the autophagic protein MAPL1LC3/ATG8 (LC3) at the early phase of myoblast differentiation. Moreover, forced activation of autophagy effectively suppressed the differentiation defects incurred by Msi2 loss. Consistent with its functions in myoblasts in vitro, mice deficient for Msi2 exhibited smaller limb skeletal muscles, poorer exercise performance, and muscle fiber–type switching in vivo. Collectively, our study demonstrates that Msi2 is a novel regulator of mammalian myogenesis and establishes a new functional link between muscular development and autophagy regulation.
Publisher Attribution
This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/). © 2024 Wang et al. This article is originally published in Life Science Alliance Volume 7, Number 5.
Recommended Citation
Wang, Ruochong; Kato, Futaba; Watson, Rio Yasui; Beedle, Aaron M.; Call, Jarrod A.; Tsunoda, Yugo; Noda, Takeshi; Tsuchiya, Takaho; Kashima, Makoto; Hattori, Ayuna; and Ito, Takahiro, "The RNA-binding protein Msi2 regulates autophagy during myogenic differentiation" (2024). Pharmacy Faculty Scholarship. 21.
https://orb.binghamton.edu/pharmacy_fac/21
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Comments
http://doi.org/10.26508/lsa.202302016